...

Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT International

by user

on
Category: Documents
478

views

Report

Comments

Transcript

Assessment of RELAP5/MOD2, Cycle 36.04 Against LOFT International
NUREG/IA-0033
International
Agreement Report
Assessment of RELAP5/MOD2,
Cycle 36.04 Against LOFT
Small Break Experiment L3-6
Prepared by
John Eriksson
Swedish Nuclear Power Inspectorate
S-102 52 Stockholm, Sweden
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
July 1990
Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment
and Application Program (ICAP)
Published by
U.S. Nuclear Regulatory Commission
NOTICE
This report was prepared under an international cooperative
agreement for the exchange of technical information. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's
use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use
by such third party Would not infringe privately owned rights.
Available from
Superintendent of Documents
U.S. Government Printing Office
P.O. Box 37082
Washington, D.C. 20013-7082
and
National Technical Information Service
Springfield, VA 22161
NUREG/IA-0033
International
Agreement Report
Assessment of RELAP5/MOD2,
Cycle 36.04 Against LOFT
Small Break Experiment L3-6
Prepared by
John Eriksson
Swedish Nuclear Power Inspectorate
S-102 52 Stockholm, Sweden
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
July 1990
Prepared as part of
The Agreement on Research Participation and Technical Exchange
under the International Thermal-Hydraulic Code Assessment
and Application Program (ICAP)
Published by
U.S. Nuclear Regulatory Commission
NOTICE
This report documents work performed Under the sponsorship of the SKI/STUDSVIK
of Sweden. The information in this report has been provided to the USNRC
under the terms of an information exchange agreement between the United States
and Sweden (Technical Exchange and Cooperation Arrangement Between the United
States Nuclear Regulatory Commission and the Swedish Nuclear Power
Inspectorate and Studsvik Enerigiteknik AB of Sweden in the field of reactor
safety research and development, February 1985). Sweden has consented to the
publication of this report as a USNRC document in order that it may receive
the widest possible circulation among the reactor safety community. Neither
the United States Government nor Sweden or any agency thereof, or any of their
employees, makes any warranty, expressed or implied, or assumes any legal
liability of responsibility for any third party's use, or the results of such
use, or any information, apparatus, product or process disclosed in this
report, or represents that its use by such third party would not infringe
privately owned rights.
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
1987-11-03
John Eriksson
ICAP
ASSESSMENT OF RELAP5/MOD2, CYCLE 36.04,
AGAINST LOFT SMALL BREAK EXPERIMENT L3-6
ABSTRACT
The LOFT small break experiment L3-6 has been
analyzed as part of Sweden's contribution to the
International Thermal-Hydraulic Code Assessment
and Applications Program (ICAP).
Three calculations, of which two were sensitivity
studies, were carried out. The following quantities were varied:
the content of secondary side fluid and
the feed water valve closure
the two-phase characteristics of the
main pumps
All three predictions agreed reasonably well
with most of the measured data. The sensitivity
calculations resulted only in marginal improvements.
The predicted and measured data are compared on
plots and their differences are quantified over
intervals in real time.
Approved by97
STUDSVIK ENERGITEKNIX AB
STUDSVIK/NP-87/128
1987-11-03
LIST OF CONTENTS
1
INTRODUCTION
2
FACILITY AND TEST DESCRIPTION
3
2.1
2.2
2.3
2.4
Test Facility
The Experiment
Assessment Parameters
Measurement Uncertainty
3
4
5
5
2.5
Experimental Data Preparation
6
3
CODE AND MODEL DESCRIPTION
7
3.1
Code Features
7
3.2
Input Model
7
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
Initial
system
pressure
Primary fluid temperatures
Core flow bypass
Environmental heat
losses
Break discharge
coefficient
Pump model
Steam generator
8
9
9
10
10
11
11
4
THE BASE CASE CALCULATION
13
5
SENSITIVITY RESULTS AND DISCUSSION
17
5.1
5.2
6
.,P80 AH
Page
1
Case B
Case C
RUN STATISTICS
17
18
20
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
1987-11-03
7
CONCLUSIONS
REFERENCES
TABLES
FIGURES
APPENDICES
NP'.t
AH
A
B
Input Listings
Data Comparison Plots
C
D
Calculation of Data Uncertainties
Description of the Accompanying Data'
Package
21
23
STUDSVIK ENERGITEKNIK AB
STUDSVIX/NP-87/128
1
1987-11-03
1
INTRODUCTION
An International Thermal-Hydraulic Code Assessment and Applications Program (ICAP) is at
present being conducted by several countries
under the auspices of the USNRC (Ref 1). The
goal of the program is to make quantitative
statements regarding the prediction capabilities
of current best-estimate thermal-hydraulic
computer codes.
Such codes have been used for
many years as state-of-the-art instruments to
study and verify numerical and correlative
computational models with experimental results.
Some of these codes have reached a high degree
of sophistication. They include models for all
processes which are essential to thermalhydraulic scenarios in the nuclear power reactor
application.
So far, however,
these codes have
not achieved status as reactor licensing tools,
i.e.
they do not fulfil
the Appendix K rules
(Ref 2), although they are often applied to other
calculations. The present ICAP aims to quantify
uncertainties in the codes so that the codes may
be used for licensing purposes.
Sweden's contributions to ICAP encompass assessment calculations using the two thermal-hydraulic
codes TRAC-PFl/MODl (Ref 3) and RELAP5/MOD2
(Ref 4). The work is conducted by Studsvik
Energiteknik AB and is
sponsored by the Swedish
Nuclear Power Inspectorate.
NP80 AH
STUDSVIK ENERGITEKNIK AB
2
STUDSVIX/NP-87/128
SUSI/P8/2
1987-11-03
A brief description of the LOFT test
and the L3-6 experiment is given in
facility
Chapter 2.
In Chapter 3 the model and procedures used in
the calculations are discussed. The base case
and sensitivity predictions are discussed and
compared in Chapters 4 and 5 and in the plots,
is presented in
Appendix B. The run statistics
Chapter 6 and Appendix C. Chapter 7 gives some
conclusions from the code assessment. The input
listings of the calculations are collected in
Appendix A.
A data package on tape containing input files
and predicted data has been produced. The content
is described in Appendix D. A copy of this tape
is submitted to USNRC as a part of the ICAP
agreement.
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIX/NP-87/128
3
1987-11-03
2
FACILITY AND TEST DESCRIPTION
The LOFT-experiment series L3 was intended to
provide large-scale blowdown system data for PWR
small break transients. To the Swedish ICAP
contribution two experiments of the L3 series
were assigned. In the experiment LOFT L3-5,
treated earlier in Ref 15, the main circulation
pumps were stopped shortly after the break had
been opened.
In the experiment,
LOFT L3-6,
treated in this report, the pumps were allowed
to operate at normal speed throughout the test
in
order to provide data for analyzing the
differences in the two-phase scenarios between
the two tests. Apart from the difference in pump
operational mode the two experiments were nominally identical.
This chapter shall briefly describe the test
facility, the L3-6 experiment, the assessment
parameters used and some aspects of the measurement uncertainties.
2.1
Test Facility
The objective of the LOFT experiments was to
demonstrate thermal-hydraulic phenomena which
might occur in commercial PWR systems during
abnormal situations. The facility is capable of
performing a variety of operational transients
and LOCAs.
Brief descriptions of
LOFT are given
in a number of experiment reports such as Ref 5.
The most thorough description is provided by
Reeder (Ref 6). Only particular design features
and characteristics relevant to the L3-6 experiment will be discussed in the following sections.
NP80 AH
STUD SV1K ENERGITEKNIK AB
SUSI/P8/2
STUDSVIK/NP-87/128
4
1987-11-03
A general view of LOFT is shown in Figure 1. In
the L3-6 small break experiment the two isolation
valves on the broken loop legs were closed so as
to prevent the passage of fluid via the header
to the suppression vessel.
The break was simulated by a 205.9 mm2 orifice
in a T-branch line from the intact loop cold leg
near the reactor vessel. The aim of the break
configuration was to simulate an equally placed
4-in diameter small break on a four-loop
1000 MW(e) PWR.
During the L3-6 experiment the only primary
coolant injection was carried out by the HPIS
into the reactor vessel downcomer. The experiment was terminated before the LPIS pressure set
point was reached.
2.2
The Experiment
After approximately 99 h of nuclear heating the
initial conditions listed in Table 1 were obtained. The sequence of events which occurred
during this experiment is listed in Table 2.
Main imposed actions during the experiment were:
NP80 AH
a.
At the time of reactor scram (which for
safety reasons had to be verified before the break) the steam generator
feed water and steam line valves started to close.
b.
LOCA initiated 5.8 s after the scram.
c.
The HPIS injection started at 13.2 MPa.
d.
The steam generator auxiliary feed was
initiated and terminated manually.
STUDSVIK ENE1(GITE1(NIX AB
STUDSVIK/NP-87/128
SUSI/P8/2
5
1987-11-03
2.3
Assessment Parameters
The selection of the appropriate assessment parameters for the LOFT L3-6 experiment, Table 3,
followed the recommendations of the ICAP Guidelines (Ref 1). The selection was made during the
input preparation since a number of expanded
Edit/Plot variables from RELAP5/MOD2 calculations are not available from the restart file
but must be collected as control variables.
In some cases liquid level data are compared as
pressure differences. For the upper plenum and
downcomer levels only bubble plot data shown in
Ref 5 were available. These plots were converted
into slightly smoothed elevation histories. Due
to ambiguous plot'data the resulting level behaviour is rather uncertain (Plots B.15 and B.16).
The early break flow was not qualified by the
experiment until 50 s after the break, and showed
rather large errors during the remainder of the
transient. Predictions of mass inventory obtained
through flow integration were therefore not
carried out. For the energy balance, the steam
generator heat transfer was not known, and could
not be estimated by the steam produced.
2.4
Measurement Uncertainty
The experiment instrumentation involves a variety
of transducers which may have different accuracies for the same kinds of quantities (Refs 5, 6).
Table 4 is a summary of the accuracies of the
measured quantities.
NP80 AH
~
STUDSVIK ENERGITEKNII( AB
DVKNP8/2
STUDSVIK/NP-87/128
6
1987-11-03
2.5
Experimental Data Preparation
The preparation of the experimental data for
plotting and uncertainty analysis required
several steps of manipulation of the information. First of all, the data were copied from
the original blocked tape files to the CDC
standard display code.
A program,
LOFTDEC,
was developed to sort out
the keyword and channel information to be used
in the assessment work. The program also decimated the channel data by averaging over time
intervals so that information was copied to an
intermediate channel information file only every
2nd second up to 200 s after the break, and then
every 5th second.
A program,
R5SILFT,
was developed to select data
for desired channels from the intermediate data
file. These data were transformed into a new
file with the same format as a RELAP5 restart
file. Experimental and predicted data could later
on be similarly used in plotting and assessment.
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
7
1987-11-03
3
CODE AND MODEL DESCRIPTION
The assessment calculations with RELAP5/MOD2 for
the LOFT L3-6 experiment were carried out using
the cycle 36.04 code version. The code was implemented in June 1986 on a CDC 170-810 computer.
The calculational model was based on available
LOFT input files and listings, among those the
L3-5 input (Ref 15). A number of geometrical
model features were introduced as a result of
findings in the L3-6 experiment.
3.1
Code Features
The descriptive document available for the
RELAP5/MOD2 code is a rather detailed code manual
(Ref 4). The main characteristics of the code
are summarised in Table 5. A new feature of
RELAP5/MOD2 is the cross junction which, according to code manual recommendations, was applied
at the steam separator upstream volume and at
the hot leg and cold leg vessel junctions.
3.2
Input Model
The preparation of the LOFT L3-6 input proceeded
from an input of the closely similar L3-5 experiment which had earlier been assessed for ICAP
(Ref 15). In its turn this input had been set up
from a LOFT fast transient input and with additional updates from other available input listings
(Refs 7,
NP80 AH
8,
9).
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
8
1987-11-03
Changes introduced for the L3-6 calculations,
compared with those of the L3-5 case, include
new initial conditions, other trip times and a
continuous operation of the main recirculation
pumps. However, some changes in the calculation
model are due to experiences gained during the
L3-5 assessment. Reasons for particular approaches
used in the calculation model are presented below.
Figure 2 shows the nodalization used. The input
files are given in Appendix A.
3.2.1
Initialsystempressure
To avoid an explicit steady-state pressurizer
pressure and level control, the surge line
junction was modeled as a trip valve which was
closed until scram. The pressurizer initial
conditions were satisfied with the correct fluid
content and saturated water. Pressurizer heat
structures were modeled with the outer surface
at saturation temperature until scram and then
at room temperature.
A time dependent volume was connected to the
pressurizer surge line by a trip valve adjacent
to the pressurizer bottom in order to maintain
the initial primary pressure constant during the
steady state calculation. During steady state
the pressurizer was isolated from the surge line.
The pressure of the time dependent volume was
equal that of the pressurizer bottom volume. At
scram the trip valve closed at the same time as
the pressurizer isolation ceased.
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
9
1987-11-03
3.2.2
Primary fluid temperatures
The measured temperatures of the coolant circulating through the core and the steam generator
show considerable variations from the standpoint
of heat balance. This is particularly the case
in the vessel downstream of the core. The same
situation was also noticed during the L3-5
assessment (Ref 5). However, the L3-6 measurements of 577.1 K in the hot leg and 557.9 K in
the cold leg fulfil the conservation of energy
and are consequently accepted for the steady
state. In the calculation the primary fluid
temperatures are controlled through the steam
generator operation and feed water temperature,
see Section 3.2.7.
3.2.3
Core flow bvass
Several core bypass flows exist. Two of these
(Ref 7) were modelled by servo valves adjusted
for the correct flows until scram:
the inlet annulus to upper plenum with
6.6 % o± primary loop flow
the lower plenum to upper plenum with
3.6 % of primary loop flow
the reflood assist bypass valve leakage
with 1.3 % of primary loop flows.
The leakage from the vessel cold leg inlet annulus to the upper plenum is caused by a flow path
in the narrow gap between the filler blocks and
the vessel wall. This leakage has a vertical
extension equal to the cold leg nozzle diameter.
To achieve a more realistic description in the
case of stratification the leakage has been divided into two flow path junctions. One low path
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
10
1987-11-03
connects the volumes below the inlet and outlet
at their upper ends, junction 297 in Figure 2.
Similarly, the higher level volumes are connected
at their bottom ends by a second junction,
junction 296. This second leakage junction will
preferrably bypass steam in the case of void
thus promoting a reduced leakage pressure difference.
3.2.4
Environmental heat losses
The exchange of heat with structure material is
important in small break analysis. Since the
input had only restricted material ininitial
cluded, structures had to be added to the input.
The bulk structures of the facility were modeled
to represent the correct structural masses.
RELAP5/MOD2 does not facilitate an exterior
surface heat transfer control during calculation. An environmental heat transfer coefficient had to be found by test
calculations to
obtain approximately the total heat loss of
250 kW as found in the experiment (Ref 7).
3.2.5
Break discharge coefficient
Test calculations show a too rapid decrease in
the pressurizer inventory when the default subcooled discharge coetZicient of unity was used.
Applying a coefficient o± .85
the rates of emp-
tying the pressurizer and of the early system.
depressurization turned out close to the experiThe assumption that the pressurizer emptying rate is an indicator of the break
discharge flow is only applicable for a low flow
mental values.
pressure drop in the surge line as it occurs in
small break experiments. The pressurizer level
during the emptying period is
NP80 AR
shown on Plot B.54.
STUDSVIK ENERGITEKNIK AB
11
STUDSVIX/NP-87/128
1987-11-03
3.2.6
Pum2 model
The main circulation pumps were allowed to run
at the constant initial speed during the L3-6
transient. The pump characteristics applied in
the previous L3-5 calculation, which originated
from an early LOFT base input (Ref 16), were
also applied in the first two calculations,
whereas modified two-phase characteristics were
applied in the last calculation, Case C.
3.2.7
Steam generator
A RELAP5/MOD2 separator component is contained
in the steam generator, see Figure 2 volume 520.
The vapor outlet space above that volume is
divided into two parallel and vertical volumes
according to the recommendations of the code
manual (Ref 4). Of these the one with the larger
cross section area, volume 525, receives the
steam from the separator component. This volume
is connected by a cross-junction to the parallel
volume 526, which has a smaller cross section
area and which formally represents the downcomer
top.
The steam generator initial conditions were
established by using auxiliary components for
the control of
-
dome pressure
downcomer water level
-
rate of feedwater and steam mass flows
-
recirculation ratio
feedwater internal energy.
-
The dome pressure was controlled by a time dependent volume at the correct pressure and connected by an open junction to the steam dome.
NP80 AH
The
STUDSVIK ENERGITEKNIX AB
STUDSVIX/NP-87/128
12
1987-11-03
downcomer level was regulated by the direction
and flow rate through a time dependent junction
connecting a time dependent volume with saturated water.
The initial feedwater mass flow rate, 27.8 kg/s,
was obtained by using a time dependent junction.
Moreover, the internal energy of the fluid in
the time dependent volume, which delivers the
feed water, was regulated by the steam flow
generation rate which in its turn must be equal
to the feedwater flow rate.
The initial main steam mass flow rate being
equal to the feedwater mass flow rate is controlled by a time dependent junction. The flow
rate during the valve closure, which starts at
scram, is obtained from the valve characteristics (Ref 6) and a valve stem closure rate
of 5 % per second. The reason for using this
model is the simplicity by which the closed
valve leakage can be calculated. Condie et al
(Ref 7) estimated this leakage to be .120 kg/s
at 4.5 MPa in the L3-6 experiment. At other
pressures a linear dependence is assumed.
Uninitionally the steam valve partly let steam
through from 89 s to 99 s after the break. The
flow rate during this time interval was assumed
to be correct by adjusting the steam lift
so
that a pressure drop rate close to the measured
one (see Plot B.51) was found. The steam mass
flow was during these 10 seconds only a few per
cent of that for a fully opened valve.
The junction 516, Figure 2, at the bottom of the
downcomer is modelled as a regulated valve to
achieve an initial recirculation ratio of 4.7.
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIX/NP-87/128
13
1987-11-03
4
THE BASE CASE CALCULATION
The base case (Case A) calculation could be carried without any urgent code problems. Thus a
very limited computation mass error, Plot B.62,
was saved up by the code. Still, however, the
computation CPU time required was very extensive, Plot B.61, as a consequence of time step
transport limit caused by the continuous main
pump operation. Thus one separate calculation
consumed about 18 h CPU time .on a Cyber 170-810.
The system heat balance was initially dominated
by the reactor power, Plot B.2, which was mainly
carried over to the steam generator secondary,
Plot B.53. The predicted initial heat loss to
the environments, was 260 kW, which is close to
the 250 kW estimated in the experiment (Ref 7).
The heat generated in the core after scram was
determinated by the space independent reactor
kinetics option of the code. The predicted decay
heat, Plot B.2, compares well with the decay
heat curve given in Ref 5.
The mass flow rates predicted in the hot leg,
Plot B.25, and at the core inlet, Plot B.11,
show a smooth decrease during the transient
which is mainly a result of the decrease of the
fluid density. Unfortunately no internal flow
rates in the experiment are qualified for comparisons after the break opened.
The predicted break mass flow rate, Plot B.39,
is within the uncertainty band of the measured
flow rate from 100 s on, see Ref 5. The experimental flow rate is qualified from 50 s. In the
interval from 50 s to 100 s after the break the
NP80 AH
STUDSVIK ENERGITEKNIK AB
14
STUDSVIK/NP-87/128
1987-11-03
predicted break mass flow rate is apparently
overestimated, however, some doubt may also be
put on the experimental flow rate. During this
time interval there is good agreement between
the predicted break fluid density and the chordal density measurement, Plot B.38. Whereas the
break fluid subcooled period ends at 44 s in the
experiment,
it
is
at about 200 s,
predicted to occur much later,
in the calculation, Table 2.
The behaviour of the main recirculation pumps is
showing up in
the pressure head, Plot B.36.
An
obvious cavitation in the experiment occurs at
290 s at which time also the loop seal becomes
filled with water, Plot B.31, and the steam
generator pressure difference, Plot B.46, rapidly diminishes (Ref 12). In addition effects from
the cavitation in the experiment can be seen in
the pump speed, Plot B.37,
density, Plot B.28, and in
sity, Plot B.38.
in the cold leg fluid
the break fluid den-
A pump cavitation is
dicted at the time it
occurred in
not pre-
the experi-
ment. On the other hand the prediction shows an
earlier pump head loss when the two-phase fluid
starts to appear in the suction line, Plot B.36.
The primary side depressurization,
as in
the hot
leg, Plot B.27, is sligthly underpredicted from
300 s on. Pressures at high elevations, Plots B.21
and B.57,
compare similarly.
System pressures at
low elevations as in the lower plenum, Plot B.22,
and also in the cold legs, Plots.B.34 and B.35,
are still
more underpredicted. As seen, there
might be a systematic error in the prediction.
However,
the discrepancies are within the measure-
ment errors,
NP80 AH
Table 4.
6'WtDSVIK 2NERGITEKNIK ABSTDV/N-7185 STUDSVIK/NP-87/128
is
1987-11-03
After the fast depressurization has ceased the
primary fluid temperatures remain close to the
saturation temperature, Plots B.9, B.17, B.18,
B.20, B.26, B.33 and B.44. Minor deviations from
this situation are due to errors in the measured
temperatures, Table 4, and by the HPIS coolant
injection.
As for the pressure, the predicted underestimate
of primary temperatures for the rods, Plots B.3
through B.8, and for the fluid, Plots B.9, B.17,
B.18, B.20, B.26, B.33, B.41 and B.44, increase
in time. A possible reason for that is the uncertainty, 15 % up to 1 435 s, in the measured
break flow and consequently also in the primary
enthalphy content.
There is one plainly seen inconsistency in the
secondary side prediction of Case A. The downcomer collapsed level, Plot B.49, falls about
.6 m too low until the level starts to recover
due to the injected auxilliary feedwater. This
early level error, which corresponds to about
150 kg of fluid mass, then remains during all
the transient. Secondly, too fast a depressurization particularly at the end of the transient
is predicted, Plot B.51. Similar predicted pressure behaviours were obtained by the participants
of the ISPl1 (Ref 13) which also dealt with the
L3-6 experiment. Consequently there are reasons
to assume some inadequacy to be found in the
commonly used steam generator models.
NP80 AH
STUDSVIX ENERGITERNIX AB
TDV/N-/186
STUDSVIX/NP-87/128
16
1987-11-03
Several causes for the low fluid content may be
suggested, including errors in the feedwater
valve operation timing and the steam valve leakage. The void distribution in the boiling section
may be wrong due to the geometric model used.
Moreover, a non-negligible amount of water droplets may initially reside in the dome space above
the fluid level of the steam separator volume.
The predicted pressurizer fiuid temperatures in
the liquid space, Plot B.55, and in the vapor
space, Plot B.56, show substantial deviations
from the experiment. In the liquid space. the
computed water temperature, close to the saturation line, was compared with apperently superheated steam sensed in the experiment. The computed steam superheating, Plot B.56, was not
large enough. An other possible explanation,
would be some direct influence from the pressurizer vessel wall in the experiment.
NP80 AH
STUDSVIK ENERGITEKNIK AB
17
STUDSVIK/NP-87/128
1987-11-03
5
SENSITIVITY CALCULATIONS
The base case prediction displayed some deviations from the experiment which provide arguments for the sensitivity studies. A fluid
temperature and system pressure decrease faster
than in the experiment is in the first
place
assumed to be a consequence of the steam generator behaviour or simply of the choice of break
discharge coefficient. In the Case B predictions
the steam generator model is changed. The sudden
pump cavitation in the experiment was not predicted. Consequently one calculation,
applied other pump characteristics.
5.1
Case C,
Case B
Steam generators are supposed to act as the dominant heat sinks during small break transients.
However, the 4-in. diameter equivalent L3-6 ex-
periment shows an substantial depletion of
coolant through the break so the steam generators become less important as heat sinks, ref
5.
Actually the steam generator heat transfer
rate, Plot B.53, compared with the break energy
release, Plot B.40, and the structure heat
losses, Plot B.2, confirms that. Thus, the behaviour of the steam generator will be of less
importance for the primary side cooling.
The steam generator design, Figure 3, exhibits a
package of U-tubes which are supported by horizontal plates at equidistant heights. These plates,'
have possibly been understood to be inpgnetratable
for fluid thus bringing the geometry found in
the .Case A input. Then the boiler flow is forced
to a zigzaged flow path directed by the plates.
In
reality the tube support plates are ported to
permit penetration of steam
NP80 AH
and water (Ref 6).
STUDSVIK Eh'ERGI-Ij
,TDSI/N-./2
2TUDS',.'IK/NP-87/128
-
18.
18
1987-11-03
Consequently the boiling section flow was directed
vertically in the Case B calculations. A more
efficient void rise indeed increased the initial
fluid mass by 90 kg. Further division of the
boiler flow into two parallel paths, one with
the ascending primary flow and one with the descending flow, added another 50 kg initial
fluid
mass. Although the changes in the boiler geometry
increased the amount of initial
water a lot, it
accounted only for part of the fluid mass missing
in the Case A calculation. According to Plot B.49
the discrepancy in liquid level between prediction and experiment increased with time in Case B
contrary to Case A.
The transport time from the feedwater inlet to
the downcomer bottom is quite short in the initial
state. The liquid temperature at the downcomer bottom, Plot B.50, indicates that the feedwater valve closure starts later than at the
scram.
Consequently in
the Case B calculation a
feedwater valve closure starting at the HPIS
trip signal was additionally applied. As a
result another 70 kg of water was added to the
fluid mass,
5.2
Plot B.49.
Case C
The previous two calculations predicted from
300 s on a slightly faster decrease in primary
system pressure and in fluid temperature than
measured. On the other hand were fluid densities,
Plots B.23, B.24, B.28, B.29, B.30 and B.38,
reasonably well predicted.
Discrepancies from
the experiment starting at 290 s are more evident in the loop seal liquid level, Plot B.31,
and in the downcomer liquid level, Plot B.15, as
the pumps start to cavitate,
NP80 AH
Plot B.36.
Obviously,
STUDSVIK ENERGITEKNIK AB
STUDSVIX/NP-87/128
19
1987-11-03
the accumulation of water in low elevation areas
ot the loop starts with the cavitation. This is
the time at which the discrepancy in the depressurization rate starts oft.
The two-phase pump head, Plot B.36, was underpredicted in the Cases A and B. Chen (Ref 12)
and Modro and Chen (Ref 14) found less degradation for mainly all void fractions compared with
the pump characteristics of the LOFT base case
input (Ref 16) so far assumed. Because of that
the same pump data as those used by Grush et al.
(Ref 8) were applied in the sensitivity calculation Case C. These data had been obtained from
Chen's and Modros' works. In Case C also the updates of Case B were included.
The new two-phase pump characteristics resulted
in a better prediction of the pump head, Plots
B.36 and B.46. At the time of the pump cavitation, at 290 s, a rapid head loss appeared in
Case C too. However, as before in the Cases A
and B, the pump head turned out underpredicted
during almost all the transient. In the same way
the liquid levels in the downcomer, Plot B.15,
and in the loop seal, Plot B.31, did not show
any better agreement with the experiment.
NP80 AH
STUDSVIK ENERGITEKNIK AB
20
STULSVIK/NP-87/128
1987-11-03
6
RUN STATISTICS
The input model for the base case RELAP5/MOD2
calculation for LOFT L3-5 encompassed:
113
volumes
122
junctions
heat structures
99
The volumes include two pump components,
one
separator component and nine time dependent volumes of which three were involved for the steady
state. Among the junctions there are totally
tive valve components and four time dependent
junctions which are connected during steady
state.
During the transient calculation the following
resources were used:
computer time
number of time steps
CPU = 58 675 s
DT = 36 920
number of volumes
transient real time
C
RT
resulting in
tor (Ref 1)
= 113
= 2 150 s
the following code efficiency fac-
CPU * 103=140
C * DT
The computer used was a Cyber 170-810.
NP?') AH
STUDSVIK ENERGITEKNIK ABSTDV/P-/281 STUDSVIK/NP-87/128
21
1987-11-03
7
CONCLUSIONS
The LOFT L3-6 small break experiment has been
calculated using the RELAP5/MOD2 code as part of
Sweden's contribution to ICAP. The results from
the three-calculations done compare reasonably
well with most of the experimental data. None of
the sensitivity calculations has the capacity of
considerably increasing the prediction quality.
Consequently all three calculations show mostly
rather similar curves jointly away from the
measurements. Some more calculations had been
desirable but could not be afforded.
The steady state calculation was done in the
common way of applying auxiliary components and
regulators to speed up and stabilize. Acceptance
of a steady state followed when all the auxiliaries had lost importance for the subsequent calculations. Of a particular significance was the
temperature regulation of the feedwater to achieve
the correct steam generation rate.
One sensitivity calculation, Case B, addressed
the question of why initial secondary side fluid
content had been considerably underestimated in
the base case calculation. The two updates of a
vertical boiler flow and o± a delayed feed water
valve closure were not capable to fully rise the
low downcomer liquid level up to the measured
value. Actually, the reason for the low predicted fluid content of the secondary side was not
fully understood.
NP80 AH
STUDSVIK ENERGITEKNIK AB
STUDSVIK/NP-87/128
22
1987-11-03
The other sensitivity calculation, Case C, focused on the behaviour of the main recirculation
pumps which were allowed to run at a constant
speed during the experiment. Updates in the
two-phase characteristics improved the prediction of the pump head in the crucial degradation region.. However, no other substantial improvements obviously turned out from this calculation.
The RELAP5/MOD2 code worked well during the calculations. The computer resources, made available by the Swedish Nuclear Power Inspectorate,
were quite extensive for this assessment test
case.
NPSO AH
STUDSVIK ENERGITEKNIK AB
STUDSVIX/NP-87/128
23
1987-11-03
REFERENCES
NP80 AH
I
ODAR, F and BESSETTE D E
Guidelines and Procedures for the International Thermal-Hydraulic Code Assessment and Applications Program (Draft)
U.S. Nuclear Regulatory Commission,
1985
2
Acceptance Criteria for Emergency Core
Cooling Systems for Light-Water Cooled
Nuclear Power Reactors, 10 CFR, Part 50
(Appendix K), Fed Regist, 39(3).
(January 1974)
3
TRAC-PF1/MOD1:
An Advanced Best-Estimate Computer
Program for Pressurized Water Reactor
Thermal-Hydraulic Analysis.
NUREG/CR-3858
4
RANSOM, V H et al
RELAPS/MOD2 Code Manual
Volume 1: Code Structure, Systems
Models, and Solution Methods
Volume 2: Users Guide and Input
Requirements (Draft)
EG&G Idaho, Inc.
NUREG(CR-4312, EGG-2396)
(August 1985)
5
BAYLESS P D and CARPENTER, J M
Experimental Data Report for LOFT
Nuclear Small Break Experiment
L3-6 and Severe Core Transient
Experiment L8-1.
NUREG/CR-1868, EGG-2075 (Jan 1980)
6
REEDER D L
LOFT System and Test Description
(5.5-ft Nuclear Core 1 Loces)
NUREG/CR-DR47
TREE-1208
7
CONDIE, K G et al
Four-Inch Equivalent Break
Loss-of-Coolant Experiments:
Posttest Analysis of LOFT
Experiments L3-1, L3-5 (Pumps off),
and L3-6 (Pumps on)
EGG-LOFT-5480.
8
GRUSH WM, TANAKA M and MARSILI P
Best estimate predictions for the OECD
LOFT
Project Small Cold Leg Break Experiment
LP-SB-3
OECD LOFT-T-3603 (Febr 1984)
EGG-LOFT-5480
(Oct 1980)
STUDSVIK ENERGITEKNIK AB
STUDSVIR/NP-87/128
24
1987-11-03
NP80 AH
9
KMETYK L N
RELAP5 Assessment: LOFT Small Break
L3-6/L8-1.
NUREG/CR-3163, SAND83-0245 (March 1983)
10
MODRO, S M and CONDIE, K G
Best Estimate Prediction for LOFT
Nuclear Experiment L3-5/L3-SA
(Sept 1980)
EGG-LOFT-5240
11
WHITE J R et al
Experiment Prediction for LOFT NonNuclear Experiment L1-4.
(April 1977)
TREE-NUREG-1086
12
CHEN, TH
Primary Coolant Pump Performance During
LOFT L3-6 Experiment.
EGG-LOFT-5414.
13
PETERSON, A C and COOK, C
International Standard Problem 11.
(LOFT Experiment L3-6/L8-1).
Final Comparison Report.
EGG-NTAP-6112.
14
CHEN, T H and MODRO, S M
Transient Two-Phase Performance of LOFT
Reactor Coolant Pumps.
ASME Winter Annual Meeting
Nov 13-18, 1983.
CONF-831111-16.
15
ERIKSSON, J
ICAP, Assessment of RELAP5/MOD2,
Cycle 36.04, Against LOFT Small Break
Experiment L3-5.
STUDSVIK Technical Note NP-87/63.
16
KEE, E J et al
Base Input for LOFT RELAP5 Calculations.
EGG-LOFT-5199.
25
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
Table 1
Initial
conditions.
Measured
Case A
Predicted
Case B
Case C
483.3
14.87
557.9
577.1
483.3
14.88
559.7
578.6
483.3
14.88
560.4
579.3
483.3
14.88
560.4
579.4
50.
50.
50.
50.
614.7
14.90
1.18
614.8
14.90
1.18
614.8
14.90
1.18
614.8
14.90
1.18
(K)
(K)
557.6
561.4
559.6
557.8
560.6
556.1
560.6
556.1
(i)
0.22
0.22
0.22
0.22
542.8
5.57
27.8
534.4
5.57
27.8
536.0
5.57
27.8
535.9
5.57
27.8
Quantity
Primary coolant system
Mass flow rate
Hot leg pressure
Cold leg temperature
Hot leg temperature
Reactor vessel
Power level
Pressurizer
Water temperature
Pressure
Liquid level
Broken loop
Cold leg temperature
Hot leg temperature
SG secondary side
Water level
Water temperature
Pressure
Mass flow rate
(kg/s)
(MPa)
(K)
(K)
(MW)
(K)
(MPa)
(m)
(K)
(MPa)
(kg/a)
Table 2
Sequence of events.
Time (a)
Event
Reactor scrammed
LOCA initiated
HPIS Injection Initiated
Prssurizer emptied
Upper plenum reached saturation
Intact loop hot leg voiding begin
Intact loop cold leg voldin begin
End of subcooled break flow
SCS auxiliary feed initiated
SCS pressure exceeds primary pressure
SCS auxiliary feed terminated
Imposed
action
System
reaction
-5.8
0.
3.6
20.2
28.5
29.4
31.4
44.2
73.4
1856.
930.
Case A
-5.8
0.
2.3
25.4
40.
38.7
35.
91.6
73.4
1925.
1856.
Predicted
Case B
-5.8
0.
2.6
25.4
40.
38.9
35.
91.6
73.4
1720.
1856.
Case C
-5.8
0.
2.6
25.4
40.
39.1
35.
91.6
73.4
1740.
1856.
26
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
Table 3
Parameters plotted and used in assessment comparisons.
COMPONENT
-
CORE
EXPERIMENT
(IDENTIFIER)
CONTINOUS PARAMETER *
PREDICTION
(MINOR EDIT)
FLUID DENSITY (INLET)
C1?
C2?
8. 1
B. 2
----
•S
RKTPOW 0
VOLUME I
(BOTTOM)
TE-2G14-011
TE-SG6-O1
TE-516-005
CNTRLVAR 903
C 3X
C 37
B. 3
oVOLUME 2
TE-1F7-015
TE-1 F7-021
TE-2G08-021
TE-4114-021
TE-SF4-01S
TE-516-021
CNTRLVAR 903
C4X
C47
8.4
TE- F7-026
TE-t F7-030
TE-2GI4-030
TE-2H02-032
TE-4H14-028
TE-4H14-032
TE-SH7-026
CNTRLVAR 905
C SX
C S?
8. 5
- VOLUME 4
TE-2G08°039
TE-2H01-037
TE-3CI1-039
TE-4114-039
TE-SH6-037
CNTLRVAR 906
C 6X
C 6?
B.
. VOLUME 5
TE-2G14-045
TE-4G14-045
TE-5F9-045
TE-SG6-045
TE-SHS-049
CNTRLVAR 907
C7X
C7?
B. 7
-VOLUME
(TOP)
TE-5H7-058
TE-SG6-062
CNTRLVAR 908
C eX
C a?
B. 8
TEMPERTURE (OUTLET)
TE-IUP-0O01
TE-SUP-001
TE-SUP-003
CNTRLVAR 909
C 9X
C 9?
B.
TEMP.
TE-I UP-001
TE-ILP-001
CNTRLVAR 910
C AX
C A?
8.10
CLAD TEMPERATURE.
__.
-
" -
DIFF.
* VOLUME 3
6
(OUTLET-INLET)
6
9
MFLOWJ 225.01
C B?
B.11
CORE INVENTORY
POE-RV-002
**
CNTRLVAR 912
C C?
8.12
DOWNCOMER MASS INVENTORY
POE-RV-003
S
CNTRLVAR 913
V 1?
8.13
CNTRLVAR 914
V 2?
8.14
8.15
CORE FLOW (INLET)
MASS INVENTORY (TOTAL VESSEL)
HOT LEG
PLOT
NO.
CNTRLVAR 901
HEATING POWER
VESSEL
PLOT IDENTIF.
EXP.
CALC.
- ---- - ----------------- -
DOWNCOMER LIOUID LEVEL
LE-IST-0O01
CNTRLVAR 915
V 3X
V 3?
UPPER PLENUM LIQUID LEVEL
LE-3UP-O01 *5
CNTRLVAR 916
V 4X
V 4?
8.16
DOWNCOMER TEMPERATURE
TE-IST-O01
TE-25T-0O01
TEMUPF 205
V 5X
V 5?
8.17
UPPER PLENUM TEMPERATURE
TE-IUP-O01
TE-4UP-001
TE-SUP-001
TEMPF 240
V eX
V 6?
8.18
UPPER PLENUM FLUID SUBCOOLINO
SC-SUP-102
CNTRLVAR 919
0.19
TE-1LP-001
TENPF 225
V 7X
V IX
V 77
LOWER PLENUM TEMPERATURE
V a?
9.20
UPPER PLENUM PRESSURE
PE-IUP-OO1A1
P 245
V 9X
V 9?
0.21
P 225
V AX
V A?
0.22
RHO 105
HLIX
HLI?
8.23
DE-BL-0028
RHO 305
HL2X
HL2?
8.24
MASS FLOW RATE
FT-P139-27-1
FT-P139-27-2 *5
FT-P139-27-3 **
MFLOWJ 110
HL3?
8.25
TEMPERATURE (I.L.)
TE-PC-0026
TEMPF 105
HL4X
HL4?
PRESSURE (I.L.)
PE-PC-002
P 105
HL$X
HLS?
8.26
8.27
(INLET)
LOWER PLENUM PRESSURE
PE-IST-OO1A
PE-2ST-OO1A
FLUID DENSITY (I.L.)
DE-PC-205
DE-PC-002A
DE-PC-0028
DE-PC-002C
FLUID DENSITY (B.L.)
**
*
5*
NP-87/128
bTUDSVIK ENERGITEKNIX AB
27
1987-11-03
Table 3 (cont'd)
COLD LEG
FLUID DENSITY (1.L)
DE-PC-1IS
15
DE-PC-OOIA
DE-PC-DOtC
FLUID DENSITY (I.L. PUMP SUCTION)
CL2?
9.29
RHO 345
CL3X
CL3?
9.30
CL4X
CL4?
B.31
CLS?
B.32
CNTRLVAR 931
CNTRLVAR 932
TEMPERATURE (I.L. NEAR VESSEL)
TE-PC-004
TEMPF 185
CL6X
CL6?
8.33
PRESSURE (I.L.)
PE-PC-OOS
P 120
CL7X
CL7?
8.34
PE-SL-DOI
P 345
CL5X
CLS?
8.35
PDE-PC-001
CNTRLVAR 936
CL9X
CLS?
8.36
PUMP SPEED (PUMP 1 )
RPE-PC-O01
PMPVEL 135
CLAX
CLA?
B.37
FLUID DENSITY
DE-PC-SO2A
RHO 800
BRIX
SRI?
MASS FLOW RATE
FR-PC-SBRK
a.
MFLOWJ 805
BR2X
BR2?
9.38
8.39
8R3?
8.40
TE-PC-SOIC
TEMPF 800
SR4X
8R4?
8.41
CNTRLVAR 942
8RSX
BRS?
9.42
BRSX
8R6?
8.43
(S.L.)
DIFF. (ACROSS THE PUMPS)
ST-PC-S101
- TE-PC-SOIC
INLET SUSCOOLING
**
CNTRLVAR 940
INLET PRESSURE
PE-PC-SOI
P 800
TEMPERATURE (INLET)
TE-SG-DOI
TEMPF 115.03
SPIX
SPI?
0.44
CNTRLVAR 945
SP2X
SP27
8.45
CNTRLVAR 946
SP3X
SP3?
1.46
SSI?
SS2?
8.47
0.48
TE-SG-O01
- TE-SG-0O2
TEMP. DIFF. (INLET-OUTLET)
PDE-PC-002
PRESSURE DIFF.
SG
CL2X
LEPDE-BL-014 **
(8.L.)
INLET TEMPERATURE
SIDE
RHO 115.13
LEPDE-PC-028
ENERGY RELEASE
SG SEC.
8.28
LIOUID LEVEL CI.L. LOOP SEAL)
PRESS.
SIDE
CLI?
DE-8L-105
DE-L-COO1A
DE-eL-O0IB
OE-DL-OOIC
- " -
So PRI.
a.
CLIX
FLUID DENSITY (B.L.)
- 0 -
BREAK
DE-PC-305
/DE-PC-003A/
/DE-PC-0038/
/DE-PC-003C/
RHO 185
FLUID DENSITY
RHO 515.03
MASS FLOW RATE
MFLOWJ 516
LIOUID LEVEL
LD-PO04-0088
CNTRLVAR 949
SS3X
SS37
8.49
LIOUID TEMPERATURE
TE-SG-003
TEMPF 515.03
SS4X
SS4?
8.50
PRESSURE
PE-SGS-O01
P 530.01
S5SX
SS5?
CNTRLVAR 952
S IX
S I?
8.52
S 2?
8.53
P 1?
P 2?
8.54
PRIMARY-SECONDARY TEJ.P.-DIFF.
(AT INLET)
TE-SG-O01
- TE-SG-003
HEAT TRANSFER RATE
a.
CNTRLVAR 953
LIOUID LEVEL
LT-PI39-006
CNTRLVAR 954
LIOUID TEMPERATURE
TE-PI39-020
TEMPF 415.02
P 1x
P 2X
STEM TE]MPERATURE
TE-PI39-019
TEMPG 415.07
P 3X
P 3?
9.56
PRESSURE
PE-PC-004
P 415.08
P 4X
P 4?
8.57
ECCS
HPZS VOLYMETRIC FLOW RATE
FT-P128-104
CNTRLVAR 958
ECIX
EdI?
9.S8
SYSTEM
MASS BALANCE
CNTRLVAR 959
SYI?
0.s9
CNTRLVAR 960
SY2?
9.60
CNTRLVAR 982
SY37
S.
CPUTIME 0
ElMASS 0
R 1?
R 27
8.61
8.62
PRESSURIZER
COOLANT EGY. BALANCE (INTEGR.)
PRIM.
RELAP5
EXTERNALS HEATFLOW
a.l
a.
a.
CCOMPUTATION CPU TIME
**
COMPUTATION MASS ERROR
*
THE COMPARISON PARAMETERS ARE THOSE REPORTED AS DIRECTLY MEASURED
OR AS CCMPUTED RESULTS FROM THE EXPERIMENT
a.
NO DATA AVAILABEL FROM THE EXPERIMENT
a..
DATA OBTAINED FROM BUBBLE PLOT IN EXPERIMENT REPORT
/
EXPERIMENT DATA AVAILABLE BUT NOT USED IN COMPARISONS
?
/
CALCULATION CASE (A.
8 OR C)
5.55
2
E
'Ail<K
.3
NP-87/128
28
1987-11-03
Table 4
Measurement errors
Quality
Uncertainty
Comment
Pressure
251-282 kPa
120 kPa
Primary side
Secondary
side
Fluid temp
2.7-3.1 K
.5 K
5.9 K
10.4 K
Mostly
TE-P139-019,
steam
TE-SG-001,
TE-SG-002
TE-PC-004
Fluid density
78-82 kg/m3
129-131 kg/m3
Many measure
DE-BL-001A,
DE-BL-001C
DE-PC-002B,
DE-PC-002C
Cladding temp
3.1-3.2 K
All
Diff Pressure
.49 k Pa PDE-RV-003
1. kPa
PDE-PC-002
PDE-RV-002
1.3 kPa
1.8 kPa
PDE-PC-001
Mass flow
.02 L/s
6.3 kg/s
17 kg/s
25 percent
1 kg/s
HPIS
I.L. init
condition
I.L. hot leg
Break,
40-750 s
Break,
750-2100 s
Liq level
.04 m
.05 m
.099-.137 m
Bubble plot
Pressurizer
SG secondary
Cold legs
Upper plen,
downcomer
Speed
1.22 rad/s
Main recirc
pumps
S ouVSV.
T:EINI2 AB
:~.
NP-87/128
29
1987-11-03
Table 5
RELAP5/MOD2 code features.
COMPUTATION PROCESSING FEATURES
-
Several problem type and execution
control options as
a. steady state initiallsation using fictitious structure heat
capacities
b.
transient
c.
strip
for
faster
convergence
calculation
type execution,
to
select
requested parameters from a
restart file
d. trip system, to decide on actions during calculation due
to reaching specified conditions in calculation parameters.
a. ability to delete or add hydrodynamic components, structure components and control variables at a restart of
calculation.
CLASSIFICATION OF HYDRODYNAMIC MODEL
- One-dimensionil,
with provisions for
a. choked flow model
-
b.
abrupt area change model
c.
cross flow junctions.
Two-fluid, six equation, space-time numerical solution scheme.
- flow regime oriented field characteristics depending on mass
flux and void fraction for
a.
horizontal
fields
flow with bubbly,
slug, mist and stratified
b. vertical flow with bubbly, slug, annular-mist (and stratified) fields
c. high mixing flow with bubbly and mist fields (for pumps).
NP-87/128
STUDSVIK ENERGITEKNIK AB
30
1987-11-03
Table 5 cont'd
HYDRODYNAHIC COMPONENENTS (Input systemat1cs)
-
Volume type components
a.
single
b.
pipe and annulus,
volume
for
condensed input of several similar
single volumes
c.
time dependent volume, for defining a boundary source with
a time dependent fluid state
d. branch, a volume capable of two or more connecting junctions at either end
e. pump, characterized by rated values for flow, head. torque.
density and moment of inertia. The single phase homologous
curve, two-phase multipliers and phase difference tables to
model the dynamic pump behaviour
f.
-
special system components for steam separator, jetmixer.
turbine and accumulator.
Junction type components
a. single Junction
b. time dependent junction, for a time dependent Junction
flow whith a time dependent or controlled flow state
c.
cross-flow Junction, to model a small cross flow, a tee
branch or a small leak flow
d. valve, various operation characteristics available for
check valve, trip valve, inertial valve and relief valve.
INTERPHASE CONSTZTUTVE BOUATIONS
-
Interphase drag
a. steady drag due to viscous shear depending on flow regime.
Semi-empirical mechanisms to describe flow regime transitions
b. dynamic drag due to virtual mass effect.
-
Interphase mass and heat transfer depending on flow regime and
the fluid fields to saturation temperature differences
STUDSVIK ENERGITEKNIK AB
NP-8'1/128
31
1987-11-03
Table 5 cont'd
FLUID TO WALL CONSTITUTIVE EQUATIONS
- Wall friction due to wall shear effects formulated for flow
regimes and based on a two-phase multiplier approach.
- Wall heat transfer depending on flow characteristics defined"
for
-
a.
single-phase forced convection (Dittus-Doelter)
b.
saturated nucleate boiling (Chen)
c.
subcooled nucleate boiling (modified Chen)
d.
critical
e.
transition film boiling (Chen)
f.
film boiling (Bromley-Pomeranz
g.
condensation (partly Dittus-Doelter).
heat flux (Blasi or modified Zuber)
and Dougall-Rohsenow)
Interfacial mass transfer at the wall depending on wall,
fluid
and saturation temperatures for
a.
subcooled and saturated boiling
b.
transition film and film boiling
c.
condensation.
HEAT STRUCTURES
These may be rectangular,
The structure position is
cylindrical or spherical in shape.
defined through component numbers of
left and right hand side hydraulic components. A structure is
physically defined by the geometry and the temperature dependent
conductivity and volumetric heat capacity data. The structure
model is further specified by the number of internal mesh points
in the direction of heat flow.
CONTROL COMPONENTS
By these new (control) variables are defined from calculated
parameters using algebra, standard functions, trip type operands or integrals.
STUDSVIK ENERGITEKNIK AB
.,P-d 1/128
32
1987-11-03
Broken loop
Intact loop
rA
A
Reactor
vessel
Figure 1
LOFT system configuration.
Downcomet
C•re
Lower plenum
555
550
,En
530
tlj
560
415
z
519
517
115
'-a
~0
0
-4
z
I-I
s-h
0
625
235
226
Figure 2
The nodalization diagram for
LOFT L3-6.
(AJ
STUDSVIK ENERGITEKNIK AB
NP-87/128
1987-11-03
Figure 3'
The LOFT steam generator.
34
rtn
:
6.
LOFT L.3;
0MI0O00
NEW
0000101
Rm
0000102
WI
.000104
ANALYSIS (PRIJRY.SECODRY.KINTCS)
0
U)
STOY-ST
S$
i-4
HOACTION
)000105 120.
0000120
0000121
000201
*e
200.0
100010000 0.0
117010000 0.0
T1IMEENDO IN STP
144.2
I.OE-6
WATER
WATER
MAXSTP
.20
PRIMARY
SECONDARY
EDT OPT
00001
WON
25
MAJR RST
4000 4000
0000221
0000330
0000331
0000332
0000333
0000334
0000335
0000336
0000337
o
11SO20000
R140
345010000O
C4TRLVAA 931
CNTRLVAR 932
TEM)F
135010000
P
120010000
P
345010000
OETRLVAR 936
FMPVEL
13S
66*I.**3563S5.6466065505664486565
* BREAK
000033:
0000339
0000340
0000341
0000342
0000343
0000344
MINNOR
EI)T VARIABLES FOR THEICAP ASSESSMENT
&000301
€XrRLVAR
0000302
0000303
0000304
0000305
0000306
000030?
0000308
0000309
0000310
0000311
0000312
901
RKTPOW
0
CNTRLVAR 903
CHTRLVAR 904
CHTRLVAR 905
CNTRLVAR 906
CNTRLVAR 907
CHTRLVAR 908
CNTRLVAR 909
CHTRLVAR 910
MFLOWJ
225010000
CNTRLVAR 912
SS*****S*SS.SSS4SS*~94S**6454S640*4S64*e
* VESSEL
CKT
RLVAR
CNTRLVAR
CNTRLVAR
914
915
116
0000317
0000316
0000319
0000320
0000321
0000322
TEMPF
IEMPF
CNTRLVAR
TEMPF
P
P
205010000
240010000
919
225010000
245010000
225010000
e HOT LEG
*
RHO
RHO
MFLOXJ
TEMPF
P
105010000
305010000
110010000
105010000
105010000
COLD LEO
0000328
*3564**44,00
0000346
0000346
0000347
0000348
0000349
00003S0
0000351
0000352
0000353
T46T**8o 43*S*54*56
511
CNTRLVAR 545
CHTRLVAR 546
RIH
SI030000
WNL09J
516000000
COTRLVAR 949
1EMPF
1150300010
P
530010000
ConTALVAR952
CTRALVAR 953
* EcCS
0000358
5
CKTALVAR 9S6
SYSTEM
0000359
0000360
0000382
9e14
* RELAPS
0000361
0000362
1S5010000
SIm
*• Ill 641
S
S)
P0•M92
135
'SS
BRAK.N
CLOSE
SOS
MLOW
ScAS
'TRIP
DIRECTION OF FLON FROM ORE
mSP. BREAKPLOWOUALIFIED
9t
240
OS
STOP AIV. Of CALCURATION
48
6564544 *46446*66454*8*S*5*6654666
BREAKOPEN
SOS
PRESS. VALVEOPEN. AFTER 55
435
INITIATED
640
PUMP COOLANT
INJECTION
901
CIITIME
(MASS
0
0
CTARLVAR 272
CN3RLVAR296
CNTRLVAR 372
Ct RLVAR 291
CHITLVAR 216
CNIRLVAR 601
CNTRLVAR 606
CHTRLVAR 960
CHIRLVAR S52
S--h
00
:01
*.56565.0*S*S6*.*665*6548*6658S94*6
It
-4
SSSSS*85665555S5#*53*665655545466*o
608
&10
Sil
612
* STEADYSTATE CONTROLS
0000370
0000371
0000372
0000373
0000374
000037S
0000376
0000360
0000352
548
AFTER EXPERIMENT EDO
*5*** eee e5o e6 * 56*55 **SS 555. 4S6*$6.5646**6@S.*SS*S***5****54*650
RHO
TIME
ALOXFEEDWATER
TRIP
eaga*~eeess.ae.~s.sms.556.545S*6e*56
COTRLVAR 255
C)TRLVAR 560
CHTRLVAR 932
H
REACTIVITY. OEN. TABLE
6011
SS AUXPRESSUIIZ. VALVEClOS 410
550
MAIN STEM. VALVE. CLOSE
FEED WATERVALVE. CLOSE
560
[*T-TrT*5456*3
4
CNTRLVAR5S4
TEIMF
415020000
TEMPO
416070000
P
41E060000
5650
TRIP INPUT DATA
T
*s~teesss4eese*5e554*S**S5$535
***5**5~45666*5e'S5454SSSSS*S568l
0000354
0000355
0000356
0000i37
p O*5548543S55533855546S518866S8S545666*54*094945658*56556
Is5010000
806000000
940
300010000
S42
IS5010000
116030000
e PRESSURIZER
0000314
0000315
0000316
0000323
0000324
000032S
0000326
00003!7
moO
MFLOWJ
CN•RLVAR
IYEPF
CNTRLVAR
P
TEMPF
0 STEAMGENERATOR
0
t•l
613
514
515
$1i
520
521
622
623
0530
5131
535
533
561
562
600
660
£61
699
600
*602
1603
610
TIME
TIME
TIME
TIME
TIME
P
£554554
c-
I
S-'
0
0
a
CE
GE
HULL 0
IJLL 0
GE
TIMEOF 601
IIMEOF 510
L
L
a
GE
CE
144.2
0.0
5.8
10000.
L
L
MILL 0
13.23&
N
0
100010000 LIE
P
TIME
100010000 LE
0
GE
VELFJ
P
P
240010000 CE
530020000 CT
630020000 LT
P
530020000
P
530020000
OETRLVAR 10
CXTRLVAR 10
TIME
0
TIME
0
P
1000o0000 GT
TIME
0
St .
A
514
AM
$13
ANO
-614
AND
530
OR
-s31
^NO
562
AO
612
Oft
GT
LT
LT
GC
GE
GT
GO
I
-514
.514
502
601
602
530
MILL 0
NULL 0
TIMEOF S14
WULL
0
HULL 0
MULL 0
MULL0
MILL 0
OILL 0
PULL 0
TIMEORSIO
TIM(OF SI0
P
530020000
TIMiOF 640
N
N
N
N
N
Nf
10000.
2.1516
20.
0.0
S.63(6
S.51[&
S.SSE6
5.53E6
3.10
3.15
50.
£3.
0.
1800.
S-a
L
L
L
N4
N
N
CD
N
N
N
N
L
N
N
L
k1
I...
I-
-521
611
AND
NCO
-610
610
N
SI
64
616s
-522
-all
a's
O0
AND
AND
AND
523
613
501
614
N
N
SI
S
633
$634
634
533
633
510
AND
oft
AND
-660
603
too
SI
S
L
No
-514
S
NC
-601
S
L11
612
13
614
61 S
616
510
64S
S46
46
-S01
* t o4e0044440~oo~....
. ..so
0
....................
En
eet44S8SoS*404*o
4*S95440004555*0
LOOP
INTWCT
*
G eS e0SsSSS655S5•46444S4emS04466S6*44eS044SS44444
eSSoeSee.S545S
0
•
VESSEL NOZZLE INTACTLOOP NOT LEG
SREACTOR
1000OO0
1000001
1000101
1000102
1001101
1002101
RWI1a
2
0.0634
4.06-5
296010000
100010000
B6RAIC.
I
1.5373
0.0
100000000
I0SO000X
0.0
00
0.0634
0.0
0.0
0.1
0.06S
0.0
0.0
0.1
0.065
0102
0l00
•*65e4545*455544
* PRESSURJZER
1050000
S1060001
1050101
1050102
1051101
TEE REACTOR VESSEL SIDE
•ONNECTION
PITRY'S
1
0.0634
4.OE-6
10501000I
BRANC4
1
0.0•
1.634
00
0.0
10000000 0.0
0.0
0.0
0.0
0.0s6
O.06s
0100
*..4ee44e440*ees
S
STEAM
7
GENERATOR INLET PIPING
1100000
1 00001
1100101
1100 102
1101101
SGII4LP
I
0.0
4.0E-5
110010000
BIKAMCI
I
0.06204
1.1303
00
0.0
I16000000 0.0
1160000
1150001
1150101
SAPS
13
0.0O
PIPE
1150102
1160103
IISO104
11SO301
1150202
1150203
1150204
1150205
1150301
0.151
0.0
0.0634
0.0
0.0512
0.0
0.0512
0.0
0.93124
9
12
13
1
2
9
10
12
1
0• 0
0.63
1.0022
.7102
0.7576
.7102
1.0022
2
3
4
5
7S
a
1160309
1150310
1160311
1160313
11.0401
0.63
0.547
0.669
0.535
0.05426
10
I1
12
12
1
1150402
1150403
1150404
115040S
0.057
0.223
0.0
2
93
1150406
1150407
1160408
1160501
1150601
11 50602
1150603
1160701-
0.0437
0.0462
0.0
0.0
1.0
90.0
-90.0
0.0
II
12
13
13
1
6
13
I
1150702
11MM02
1150704
115070S
1160704
1160707
1150700
1160709
1150710
11650•11
1150712
1150713
1150801
0.246
0.613
1.:322
.7102
0.:576
-0.8574
-. 7102
-1.0022
-0.513
-0.494
-0.689
-0.356
4.00-S
2
3
4
5
6
7
0
•
10
if
12
13
0.0
0.223
0.0
0.0
1150802
11
S0•03
4.0-5
1.0E-3
0.02
0.0:,1013
0.17
0.17
0100
1160604
1150605
1150901
1150902
1150903
1150904
116090S
1160906
1150907
11 0904
1160909
1151001
1151101
1151102
1151103
1151300
4.0E-5
4.05-5
0.255
0.048
0.0
0.096
0.192
0.096
0.0
0.046
0.096
00
0100
0000
0100
1
0.0102
0.0
0.255
0.046
0.0
0.096
0.192
0.096
0.0
0.045
0.096
13
3
2
12
4*e**0**t44•44•
*
ti
W
1203101
125O00
1250001
1250101
1250102
1251101
1252101
PSTEE
3
0.0634
4.0E-S
115010000
120010000
PISTOL
2
0.0
4.06-5 0
126010000
12500000
: PtW I INLET
PIINL
1300000
1300101
4.06-6
1300102 0.0
S
BRANCH
1
0.0
0.0613
1.003
00
.0
0.1
130000000 0.0
.012417 O.0
155000000
1-4
0.2
0100
90.0
0.521
0100
6010
0.1
0.0
S
SNCLV4L
0.457
0.0
e PRIMARY COOLAN PFLW I
13S0000
1350101
1360102
1350108
1350109
1350301
1350302
1350303
1350308
1350310
10
13
t
2
4
5
6
?
t
to
12
0.0
00
0.
0.0317
PCPI
0.0364
0
130010000
140000000
0
0
369.0
613.6
.212465
0.0
0.0111.
00
0.0
40.0
0.467
0.319
TRIP-511
PIJ
0.0
0.099
0.0
90.0
0.0
0.0
-I
0
0.911
0.0
0.0
0.0
0.0
0.05
S11
-1
0.31S$
207.4
-26.
0.0
0.0
0.04
C
96.0
0.004
29.6
0100
0100
S00.6
11.698
6.28
1.431
0.0
1400000
1400101
1400102
0.0
0.0
0.0
0.096
0.2
0.096
0.2
0000
0100
PIOTLPI
0.0364
4.06-6
$NGLVOL
0.0
0.602
00
0.0
PCPWATER1SUVOL
1.0
7.E-3
0.0
0.0
I
30S.
0.0
305.
10000.
0.0
0.0
00
0.0
POPTS
2
BRANCH
I
1.4004
1450101
0.0
1450102
1461101
0.0
4.0E-6
140010000 145)00000
ID
I.-A
I
0.0
0
No
co
ti,
0.0
0.0
0.0
0.0 0.0
0.0
0.0
0.0
(I)
5
* PUWI OUTLETPIPE TEE SIDE
14S0000
1450001
z
1.4
PUMP INJ. (JOINED ONEPUMP)
e COOLANT
0
I1CPJUN
PCPINjI
9010000
110000000 140000000 0.0
9010101
611
1
9010200
0.0
0.0
-1.
1010201
0.0
.096
0.0
9010202
0.0
.094
10000.
9010203
;100000
9100101
:100102
100200
1100301
S100202
I-A
co
* PUMP I OUTLETPUM SIDE
6
BSANCH
I
0.76
0.0
120000000
126000000
0.2
0
SPUMP SUCTIONTEE
1200000
1200001
1200101
1200102
1201101
1202101
120010000 165000000 0.0317
o PIAIPI SUCTION TEE OUTLET
I0
0.0
SSS*Soo**oSS**S*SSS04¢leeee*40SS4*SSS4,SSS44*,0444
SSTEA.A GENERATOR PLUS PIPING
*
11 60302
1150303
1150304
1150305
16SO306
1150307
1150300
0.0633
0.0
0.0
0.0
00
0.0
0.0
0.0
0100
10*
ti•
I.-,-
x4
"tJ
1452101
* P1t
1450I0000 1000000
.035073
0.0
0.0
0100
OUTLET TEE
1S300000
1I
SO00
1500101
1S00102
1601101
1602101
POTLTEE
2
0.034
4.MO-M
170010000
10010000
0
BRAWC.:
I
0.4966
0.0
0.0
00
150000000 .0271528
175000000 0.0
0.0
0.0
0.0
0.2
0.134
0.2
0.134
0100
0100
PUP 2 SUCTION TEE CUTLET
1550000
IS•0001
15SO101
15St002
1551101
PUP
P25TO.
I
0.0
4.OE-s
155010000
SpkC4
I
1.003
0.0613
0.0
00
160000000 0.0
P21N1
0.0
4.0GE-
0.05
90.0
O.OS
0100
0.0
10.0
0.457
S PR•IMAy COOLANIT
PUMP2
1610O0
1610101
1610102
1650108
1650109
1650301
1650302
1650303
1650308
1610310
PCP2
0
*S*S• ••*••**
o PUM
1700000
1700001
1700101
1700102
1701101
0.0300
0
160010000
110000000
135 136
369.0
613.6
.212465
0.0
•lls*el•
*
PUWM
0
0.0
0.031
0.0
90.0
0.0
0.0
135 -1
O.sl.1
0.0
0.0
0.0
0.0
0.05
-1
S11
0.31s5
207.4
-25.
0.0
0.0
O.Os
0
96.0
0.004
29.5
0100
0100
41•5*S*9405•549••
500.6
19.598
S.26
0.319
1
0.0366
4.OE-S
145010000
17,1300
I
1
tij
z
1I-
1800001
1500101
1500102
1$01101
0
1
0.0634
4.0-E3
17.1010000
SCOLDLEO PIPE
1
.701
0.0
10000000
'-4
0.0
00
0.0
• 2000000
2900001
2900101
0.0
0.0
0.0
0.064
0.0664
0100
PAN6ECC CHEECTIO0N
TO REACTORVESSEL
S
0
1550000
1:510001,
CLPRVS
2.03
1050101
1850102
1851101
1652101
1.461
0.0634
4.06-S
0.0
155010000 29000000
180010000 155000000
BRANCH
1
0.0
00
0.0634
0.0
0.0
0.0
0.0
1.
0.0
1.
0.0
0101
0100
PTECT
2
0.O064
0.0
0.553
0.613
0.0
0.0
0.0
0.0
4.O6-5
PIPE
2
I
I
2
2
2
2
2
0.0
.076
4.6-S
.172
00
200010000 290000000 0.0
0.0
0.0
0.0
-90.
-. 30
•*..*o
z
* INLET ANNULUS TOP VOLUME
2000102
4.0-5
0.0445
00
0.178
0.0
90.0
2050101
20SO102
9I1101
0.0
4.O4-1S
20601000
0.274
0.172
0.07t
o00
210ROLI0 0.0
0.0
0.0
DISCHARGE
D
VOLUME
:200000
6200101
0200102
0.0
0.0
0.2
0.2
0100
0.10
o.o.os.•**.-*ss e~*..o.s••*•**.*os.*s..*.
9499e55•445•6,555
0.0
LI-4
0100
9S459905**S0SS**SSA
.**..s.s.....*ee
5200200
8200201
5200202
BREARVOE.IIMDPVO
3.6E-3
0.0
2
0.0
100OO.
I.
0.0
1 .S
I.E5
0.0
0.0
0.0
0.0
0.0
8000001
6000000
8000101
8000102
6001101
I
SROUTL
1.
I.
o BRAKEVALVE(ORIFICE)
9010000
SJT~vLv
VALVE
800010000 820000000 205.6-.6
5050101
1TRVLV
5050300
S.
S14
641
9030301
0.0
0.0
0.0
.S
.5
0102
.4
.4
0100
0.0
*.o,.e••s.o¢*..*•ooeooe~els.....*•*•e*oe.elole••*eleese*.ae.*•*s'
*
REACTORVESSEL
C00.D LEG INLET ANNULUS
DWMIVCO4R
PIPE
2100001
4
0.142
4
2100201
21 00301
210O401
2 100501
210¢601
2100801
0.0
O.9S4
0.0
0.0
-90.0
4.OE-5
3
4
4
4
40.102
2100001
O0
2100901
I
BRANCH
.00090!
1.6
0.0
I.E-S
0.0
00
18S010000 O00000000 0.0
2100000
2100101
8REAKOUTLETLINE
O
1o70000
10S00I
1?sO101
1750301
170301
11S0302
1710401
1I10101
1150601
1750701
175001
2W00I02
2901101
-90.0
0.0
S
* COLDLEG PIPE 10 IOC CONNECTION
TEE
INANLCVOI. BFAIC
I
I
0.0
.30
2000000 'ZANLIVOL ORANO4
2000001
0
1
2000101
0.0
0.11
1.431
0.0
eutNm
I
0.514
0.0
0.0
00
170010000 0.009073
I
•
2 OUTLET
P2mnm.
0.15
2
0100
0.621
S
SNaOL1A.
0.465
0.0155
0.0
00
0.15
00
1751101
* ECC CONNECTION TEE PUM SIDE
0.0
2 INLET PIPE
1WO600
1600101
1600102
1760901
1751001
.$5
.85
2101101
2101300
0100
~00e0005..SS.*.0S'*(S•
I-A
2:
0
0.0
0.0
-0.274
0
ID
00
.0
PE
0.0
0
3
w•
0.0
2150102
21051101
4.0E-5
0.0
00
210010000 21S00000 0.0
2152101
21501000
0.0
220
00
CA,
• OWERt
PLENUM•UPPER VOLUME
2150000
LPUVO
BRANCH
2150001
3
4
2150101
0.740
0.34
2153010
I'
215000000 225000000 0.16
0.0
0.0
0.0
0.0
-90.0
0.0
0.0
0.0
-0.360
0100
0100
0100
• LOWER PLENUM LUWER VOLUIE
2200000
LPLOV04.
RSNGLVO
2200101
2200102
0.790
4.O6-S
0.360
0.0
0.0
00
•2510000
LOWER COlRE
SUPPORT20T
STRU•CTURE[
LCOS
0.
2250001
2•05101
2250102
1
O.25
4
0.0 1
0O2- 0
2
0
0.0
.19
0.0
-90.0
-0.370
'6*SSSS**S*••••*SSS*S
.J.
.
0.0
0.0
x
00.0
0.32
(Si
1.2251101
22501OOO 220000000 0.097S
2.4
2.4
0100
En
* VALVE JUNCTION FOR CORE BYPASS FLOW
2260000
2260101
CBPVLV
VALVE
226010000 235000000
2260201
2260300
2260301
I
S"WLV
226
.015
20.
0.0
I.
I,
0100
0.0
• **S$SSeSooSS SSSSS*S•40S*S*S*SSS*e4S**S6SSSSSS*SSSS*
* UPPER FLOW SKIRT REGION
0
* ACTIVE CORE
2300000
2300001
2300101
2300201
2300202
2300203
2300204
2300205
2300301
2300302
2300401
2300S01
2300601
2300801
2300901
2300902
2300903
2300904
2300905
2301001
2301101
2301300
CORE
6
0.170S
0.1705
0.1440
0.1705
0.1440
O.1705
0.2795
0.3776
0.0
0.0
90.0
4.O6-5
0.0
.6
0.0
.5
0.0
00
0O00
I
6
I
2
3
4
5
a
6
•
6
6
0.012
0.0
.5
0.0
.6
0.0
6
5
2450000
2450001
2450101
PIPE
UFOSRIE
SRANIh
0.114
0.693
I
SSS*SSo*Seee
I
0.0
0.0
2450102
4.0E-S
0.131
00
2461101
240010000 246000000 0.0
0.0,
**4**S@******,4
*S* *9,6**•e*SS4,0*te6.4**94S,*S* ***S••eSS
90.0
0.093
0.0
0100
•0s*SSSS**9SS
D EADFEND OF FUELMCOULES
2460000
2460001
2460101
2460102
2461101
FI
1.
I
0.153
4.OE-6
240010000
SRANWN
I
0.700
0.214
24600000O
: UPPERPL5NIA UPPER VOLUMt
0
0.0
00
0.0
0.0
90.0
0.700
0.0
0.0
Ot00
o**S*******SS*SoS6•*S@*oSSSSSSSSS*6o*S96oe**So~o*Se*o4**•),*•440.
6
1
2
2
4
S
295OO00
2950001
2950101
2990102
2951101
2960000
2960101
2960201
2960300
2960301
PIPE
3
2
2
2
3
3
3
3
0.002
0.0
3
2
WIUOUlr
1
1
.201
4.6-S
245010000
2400001
2400101
2400102
2401101
2402101
0
UCOSST
2
0.297
4.06-5
230010000
235010000
.30
0.0
0.0
00
296000000 0.0
2970000
2970101
2970201
2970300
2970301
2
2
0.0
00
0.12
0.0
H
0.0
90.0
0.712
tl,
oSS
S96•66966*S*6S66o*SS•
PRESSURIZER
s(d.
.30
0.0
0.0
0100
4000000
4000001
4000101
4000102
4001101
4002101
S*e *SS too
IAUPVL.V VALVE
200010000 250000000 .01
I
15.0
0.0
SRV.LV
296
I.
0.0
1.
0100
IAUPVLI
VALVE
205000000 245010000 .01
I
16.9
0.0
SRWLV
296
0.0
90.0
1.118
2.O
1.so
2.40
1.60
0100
0100
2910000
2910101
2910201
2910300
2910301
**S*SSS*556
IAUOOM VALVE
290010000 205000000 0.269
I
444.9
0.0
SRVVLV
291
I.
0.0
I.
0100
I.
0.0
BAPNCH
I
0.704
0.0
0.0
00
250O000000 0.0
265000000 0.0
S*e••e•~e•eeeoloeoee•eeeooeooeee,
4050000
4050101
4060102
SLPRV
0.00145
4.O0-6
SNGLVOIL
3.45
0.0
0.0
00
SLVALV
VALVE
405010000 416000000 0.0
TRPVLV
b01
4100000
4100101
4100300
4100301
* PRESSURIZER VESSEL
1.
0100
555e5t See5e5*ee~tS*S4SS*eSeeoS*SS*e*IsS.S**.*tS*
UPLLVOL
2
0.2096
4.06-S
295010000
260010000
0 SURGE LINE PRESSURIZER VESSEL
S
0.0
90.0
0.60
$-A
* UPPER PLENUMLOWERVOLUME
2SO0000
2500001
2600101
2500102
2501101
2502101
SPCS
BRANICH
2
I
O.0O146
3.45
0.0
0.0
90.0
0.64
4.06-6
0.0
00
110000000 400000000 0.0
0.93
0.93
0100
400010000 405000000 0.0
0.93
0.93
0000
4
ooeSS.S.SS6S..,*S66*•.•om**6•S*SSS*66944446696SSS66S
* PRESSURIZER SURGE LINE VALVE
0 VALVEJUNCTION INLET ANM.TO OW4CCOWR
S
9
SSURGELINE PC$ SI0E
0.0
* VALVEJUNCTION4INLET ANN. TO UPPER PLE5NM
BRANCH
I
1.I1a
0.145
240000000
240000000
0
H
BIRANCH
****5454555*5565.46546455S6*se**s**66***..4e**.696..9..494.9
*S.*S*SSSSSS*SSSSSSSS.oe. oee~eoe••s....,.S*S**.*96eeSSS*S*SSooo**
* UPPER CORE SUPPORT STRUCTURE
2400000
*,**9*olaf*SSS*SSooqs*•ebS*6,*S*S4*Se*6SSS
S*
• VALVEJUNCTION INLET ANM. TO UPPER PL[NUM.
BYPVOL
3
0.01
0.0
0.559
0.657
0.0
0.0
90.0
4.OE-5
0.0
00
0000
I
UPLUVO. SNGLVO.L
0.244
0.712
0.0
0.0
00
4.06-1
* REACTOR
VESSEL HOT LEG OUTLET
* BYPASS VOLUAME
23S0000
2350001
2350101
2350201
2350301
2350302
2350401
2350501
2350601
2350801
2350901
2351001
2351101
23S1300
265O000
2650101
2650102
666.4
.
0.0
90.0
0.704
0.0
0.0
0.0
0.0
0100
0100
4150000
4150001
4150101
4150102
4150103
4160104
4150201
4150201
4150302
4150303
4150304
416030S
4150401
4150501
4150601
4150e01
4151001
4161002
4151101
4161102
4161300
*
0
PRESSV
a
0.362
0.665
0.466
0.13
0.0
0.274
0.403
0.207
0.1700
0.115
0.0
0.0
90.0
4.0E-5
00
01
0100
0000
1
S
ID
I,
CO
0.93
0.93
0100
-J4
I0
6
0
CO
PIPE
I
5
7
8
7
1
3
5
7
S
5
S
5
0.0
4
a
I
7
TOP VOLUME PRESSURIZER
"0
a
(D
CIA.
0
x
4200000
TOPPRE
4201101
0.13
0.236
0.0
:.SE-S
0.0
01
415010000 420000000 0.0
A200001
A200101
42O1O02
I
8ARM:H
0
0.0
10.0
0.0
0.0
0.236
0000
r")
iee...... e.eo.o o.o..46..46.4.eo..464u646.4.e*8.e)*0688**4686.886
: CORE SUPPORT BARREL
HEATSTRUCTUREINPUT DATA
8
gs*oeo
s0*. VESSEL
* EACTOR
044#o*seen.*s.6*o.o4o.....e•.s86
HEAT STRUCTURES
o8*6***844.66
* FILLER BLOCKSINLET ANNULUSTOP VOLUME
12000000
12000100
12000101
12000201
12000301
12000401
12000501
12000601
12000701
12000801
1
0
4
4
0.0
565.2
200010000
0
0
0
6
I
0.772
4
4
5
0
0
0.0
.178
2
1
12010000 6
12010100 0
12010101 4
12010201
12010201
12010401
4
0.0
565.2
200010000 0
I
12010502
12010503
205010000 0
210010000 0
I1
12010505
12010506
12010601
12010602
210030000
210040000
0
0
12010501
0.606
12010504
I
0
0.0
0.0
1
I
0.0
0.33
0.33
0.33
I
I
I
I
t
LOCKSDOILE6
C0MERNO LOWERPLEUM
12100000 6
12 100100 0
12100101 4
12100201 4
12100301 0.0
12100401 565.2
12100501 210010000
121OOS0O 210030000
12100504 210040000
12100505 2350100X O
12100506 220010000
12100601 0
12100602 0
12100602 0
12100701 0
12100801 0
12100802 0
12100608
0
5
1
0.736
4
4
5
0
0
0
0
0
0
0
0.0
0.102
0.971
1.003
2
I
I
I
I
I
0
0
0
0.0
0.0
0.0
0.0
8
0.I01
0
12010604
12010605
0
0
1
I
I
I
I
1
I
1
0.0
0.968
• 0.26
0.a37
0
0
0
0
I
0
0
1
1
0.33
0.424
0.0SS
0.956
1
I
I
0
0
0
I
0.0
0.33
0.424
0.645
0.0
0.179
0.172
0.102
0.958
1
23
4
12300301
0.22I
0.954
0.424
0.958
a
12010601 0
12010602 0
12010803 0
0.958
00.956
.$56
6
I
2
6
2
3
4
5
6
8,
*
0.424
0.424
I
I
1
1
.
1
12010701
4
4
•
210020000 0
12010603
12010606
* FILLER BLOCKSINLET M4.US LOWER5LUd
l2050000 1
2
I
12050100
1
12050101 4
0.768
12050201 4
4
12050301 0.0
4
12050401 565.2
6
12050SOI
205010000 0
1
I
12050601 0
0
0
1
12050701 0
0.0
0.0
0.0
12050801 0
.172
0.0
0.424
6
I-V
0.3110
5
1
0.4101
0.47
0.956
0.958
0.9,8
0.36
0.37
0.956
0.36
0.37
6
4
S
FLOW SKIRT
12250000
12250100
12250101
12250201
12250301
12250401
12250501
12250502
12250SO3
12250304
I
3
4
5
a
4
6
6
1225050S
12250506
12250601
12250602
12250603
12250604
12250605
12250606
12250701
12250860
12260802
12250803
12250804
1225005
12250006
s
-
CORE FILLER AS. SOSLY
10
0
4
4
0.0
665.2
225010000
230010000
230060000
1
I
0.38
4
4
6
0
10000
0
240010000 0
245010000
246010000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.
0.012
0.012
O.145
0.131
0.214
2
!
1
I
S
1
0.3
I
0.52
0.2295
0.3725
1.118
t
6
67
0.42
6
0.25
0.52
0.279S
0.2725
1.116
0.42
10
1
6
7
6
6
1
11
1
0
0
0
0
O
I
I
I
1
I
1
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
0.0
0.52
0.279S
0.3775
1.118
0.42
0.35
0.35
10
I
6
7
a
6
10
1
0.0
1
10
12300302
12300401
1220040
12300501
12300502
12300601
12300602
12300701
12300702
12300703
12300704
12300?05
12300706
12300901
12300902
1.0
0.0
I100.
0.
0
0
230010000
232060000
I00O
low0
1000
1000
1000
1000
0
0
•
6
6
8
0
0
1000
0
0.061
0.262
0.245
0.226
0.146
0.026
0.01260
0.01260
0
1
5263.3S
0
?
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
490.7s
I
3263.26
1
490.76
0.0
I
0.0
2
0.0
3
0.0
4
0.0
S
O.0
6
0.2795
0.3??56• 6
!
I
0.0
1
1
0.0
0.0
0.0
1
I
1.8
1.8
1.8
1.
1.0
I
I
1
so
66
tI'
*FUEL56OULIESS
12460000
12460100
12460101
12460201
12460301
12460401
12460501
12460601
12460701
12460601
12460901
1
0
4
4
0.0
665.2
24501000
0
246010000
0
0
0
S
1
0.01
4
4
•
0
0.0
0.131
0.214
1
1
z
-A
-,2
*REACTOR
VESSEL BOTTOM
12200000
12200100
12200101
12200201
12200201
12200401
12200501
12200601
12200701
12200901
I
0
4
4
0.0
665.2
-999
220010000
0
0
22C0000O
12260100
I
0
12260101
12260201
12260301
12260401
12260501
12260601
12260701
12260801
4
4
0.0
565.2
225010000
0
0
0
S0
;•
•
02
1
1
0.092
4
4
8
0
0
0.0
0.0
1
3949
1
0.0
0.0
0;••
--..
0
0
0.0
0.62
..
0.0
....
1.66
1.68
1
1
Io
Ih)
0
02
1
...
ACTIVE CORE
12300000
6
9
12300100
12300101
o
1200102
12300103
1230001
02
1200202
12300203
0
6
I
2
1
4.647E-3
4.742E-3
8.3519-3
-2
-3
6
a
2
W
ST
U
0.262
0.3
4
4
S
0
0
0.0
0.0
1
0
€ .0
CO.0
I
I
0.0
0.52
"**S*aSSSS*@S;'..;,.6;*S,*...............
12400000
12400100
I
0
s
I
2
1
0.52
0.52
1
1
1I
"' ..... " ...... '
0.262
(D
x
1240010,
4
0.31
12400201
12400301
12400401
12400501
12400601
12400701
12400401
4
0.0
565.2
240010000
0
0
0
4
4
S
*
0
0
0.0
:0.45
rJn
1-3
1
0
0.0
0.0
1
I
0.0
.859
.559
659
I
1
!
En
H
02
0
•
1251080t
UPPER HEAD TOP PLATE
12600•00
12550100
12550101
12550201
12550301
12550401
12SSOSOI
12550601
12550701
12S50801
1
0
4
4
0.0
566.2
25501000O
-999
0
0
5
•
1
0.474
4
4
5
0
0
0
0.0
1a13•
12610602
1
1
0
4
4
0.0
665.2
2SOI0000
0
0
0
5
1
0.419
4
4
0
0•
0
0.0
0.0
1
3940
0.0
0.0
2
1
0
0.0
0.0
* CORE SUPPORT BARREL UPPE R PLENUI
12520000
12520100
12520101
12520701
12520301
12520401
12570501
12520601
12520701
12520801
1
0
4
4
0.0
665.2
255010000
-99"
0
0
$
1
0.720
4
4
B
0
0.0
0.0
0.0
2
1
3949
0.0
0.0
I
1
0.0
0,712
0.712
0.712
I
I
!
1
0.0
0.054
*BROKEN
0.3s1
0.54
•0.54
1
1
TOP VOLUME
1
1
I
0.0
O.712
4
12510201
12510301
12510401
12510501
12510502
12510601
4
0.0
665.2
250010000
255010000
0
12510602
12510?01
2
0
0
6
1
0.005
I
0•381
0.712
0.712
I
I
0.0
4
4
5
0
0
0
0
0.0
I
I ,
0
0
0.0
1
I
•0.
1.0
1.0
1.0
1.0
2
1.0
1.0
1
2
1-3
44•,99464*•64*9.899•I•**4.4*69
*6e*6644
4
LOWER VOLUME
1
0.0
0.0
o* S**SSSI*SSSSSSS0Se*566900I4***48***48400S***60*$4***448**S8*448
*PIR*S*4******S5**•**SS*S**6e*
**44*40**56*4*6*4**S
e*I********eo4
INTERNALS UPPER PLENUM
12SI0000
12510100
12510l01
0.0
0.0
0
* PlR4MSRY SYTE
PIPSIG
0
6'l*SS4*SS***6*6584914u[*99*i9691
* CORE SUPPORT BARREL UPPER PLEUM
l2SO0000
12500100
12500101
12500201
12500301
12500401
12500501
12500601
12500701
12500801
1
0
!
2
HOT LE0
13160000
13150100
1 3l00
o o
13150201
131603041
13160401
13150501
13150502
13150601
13150602
13150701
13160801
13150602
2
0
5
4
0.0
w40.
315010000
315020000
-997
-997
0
0
0
0
0
0
0
0
0
0
0
12151000
13161100
13161101
13161201
13151301
13151401
13151501
13I51601
13151701
13161801
I
0
5
4
0.0
540.
316000000
-937
0
0
6
I
.1350
6
6
6
0
0
0
0
13152000
131S2100
13152101
13152201
13152301
13152401,
13152501
13152601
131S2701
13152801
1
0
5
4
0.0
.
j
40.
31509o0000
-997
0
0
S
1
.0840
5
0
a
0
13153000
13153100
13153101
13153201
13163301
13153401
13163501
13153502
13153601
13153602
13153701
13153601
13153•02
5
0
6
4
0.0
640.
315030000
315070000
-997
-997
0
0
0
6
1
.2248
S
5
6
10000
0
0
0
0
0
0
13164000
13154100
1313,4101
I
0
5
6
I
.1620
S
,1
.0709
6
.0515
I
I
3949
3949
0
a
0
1
1
1
1
0
.4054
.5265
.4054
.6265
.4054
.5265
32
2
1
.1074
1
1
0
2.971
2.671
2.671
1
1
I
.0660
1
I
0
1.942
1.142
1.042
I
I
1
.193S
I
I
1.699
.362.
1.69"
.362
I
3940
0
0
3949
a
I
I
3949
1
3949
0
0
0
I
0
2
1
1.69"
.362
2
4
5
.12115
13154701
13154301
13154401
13164501
13154601
13164701
13154S01
4
0.0
540.
316100000
-997
0
0
5
5
a
0
0
0
0
13000000
,13000100
13000101
13000201
13000301
13000401
13000501
13000502
1300003
13000601
13000602
13000603
13000701
13000801
13000802
13000403
3
0
5
4
0.0
640.
300010000
30501000O
310010000
-999
-999
-999
0
0
0
0
6
1
.1700
a
0
a
0
0
0
0
0
0
0
0
0
0
I
3949
0
0
1
1
0
."67
.607
.667
2
1
.1420
1
1
1
3949
3949
3949
0
0
0
0
I
1
I
1
3
1
0
.0750
.6960
1.424
.760
.6560
1.424
.8760
.5690
1.424
3
1
2
3
.111
:24
z-
5
23
2
3
0
* AEFLOO ASSIST BYPASS
I37S0000
13750100
13750101
13750201
13750301
13750401
13750501
13750502
13750601
13750602
13750701
13750601
13750002
2
0
5
4
0.0
640.
37001000
360010000
-299
-999
0
0
0
6
I
.1365
6
5
0
0
0
0
0
0
0
0
2
I
1
1
1
1
13350000
2
I-&
4.415
5.240
3949
I
4.41S
3949
I
5.240
0
0
2
0
4.415
I
0
5.240
2
*OeS'.o*oS*e.*e*S*S4•*o******e*Sees*S..6.osMa.94oe,*9•4RR9ek04..
B.L. COLD LEG
D
13350100
13350101
13350201
13350301
13350401
13350501
13350502
13350503
13350601
13350602
13350603
13350701
13350601
12350802
13350603
3
•
0
S
4
0.0
540.
335010000
340030000
345010000
-999
-999
-999
0
0
0
0
1
.1760
s
$
6
0
0
0
0
0
0
0
0
0
0
13soI000
13501100
13601101
I
0
5
a
1
.1207
1
1
3949
3949
3949
0
0
0
0
2
I
1
1
1
I
I
I
0
.7495
.6600
,9740
1
I
2
I-
1
2
I
o
t%)
€0
.1420
.7495
.:9,0
.9740
.7495
.6260
.9740
3
I
2
3
.0003
2
23
23
(1)
x
a.'
I13501201
4
$
13501401
540.
a
13501301
135010
0.0
5
3!50010000 a
1
1
2.0105
: INTACTLOOP PIPING
11001000
110011 00
11001101
11001201
11001301
11001401
11001501
11001502
11001503
11001604
11001505
11001506
11001507
11001560
11001509
11001510
11001511
11001512
11001601
11001602
11001603
11001604
11001605
11001606
11001607
11001608
1100160
11001610
11001611
11001612
11001701
11001g01
11001802
11001803
11001804
11001805
11001806
1100190?
11001508
11001809
11001810
11001811
11001812
11002000
11002100
11002101
11002201
11002301
11002401
11002501
11002502
11002601
11002602
12
0
1
A
4
0.0
540.
1000100o0
105010000
110010000
116010000
115120000
116130000
120010000
150010000
175010000
115020000
IB0010000
185010000
-199
-099
-999
-999
-999
-99
-999
-999
-990
-999
-999
-990
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
5
4
0.0
540.
115020000
111
610000
-.99
-999
.142
9
.lie
5
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
1
.2030
•
5
6
0
0
0
0
1.5373
1.6340
1.1303
.93124
.9690
3949
i
3949
3949
3949
3949
3949
3949
3942
3940
3949
394:
1
I
I
1
I
I
1
1
I
1
0
0
1.573
1.W340
0
0
0
0
0
0
0
0
0
0
1.12303
.93124
.6890
.5590
.7600
.4966
.5590
.5130
.7010
1.461
2
1
.7600
.4964
.5590
.6130
. 010
1.4610
1.S373
1.6340
1.1303
.93124
.6690
.5590
.7600
.4966
.3590
.5130
.7010
1.461
12
I2
cn
1
3049
I
13501601
2.0965
t
-507
0
13501701
0
0
0
0
0
2.0065
II
13501801
0
0
8
,**889*48**S8.086888*888896606884988m88888S960966888W8886
1
2
3
4
1
II
a
7
10
11
12
H
I-4
11002701
11002801
11002802
0
0
0
0
a
0
11003000
11003100
11003101
11003201
11003,01
11003401
11003501
11003S02
11003503
11003504
11003505
1100354A
11003507
11003601
11003602
11003603
11003604
11003605
11003606
1100360?
11003701
11003601
11003802
11003803
11003804
1100380S
11003806
11003807
7
0
S
4
0.0
M40.
.
12S010000
120010000
140010000
145010000
155010000
150010000
170010000
-099
-999
-990
-999
-999
-999
-9:9
0
0
0
0
0
0
0
0
8
1
!,us8
a
5
11004000
11004100
1 004101
11004201
11004301
11004401
11004501
11004502
11004501
11004602
11004701
11004801
11004802
11004901
2
3
4
6
5
10
II
12
.1625
2
0
S
4
0.0
640.
116030000
11S100000
-:99
-119
0
0
0
0
1
I
3940
3948
I
I
1
1
.706
.547
.S4?
.700
.54?
12
2
21
0.701
,547
2I
2
I-I
14152301
1
6
I
.7147
S
5
6
0
0
0
0
0
0
0
0
1
I
I
I
I
1
3949
3949
3949
2949
1I
1
1.002
.457
.602
1
I
I
I
1
1
II
1.4044
1.003
.457
.514
1.003
0452
.024
1.4084
3949
3949
3949
0
0
0
0
0
0
0
0
1
I
1
0
1.003
.457
.502
1.40•4
1.003
.457
.514
1'.D03
.457
.614
7
I
2
3
4
8
6
7
2
1
.608U
I
I
3949
3949
0
0
0
0
1
1
1
I
0
.630
.630
.630
.29
.2S
.25
.25
2
1
2
2
S
1111..
.6S..11 1.....811
PRESSMIZERH4EAT STRUCTURES
14151000
ldl81100
14151101
14111201
1411.301
14151401
14151501
14151601
14161701
14151601
14112000
14152100
14152101
14152201
1
0
5
5
0.0
518..
415010000
-99H
0
0
7
0
5
S
t~l
.106
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
seel......e.e*....1toS1.....*.....
:
0
00
1
1
.0762
5
5
1
0
0
0
0.0
6
1
.49911
$
1
3949
0
0.0
2
I
1
2
4
7
23
4
7
1
1
2
S11M8
14162401
14125201
14162602
14162603
14152604
14152601
14152602
14152603
14152604
14152701
14152801
14162000
14162100
14162101
14162201
14152301
14162401
14162501
14162501
14152701
14162801
14202000
14202100
14202101
14702201
14202301
14202401
14702501
14202601
14202701
14202801
14201000
14201100
14201101
14201201
14201301
14201401
142015so
14201601
14201701
14201801
5
4160o000(
41 020000
416040000
41SO60000
-991
-290
-990
-998
0
10000
10000
10000
0
0
00
0
0
I
0
5
5
0.0
41a.
416040000
0
0.0
I
I
.3043
a
S
05
-998
0
0
1
0
5
5
0.0
618.
420010000
-994
0
0
I
0
5
a
0.0
61a.
420010000
-998
0
0
0
0
0.0
6
I
.3683
5
5
6
0
0
0
0.0
a
1
.16415
5
8
6
0
0
0
0.0
ti1
I
I
1
3940
3940
3949
3949
0
0.0
2
I
I
I
I
I
I
I
1
0
0.0
I
.224
.403
.207
.1705
.224
.403
.207
.1705
7
7
.2032
1
3
7
3
2
7
1
31949
0
0.0
2
I
1
0
0.0
1
.111
.112
1I
I
31149
0
0.0
I
I
1
0
0.0
I
.111
.11
1
I
0.0
H
.2032
Go
Q
w1
I
3949
D
0.0
I
0
0.0
.130
.130
I
I
-.1j
Co
Z
I
I
I
0
IA
0.0
8
I
1
0
0.0
I
0.0
.362
.362
1
.41
STEANCENERATORP1i-SEC NEATSTNJC1$tfs
SSTEAMCENERATOA TIMING (INCL.
1006000
10060100
10060101
10060201
10060301
10060401
10060601
10060602
10060603
10060604
1006060S
0
10060606
1006050t
10060•O2
6
0
7
6
0.0
540.0
511010000
517020000
617030000
HALF THE W
8
2
I
0.006341894
7
7
a
0
I
0
1I
0
1I
157..8.
1310.32
1682.27
1
!1
I
1562.27
1310.32
1579.62
617030000 a
17020000 0
5170l0000 0
115040000 0
115050000 0
I
I
SIHET)
1
I I 1579.60
I I 1310.32
8
0.0051054
1
2
3
4
5
a
I
2
(D
I-4
cnJ
10060503
10060504
10060505
10060506
10060701
10060801
10060901
115060000
115070000
116080000
115090000
0
.
0
0
0
0
0
0
0
0
0
1
I
I
I
I
I
I
1
0
0
0
1582.37
1582.27
1310.32
1579.69
a
0
0
2
4
5
6
C')
6
6
0
HEAT STRUCTURE THIERMAAL
PIOPERTY DATA
;0100100
20100200
20100300
20100400
20100500
20100600
*
T9L'FCTN
TOL/FCTN
TBL/FCTN
S-STEEL
C-STEEL
T8L/FCTH
I
I
I
I
I
,
I
1
*
S
UJ02
CAP
INCONEL 600
THEI•MAL CONOCTIVITY 002
20100101
20100102
20100103
20100104
20100105
20100106
20100107
20100108
366.45
616.48
866.48
1088.71
1366.48
1616.48
2255.37
3088.71
7.7796
4.6228
3.8803
3.1561
2.7138
2.4490
2.3071
2.9942
449.01
699.82
949.$2
1199.62
1449.02
1699.82
2533.15
6.6267
4.6332
3.5965
2.9838
2.6082
2.3919
2.4334
523.15
783.15
1033.16
1283.15
1533.32
1977.59
2010.53
5.7624
422.13
3.3576
2.8367
2.5217
2.2698
2.6•19
*
273.15
473.15
1773.15
2373.15
2873.15
4699.82
2.310466
2.9207E6
3.531066
4.8824E6
.682556
6.6005E6
323.15
673.15
1973.15
2673.15
2973.15
2.572066
3.1307E6
3.7926E6
6.015556
6.7133E6
373.15
1373.15
2173.15
2773.15
3113.15
2.746466
3.443856
4.2285E6
6.3210E6
6.800566
9.5744
273.1S
17.0079
873.15
1473.15 25.0109
2073.15
44.0178
473.15 12.0044
1073.15 19.0087
1673.15 30.0127
2273.65 55.0225
673.15
1273.15
1673.15
2473.16
14.0051
22.0098
36.0149
60.0203
• VOLVIWETRIC HEAT CAPACITY ZR
20100351
20100352
1.9041E6
255.37
1248.43 2.311666
THER6MALCONDUCTIVITY CAP
20100201
20100202
20100203
:0100204
?010020S
!0100206
273.15
590.0
810.0
1090.0
1370.0
3260.0
0.14
0.24
0.29
0.36
0.42
0.75
13.85
I-I
20100602
477.6
15.92
588.7
700.0
810.9
922.0
1033.2
1144.3
t477.6
18.17
20.42
22.50
24.92
26.83
29.42
36.06
z
HEATCAPACITY GAP
* VOLUMETR1C
20100251
20100252
273.15
3260.0
5.4
6.4
20100651
20100652
20100653
20100654
20100656
20100657
20100658
20100659
366.5
477.6
588.7
700.0
810.9
$22.0
1033.2
1477.6
3.90865
4.08465
4.260E5
4.436E5
4.66565
4.92965
5.10565
5.7276S
s HEATSTRUCTUREGENERALTABLES.
TH6*RAt CO•I4UCTIVITY ZR
20100301
20100302
20100303
20100304
366.5
HEATCAPACITY INCONEL600
• VOLUMETRIC
* VOLYIWTRIC NEAT CAPACITY U02
20100151
20100152
20100153
20100154
20100155
20100156
20100601
20100603
20100604
20100605
20100606
20100607
20100608
20100609
R
H
* THERM4ALcOHOUCTIV TY INCONEL 600
8
1077.69 2.3122E6
2199.82 2.3122E6
1185.923 5.7124E6
20299900
20299901
TEMP
0.0
20299800
20299801
20299802
TIAl
-I.
0.0
501
614.7
305.
20299700
20299701
20299702
TEMP
-1.
0.0
501
558.
305.
20294900
20294901
KTC-T
0.0
305.
20.
HEATLOSS
• 260 KS $5 SJURROUHNINGS
**.**.R*o oS*S***o*oS4.*o *S*888*.,*8*o*oeo*ooeSe
*o
Sooeo*SSs*R
• POWER
20290000
20290001
20290002
POWER
0.0
1000.0
0.0
0.0
* )**o****oe*•4o4**oo**S****e*,,******e*****8******4*e***S**S*S*oSS
*
PUMP DATA
:.SINGLE PHASE HEAOCURVES
ee*8
Hi
ti
t.MED CUM HO. I
1351100
I
1351101
0.000000C400
1351102
1.906100OE-01
1351103
3.896300E-01
1351104
5.9396005-01
1351105
7.902000-01
1351106
1.OOOOOOEOO
1
I.403600E#00
1.363O6OE400
1. 318600tE00
1.232806E*00
I. 133600E#00
I.00000OE400
* HEADCURVENO. 2
1351200
1
1351201
O.000000E*00
1351202
2.O000000601
4.00006OE-I
1351203
5.7554006-O1
1351204
7.443206OE-l
1351205
1351206
7.7340OOE-01
1351207
6.631300E-01
1351208
1.OOOOOOE400
2
-6. 70000OE-01
-5.0000OOE-Ol
.-2.S00000E-01
0.0OOOOE*O
2.5830OOE-OI
3.778000[-01
6. 3260OOE-01
I.000OOE00.
* HEADCURVENO. 3
1351300
1
-.1.000000600
1351301
1351302
-8.057400-C01
13512303
-6.0690OOE-01
1351304
--4.0683006-O1
1351305
-2.0017106-01
1351306
O.OOOOOOE*00
3
2.4722006500
2.0474006E00
i.831000E00
I 624000E600
1.4705005*00
1.4036006*00
* HDCURVE NO. 4
1351400
I
1351401
-1.000000E00
1351402
-8.2297005-01
1351403
-6.3332OOE-01
-4.5534OOE-01
1351404
1351405
-2.7109000-01
1351406
-I .7716OOE-01
1351407
-9.0730OOE-02
1351406
0.000000E*00
4
2.4722006800
1.996500E600
00
l. 589700*
1.3276OOE#OO
1.194SO0E6OO
1.06050OE400
I.0156006E00
.3427906-01
* HEADCURVENO. 6
1351500
f
1351501
0.0000006.00
1351502
2.OO00OE-01
1351503
4.000000--01
1351504
4.I180OOE-Ol
1351605
5.976300E-01
7.934670E-01
1351506
1351607
l.O000000E00
5
2. 000E0-01
2.8000006.-0
3.40000OE01
2.768000E-01
4.68400OE-01
6.992000E-Ol
1.0000006400
SHEADCURVENO. 6
351600
1
1351601
O.
0OOOOO. 00
9.1099O0-02
1351602
:.,65090.-01
1351603
1351604
2.71762O-0I1
1361605
4.5587206-01
1351606
5.744060E-01
S
9.3427906-Cl
9.122900E-E0
*.968000E-01
3.7500E*01
6.4330006-01
N.35500'6-01
wo
Ia
60
z
,,.1,
!-
i-J
If
0
0o
LAi
,:pi
::3
En
1351607
1351606
1351609
1351610
7.4057606-01
7.66619E0-01
0.7147105-01
I4.0000000*400
8.4660005-Ol
6.4690006-01
8.63800OE-01
I. .0000)E0.00
1-3
HEAD CUWVE NO. 7
1351700
1351701
1351702
1351703
1351704
1351705
1351706
I
-1.0000006.00
8.OOOOOOE-Ol
-6:.000OOOE-01
-4.0OOOOOE-01
-2.000000E-01
0. 000000E*0
M, HEADWAVE
1351800
1
--.
1351603
1351804
1351605
1351806
-6.000000E-O1
-4.0O0000)-Ol
-2.0000OO4-O1
0.0O00000.00
*TOROUE
-I.O00000.E+O0
-6.300000-01
-3.00000E-01
-5. 00000E-02
I.5000006-01
2. 50000GEO01
1352203
1352204
1352205
1352206
1352207
1352208
No0.8a
1351801
* SINGLE
a
7
000000-01
8
1352300
1352301
1352302
1352303
1352304
-1.0700000E-00
-9. 500000E-01
-8.600006E-01
-8.0000OOE-01
-6.7000006-01
PHASE TORQ•UE DATA
•
CURVE NO.*
TOROUE CURVE NO.
S
v
2
-1.0000006.00
-6.2234006-01
1352S00
1352501
1352502
1352503
1352504
2
O.00000E4600
9.064300E-02
I.885690E-01
2.7347006-01
4.586690E-0 I
5.74480OE-01
7.3516006-O1
7.6952OOE-01
0.700570E-01
I. 0000OE6.00
2
-1.0000006E00
-3.O6OOOOE-Ol
-2.000000E-01
0.00000E600
13S7600
1352601
1352602
1352603
1352604
2
-1 . 000000.E00
-2.5 OOO0-01
-8.0000006-02
0.0000006.00
6
-1.000000E#00
-9.000000-lE0
-6.0000006-01
-6.7000006--1
000*** ***m$o10 *01*1**•4*44o*00****43*444
o TWO - PHASE MJLTIPLIER DATA
1353100
1353101
0
O.000000.E00
0.000006E.00
1353102
1353103
1353104
1.2500002-01
1.650000E-01
2.4000OE-01
7.0OOOOO-02
2.250000E-01
5.6000. E-01
1353105
2353000
1353001
1353002
1353003
1353004
1353005
1353006
1353007
1353008
1353009
1353010
1353011
1353012
1353013
0
0.0OOOE,0600
2.000006E-02
6.OOOOOOE-02
l.OO0000E-0I
2.0000006-01
2.40OOOOO-01
3.OOOO
-01
4.0000OOE-01
6.00000OE-01
8.0OO0006-01
9. 00000O-01
9.6000016-01
1.0000OO0e00
0.00000E.00
2.000006E-02
5.0000006-02
1.0000006-Ol
4.600000E-01
6.00OOOOE-02
9.6OOOOOE-02
9.800006E-01
8.7OOOOE-01I
9.0000OOE-01
8.OOOOOOE-Ol
5.0000006-Ol
0.000000E.00
9.60000O--01
1353107
I. 0000006.00
5.6000006-02
4. S00000-01
0.0000006E00
2-PHASE DIFFERENCE DATA
POW
Q,HEAMWARVENO. I
2354100
1354101
1354102
1354103
1364104
1354105
1354106
1354107
I
0. OOOOOE0
06000.OOOE00
0
I.000000E-01
2.0000004-01
6.0OOO0E-01
7.0000OOE-01
9.OOOOOE-01
I. 000000400
I
8.3000OOE-02
1.O9OOOOE.O0
1.020000E+00
1.010000E.00
9.400000E-O1
2.000000E*O0
*...S.S.16....s4s.....**5**64,...6....SSS.S...,44...S44..,.4.4..
* HEAD WARVE810. 2
1354200
1354201
1354202
1354203
1354204
1354205
1354206
1364207
1354208
*HEAD
* HEADWURVE
8.0000006-01
1353106
0
7
-1.0OOOOOOEOO
-9.000000E-01
-5.000000E-Ol
-4.5000006-01
N
*TORQUECURAVE
6
1.2336106*00
1.1965006.00
1.1096006.00
1.0416006,00
.9580001[-01
7.807000E-01
6.1340OOE-01
5.8490OOE-01
4.8770OOE-01
3. $69000-O01
(OR TORUE CUVE NO. 6
F
•
4
1.984300E.00
1.8308006.00
1352400
1352401
1352402
1352403
1352404
1352405
1352406
1352407
1352408
1352409
2352410
S
3
1.984300E.00
1.394000E.00
1.0975o.OE00
8.2200006-01
6.6480006-01
6.032000;-01
TOROQUECURVE NO. 4
1352200
1352201
2352202
td
5
-4.5000006-0I
-2.50OOOO1-01
0.000000E.00
3.569000E-01
e TOROUE CURVE NO. 7
3
2
-1.O0,000OE0.0
-8.0096006-01
-6.063800E-01
-4.06866OE-01
-1.9928006-01
0.00OOOE*OO
2
0. OOOOOE 00
4.000000-02
6.00OOEI-0
1. 0000OOE.00
H
•
* TORQUE CURVE NO. 6
1352000
2
2
1352001
0.OOOOOE*100
-6.7000006-01
1352002
4.0.00.0_-OI
-2.50OOOO-01
2352003
5.0000006-01
1.500OOE-OI
1352004
7.372550E-01
5.2658606-01
1352005
7.680490E-01
6.0659406.01
1352006
8.672300E-01
7.4366005-01
1352007
1.0000006.00
1.000000.E00
*.*9*996*455*******4**5*****e6***ss**;55*8*56*855*S4**55**545*S*•
1352100
1352101
1352102
1352103
'352104
" 52105
.52206
1.6824006.00
1.5570OOE00
1.4346200E#00
1.3879006*00
1.348100.400
1.2336106*00
* TORUE CURVE 040. 5
1351900
2
1
1351901
0.0000006.00
6.0320004-01
1351902
1.930000E-01
6.3250OCE-01
1355903
3.9300OOE-01
7.3690001-Ol
1351904
5.8552006.02
6.3310006-01
1351905
7.9782OO-09.2290ooE-01
1351906
1.000000100
I. OOOO0O06.
*****W 66*S6**s*se**4**.8868888..*5SSSS8S4S
*..*oo***O*O*55*9*
* TORO.E CURVE NO. 2
S.
-6.33710OE-02
-4.5853006-01
-2.670230E-01
-1.761070E-01
-6.931000-02
0.0000006.00
1
0.00OOOOE.00
1.0000OOE-01
2.OOOOOE-Ol
3.000000E-01
4.0000006-01
8.0000006-Ol
9.OOOOO1-01
I.OOOOOOE.00
2
O.OOOOOOE600
-4.0000006-02
0.0OOOOO.00
1.0000OOE-01
2.1000OOE-01
6.7000005-02
6.00OOOOE-01
1.00OOOE400
1
-1. OOOE0O0
-. 000OOOE6-Ol
-8.0OOOOO-O
-7.0OOOOO-01
-6.00000062E-5.0OOOOOE-01
-4.0000006-01
-2.5000006-01
-1.0000006-01
O.0O000.00
(.3
C)
W
CURVENO. 35
2354300
1354301
1354302
1354303
1354304
1354305
1354306
1354307
1354308
1354309
1354310
to
00
K)
3
-1.260000.E00
-1.240oooE.00
-1.7700006+00
-2.360000E*00
-2.7900006.00
-2.9200006E00
-2.6700OOE600
-I.690o000*00
-S.0OOOOO-02l
0.0000006.E00
s HEADWARVENO. 46
1354400
1354401
1354402
1354403
1354404
1354405
1354406
1354407
1354406
1354409
I
-I.0000006E00
-9.0oo0006-Ol
-8.0000006-01
-7.000000E-O1
-6.000000E-Ol
-5. 0OOO0
1
-3.5OO0006-Ol
-2.0000006-Ol
-1.0OOOOO-O
4
-1.160000E+00
-7.8000OO-0I1
-5.00000OE-01
-3.100000E-O0
-1.70000O0-01
-a OO.OOOE-02
0.0000006.00
5.0000006-02
B . 00000oo -02
Pa
(D
:j
EL
1354410
*HE~AD
0.0000006.00
C
0
I.1000OOE-01
En
CURVE NO. 5
1354500
1354501
1354502
1354503
1354504
1354505
1354506
*4*#4*S*..9
1
O.00OOO.OO
2.OOOOOOE-01
4.0000006-O
6. OOOOOO-1O
8. 000006-O
I .000000E.00
4•.*
444 ........
S
0.0OOOOE-00
-3.4000OOEO-O
-6.5000OE-O1
-9.3000006-01
-I. 190000 .00
-l
.4700006'400
..............
444
4*4 *
44,
......
44
444494
*HEAD CURVENO. 6
1354600
1354601
1354602
1354603
1354604
1354605
1354606
1354607
1354608
1354609
1354610
4*44*4e*
4***..
1
O.O0OOO0E00.00
1.000OOE-01
2.5OOOOOE-01
4.000000E-01
5.000000E-O1
6.000000E 01
7.000OOE-01
8.0
O
E-01
9.OOOOOOE 01
49 .0OO000006
*.44*• .....
44*04
1
-1.0000006.00
0.0000006.00
44
4HEAD
I354000
1354801
354802
44*
1354900
1354901
1354902
,354903
'54904
1:549OS
1354906
7
O.OOOOOE00
0.000
06E00
1355300
1355301
1355302
1355303
1355304
44,44449444
*
.......
.e4
CURVEHO. 8
1
-1.000000E.00
0.000000E6O0
TOROJE CURVE NO. 5
O.OOOOOE.00
4.000006-O1
5.OOOOOOE-01
7.37255OE-01
7.680490E-01
8. 672300E-01
1.OOO006oO
2
-1.0000OE.00
-8.0096OOo-01
-6.0638OO-01
6.032000E-01
6.325OO-01
7.369000E-01
8.3310O-01
9.229000E-01
1.000000O.00
*0*#*
44*4
*
* DELAYED NEUTRON CO14STANTS
S
-4.60000OE-Ol
-2.500000E-01
O.OOOOOO.00
3.6690OOE-O0
2
2
0.000000E600
9.0643006-02
1.8856906-01
2.734700o-01
4. 86690O-01
6.744600E-01
7.3616ooE-O1
7.6852006-01
8.700570E-01
I.0OOOO6OO40
2
-1.000000E#00
-3.0OOOOO-01
-1.000000E-01
O.O0OOOE6OO
6
2
-1.000OOOEtOO
-2.500000OE01
-8.0OOOOOOO2
O.OO0000E600
25.E.6
60.0E.6
30.
69.
30000501
30000502
30000503
30000504
30000505
30000506
30000507
30000506
4.54
94...4*9d4~*9.*.40044444444*.*.49944499e444e4e.e494o49o*99**94*649
0.8125
0.875
0.6375
1.0
1.0625
1.125
1.1875
1.25
-3.4
-1.6
-0.3
1.0
2.2
3.1
4.0
4.9
0.
371.875
M
::9...4
4 4.4...,..,.
.
..... .....4. .... :4
*DOPPLER REACTIVITY TABLE6
S
0
50.06
4444,....
.
cl4
30000601
30000602
30000603
30000604
30000605
30000606
30000607
30000608
30000609
30000610
30000611
30000612
255.
S0o.
750.
1000.
250.
1500.
1750.
2000.
2250.
2500.
2750.
3000.
1.5
0.3
-0.7
-:.6
-2.1
-3.0
-3.7
-4.3
-4.9
-6.4
-8.9
-6.3
*SCRAMRO0 WORTH CURVE
POINT
GCM4-AC
4,... .... ...
tlj
94:44 9*:494 4494:4
444
a
-1.0OOOOOOO0
-9.00000OE-01
-8.000000E-O1
-6.700000-o01
REACTORKINETICS
30000000
30000001
.,.,..
CURVE
0 MODER9ATOR
DENSITY REACTIVITY TABLE
7
-1.000000E600
-9.000000E-01
-5.0OOOOOO-01
-4.5OOOOOE-01
* POINT KINETICS
HR
HR
l0000011
609
44444449444 4444400*4444444*44t444444#44444*44444404444*4*44445946••
*
2.01
1.14
3.301
0.301
0.305
0.0124
*4644444444*44,4
....
...
*REACTIVITY
0 TORQUECURVENO. 6
1355600
1355601
1355602
1355603
1355604
0.042
0.1150
0.3950
0.1960
0.2190
0.0330
*POWER HISTORY6
6
1.233610E+00
1.196500E.00
1.1096OOE00
1.041600E*00
8.958000-OI
7. 807000E-O
6.1340OOE-01
6.849000E-01
4.877000EO01
3.6668000-01
* * *4* * 4 44*49944444*4**8449*99
0000101
30000102
30000103
30000104
30000105
30000106
30000401
30000402
0*4994994994*44444**4*94*4944*445
TOROUECURVENO. 7
1355500
1355501
1355502
1355503
1355504
-6.700000E-01
-2.500000-01
1.SOOOOE-01
5.265660E-01
6.065940E-01
7.4366DO6-01
1.0000006,00
3
1.9643OOE00
. 3940006.00
I.0925OO6.00
494
0*9*4*0* 0
13SS400
1355401
1355402
1355403
1355404
1355405
1355406
1355407
1355406
1355409
1355410
I
2
0. O0OOO0600
1. 930OOO-01
3.930000E-01
5.955200E-01
7.978200E-01
2 •
o.OO00OOEO0
4.000000E-01
5.000000-OlO
1.000000E600
til
STOROUECURVENO. 6
8
0.OOOOOEO00
0.000000.E00
TOROUE CURVE NO. 3
t.5I00
.. 510I
't,5102
355103
1-3
6
1355200
2
4
1355201
-I.000000400
1.9643100600
1355202
-8.22340O6-01
1.8308OOE600
1355203
-6.337100E-01
1.682400.00
1355204
-4.566300E-01
I.557000E.00
1355205
-2.670230E-01
1.436200*00
1355206
-1.761070E-01
1.3679006.00
1355207
-8. 931000E-02
1.348100E00
1355206
O.OOOOOE00
1.2336106E00
9eo~4.**94e*9944*99oe4499499S449**9994e49eee*44449949440*44e***44*
9****
7IORUE CURVENO. 2
1355000
2
.35500I
1355002
1355003
1355004
•135S005
1355006
"1355007
8.2200006-01
6.6480OOE-01
6.032000E-01
6
1.1O
OOE-0I
1.3000OOE-01
1.5000006-01
1.3000OOE-01
OOOOOOE-02
-4.
OOOOOE-02
-2.300000E-01
-5.100000E-O1
-9.10000F6-01
-1.4700006e00
444 9 4.4............449,**,*44**94*494ee
.4 ....
9*4*....................
, TOROUE CURVE NO.
-4.0666006-O1
-1.9926006-01
0.000000600
* TOROUE CURVE NO. 4
I HEAD CURVENO. 7.
1354700
1354701
1354702
135S104
1355105
1355106
20260900
20260901
20260902
20260903
20260904
20260905
20260906
20260907
20260908
20260909
20260910
20260911
REAC-T
0.0
0.9
0.2
0.3
0.4
O.S
0.6
0.7
0.8
0.9
1.0
601
0.0
-2.9
-4.3
-4.8
-9.2
-9i.9
-12.2
-12.9
-13.3
-13.6
-13.7
CIA
609t
6
0
C
I.
20260912
20260913
20260914
20260915
1.2
1.8
1000.
<n
C-,
-12.8
-13.9
-14.0
-14.0
* 6,2OERATOR
DENS. FEEDBACK
30000701
30000702
30000703
30000704
30000705
30000706
* DOPPLER
30000801
30000602
30000803
30000804
30000805
30000806
0
0
0
0
0
0
230010000
230020000
230030000
230040000
230050000
230060000
6
0.15746
0.15746
0.15746
0.15746
0.15746
0.21270
0.0
0.0
0.0
0.0
0.0
0.0
5202101
5203101
0
0
0
0
0
0
0.0170
0.3639
0.2747
0.2379
O.0976
0.0089
S.
0.4
5.
0.4
1000
1000
5250000
SOTSTI
5250001
1
5250101
6250102
5251101
0.0
0.0
0.0
0.0
0.0
0.0
a
ORAN4CH
tij
I
.90
0.762
0.0
A.E-S
0.0
00
525010000 530000000 0.0
0.0
90.0
0.762
0.6
0.*
0100
s
* BELOW
MIST EXTRACTOR.PRALLELVOLUME
6260000
5260001
6260101
5260102
6261101
5262101
STEAM GENERATORSECONDARY SIDE
81
tI-
.10
* BELOW MIST EXTRACTOR. ABOVE TOP OF SHROUD IN STEAM DOME
FEEDBAC
2300001
2300002
2300003
2300004
2300005
2300006
520000000 505000000 0.0
619010000 620000000 0.196
BOTSTIMMP
2
1
.2146
0.762
4 .E-S
0.0
526010000 525000000
626010000 600000000
0
0
CNTRLVAR
606
.6540C6
6.0E6
.65406E
2.785E6
1.037866 6.056
1.037656
2.78566
0.0
-90.0
-0.762
0.6
0.0
0.6
0.0
0103
0100
6550000
5650101
COACCO
SNGLJUN
535010000 640000000 0.0
SEHEAT
OP OF DOWNCCMER
(OUTLET OF PRIMARYSEPARATOR)
.44,(0000
DOl"ITOP
BPRANCH
• -001
I
1
0101
1.273
0.718
;011A02
4.E-5
0.7874
.,"J101
500010000 505000000
a 8.
*..C6CcCC **CCC
* LON#WER
SEPARATOR
SECTION
..
0000
LWR-SEP
0101
1.273
:-41102 4.E-5
0
0.0
00
0.0
0.0
0.0
-90.0
0.0
-0.718
0100
**'***'**CC*666;**6*C6C*6686686*6*****'*86
SNGLVDL
0.718
0.0
0.7874
00
0.0
-90.0
-0.719
F0 INLET VOLUME
200
101
ý1*.I0
l.,'.0102
S51101
-32101
FEED-INLET
2
1
0.7525
0.518
4.E-5
0.10796
505010000 510000000
510010000 515000000
0
BRAIJON
0.0
00
0.0
0.0
0.0
-90.0
0.0
0.0
0.0
0.0
(PARATOR(INSIDE SHROUD.ABOVETUBES)
i300GO0
SEPAR
SEPARATR
500001
3
I
5200101
0.27671
0.718
0.0
0.0
52OO102
A.E-S
0.0
00
5201101
520010000 $25000000 0.0
2.
-0.518
* MIST EXTRACTOR
AND STEAMGENOUTLET PIPE TO SCV
6300000
6300001
5300101
5300102
6300201
6300301
5300302
6300401
5300601
6300602
5300001
S300901
5301001
5301101
5301300
6301300
ONODINL.
0.06557
64.44
4.E-S
0.0
PIPE
2.
0.719
1000
.5
2
1
S
S8.GLVOI.
0.0
0.0
00
0.0
0.0
0.0
0.0
* MAXEUP fEED STORAGETAWE
FEEOTA.K
29.61
4.6-5
3.048
0.0
0100
STRJCTURE INPUrT DATA
s SHROUD SECONDARY SIDE STEAM GEN1ERATOR
5400O CONOSER
TMDPVOL
6400101
0.21677 17.67
0.0
0.0
6400102
4.E-5
0.02
00
5400200 2
5400207 0.0
2.0200E6 1.0
6400208 1000.
2.020016 1.0
5450000
6450101
$450102
0.0
$STEAMGENERATOR HEAT STRUCTIJRES
6 AIR COOLED CON0ENSER
90.0
0.0
S
* PIPE DORWSTREAM
OF SCV
5350000
5350101
6350102
0100
0100
STSU-PIPE
2
0.799008
I
0.04636
2
0.01365
I
0.762
1
25.074
2
0.0
2
90.0
I
0.0
2
4.E-S
0.0
0.4
0.4
00
2
0100
I
0
I
.S
.S
* FLOW PATH TO THE AIR COOLED CONDENSER
$RANCH
0.0
00
0.0
0.0
S450200
5460201
5450202
15000000
1S000100
15000101
16000201
15000301
16000401
1500050t
16000502
"16000503
15000601
16000602
15000603
16000701
15000801
16000901
15160000
15160100
15150101
16160201
15160301
16160401
15150501
1,150502
tS160601
15160602
15150701
15150801
51650901
3
0
3
6
0.0
640.0
600010000
505010000
610010000
520010000
619020000
519010000
0
0
0
4
0
2
5
0.0
540.0
510010000
515010000
619010000
517030000
0
0
0
60S VE[SSEL VALL -
TlDPVOL
0.0
00
0.0
0.0
0.0
1
6050000
16050100
15050101
16050201
15050301
15050401
1505051
s
15050502
15050503
15050601
15050602
15050603
4
I
0.314325
3
3
4
0
0
0
0
0
0
0
0.0
0.0
4
I
0.6572
3
3
4
0
10000
0
-10000
0
0.0
0.0
I
0.3046
1
1
I
I
1
I
0
0.0
0.0
2
I
1
I
1
1
I
0
0.0
0.0
0
0.7725
0.7726
O.152
0.7725
0.7725
0.152
3
3
3
0.6445
1
2
3
1
2
3
z
C>
L.i
I'-
-J4
CO
1
1
1
1
0
0.0
0.0
1
I
I
1
0
0.0
0.0
0.152
0.7113
0.162
0.:7113
4
4
4
1
4
I
4
SURROUNDINGS
5
0
41
3
S
0.0
540.
505010000
510010000
.73512
3
3
4
0
0
615010000 10000
-999
-999
-996
S
2
0
0
0
2
!
I
I
3949
3949
3949
.7112
I
I
l
l
I
.71s
.516
.7102
.710
.616
.7102
2I
S
1
2
5
:3j
15050701
0
0.0
0.0
0.0
5
15050901
0
0.0
0.0
0.0
5
15050801
0
0.0
0.0
0.0
cn
1-3
6
<n
H
*
S.0. SECONDARY
0V,4C-60IL-RISR
* SO DOHCOWR TO BOILING SECTION.
* STENA GENRATOR 0OI4NCOC5R
5150000
5150001
5150101
5150201
5150301
5150401
5150601
5150701
5150801
515090!
5151001
5151101
5151300
D4C18
3
0.23226
0.0
0.7102
0.0
-90.
-0.7102
4.E-5
0.0
00
0000
I
PIPE
3
2
3
3
3
3
0.10796
0.0
3
2
3
2
8ILSCT
3
0.27871
0.0
1.85075
0.0
21.0
0.7102
4.E-5
0.0
0.0
00
0000
0
RISER
2
0.27671
0.0
1.85075
0.718
0.0
i1.0
90.0
0.518
0.718
4.E-5
4.6-S
0.0
00
0000
0
1.
0100
H
So BOILING SECTION TO RISER
6180000
5180101
BOILRSR
SNGLJUI
517010000 619000000 0.0
0.0
0.0
0000
*BROKEN
LOOP
PIPE
3
2
3
3
3
3
0.0192
0.0
0.0
3
2
8 REACTOR VESSEL BROKEN LOOP HOT LEO
3
1
2
SSTEAM GENERATOR RISER
5190000
5190001
5190101
5190201
5190301
5190302
5190401
5190601
5190602
5190701
5190702
5190801
8190802
5190901
519100 1
5191101
5181300
I.
0.0
••*•5*5**ose**•5*5S•***•*555*ssssss**s*ssss4eee*••*..**ss*ss••*s••
: STEAM GENERATOR BOILING SECTION
5170000
5170001
5170101
5170201
5170301
.:|70401
70601
,
,70701
.170801
!170901
u170902
5171001
bl71101
5171300
*
z~2j
VALVE fOR RECIRCULATION RATIO
VALVE
0W9O0IL
515010000 617000000
.232
I
130.7
0.0
SRVVLV
216
5160000
.160101
5160201
6160300
5160301
PIPE
2
RV13LHL
3000001
3000101
3000102
3001101
3002101
2
0.0634
4.0E-5
295010000
300010000
3050000
3050001
3050101
3050102
3051101
HLPI.AS
1
0.0634
4.0E-5
305010000
3100000
3100001
3100101
3100102
3101101
3102101
1
2
I
BAOpium
I
0.876
0.0
0.0
0.0
0.0
00
300000000 0.0634
0.1
0.1
305000000 0.0
0.1
0.1
*•*5555*5*5*o**555*5;5*****e*•5**5555*5•**s*5s****•ss**e•s•*ssss••
* HOT LEG PIPE TO REFLOO ASSIST BYPASS TEE
* STE,,
I
I
2
2
I
2
1
2
0.5957
0.0
0.0
2
I
3000000
w S.C.
3150000
'3150001
3150101
3150102
3160103
3150104
3160106
3150201
3160202
3150203
3150204
BRNAI
I
0.698
0.0
0.0
00
310000000 0.0
0.0
0.06
0.0
0.05
GENERATOR SIILS6LTOR INLET
0.0
0102
0000
•
0.0
0100
S
SGSII
BRANCH
2
I
0.0 1.424 0.0668 0.0 0.0 0.0
4.OE-5
0.0
00
370010000 310000000 0.0 0.0 0.0 0100
310010000 316000000 0.0 0.05
0.05 00DO
PIPE AND PUMP SIIMJLATOR
SGPSI
PIPE
10
0.00836 2
0.100
7
0.0
S
0.00836 9
0.0525
10
0.0
2
0.0326
6
0.0
7
0.0081
a
S
315020S
3150301
3150302
3150303
3150304
3150305
3150306
3150307
1150308
1150309
3150310
3150401
3150402
5150403
J3150601
3150602
31SO603
3150604
315060S
3150701
3150702
3150703
3150704
315070S
3150706
3150707
3150708
3150709
3150710
3150801
3150802
3150803
3150804
3150805
3150901
3150902
3150903
3150904
3150905
3150906
3150907
3151001
3151101
3151300
0.0
0.4054
'-3
9
I
0.5265
2
0.362 3
1.692 4
1.699 5
1.692 6
0.362 7
2.671 8
1.842 9
0.667 10
7
0.0
0.081
I0
0.0
10
90.
4
0.
5
-90.
8
90.
910
0.
l
0.127
2
0.486
0.362
3
1.692
4
0.0
5
-1 .692 6
-0.362 7
-I .529
H
N
8
V.214
8
0.0
10
4.0E-S
0.0 3
4.0-5
0.0124 4
4.0Z-O
0.0
6
4.06-S
0.124 6
4.06-5
10
0.1
0.1
I0.0
0.1 0.1 2
93.9 93.9 4
93.9 83.9 6
0.0 0.0 ?
4.1 4.1 a
0.4 0.4 9
00 10
0100
9
I
z
'.,
Ito
5-a
0
*BROKENLOOPCOLD0LEG REACTOR
VESSELNOZZLE
3350000
3350001
3350101
3350102
3351101
3352101
RVNBL
2
0.0634
4.OE-S
290000000
335010000
BRANCH
1
0.7495
0.0
335000000
340000000
0.0
00
0.0634
0.0
0o
to
0.0
0.0
0.0
1.0
0.1
1.0
0.1
0102
0000
* CONNECTION TEE OF THE BYPASS ASSIST SYSTEM REACTOR VESSEL SIDE*
3400000
CT8ARV
BRANI
3400001
1
I
0.0
0.0
0.0
0.69G
0.06!4
3400101
3400102
4.0-5
0.0
00
0.1
0.1
340010000 345000000 0.0
3401101
*s***ss**•oooo*gs**s*ssee••q*8s5o5o•,e**50•••5**55••555555*•••Ol*5
0.0
0000
N3
: BYPASS ASSIST OUTLET ECCTEE COLD LEG
3450000
BAOET BRANCH
3450001
2
I
3450101
0.0634
0.274
0.0 0.0 0.0
3450102
4.OE-5
0.0
00
3451101
300010000 345000000 0.0
0.0
3452101
345010000 350000000 0.0
0.0
c=
0
:n
0.0
H
0.0
0.0
0100
0100
6300205
6300206
E CCC
TEE OF BROKENLOOP
3500000
3500101
3500102
8.3597T6
.31536
17.243666 .31636
0.0
0.0
0.0
0.0
ti'
ETIVCL
SNGLVOL
0.0
2.0965
0.08311
4.OE-5
0.0
00
0.0
0.0
0.0
*CAP
ASSESSMEIT
PARAMETERS
• REFLOOOASSIST HOT LEO
3700000
^100101
£700,02
5'
RFASHL
0.0388
4.06-5
SNOLVO0.
0.0
0.1713
0.0
00
90.
0.653
4*44.4**4******.*44*.4**488****848*888#4*8****4*8*8**88444448***
* VALVEJUNCTION FOR THE AABV
200~0
RBV
VAL•E
.:!1010
380000000 370000000 .01
3720201
1
6.28
0.0
3120300
SRWLV
3720301
372
1.
0.0
A.
0100
* ....
**4...***S***4**..*4..**..............*.s....s..
EGG SYSTEM
O8WSTHPIS
6250000
6250101
6250102
6250200
6250201
6250202
*
vTHmPI
TS0PVOL
20.44
S.0
0.0
4.0F-6
0.0
00
3
0.0 1.05 305.0
1000.0 1.065 305.0
8
0.0
90.0
5.0
HIGH PRESSURE INJECTION SYSTEM- A#8
HPIS
T50PJUN
625000000 210000000
0. 0090"S
1
661
p
210010000
-1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.75687
0.0
0.0
.772566
.75687
0.0
0.0
6300000
6300101
6300200
6300201
6300202
6300203
6300204
20591203
20591204
1.
0.0
1
.
0.0
1
1.
0.0
CNTRLVAR 601
C*4TRLVAR 602
R00 CL.A00INGTEMPERATURE
SAVE UP
20590300
CLOTEUPI MULT
I.
20590301
HT1TE6
230000109
20590400 CLOTEMP2IIJLT
1.
20590401
HTTEMP 230000209
20S50500 CLOIEVAP3MULT
1.
20590501
HTTEMP 230000309
20590600
CLOTEMP4 MULT
I.
20590601
HTTEMP 230000409
20590?00
CLDTEMP5MaLT
I.
20590703
HTTEMP 230000609
20590800
CLOTEMP6WULT
1.
2055080!
H'TEEP
230000609
REFLOCOASSIST BYPASS SINGLE PIPf COLDLEG SIDE
3800000
RFASCL
SNGLVOL
3800101
0.0388
0.0
0.20353 0.0 90. 0.653
3800102
4.06-5
0.0
0
*
INLETFLUID DENSITY
20550100 DCOREINFMULT
20550101
VOIOFJ
225010000
20550102
RPIOFJ
226010000
20550200 OCOWEINOulL E
20550201
VOIDGJ
225010000
20550202 RHOGJ
225010000
2050100 DENSCORIN SU1
20590101
0.0
1.
20590102
I.
*CORE
0.0
FLUID TEMPERATURE
AT THE COREOUTLET
20550400
FLOVDIR
TRIPUlIT 1.
20550401
518
1
0.0
I
0.0
I
0.0
I
0.0
1
0.0
1
0.0
1
0.0
I
20550500
20550501
20550502
TOIRP
MUiLT
1.
CNTRLVARS04
TES8PF
230060000
0.0
1
20550600
20550603
FLODIFN4
-516
0.0
I
20SS07DO
20550701
20550702
TD1PM
MULT
I.
CNTRLVAR 606
TEWPF
240010000
0.0
I
;0590900
20590901
20590902
TCOlOUT
SUlI
I.
0.
I.
CNTRLVAR SOS
1. CNTRLVAR 607
0.0
I
TRIPUNIT
I.
0 CORE TEMPERATURE
DIFFERENCE
20591000 .CTOIFF
SUli
I.
20591001
0.
1.
TEMPF
20591002
-I.
TEMPF
* PRESS. DIFF. OVER THE CORE
20551200
COREINV SUM
1.
20591201
0.0
I.
P
20591202
-2.26
Rito
0.0
1
240010000
225010000
0.0
1
225010000
225010000
-I.
P
3.31
RHO
: PRESS.OIFF. OVER THE DORINCOUER
20591300
OWIWINV SUM
I.
20591301
0.0
I.
P
20S51302
-I.
P
20591303
.75
RHO
245010000
245010000
1',9
0.0
0
185010000
H
* VESSEL M•ASSIWUEPTOAY
20551400
VESSMSI SUM
20553401
0.0
.0465
205S1402
.018
20551403
.071
20551404
.136036
20551405
.136036
20551406
.136036
20SSt40T
t536036
20551408
.2664
20553409
.2923
20551410
.130
20551411
.04765S
20551412
.04765S
20551413
.047655
20551414
.047655
20551416
.047655
20SS1416
.064364
I.
R4HO
RHO
'RHO
R1H0
We
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RiO
,1HO
RHO
RHO
0.0
20551500
20551501
205S1502
20551503
20551504
20551505
20553506
20551507
20551508
20551509
1.
RIK)
81l0
RHO
RHO
RHO
RHO
rd"
RHO
8H0
0.0
3
235010000
20591400
20591401
20591402
VESSMS2
0.0
VESSMASS
0.0
SUM
.00838S
.008385
.008385
.332046
.079002
.1328
.0603
,202752
.173728
'SUM
I.
I.
OIOCIMER LIOUID LEVEL
20591500
O0O4LEV
SUM
2051501
0.162
.106S
2059502
.300
20591503
.274
20591504
.956
2059150S
.958
20591506
.958
205507
.956
20591508
.360
20591509
.208
: UPPER PLENUMLIOUID LEVEL
20591600
UPLEV
SUM
td
215010000
215010000
20O010000
290010000
205010000
210010000
210020000
210030000
210040000
215010000
220010000
225010000
230010000
230020000
230030000
230040000
230050000
230060000
L0
235020000
235030000
240010000
co
245010000
246010000
295010000
250010000
I.-A
255010000
I.
CRTRLVAR
CSTRLVAR
0.0
I.
VOl OF
VOl OF
Vol OF
VOl OF
VOl OF
VOl OF
Vol OF
VOl DF
Vol OF
0.0
1
200010000
290010000
20SO10OO
210010000
210020000
210030000
210040000
215010000
220010000
I.
VO1OF
VOlOF
Vol OF
VOIOF
0.0
1
240010000
245010000
295010000
250010000
1.
4T TEMP
0.0
1
240030000
z
i.,.
00
0t,
I
614
61S
*
20591601
20555602
20591603
20591604
3.764
.3084
.693
.300
.3251
0 UPPER PLENUJ1 SUSCOOLING
20591900
20591901
UPSCOOL SUM
0.0
1.
5.
.4
.4
4.
'.J
x1
En
10591902
-1.
I
CNTRLVAR 909
(n
* I.L. LIOUID LEVEL. FOR .66 M / LEPOE-PC-28
20553100
20553101
20553102
20553103
20553104
P31A
0.0
sum
1.
-. 183
-. 817
-6.475
I.
P
P
P
RHOG
0.0
120010000
155050000
160010000
155010000
20553200
20553201
P318
0.0
SUM
1.
9.81
RHOF
0.0
1
155010000
20593100
LIO.IL
DIV
1.
0.0
20593101
!0593102
CNTRLVAR
CNTRLVAR
532
631
20553202
-I.
HPJOG
15010000
1
4
, B.L. LIQUID LEVEL.
?0553300
.P32A
20553301
0.0
.0553302
?US553303
70553304
FOR 4.86 U / LEPOE-OL-14
Sum
I.
0.0
1
I.
P
315080000
8.97
RHO
315080000
-I.
P
315050000
-47.87
65400
316060000
2O553400
20553401
.!0553402
P321
0.0
Sum
1.
-1.
9.81
RHOF
RHO•
0.0
1
315060000
315060000
2U593200
20593201
.0593202
LIO19
CHTRLVAR
CNTRLVAR
DIV
634
633
I.
0.0
PUMP PRESSURE DIFF.
20593600
DPPUMS6
20593601
0.0
"0593602
.:0593603
1
*
SUM
.5
.5
-1.
1.
P
P
P
: BREAK ENERGY RELEASE
20553700
PRESSE
MULT
1.
20553701
MFLORJ
805000000
20553702
P
800010000
0.0
150010000
145010000
120010000
0.0
1
PRESSENT
RHO
CHTRLVAR
DIV
1.
800010000
537
0.0
1
20553900
20553901
20553902
20553903
20553904
BRUFFL
UFJ
VELFJ
VOIOFJ
RHOFJ
SAULT
205.6--6
805000000
805000000
805000000
805000000
0.0
1
20SS4000
20554001
20554002
20554003
20554004
BRUGFL
UGJ
VELGJ
VOIDOGJ
RHOGJ
aiAT
205.0E64
805000000
805000000
805000000
805000000
0.0
20594000
20594001
20594002
20594003
ORENRELEA SIN
0.0
I.
I.
I.
: BREAK INLET FLUID SU6COOLING
0.0
5392
540
530
0.0
1
600010000
80001 0000
SO0 PRIM. TEMPERATURE DIFF.
20594500
SGTEDIFF SIU
20594501
0.0
I.
20594502
-I.
I.
TEI6PF
TEPF
0.0
115030000
115100000
: SO PRIM. PRESSURE 0IFF.
20594600
SGPRPRS
SUM
20594601
0.0
5.
20594602
-I.
I.
P
P
0.0
1
115010000
120010000
: SO LIUID LEVEL
20594900
SGLIOLEV
20594901
-2.946
20594902
20594903
20594904
20594905
20594906
20594907
I.
VOIDF
VOIDF
VOIDF
VOIOF
VOIOF
VOIOF
VOIOF
0.0
!
515010000
515020000
615030000
510010000
605010000
500010000
526010000
BRSUBCOOL Still
0.0
.
-i.
SUN
.7102
.7102
.7102
.518
.716
.716
.762
1
1
FLUID INNER ENERGM
0 STEA4 INNER ENERGY
0 POV EHTKIAPY PART
: SO HEAT TRANSFER RATE
20595300
SGHTTRAHS SUM
20595301
0.0
50.6736
20595302
42.0327
20595303
50.7563
20595304
60.s563
20595305
42.0327
20595306
50.6736
& PRESSURIZER LIQUID
20595400
PRLIOLEV
20595401
0.0
20595402
20595403
20595404
2059S405
20595406
20595407
20595408
LEVEL
SUM
.224
.403
.403
.207
.207
.1705
.1705
.118
0.0
1
006000100
006000200
006000300
006000400
006000500
006000600
1.
VOIDF
VOIOF
VOIDF
VOIOF
VOIDF
VOIOF
VOIOF
VOIDF
0.0
1
415010000
415020000
415030000
415040000
415050000
415060000
415070000
415080000
0.0
0
830000000
: MASS BALANCE. INTEGRATED FORM BREAK TIME
20555900
TRIPSO
TRIPUNIT
1.
0.0
20555901
510
z-,
x
H
N-
-1.
HTRNA
HTRNR
HTRNR
ITRNR
HTRNR
HTRIR
HPIS VOLYMETRIC FLOW RATE
20595800
HPISVOLF DIV
1000.
20595801
RHO
625010000 MFLOWJ
t,.3
1
: SO PRIM. TO SEC. TIM' DIFFERENCE. INLET
20595200
SGPRSETD SUM
1.
0.0
1
20595201
0.0
5.
TEYIPF
115030000
20595202
-1.
TEMPF
515030000
20553800
20553801
20553802
1.
CNTRLVAR
CHTRLVAR
€CIALVAR
I.
SATTEMP
TEI6PF
20594200
20594201
20594202
1
20556000
20556001
20556002
20556003
IdMSALI
0.0
SUM
I.
-1 .
1.
1.
MFLOWJ
MFLOWJ
UAFLOWJ
0.0
I
630000000
605000000
001000000
20556100
20556101
20556102
MSBAL2
CHTRLVAR
CNTRLVAR
MULT
559
660
1.
0.0
1
20595900
20595901
0
* PRIMARY
20556200
20556201
20556202
20556300
20556301
20556302
IASSSAL
CNTRLVAR
INTEGRAL
661
I.
0.0
0
COOLANT ENERGYBALANCEtPOV 1S CNSERVM)
HPISEGY
MFLOWJ
UF
hILT
5.
630000000
5250100O0
0.0
1
PUEPENGY
DIV
2.
0.0
I
1.
HTRNR
HTRNR
HTRNR
HTRNR
HTRHR
HTRNR
0.0
I
230000101
230000201
230000301
230000401
230000501
230000601
RHO
PMPHEAD
135010000
135
: COREHEATING OF FLUID
20556400
COREHTFL SLIM
20556401
0.
12.234S7
20556402
12.23457
20556403
12.23457
20556404
12.23457
20556405
12.23457
20556406
16.52433
• PUMP SEAL WATERHEAT FLOW
20556500
PIMIPF MULT
1.
20556501
MFLOWJ 901000000
20556502
UF
910010000
0.0
I
* SS PRESSURE HEAT FLOW
20556600
SSPRHF
IULT
1.
20556601
MFLOWJ
435000000
20556602
UF
405010000
0.0
I
20596000
20596001
20596002
20596003
20596004
20596005
20596006
20596007
PRIENBAL
0.0
SUM
-1.
-I.
5.
-I.
1.
1.
-1.
2:
I.,
I.
0.0
CNTRLVAR 953
CNTRLVAR 982
CKTRLVAR 562
CNTRLVAR 940
CHTRLVAR 564
CHTRLVAR 56
CNiTRLVAR566
1
So
* EXTERNALS
0 HPIS
* BREAK
• CORE
8 PUMPSEAL WATER
SS PRESSURIZER
Ito
'I
co
'--*
* PRIMARYHEATLOSSES TO SUWRUNOINGS
20555100
20555101
20555102
20555103
20555104
20555105
20555106
20555107
20555108
20555109
20555110
2055511 1
20555112
20555113
20555114
20555115
20555116
20555117
20555116
STR-HTLI"
0.0
205SS200
20556201
STR-NTL2
0.0
SUM
1.3716
1.4579
1.0085
.8309
.7229
1.4776
1.4776
.5585
.6147
.4968
6
.6806
.3101
.3406
.SS7
.6806
.3101
.3496
-1.
NTRNR
HTRHR
HTRNA
WRI'4R
HIRNR
HTRNR
HTRNR
HTRNR
HNRuNR
HTR4R
IRNR
HIRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
0.0
I
100100I00
100100200 •
100100300
1001004006
100200100
100400100 6
100400200 0
100200200
OO100506
100100600
100100700•
100300100 6
100300200 8
100300300 0
100300400 0
100300500 6
100300600
100300700 *
SUM
.4431
-1.
HTRNR
0.0
I
100100600 6 150
100
105
1110
115.1
115.2
115.3
115.10
511.11
115.12
1105.13
120
12S
130
140
145
155
30 M2
160
170 /
14.322
1
p-a
:j
CD,
2055S202
20555203
20559204
rO555305
20555206
20S55207
20555208
20555209
20555210
2055521t
20555212
20555213
20555214
20555215
20553216
20SSS217
2055216
20555219
20556220
20S55300
20555301
20555302
20555303
20555304
20555305
20555306
20555307
STR-HTLW
0.0
20558200
20598201
20598202
20598203
STR-HTL
0.0
.4988
.5469
.6254
1.3035
.6687
.6228
.6690
1.0578
3.6545
.1312
.1704
1.9589
1.9589
1.9589
1.9589
.4174
1.8029
.7639
.9365
HTRNP
HTRNR
HTRNR
HTRNR
HTRNR
HTRIR
HTRNR
HTRNR
HTR/dR
H1T4R
HTRIR
HTRNR
HTRNR
HTRNR
ITRNR
HTR4R
HTRNR
HTRHR
HTRNR
100100900 .
100101000 0
100101100 S
100101200 8
335000100 8
335000200 0
335000300
350100100 *
375000200s
315000100 •
315000200 *
315300100 *
31S300200 •
315300300*
319300400 0
315300500•
315100100 8
315200100t
315400100•
SUM
.7616
.6228
1.2705
3.0792
-1.6600
1.7045
.7120
-t.
HTRNR
H5I11R
H1TRNR
HTRNR
HTRHR
HTRNR
ITRHR
0.0
I
300000100 8
300000200*
300000300 8
375000100
220000101 •
252000100 *
255000100 4
SUM
I.
I.
I.
1.
CHTRLVAR
CNTRLVAR
CHTRLVAR
0.0
551
552
553
175.1
175.2
too
165
335
340
34S
350
380
315.1
315.2
315.3
315.4
315.6
315.6
315.7
315.8
315.9
315.10/
ri)
I-n
0
0-3
5600000
5600101
FWVLV
TDPJUNI
545000000 510000000 0.05
5600201
5600202
5600203
I
SO5
-1.
0.0
.7
27.80
27.80
0.0
5600200
96W0203
-
21.9
300.
0.0
0.0
z
0.0
0.0
0.0
ti
0.0
******
gSo AUX. FIEUWATER
5540000
5540101
5540200
6540201
300
305
310
370
220
252
255 /
tic:
0.0
0.0
0.0
6480000
6480101
-9.8506 M2 5480200
54*0201
5480202
I
6480203
5480204
S T.AREA -46.1242 M2
5480205
21SO200
AUXFTANK
3.0
1
0.0
l906VL
10.0
0.0
315.0
0.0
AUXFJUN
554000000
1
-1.
73.3
73.4
1856.
1657.0
TDPJUNl
610000000
610
0.0
0.0
.SO364
.50364
0.0
0.0
0.0
0.0
3.33E-S
.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8' ********8*8***ee*ee4¢** *e*est**ee•€•*•et
•
*
0OUUNDAAY C0"ITION CONTROL
MAIN STEAM CONTROL VALVE
5500000
5500101
9500200
6500201
5500202
6500203
5500204
9S00209
5500206
5500207
5500200
5500209
5500210
5500211
5500212
5500213
5500214
5500215
MSFCV
TMOPJUN
630010000
I
S01
-1.
0.0
0.0
0.0
3.
0.0
6.0 0.0
9.
0.0
13.6
0.0
13.6 0.0
94.8 0.0
94.8 0.0
104.8 0.0
104.8 0.0
500.
0.0
1000.
0.0
1l00. 0.0
2370.
0.0
F EED WATER VALVE
635000000
27.80
27.80
23.4
15.1
9.3
6.2
.181
.181
2.89
2.65
.181
.173
.1•0
.136
.113
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8*
0.002573
*
*
*
*
FLOW KATE FROM HUREG/CR-0247
PRE.SSURE RISE 5.57 - 6.90 IWA
51 CHANCE RATE ASSUMED
LEAKAGE
VALVE OPEN AT 89 5
* VALVE CLOSE AT 99 S
• LEAKAGE
* FROM EXP. SCONOARY PRESSURE
* LINEAR P-DEPENOENCE ASSUMED
a
.120 K1,/S AT 4.5 MPA
*
SS VOUIME STATES
1000200
1050200
1100200
1151201
1151202
1151203
1151204
1151205
1151206
1151207
1151208
1151209
1151210
1151211
1151212
1151213
1200200
1250200
1300200
1350200
1400200
1450200
1S00200
1550200
1600200
1650200
1700200
1751201
1751202
1800200
1650200
2000200
2050200
2101201
2101202
2101203
2101204
.
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
14.6096E6
14.6832E6
14.8606E6
14.860756
14.8624S6
14.7634E6
14.7603E6
14.7365(6
14.7195E6
14.7116E6
14.704656
14.6967E6
14.6968(6
14.6191(6
14.6097E6
14.6046E6
14.6010E6
14.5005E6
14.567056
14.8202(8
15.082156
15.0878(6
15.0603E6
14.S884(6
14.5679(6
14,8239E6
15.0669(6
15.0542(6
15.0473E6
15.0436(6
15.0417E56
15.0400(6
15 0190(6
IS01716
15.023156
15.0292E6
15.03356
577.73
577.23
677.72
677.71
577.71
577.68
573.53
569.96
566.28
663.09
560.77
658.68
558.68
558.66
558.65
558.6S
658.65
558.64
558.63
558.78
558.78
558.79
558.83
956.64
558.63
558,78
558.87
558.81
958.81
558.81
S5.81
558.82
558.80
558.80
655.01
558.81
55.8
0.0
0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11510
2
3
4
6
6
7
6
9
10
11
12
13
0.0
0.0
0.0
0.0
0.0
0.0
1 •
2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
2
2
4
1.0
2200200
2250200
It 3301201
2301202
2301203
23301204
2301205
2301206
S3,1201
2351203
2400200
2450200
2460200
2500200
2900200
2950200
3000200
3050200
3100200
3151201
3151203
3151204
3151205
3151206
3151207
3151208
3151209
3151210
3350200
3400200
3450200
3500200
3700200
3800200
4000200
4000200
4151201
4151201
4151203
4151204
4151205
415120.
4151207
4151208
4200200
5000200
5050200
5100200
5100200
5151201
6151202
5151203
6171201
5171202
-6171203
5191201
5191202
5200200
5250200
5260200
5301201
5301202
15.043756
15.0464E6
15.03235(
15.0042E6
14.9994E6
14 .991(611
14.987056
14.979326
14.9737(6
14.9879E6
14.9764(6
14.9640(6
14.9512E6
14.9316(6
14.94656
14.9329S6
14.92756(
15.0404E6
14.935856
14.935986
14.935856
14.9358(6
14.9354(6
14.9331[6
14.9299(6
14.922356
14.91606
14.9223(6
14.9299(6
14.9380(6
14.9402(6
14.9357(6
15.0404E6
16.040456
16.0404(6
1I.0404E6
14.9362f6
18.0426(6
14.9131(6
14.9O92(6
14.907156
14.9052E6
14.9028(6
14.9011(6
14.9006(6
14.9004(6
14.9002(6
14.9001(6
14.6999(6
8.57031(6
5 7233E6
6.657631(6
5.58077(6
6.58619E6
S.5916276
5.59162E6
6.$8571(6
6.578416
6.57236f6
6.57141(6
5.57045(6
5.57011[6
6.$7011(6
5.56987(6
5.42900(6
558.82
550.82
558.62
659.98
566.20
57i.49
0.0
*
0.0
0.0
576.31
579.37
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
3
0.0
0.0
0.0
0.0
4
6
680.13
655.61
658.81
558.81
6-3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
H
6
1
2
3
0.0
0.0
0.0
0.0
579.53
z
w
578.71
570.71
657.75
557.75
558.81
577.75
556.69
656.62
656.93
596O.0
658.00
6598.00
598.00
558.00
558.00
558.00
558.00
558.00
558.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.
0.0
1
2
3
4
6
8
7
a
'
10
80
-I
zO
658.70
556.58
556.40
t
556.00
557.16
557.73
ST2.85
577.24
0.0
0.0
0.0
.05661
1.
I.
I.
1.
I.
I.
.0144
534.87
534.93
534.99
635.05
.044
.O95
.164
.189
.194
.348
1.0
1.0
1.0
1.0
!
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.00.00.0
0.0 0.0
0.0 0.0
0.0
0.0
0.0
0.0
0.0
I
2
3
4
8
6
0.0
7
0.0. 1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
co
-,4
(.,3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
2
1
2
3
2
3
1
2
(D
L,-
0.0
0.0
0.0
0.0
x
Lii
5350200
8000200
2.03274E6
15.0012E6
2
3
in
1.0
477.00
1-3
: 35 JUNCTION STATES
0.0
0.0
:
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
241.6
241.6
0.0
0.0
0.0
0.0
0.0
241.6
241.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0.
0.0
0.0
0.0
0.0*
0.0
0.0
00.
.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00.0
0.0.
0.0
0.0
0.0
0.0
0.0
O.Q.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1001201
1002201
1051201
1101201
1151301
1151302
1151303
1151304
I151305
1201201
1202201
1203201
1251201
1252201
1350201
1350202
1451201
1452201
1501201
1502201
1551201
1650201
1650202
1701201
1751301
1001201
1851201
1852201
2051201
2101301
2101302
2151201
2152201
2153201
2251201
483.3
483.3
463.31
483.3
483.3
483.3
483.3
483.3
483.3
463.3
241.6
241.6
241.6
0.0
I
1
241.6
241.6
241.6
483.3
241.6
I
I
0.0
483.3
483.3
403.3
483.3
445.1
445.1
445.1
445.1
i.E-S
445.1
427.7
2301301
2351301
2401201
2402201
2451201
2461201
2501201
2502201
2901201
427.7
17.4
427.7
17.4
445.1
I.E-S
-15.9S
0.0
-15.95
2951201
461.1
3001201
3002201
3051201
3101201
3102201
3151301
3351201
3352201
3401201
3451201
3452201
0.
-6.28
0
-6.28
0.0
-6.26
0.0
0.0
-6.28
0.0
0.0
0.0
0.0
0.0 9
0.0
6.28
0.0
0.0
6.28
0.0
6.28
-6.28 0.0
0.0
0.0
0.0
0.0
-
0.0;
0.0
0.0
00
0.0
2
4
97
12
0.0
0.0
0.0
0.0
2
3
226 COREBYPASS/ 3.6 %
6
2
4001201
4002201
4100201
4151301
4201201
5001201
5101201
5102201
6151301
5156302
5160201
5171301
5171302
372
0.0 0.0 0.0
0.0 0.0 0.0
I 0.0 0.0 0.0
0.0
0.0 0.0
7
0.0
0.0
0
43S
0.0
0
;001201
8050201
*
1
27.8
0.0
0630
0.0
I
SS SYSTEMPRESSURE
M
0.0
0.0 I
0.0 1
0.0 2
0.0
0.0 21
0.0
5180201 0
3.001
4.176
0.0
4.073
0.0 I
3.489
5191301
27.80
0.0
0.0
6201201
5202201
102.9
0.0
0.0
5001 102.9
27.80
0.0
5203201
27.80
0.0
5261201
0.0
27.80
0.0
5261201
0.0
0.0
0.0
5262201
0.0
2.0
0.0
5301301
0.0
27.8
0.0 1
5550201
•
*
z
1.3 %
tI-
0.0
0.0
0.0
102.7
0.0
130.7
0.0
130.7
0.0
130.7
0.0
1 130.7
0.0
1.260
1.608
2.829
2.010
RABV /
En
H
tdJ
0.0
0.0
0.0
0.0
SS CONTROLFOR THE RABVLECAGE / 1.3 %
20537000
20537001
20537002
20537100
20537101
20537102
20537200
20.
20537201
5
550 MAIN STEAMVALVE
0.0
560 FEED WATERVAi.VE
571 SG SS LEVEL
RSUE20590
50SSS PRESSURE
•991 SG
HPIS INJECTION
RARVW
INTEGRAL
CNTRLVAR 371
*
SS CONTROL
FOR INLET hAN. TO
IAOCERR SUM
20528900
1.
-4C3.3
20528900
1.
-483.3
20526501
*0529000
IADCREO MULT
20529001
CHTRLVAR
289
CHTRLVAR 512
20529002
0.0
901 PUP COOLMITIPJECTION
20529100
20529101
3SS
0 SS CONTROLFOR TKE CORE FLOWBYPASS 3.6
291 INLET AMN. TO 0OWNCC6ER
296 INLET ANN. TO UP / 6.6 X
1.
MFLONJ
120521400
0.0
2260000
185010000
I.
0.0
I
.214
0
20522400
20522401
20S22402
CPERR
0.
20522500
20522501
20522502
MJLT
CBPREG
CNTRLVAR 224
CN7TALVAR512
20S22600
20522601
INTEGRAL -.10
C8PV
CNTRLVAR 225
SUM
SU036
-.I.PRL
SUM
I.
-. 013
RADVREO hILT
CHTRLVAR370
CNTRLVAR 612
RAVVERR
0.
3
0.0
0
372000000
185010000
0.0
0
-. 03
.079
0
3
.01
.99
3
.01
.99
D0wNC(ICER
FLOW
0
0.0
1.
00
0.0
FLOWJ
165010000
0
0.0
I.
-. 06
.384
0
CONTROLFOR VALVE516. RECIRCULATION RATIO - 4.7
20521401
20521402
20521500
20521501
20521502
.01
IADCV
INTEGRAL
CNTRLVAR 290
;.
MFLOWJ
ILOW.J
1.
9920521600
20521601
SU3.
I.
-4.7
RECSI6
MULT
CNTRLVAR 214
CNTRLVAR 512
ERRS16
0.
V516
CNTRLVAR
INTEGRAL
215
0
0.0
1.
MFLOWJ 516000000
WFLOWJ
560000000
I.
0.0
0
CO
00
-. 1
.739
0
3
.01
.99
0
FOR FEEDWATERENT4ALPIY
* SS CONTROL
0.0
0.0
0.0
SSS CONTROLFOR INLET
Nel.TO UPPER PLENU14FLOW/ 6.6
SLIM
1.
I.
-. 066
20529400
20529401
20529402
20529403
IAUPERR
0.
20529500
20529501
20529502
JAUPREG MULT
CNTRLVAR 294
CNTRLVAR 512
20529600
20529601
IAUPV
C•TRLVAR
INTEGRAL
295
1.
MFLOWJ
MFLOWJ
UFLOWJ
0
0.0
296000000
297000000
185010000
I.
0.0
-. 06
.210
8
0
0
3
.01
20560100
20560101
20560102
20560103
20560104
20560105
20560108
20560107
20560108
99 205601092
20560110
20560111
20560112
20560113
20560114
20560115
20560116
020$60117
0.O60200
20560201
SPROERR
0.
SENTHI
0.0
SUM
1.0
-1.
MFLOWJ
.914014
VAPGEN
VAPGEN
.914014
.389795 VAPGEN
.164951
VA1"EN
VAPGEN
.164951
VAP•EH
.164951
.515823
VAPGEN
VAPGEN
.515823
VAPGEN
.51 823
VAPGEN
.515823
VAPCEN
.200114
VAP•EN
.200114
VAP•EN
.685800
VAPGEN
.163678
VAPGEN
.608844
VAPGEN
1.16210
SUM
l.0
1.0
UG
0.0
0
560000000
500010000
505010000
510010000
515010000
515020000
515030000
517010000
S17020000
SI7030000
519010000
519020000
520010000
525010000
526010000
530010000
S30020000
1
0.0
517030000
to)
(D
:J.
x
(A)
(1)
20560202
En
-1.
UP
517030000
-1.
0.0
0
I.
1
0.0
603
0
20560300
SSXI
WULT
20560301
20560302
20560303
CINTRLVAR
CNTRLVAR
CHTRLVAR
601
602
M12
20560400
20560401
SSX2
UFLOWJ
MhLT
1.
660000000
2056OS0
20560501
SSX3
CNTRLVAR
DIV
604
I.
CMTRLVAR
20560600
20560601
*
FOWENTH
CNTRLVAR
INTEGRAL
605
.10
*4350000
.98OES
0
3
I
.600E6
H
td
I.
4300201
4300202
1.0066
5900000
5900101
5900102
5900200
5900201
5900202
5910000
SlO0Ol
59102Oi
5910300
5910303
. SGSSPR
.1
4.E-S
2
0.0
10000.
T4DPVOL
1.0 0.0 0.0 0.0
00
0.0
6.5766
5.67E6
4350101
4350201
4350300
4300
e STEAM GENERATOR SS PRESSURE
* EN0
0.0
.166
16.E6
.IE6
16.M6
576.
576.
1-3
PRVALVE VALVE
405010000 430000000 0.0
0.0
0.0
I
TAPVLV
.093
0.0
.093
0100
64
OF FILE
-td
55
N
t.
1.
VALVE
SCSSPRJ
530000000 590000000 0.0
0.0
0.0
1
TRPVLV
646
0.0
0.0
0.0
0.0
0.0
0100
SO STEADY STATE LEVEL HOLDING
5700000
5700101
5700102
5700200
5700201
5700202
SGLHOLDV
.1
4.6-S
2
4.E6
7.E6
TUOPVO.
I.
0.0
0
4.E6
?.E6
S710000
5710101
5710200
S71020)
5710202
SGLHOLDJ
505010000
1
-10.
10.
TPSDPJUN
570000000
CNTRLVAR
0
0.0
-10.
0.0
1O.
.1
S1
0.0
0.0
S**ee45*454***
2OSS1100
20551I01
SGLEVERI
-. 22
SUM
I.
0.0
949
0
20551200
YTRP-So
TRIPUIEIT .
2055120)
-501
20551300
20551301
20551302
SGLEVER2
CNTRLVAA
CHTRLVAR
*
0.0
00
p
.6
.6
0.0
505010000
60.
CMTRLVAR
I
MXLT
511
512
PRVOL
.362
4.E-S
3
'4
z
t
00
0.0
-j
0.0
1.
0
SS SYSTEM PRESSU E
4300000
43()o01
4300)02
4300200
50
-J
o
00
IA
TMOPVOL
.224
0.0
0
0.0
11
p
0.0
0.0
.224
415010000
0
mJ
Di
cn
0
*S*o LFBR2 ess
RESTART OF LOFT CALCULATION L3-6 FROM SS RUN
I-3
- LOWI RESTART
too
RESTART
STOY-ST
101
RUN
103 2196
t05 100.
120.
0000201
SOt
20299700
20299701
20299702
*
200.
TIME
TIP
-1.
0.0
1.06-6
0
a
.20
GE
00001
NULL 0
5190001
5190101
4000 4000
25
1000.
L
5190102
S190201
5190301
601
30S.
305.
SO HEAT TRANSFER RATE
20595300
• SGHTTRANS SUM
20595301
0.0
42.03127
20595302
42.0327
2059S303
42.0327
8.7237
20595304
8.7237
2059530S
42.0327
20595306
42.0327
20595307
20595308
42.0327
-1.
TRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
HTRNR
0.0
1
006000100
006000200
006000300
006000400
006000500
006000600
006000700
006000800
* STEAM GENERATOR BOILING SECTION
BILSCT
3
0.363105
0.0
0.7102
0.0
90.0
0.7102
4.E-S
0.0
0.0
00
0000
0
9370000
5370OO1
6370101
5370201
S370301
5370401
5370601
S370701
5370801
5370901
5370902
5371001
5371101
S371300
8ILSCT
3
0.363105
0.0
0.7102
0.0
90.0
0.7102
4.E-S
0.0
0.0
00
0000
0
PIPE
3
2
3
3
3
3
0.020
0.0
0.0
3
2
3
1
2
RISER
G-2
10060504
10060SO5
10060506
10060507
10060508
10060701
10060801
10060901
**4*S44**04**4
SO D00NCCR TO BOILING SECTION. VALVE FOR RECIRCULATIOG RATIO
9160000
S160101
5160201
5160300
5160301
EWIBOIL
VALVE
615010000 517000000
.116
I
65.35
0.0
SRWVLV
216
1.
0.0
5360000
5360101
5360201
5360300
5360301
6WNSOIL
VALVE
515010000 537000000
.116
I
65.35
0.0
SRVVLV
216
1.
0.0
9180000
5180101
BOILRSR
SNGLJUN
517010000 619000000 0.0
S280000
BOILRSR
SNGLJUN
5280101
537010000 519000000 0.0
*..........
3
1
2
* STEAM GENERATOR RISER
5190000
2
1
I
1.
0100
S171201
5171202
6171203
5191201
9371201
5371202
5371203
9191202
I.
0100
S171301
5171302
S160201
5191301
5371301
5371302
5200201
115060000 0
115070000 0
116070000 0
1
I
I
115000000 0
116090000 0
0
0
I
I
0
0
0
1
1
I
I
I
271.9S
271.95
1310.32
1310.32
1310.32
0
0
0
4
6
6
7
6
0
0
0
8
a
0
to
8
2
5.59162E6
0.0
0.0
2
2
2
2
2
2
6.68571E6
5.57814C6
5.57236E6
9.59162E6
86.571E6
6.57814E6
.095
.164
.189
.000
.044
.095
0.0
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
3
1
2
6.57141E6
.194
0.0
0.0
0.0
2
.044
w
2
3
0.403
0.822
0.0
1
0.605
1.257
0.0
2
0
2.3741
4.1176 0.0
3.050
4.162
0.0
1
0.403
0.822
0.0 1
0.605
1.257
0.0
2
0
2.3741
4.1876 0.0
* SO BOILING SECTION TO RISER
PIPE
3
2
3
3
3
3
0.020
0.0
0.0
3
2
0.2787i
0.0
0.:102
1
5190302
0.718
2
6190401
0.0
2
6190601
90.0
I
6190602
90.0
2
5190701
0,:18
1
5190702
0.718
2
5190601
4.E-6
0.8957
1
5190602
4.E-6
0.0
2
5190901
0.0
0.0
I
5191O01
00
2
5191101
0000
I
5191300
0
5* S65o5* 5,0**5 *5*58 *
5*8 500,,**S*4S,* S*S*S****444
S
lt70000
5170001
5170101
5170201
5170301
$170401
5170601
S170701
9170801
5170901
5170902
6171001
51t1101
5171300
2
0.72631
*
S
PIPE
* SS CONTROL FOR VALVE 516.
0.0
0.0
0000
0.0
0.0
0000
STEAM GENERATOR TUBES
I0060000
10060100
10060101
10060201
10060301
10060401
10060601
10060602
10060603
10060604
10060605
10060606
10060607
10060608
10060501
10060502
10060503
6
0
5
6
0.0
550.0
617010000
517020000
517030000
519010000
519010000
637030000
537020000
537010000
115040000
115050000
115060000
6
2
I
0.006340984
6
5
6
0
1 1
0
I
0
. .
0
0
1 1
0
1
0
1 1
0
1
0
1
1
0
1 1
0
I
0.0051054
I
20521400
20521401
20521402
20521403
ERR516
0.
20521600
20521601
V516
clTRIVAR
*
2
23
4
6
6
7
2
3
z
4.7
I.
UFLOWJ
MFLOWJ
MFLOWJ
0.0
0
616000000
526000000
660000000
INTEGRAL
215
-. 01
.117
0
00
*4
3
.01
1-4
.92
FEED WATER VALVE
5600000
6600101
1310.32
1310.:2
1310.23
27195
271.96
1310.32
1310.32
1210.32
1310.32
1310.32
1310.32
RECIRCULATION RATIO -
SUM
1.
1.
-4.7
6600200
5600201
5600202
5600203
5600208
FwJLV
TIEIAJIM
545000000 510000000 o.os
I
-I.
0.0
.7
3000.
513
27.80
27.50
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-4
v SS CONTROL FOR FEED WATER ENTHALPHY
20560100
20560101
20560102
20560103
20560104
20560105
20560106
20560107
20560106
20560109
20560110
20560111
20560112
SPRDERR
0.
SUM
-I.
.914014
.914014
.389795
.164951
.164951
.164951
.257877
.257877
.297877
.51523
.200114
1.0
MFLOWJ
VAPGEN
VAPGEN
VAPOEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPGEN
VAPCEN
VAPGEN
VAP-EN
0.0
0
560000000
500010000
505010000
510010000
515010000
516020000
516030000
517010000
517020000
617030000
619010000
519020OO0
to
to
to.
0x
20560113
.200114
20560114
20560115
20560116
20560117
20560118
20560119
205600
20560601
.685800
.163670
.608844
.257877
.257877
.257877
FOWMNTh
CNTRLVAR
INTEGRAL
605
VAPGEN
VAPIEN
VAPGEN
VAPGEH
VAPGEN
VAPG-N
VAPGEN
.0
: TOTAL 90 DOWNCOR MASS FLOW
20594500
SGOCFLW
SMU
1.0
20594801
0.
1.
WkLOJ
20594802
UFL0WJ
M.
END OF FILE
520010000
525010000
526010000
530010000
537010000
537020000
537030000
.,8066
0
3
C
En
H
.$6OE6
.lO6
t'd
0.0
0
616000000
536000000
H
H
co
cl
I'
.e3
I
-
0
e*g LFCR3 ccc
RESTART OF LoFT CALCULATION 1.3-6 FROM SS RIN
*
E~n
LON00 RESTART
10
RE1START
TRANSNT
l01
RUN
103
a
1O5
100.
120.
)000201
260.
1.O-6
*PRIMARY COOLANT
PUMP I
1350000
1350101
1350102
135010.
1350109
1350301
1350302
1350303
1350308
1350310
PCPI
PUMP
0.0366
0.0
0
130010000 0.0
140000000.
0
0
0
-1
369.0
0.911
613.6
0.0
.212465
0.0
0.0
0.0
H
.20
00001
28
4000
TRIP-Si1
4000
4
0.099
0.0
90.0
0.0
0.0
-I
511
0.3155
207.4
-25.
0.0
0.0
0.05
0
96.0
0.004
29.5
0100
0100
0.319
1351400
1351401
13S1402
1
-I. .0000001.0
-:.229700[-01
13S1403
1351404
1351405
1351406
1351407
1351408
-6.333200E-01
-4.:553400E-01
-2.710900E-01
- .771600E-01
-9.0730001-02
0. OOOOOOE00
4
2.472200[E00
1.9968001,00
1. 897004+00
1.3279001e00
1.1949001,00
1.060500E#00
1.0156001e00
9.342790E-01
* HEAO CURVE NO. 5
C
500.6
19.698
6.28
1.431
0.0
PHASE HEAD CURVES
I
SINGLE
1351500
1351501
1351502
1351503
1351504
1351505
1351506
1351507
tij
C
I
0.O00000E0O0
2.000000E-01
4.00000O0-01
4.1180001-01
5.9763001-01
7.9346701-01
1 OOOOOEeOO
6
2.500000E-01
2.800000E-01
3.4000001-01
2.76800OE-01
4.5840001-01
6.992000-01
1.000000E*00
1351101
1351102
1351103
1351104
1351105
1351106
I
0.O00000E+00
1.906100E-01
3.89630OE-01
5.93960OE-01
7.9020001-01
I.100000O0
g
1.403600E*00
1.363600E*00
1.318600[400
1.2328001.00
1.133600E#00
I.O0000OOE00
* HEAD CURVE NO. 2
1351200
13S1201
1351202
1351203
1351204
13S1205
1351206
1351207
13S1208
1
O.O0OOO0E+OO
2.OOOOOO-Ol
4.000000E-O
5.7554001-01
7.443200E-01
7.734600[-01
8.6313001-01
1.000000E100
* HEAD CURVE NO.
g
2
-6.7000OOE-01
-5.0000001-Ol
-2.600000E-01
0.000000.+00
2.5830001-Ol
3.778000E-01
6.3260001-01
1.000000E.00
3
1351300
1
!3S1301
-1.000000E+00
351302
-8.057400F-01
1351303
-6.0690006-01
1351304
-4.068300O-01
1351305
-2.001710E-0I
1351306
0.*00000*1O*0*
HEAc CR
NOcecec.
* gg*cc e *O
ge* e
* HEAD CURVE NO. A
1351600
1351601
1351602
13S1603
1351604
1351605
1351606
1351607
1351608
1351609
1351610
C
I
0.000000E*00
9.109900E-02
1.865090E-01
2.7176201-01
4.5587201-01
6.744060E-01
7.405760E-01
7.6661901-01
8.7147101-01
1.0000001'00
6
9.342790E-01
9.229000[-01
8.968000E-01
8.7500OOE-01
8.4330001-01
8.3550001-01
8.4660001-01
8.4690001-01
6.8380001-01
I.0000001e00
C
13S1700
1351701
1351702
1371703
1351704
1351705
1351706
e seeceecce
C
7
-I .000000E100
-6.3000001-01
-3.000000E-01
-5.0000OOE-02
I..50000OE-01
2.600000[-0l
I
-1.0000001*00
-9.7000OO1-01
-9.500000E-01
-8.8000001-01
-8.0000001-01
-6.7000001"01
ccc..
ccccceceeec
geeccce.....
*.... '"
0 SINGLE PHASETORQUE
DATA
• TOROUE CURVE NO.
1391900
1351901
1351902
1351903
2
0.000000E*00
4.0000OOE-01
6.0000001-01
7.3725501-01
7.680490E-01
4.672300E-01
.00000010E00
1
2
0.000000=E00
1.930000E-01
3.9300001-01
C
1352200
1392201
1352202
1352203
1392204
1352205
1352206
1352207
1352208
1352300
1352301
1392302
1362303
1352304
w
2
-1.000}001E00
-8.0096001-01
-6.0638001-01
-4.068600o-01
-1.9928001-01
0.0000001.00
3
1.9843001400
I..3940001E00
1.0975001.00
8.2200001-01
6.6480001-01
6.0320001-01
2
-1.000000E#00
-8.223400E-01
-6.3371001-01
-4.8553001-01
-2.670230E-01
-1.761070E-01
-8.9310001-02
0.000000OO00
4
1.9843001.00
1.0308001+00
1.682400E.00
1.6570001.00
1.4362001400
1.3879001.00
1.3481001.00
1.2336101E00
2
0.0000001*00
4.0OOOOOE-01
6.0000GOE-01
1.0000001.00
z3
00
00
C
6
-4. 500000-01
-2.500000-o01
0.0000001.00
3.6690001-01
I-o
C)3
s TOROUE CURVE NO. 6
eg""8'"g'8'84'8"4"'"'1
4
1
6.0320001-01
6.3250O-01
7.3690001-01
x
2
-6.700000[-01
-2.6000OO-01
I. 5000001-01
8.2565860-01
6.065940E-01
7.436600[-01
1.0000001.00
cTRQUE CURVE NO.
I
- .000000E*00
-8.00000OE-01
-6.OOOOOOE-01
-4.000001E-01
-2.0000001-01
0.-00000O00
H
g TOROUE CURVE NO. 4
c HEAD CURVE NO. 8
a
I351300
13S1601
1351802
1351803
1311804
1351(0S
1351606
I.331000=-01
0.2290001-01
1.0000@00400
cTORQUE
CURVENO. 3
0
I
-I.000000e=00
-8.000000E-O
-6.000000E-01
-4.OOOOOOE-01
-2.0000E0-01
0.O00000E0,O
1352000
1352001
1392002
1352003
1352004
1352009
1352006
1352007
1352100
1352101
1352102
13S2103
1352104
1352105
1352106
c HEAD CURME NO. 7
e
3
2.472200E+00
2.047400E#00
1.831000E*O0
1.624000WE00
1.4705001,00
1.•403600E#00
see**O ec** ee**e
g
5.9S52006-01
7.978200E-01
I.OOOOOOEe00
o TORQUE CURVE NO. 2
0 HEAD CURVE NO. 6
* HEAD CURVE NO.
1351100
I
1351904
13S1905
1351906
1352400
1352401
1352402
1352403
13S2404
1392409
1352406
1352407
13S2408
1352409
"1352410
2
0.0000001,00
9.0643006-02
1 8856901-01
2. 7347001=-01
4.58669012-01
6.7448001-01
7.3816001-01
?.689200E-01
8.700570E-01
1.000000E,00
6
1.233610E400
1.1965001400
1.109600E.00
1.0416001E00
8.9580001-01
7.8070001-01
6.1340006-01
5.8490001-01
4.877D0O-01
3.5690001-01
g TORQUE CURVE NO. 7
T132500
1352501
1352502
1352903
2
-I o*0000001'00
-3.000000E-01
-I .0000OOO-01
"
-I .0000001.0o
-9.0000001-01
-6.00000O-O
l
Sd
:j
En
1352504
O. O0OOOE+0O
.4.500000[-Ol
En
8
-I. 000006*00
.9.000000E-Ol
.6.0OO00OE-01
-6 70000OE-01
M
z
* FOR TORQUE CURVE NO. a
1352600
1352601
1352602
1352603
1352604
2
-I. 0000006400
-2.5000OOE-0I
-8.OOOOOOE-02
0.00OOOOE.00
* *TW
TWO- P*A*S**
PISASEMULTIPLI*
I8JLTOPLI6R D*A*58*8*5585504
DATA
555* 8 55
**S***5654***
* HEAD CURVE
1353000
1353001
1363002
1353003
1353004
1353005
1353006
1353007
1353008
1353009
1353010
1353011
1353012
1353013
1355014
S**.
445*.
0
0.000000E+00
0.00004OE,00
1.0000005-01
7 .00000E-02
2.0000006-01
I .8000006-01
3.000006E-01
3.4000006E-0
3.5000006-01
6.000000E-01
3.7000O06-01
7. 00000E-01
4 0000006-01
7.200000E-01
.OOOOOOE-O1
7.500000S -01
6.000000-01
7,7000006-01
7.00000F-01
7.7000006-01
8.OOOOOE-0l
7.400000E-01
9.000000E-01
6.100000D-01
S. 500000-01
4.0 (W000 -01
0.O00000E*O0
0000006O0
1. 555550
45
05 54554445*555******
5*5*445555****5*4S*5*S****
TOROU1 CURVE
Y
1353100
1353101
1353102
1353103
1353104
1353105
1353106
1353107
1353108
1353109
353110
1353111
1353112
0
0.000000E400
1.0000006-01
2.000OOOE-01
3.000000E-01
3.500000E-01
4.000000E-01
5.000006E-01
6.O000006-01
7.0000006-01
8.0000006-01
9.000000E-01
1.000000E*00
O:0000000E00
0. 00000E,00
I.OOOOOOE-0I
3.O000006-01
5.000000E-01
7.000006-01
7.600000E-01
?.500000E-01
7.500000E-01
7.500000E-01
6.0000006-Ol
0.O000000E*0
pU.MP 2-PIASE DIFFERENC6E DATA
P
A CURVE
HEAD
1354100
1354101
1354102
1354103
1354104
1354105
1354106
00. 1
1
0.000000E#00
1.9061006-01
3.896300E-01
5.9396006-01
7.9020006-01
1.000000E.00
1.403600E400
1.363600E*00
1.3186006400
1.2328006400
1.133600E+00
1.00000E.00
SHEADCURVE NO. 2
1354200
1
2
1354201
1354202
1354203
O.0000006E00
2.000000,-01
4.0G0000E-01
1354204
1354205
1354208
6
1354207
1354206
5.755400E-01
7.4432006-01
. 7348000-01
8.631300E-01
1.0000OE6.00
-6.700006-01
-5.00000E-01
-2.5000OE-01
M~
0. O00OE#0
2.5830006-01
3.778000E-01
6.326000E-01
1.000000E.00
to,
1354702
CURVE NO. 3
HEAD
E
13S4800
1354801
1354802
I
0.0000001£00
2. 000000-01
4.000000E-01
6.000006E-01
8.0000OOE-01
. OO0OOOE00
1354600
1354601
1354602
1354603
1354604
13S4605
13S4606
1354607
1354608
1354609
1354610
1
0.0000006.O00
I.0000006-0I
2.600OOE-01
4.0000006£-0
S.OOOOOOE-Ol
6.0000006-01
7.00000E-O01
8.0000OOE-01
9.0000006-01
1.000000E.00
*HEAD CURVE NO.
1354700
1354701
*****4
**58554505
.,4,*****
8
1355000
1355001
1355002
1355003
1355004
1355005
1355006
1355007
*TOROUE
1355100
1365101
1355102
1355103
1355104
1355105
1355106
6
1.1000006-01
1.30000OOE-01
1.SOOOOOE-O
1.3000006-01
7.0000OOE-02
-4.000000E-02
-2.30000OE-01
-5.100000E-01
-9.1000001E-O
-1.470000E.00
5355200
1355201
1355202
1355203
1355204
1355205
1355706
1355707
1355208
."
1
6.0320006-01
6.325000E-01
7.369000£-01
8.33100OE-01
9.2290OOE-01
. 0000OOE000
2
0.0000001,00
4.0000006-Ol
S.OOOOOOE-01
7.3726506-05
7.6804906-01
8.672300E-01
I.O00000,E0O0
2
-6.700000-01
-2.5000009-01
1.500000E-01
6.2668606£-05
6.065940£-01
7.43660OE-01
I.O0006OOE0
:9
CURVE NO. 3
2
-1.0000006400
-8.0096006-01
-6.0638006-01
-4.06860016-01
-5.9928006-01
0.90000E000
3
1.9843006.00
1.9394000E.00
1.097500E#00
8.2200006-01
6.6460 0-01
6.032000E-01
co
03
-j
*TORQUECURVENO. 4
7
I
-1.000000E.00
I
2
O.0000006.00
1.930000E-01
3.93000O6-01
8.9552006-01
7.978200E-01
1.0000006,00
8
0.0000006#00
0. 00000000
a TORQUECURVENO. 2
6
0.000OOE.00
-3.400000E-01
-6.600000E-01
-9.3000006-01
-1.1900006.00
-I .470000,E00
* HEAD CURVE NO. 6
I
-1.0000009400
0.O000000E.00
" TOR*UE CURVE NO.
1354900
1364901
1354902
1354903
1354904
1354903
1354906
1354400
1354401
1354402
1354403
1354404
1354405
1354406
1354407
1354408
1354409
1354410
1354500
1354605
1354502
1354503
1354504
1354505
1354506 .
0.0000,OE#0
*HEAD CURVE NO. 8
1354300
I
3
1354301
-1.000000E#00
-I *160000E#00
1354302
-9.000000E-01
-1.240000E*00
1354303
-0.0000006-01
-1.7700006E00
1354304
-7.0000006-01
-2.3600006.00
1354305
-6.000000E-01
-2.790000E.00
1354306
-5.000000E-O
-2.910000E+00
1354307
-4.0000006-01
-2.6700006E00
1354300
-2.5000005-01
-1.6900006E00
1354309
-. 0000OOE,-01
-S.000006E-01
1354310
0.00000.E00
0.09000OOE.00
***55*54*585*S*58*5*5*8555555d**5***5*S*s***4e5***4****S55*5*R5***
* HEAD CURVE NO. 4
1
4
-1.000000E+00
-I.1600006*00
-9.000000E-01
-7.80000OE-01
-8.0000001-01
-5.000000e-0O
-7.000000-E01
-3.100000E-01
-6.000000E-O1
-1.7000006-01
-S.00000E6-Ol
-S.000000E-02
-3.5000006-01
0.O00000.E00
-2.0000006-01
6.0000001-02
-I.00000,6-01
8.000000E-02
0.000OOE.00
1.1000001-01
55545 4455* 5* *
54 05S5S***,0.**•***.***55*
* HEAD CURVE NO. 5
O. 0000006.00
7
0.000000E.00
2
-1.0000006,00
-8.2234006-01
-6.337100(-01
-4.5853006-01
-2.6702306-01
-1.7610706-01
-8.9310006-02
0.OO0OOO,00
TOR•UE CURVE NO.
4
1.5643006o,0
I.83080OE#00
1.682400EO00
1. 557000E*00
i.4362006*00
1.3879006.00
5.3481006.00
1.2336106*00
6
1355300
2
1355301
0.000000E600
1355302
4.000000E-01
1355303
6.0000O00-Ol
1355304
1.0000E000
5055*5S0*655
'lO' 5540;••'
.......
6
-4.S00001•-01
-2.500000"01
0.OO0000.E00
3.56900OE-01
p554
........
t
.......
tl
,..''5058*...'''
*1TROUE CURVE NO. 6*
5365400
1355401
1366402
136S403
2
0.000000EO0
9.0643006-02
5.68666E-01
5
6
1.23361PE.00
1•196500E.00
. 10W66OE600
to3
Ma
Un
1355404
1355405
1355406
1355407
1355408
1355409
1355410
*
2. 734700-01
4.5806690-01
S.7448005-01
7.381600E-01
7.6e5200E-01
8. 700570E-01
1.OOOOOOE.00
1-3
I .0416006.00
8.95000-01
7.807000E-01
6.134000E-01
5.849000E-01
4.877000E-01
3.56BO006E-01
C
j'
TOROUE CURVE NO. 7
236550
1355501
1355502
1355503
1355504
-o.000000E.0
-3.000000E-01
-I.O00000E-01
O.000000.00
* TOROUE CURVE NO.
1355600
7
-|.000000600
-9.000006E-O
-5.000000E-01
-4.6000006-01
tol
S
.2
1355601
1355602
1355603
1355604
-1.000000E6.0
-2.500000E-01
-8.0000006-02
0.000000E.00
1350200
1350201
1350202
END
M OF
3
14.A19556
I
241.6
I
241.5
FILE
"1-
a
-1.0000006.00
-9.000000E-01
-8.000000E-01
-6.700000E-Ol
560.35
0.0
0.0
0.0
0.0
I
Io
,-1
I
h,.)
$-A
CD
mJ
x
STUDSVIK ENERGITEKNIK AB
Appendix B.1
NP-87/128
1987-11-03
0
CORE INLET FLUID DENSITY
CORE INLET FLUIO DENSI T
CORE INLEt FLUID DENSITT
0
A
(CNTRLYAA SO) CASE A
(CNIRLVAR R011 CASE I
ICNTRLYAR O l CASE C
Plot B.
1
___ "___
o0
w
0
-2S0
0
230
500
750
1000
TIME
0
0
IC
+
0
1230
1500
2000
ITSO
REACTORPOWER IRKTPOV 0) CASE A
REACTORPOWER
NRKrPOW 0) CASE B
REACtOR POWER
KRKrPOW
01 CASE C
PRIM. EXTERNALS HEAT ,L.0W ICNTRLYAR9821 CASE A
PRIM. EXTERNALS MEAT FLO W .CtRLVAR 982) CASE e
PRIM. EXTERNAALS
MEATFLOW (CRIRLYAR 982) CASE C
____
____
_______
_______
2230
250
i0
(S)
Plot
B.
2
--
o
"T
0
_______
_______
_______
Ir
re
=t
0~ 0
-
-
0~~
0
-250
-250
-
0
-e--~ -~
500
Soo
250
-e--~ -e--.~ -~_
750
750
1o000
1250
TIME.
(S)
-
1500
isoo
-
1750
•o
2000
20060'
-
2230
2250
2300
2500
(31)
NP-8-7/128
STUDSVIK ENERGITEKNIK AB
Appendix B.2
1987-11-03
0
0
CORE CLAD rEMPERATURE VOL. I cr'-2014-O1|
£t
CORE CLAD CEtiPERATURE
VOL. I 'CI.RLVAR 103) CASE S
CORE CLAD TEM'P'ERATURE
VOL. I ICYNRLYAR 903) CASE C
CORE CLAD TEMPERATURE VOL.
I
(CrIRLYAR
... I
9031
EXP.
CASE A
Plot B. 3
w
0
(L:
-20
a
20
Soo
750
1000
1250
1500
17_0
2000
2250
25b
0
TIME
0
0
A•
CORE CLAD fEMP[RATURE VOL.
CORE CLAD TEMIPERATURE
VOL.
CORE CLAD tEMPERAIURE VOL.
CORE CLAD TEMIPERATURE
VOL.
2
2
2
2
(s)
... 1 EXP.
(E-IF?-01
(CftRLVAR 904) CASE A
(CYTRLVAR904) CASE B
(CRIRLVAR 904) CASE C
Plot B.
4
w
CL
0,.
-250
0
250
S00
750
1000
1250
TIME (S)
1500
1750
2000
2250
25S00
STUDSVIK ENERGITEKNIK AB
NP-87/128
Appendix B.3
1987-11-03
a
a
CORECLADTEMPERAIURE VOL. 3 IYE-IF7-026 .. ICXP.
CDORE
CLAD TEIPERATURE VOL. 3 ICNTRLRARSOS) CASE A
A
CORE CLAD TEMPERATURE VOL.
3
(CNIRLVAR
905)
CASE 8
CORECLAD TEMPERATURC
VOL. 3 (CMIRLYARSS) CASE C
Plot B.
5
LIJ
CL
-250
0
250
500
750
1000
1250
1500
1150
2000
2250
250 i0
TIME (S)
0
a
A.
CORE CLAD TEMPERATUREVOL. 4 (TE*2LO-D3t
CORE CLAD (EMPERA URC VOL.
CORE CLAD TErMPERATURE VOL.
CORE CLAD TEMPERATURE VOL.
4
4
4
.. C EXP.
ICNTRLVAR 906) CASE A
(CNTRLVAR 9062 CASE B
(CNTRLVAR 9062 CASE C
Plot B.
6
W%
LI
cc
0w
a_
1:
725o
0
250
500
750
1000
1250
TIME (S)
1500
1750
2000
2250
250 0
STUDSVIK ENERGITEKNIK AB
Appendix B.4
NP-87/128
1987-11-03
CORE CLAD TEMPERATUREVOL.
CORE CLAD TEMPERATURE
VOL.
CORE CLAD TEMPERATURE VOL.
CORE CLAD TEMPERATURE VOL.
0
a
3
5
5
5
(Tt-20I4-04S ... 1 EXP.
(CNTRLYAR9073 CASE A
(CNIRLVAR $07) CASE B
(CMTRLVAR 07) CASE C
Plot B.
7
D--
9
w
w.
-250
-
0
250
Soo
1000
7'50
12,50
1300
1730
2000
2230
250I0
TIME (S)
0
a
CORE CLAD TEMPERATURE VOL.
G
ITE-SH?-062
..
I
EXP.
CORECLAD TEMPERATUREVOL. 6 (CNTRLVAR908) CASE A
CORE CLAD TEMPERATURE
VOL. 6 (CWARLVAR908o CASE 8
CORECLAD TEMPERATURE
VOL. 6 (CNTRLYAR908) CASE C
A
o
5-~
Plot B.
______
0
_______
_______
8
_______
________
w
a.
r
0
o
_______
_______
_______
_______
_______
qr
-25
I
0
.,
250
-
500
9
750
-
9
1000
1250
TIME
(S)
.I
1500
9
1750
2000
9
2250
2500
Appendix B.5
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
0
a
CORE OUTLETtEMPEfRATUALC IL.IUP-00 I..'
LE?
CASR%
I
(CNTLYAR90910
AATEA
COALtOUILET IfWERAI
909) CASE a
CORAEOUJTLETTEMPERATURE ICOOTALYAR
CORE OUTLET LTEMPEATURE (CMTALVAR909) CASE C
4£
Plot B.
9
--.-.-----
N
0
____________
_____
U,
'C
(L
-20
20
S0
70
I0
0_______
20
I•0
15
00
25
M___s_
00
0
f.
CORE FLUID TEMPERATUREDIFF.
01FF.
CORL FLUID TEMPERATUR_
0IFF.
CORE FLUID EIMPERATURE
CORE FLUID IEMPERATURE 01FF.
~vJ1
(TL-IUF-OOI (Cm RLVAR9101
ICMTRLVAR910)
(CN RLYAR 910)
tE-ILP;OOIf EX?.
CASL A
CASE 8
CASE C
Plot B. 10
_____
______
C
LL
W,
C
--
o
-
-20
-
,k~
25O
500
n4Ai~
no0
1000
1250
TIME (S)
1500
In50
2000
2250
2500
STUDSVIK ENERGITEKNIK AB
Appendix B.6
NP-87/128
1987-11-03
0
a
A
CORE INLETMASS FLOW (CMFLOWJ
225) CASE A
COREfINLET MASS FLO W t"FLOWJ 225) CASE I
CORE 14L ! MASS FLOW (lIFLOWJ 225) CASE C
Plot
0
_______
0
0
________
0
________
B.11
______________________________________________________________
-
__________________________________________________________________
0
0
-j
3J- 0
_______
_______
cl)
(n
0
________
________
_____________________________________
__________________
0
0
0
*25O
0
250
500
750
3000
TI ME
O
O
&
CORE MASS INVENTORY (CNTRLVAR L12)
CORE MASS INVENTORY IC NTRLVAR 932)
3250
ISCO
3750
2000
22S0
(S)
CASE A
CASE 8
CORE MASS INVENTORY (CNfRLVAR 932) CASE C
Plot B.12
0.
U.
I...
0
Cd)
U,
LI
0~
3000
TIME
1250
(S)
25)00
00
STUDSVIK ENERGITEKNIK AB
Appendix B.7
NP-87/128
1987-•1,-03
0O
A
9131 CASE A
MASS INVENTORY (CNIftLVAR
C0OWNC0P¶(
OUNCOM(R MAS IVENSCA? ICATALVAR 913, CASI
DO OMICtERMASS 2INVENITORY
IC TLIAR 93) CASEC
Plot B. 13
CL.
TIME
0
0
A
(S)
VESSEL TOTAL MASS INVENTORY(CWTRLVAR914) CASE A
VESSEL TOTAL MASS INVENTORY(CNTRLVAR9I4I CASE 8
VESSEL TOTAL MASS INVENTORY (CVTRLVAR9.4) CASE C
:1
Plot B. 14
11111
o
0
0
o
0
_
_
_
_
_
_
-c
r-
0
0
o
_
_
_
_
*
0
____
____
_
____
____
____
_
____
(1
o
-250
____
(
250
MS
300
560
750
m5
1000
TIME
1250
(S)
'SOC
15
00
1730
1
_
__
2000
2060
_
J
__
2250
22'50
1
'0
251
25i
0
STUDSIVJA
Appendix B.6
NP-87/128
ENERGITEKNIK AB
1987-11-03
O
O
4
DOWCOMERLIQUID
DOWCOMERLIQUID
LIQUID
ODM'NCOMER
DOWNCOMER
LIQUID
LEVEL
LEVEL
LEVEL
LEVEL
1XPV.
ILE-S;-DQ
(Ck RL AR 9151 CASE A
(CRYRLVAR915) CASE B
ICMIRLVAR 9131 CASE C
Plot B. 15
-I
LU
TIME (S)
a0
A
*
UPPER
UPPER
UPPER
UPPER
PLEWUMILIQUID
PLENIUMLIQUID
PLENUMLIQUID
PLENUMLIQUID
LEVEL
LEVEL
LEVEL
LEVEL
(LE-3UP-001I6LX?.
(CNTRLVAR9I61 CASE A
(CNTRLVAR916) CASE 5
(CNfRLVAR 916) CASE C
Plot B. 16
data from
bubble plot
N
-.J
-250
0
-.
250
500
750
1000
TIME
1250
(S)
1500
1750
2000
2250
25100
NP-87/128
.STUDSVIK ENERGITEKNIK AB
Appendix B.9
1987-11-03
0
a
DOVWNCOMER
INLET
DOVNCOMER
INLET
INLET
DOWNCOMER
INLET
DOWWC0MER
TEMPERATUREITE-IST-CO3
..
CXP.
TEMPERATURE(TEMPF 205) CASE A
TEMPERATURE(TEMPF' 205) CASE 0
TEMPERATURE ITEMPF205) CASE C
Plot B.17
'L
:-230
a
2S0
500
750
1000
TIME
O
0
A
+
(TE-IUP-0Ol
UPPER PLENUM TEMPERATURE
UPPER PLENUM TE MPERATURE (TEMPF
UPPER PLENUM TEMPERATURE (TEMPF
UPPER PLE NUUMTEMPERATURE (TEMPF
240)
240)
240)
12'50
1500
1750
20'00
2250
(S)
... 1 EXP.
CASE A
CASE 8
CASE C
Plot B. 18
U,
'C
TIME (S)
25bO0
STUDSVIK ENERGITEKNIK AB
NP-87/128
Appendix B.10
1987-1-1-03
a
a
UPPER
UPPER
UPPER
UPPER
PLENUMSUMCMOLING(SC-SUP-1021 EXP.
PLENUM SUBCOOLING ICNERLVAR91:) CASE A
PLENUMSUBCOOILINGCCItRLVAR91i) CASE B
PLENUMSUSCOOLING (CWTRLYAR$19) CASE C
Plot B.19
Lu
U)
C
-
UJ
-e5
_5
_00
0
_50
•
0____T_
______
_
0
_
75
_00
25
__(S _
E
a0
0
0
£
4
LOVER PLENUMI?EMPERAVURE
(TE-ILP-OOI) EXP.
LOVER P1ENU.MI 'PERATURE IIEr1PF 225) CASE A
LOWERPLEN" IW"f AERAIURE
TEIMPF225) CASE B
LOWERPLENUM TEMIPEERATURE
(TEI PF 225) CASE C
Plot B.20
U)J
0L
TIME
(S)
STUDSVIK ENERGITEKNIK AB
Appendix B.11
NP-87/128
1987-11-03
a
a
UPPERPLENUMPRESSURE
(FE-IUP-OOIAI|
UPPER PLECUMI PRESSURE
(P 245)
£.
UPPER PLENUMPRESSURE
PRESSURE
UPPER PLENU4M
EXF.
CASE A
(P 245) CASE 8
(P 2431 CASE C
Plot B.21
0
-J
'n
In
W.
-230
a
250
500
750
1000
TItME
a
a
0
LOVERPLENUMPRESSURE
LOWERPLENUMPRESSURE
LOWERPLENUMPRESSURE
LOWERPLENUMPRESSURE
(PE-IS?-OCIA ...
(P 223) CASE A
(P 2251 CASE 8
(P 223) CASE C
'
1250
1500
1750
2000
2250
25300
(S)
EXP.
Plot B.22
* -6-*
_
0
0
cr
cn
Lu
0
_______
_______
_______
_______
_______
_______
f•
2150
250
250
500
S0O
.4.
750
730
+---4
1000
1250
TIME (S)
1500
I.
1750
2000
.42250
2500
STUDSVIK ENERGITEKNIK AB
NP-87/i28
Appendix B.12
1987-.1.1.-03
0
0
I.L.
I.1.
h
N
|.L.
1.L.
LOt
LS
MLO LEG
HOT LEC
HOT LEG
FLUID
FLUID
FLUID
FLUID
DENSITT
DENSITY
DENSIT
1
DENSItT
(DE-FC-20SI EXP.
(RHO 1053 CASE A
RHO 103S CASE 0
IRHO 1053 CASE C
Plot B.23
I.,
r
S..
C.,
z
w
a
-50
0
250
Soo
750
1000
1230
1300
1750
2000
2250
TIME (S)
0
a
*.LS-L.
B*L.
B-L.
N
HOT LEC FLUID
HOT LEg FLUID
HOt LEG FLUID
HOT LEG FLUID
DENSITY
DENSITT
DENSITY
DENSITY
IDE*BL-02B)I EXP.
(RHO 3051 CASE A
(RHO 3051 CASE S
(RHO 3051 CASE C
0
250
00
Plot B.24
_______
U,
_______
0
U,
_______
U,
ft
_
_______
_______
_______
z
w
0
0
-
_
_______
-
-
-
250
500
-
-
_
-
_I
N44;nýLý
t
-250
-
750
1000
TIME
1250
(S)
1500
1750
_
4,4,ý
2000
22501
2500
NP-87/128
STUDSVIK ENERGITEKNIK AB
Appendix B.13
1987-11-03
0
0
A
,Hot
"Of
LEC MASS FLOW RATE (3FLOWJ 1101 CASE A
LEG MASS FLOWRATE (hFLOWJ 3 03 CASE 8
1103 CASE C
N01, LtG MASS FLOWRAE CIMFLOWJ
Plot B.25
9.
0ý
Ln
TIlME
0
0
4
I.L. 30? LEG
L.1.
3t LEG
:.L. NOT LEG
L.1. NOT LEG
(S)
T"
'rERAT"URE ITE-PC-0026) EXP.
TEMPERIAURE ITEMPF 1053 CASE A
TEMPERATURE(TEMPF 3052 CASE 0
TEMPER
AURE (TEMPF 3053 CASE C
Plot B.26
10
U)
U)
720
0
250
S00
750
3000
1250
TIME (S)
1500
1750O
2000
2250
25000
STUDSVIK ENERGITEKNIK AB
Appendix B.14
NP-87/128
1987-11-03
0
0
'OT
I.L. MCI.
WOO LEC
LEG PRESSURE
PRESSURE
1.4. HOT LEC PRESSURE
1.1.
1OT
LEC PRESSURE
o
_
o
0J 0
______
(PE-PC-O02l
(PtlOS) CASEEXP.
A
(P 105) CASE I
(P l0) CASE C
Plot B.27
_
_
_
_
______
______
______
______
___
__
.i.
______
_______
0..
0
_______
C
-50
)
250
S0o
750
1000
TIME
0
0
£
4
I.L. COLDLEG
I.L. COLD LEG
I.L. COLDLEG
I.L. COLD LEG
FLUID
FLUID
FLUID
FLUID
DENSITY
DENSITY
DENSITY
DENSITY
1250
1300
1750
2000
2250
250 .0
(S)
(DE-PCG-IS) EXP.
(RHO IN5) CkSE A
(RHO 18S1 CASE B
(RHO 183) CASE C
Plot B.28
w.
z
so
6
250
500
730
1OO0
1250
TIME (S)
1300
1150
2000
2250
250 0
STUDSVIK ENERGITEKNIK AB
Appendix B.15
NP-87/128
1987-1.1-03
a
0
COLD LEG P:UP FLUID DENSITY
COLD LEG *UMP FLUID DENSltY
D-PC-3OSI ES?.
CR1O 115.132 CASE A
COLD LEG PUMP FLUID DENSITY
l
COLD LEG PUMP FLUID DENSIiTl
Rl40 1t5,13
I1O 115.13)
_
-230
0
250
Soo
CASE 0
CASE C
.1
t'50
_
1000
TIME
0
.L.
SB.L.
S.L.
4.
B.L.
-250
Plot B.29
1250
150
sbo
1 ?0
2000
COLD LEG FLUID VENSIITY (OME-OL*IO)
X
CASE
NI•
RO45
COL
COLD LEGLEGFUD
FLUID
ES
T
0_ 3
CASE 9
COLD LEG FLUID DEWSIIT (RHO 345) CASE C
0
230
So0
750
2250
Plot
1000
250(
(S)
1250
TIME (S)
1500
1750
2000
B.30
2250
2500
0
STUDSVIK ENERGITEKNIK AB
Appendix B.16
NP-87/128
1987-11-03
a
0
I.L. LOOP SEAL.LIOUID LEVEL ILEPO;-PC-0213
EXP.
l.L.
CASE A
LOOP SEAL LIOU1D LEVEL
ICNIRLVAR
I3)
I.L. LOOP SEAL LIOUID LEVEL (C TRLVAR931)
I.L. LOOP SEAL LIOUID LEVEL tCMIRLVAR 931)
CASE 5
CASE C
Plot B.31
w
w
-j
-250
0
250
500a
70
1000
1250
1500
I ?so
2000
2250
TIME (S)
0
0
B.L.
.L.
LOOP SEAL LIOUID LEVEL
LOOP SEAL LIQUID LEVEL
.L. LOOP SEAL LIOUID LEVEL
-
(CWTRLVAR :32)
(C ,TRLVAR 932)
CASE A
CASE 8
lCNTRL AR 932) CASE C
Plot B.32
.J
L.i
TIME
(S)
25(00
STUDSVIK ENERGITEKNIK AB
Appendix B.17
NP-87/128
1987-A-1.i-03
0
S
*
I.L.
1.L.
I.L:
|.L.
COLD LEO TEMPERATURE
ITE-PC-004) EXP.
COLD LEG TEMPERATURE4TEMPF 18531 CASE A
(TEMPF 1853 CASE 0
COL.DLEO TEMPIERATURE
COLDLEG TE IPERArURE |fCrlF 185' CASE C
Plot B.33
w
rw
(L
230
0
250
So
750
1000
1250
1300
1730
2000
2230
2501
T IME (S)
0
0
1:L: COLD LEG FRESSURE (FE-PC*OOS1 EXP.
I.L. COLD LEG
t ESSUR E IP
20 CAS rA
*
I.L.
I.L. COLOLEG PRESSURE (1 1203 CASE A
COLD LEG PRESSURE
(P
1203
Plot B.34
CASE C
(L
U11
cr"
OU,
Id
52SO
0
250
300
750
1000
TIME
1250
(S)
1500
1750
2000
2250
25000
Appendix B.18
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
0
0
A
+
8.k.
3,.
8,L.
.k.
COLD LEG
COLD LEG
COLD LEG
COLD LEG
PRESSURE IPE*8k*0Ol) [XP.
PRESSUREIP
343) CASA
PRESSURC (P 345) CASE I
PRESSURE tP.345) CASE C
Plot B.35
oI
w
cc)
D, C
___
___
___
*°2'50250
500
750
___
~~~I00
20
O0
_
70
_
_
200
20
25
00
TIME
0
PRESS.O IF.
ACROSS PUMPS (POE*PC-1OO)
0
A
+
PRESSOIFF.
PRESS.OIFF.
PRESS.DWF.
ACROSS PUMPS
ACROSS PUMPS
ACROSS PUMPS
(S)
CX?.
(CNfRLVAR 936) CASE A
(CMfRLVAR 936) CASE B
(CNtRLYAR 836) CASE C
Plot B.36
C
0
'
_____
:z
0
IL
t
______
______
ui~o°
U-
,__
_
__. __|
0L
C
CI
-250
0
25:0
500
750
(000
1250
TIME (S)
1500
1750
2000
22S0
2SC
0
STUDSVIK ENERGITEKNIK AB
Appendix B.19
NP-87/128
1987-11-03
a
a
£
4
SPMEE Or PUMPI IRPE-PC-O011 EXP.
S3E 0 Of PUMPI IPUMPV[L 3,33) CASE A
SPEC0 Or PUMP I
(PUMPY L 1353
135)
SPEEDOr PUMP I (PUIMPVEL
CASE 8
Plot B.37
CASE C
0
0
e
0.
0
C
uJ
U)
-
0
C.
iI
o
_
-250
0
'_
_
250
500
730
3O00
TIME
0q
a.
WqEARFLUID DENSITY
S'EAK FLUIO DENSITY
BREAKFLU|O 0DENSIT
BMEAK FLUID DE NSITI
1250
__
_
1500
_
3750
_
2000
2250
(S)
(O-PC-SO2A) EXP.
IRHO 300) CASE A
(RHO a00) CASE B
(RHO 800) CASE C
Plot B.38
r
z
w
a
TIME (S)
250 0
STUDSVIK ENERGITEKNIK AB
Appendix B.20
NP-87/128
1987-1.1-03
0
A
01
SNEkKK"AS$
OIEAI PISS
OR AKMfASS
O.IEKM ASS
FLCOWRAITE tWR-PC-SI1231)
g
LOW RE
tTFLCWJ 0S CASi A
VLOd RATE (TVLVJ S03) CASE 6
fI.OW WAE (TfLOVJ 8031 CASE C
Plot B.39
• I
.
C)
-J
In
TI ME (S)
0
0
A
WlEAK WlERGTRELEASE (C1t'LVAR 340)
BMEAl
IREAK
MERGY RELEASE
I.MERGYRELEASE
CASE A
(C TRLVAR 940)
(CNITRLVAR 940)
CASE 8
CASE C
Plot B.40
0
N.'
fA
0
0
-c
U'
AS
0
_______
_______
_______
C
Y230
250
Soo
1750
750O
TIME
(S)
2000
2250
A-
2500
NP-87/128
STUDSVIK ENERGITEKNIK AB
Appendix B.21
1987-11-03
0
C
4.
BREAK INLET TEMPERATURE ITE-PC-SOIC) E)P.
BIAK INLET TEIMERATUNE (TIVF 8001 CASE A
OREAK INLET TEMPERATUR
E IIEMPF 800) CASE B
ICEMPF 800) CASE C
BREAK INL E TEMIPERATURE
Plot B.41
LU
cr
w
m
0U
0i
-50
0
250
Soo
750•
1600
TIME
S
0
A
4.
BREAK INLET SVOCBREAK INLET SUO C:
BREAK INLET SVCJ.
BREAK INLET SUBC-
I-PC-S1
-
TE-PC-S01C)
1250
1500
1750
2000
2250
250,
(S)
EXP.
(CNTRLVAR 9:2,) CASE A
(C I RLVA R 9421 CASE B
ICNIRLYAR $42) CASE C
Plot
B.42
go,
0[
C,
..J
0D
0
C.)
3250
0
250
300
750
1000
TIME
1250
(S)
1500
1750
2000
2230
2S0(
0
STUDSVIK ENERGITEKNIK AB
NP-87/128
Appendix B.22
1987-11-03
0
0
BREAK INLET PRESSURE
(PE-PC-SOt)
EXP.
|REAK :ILETPRESSURE (P :001)CASE A
BREAK INLET PRESSURE (P 8002 CASE I
BREAK INLET PRESSURE tP 800) CASE C
Plot B.43
Z
0j
w
C,,
TIME
0
0
4.
SC
SC
SC
SC
PRI.
PIl.
Pt,.
PRI.
SIDE
SIDE
SIDE
SIDE
(S)
INLET TEMPERATURE
tTE-SC-O01) EXP.
INLEl TEMPERATULRE
(TEMPF 125.011 CASE A
INLET TEMPER
AURE (TEMPt 115.03 CASE 8
INLET TEMPERATURE(TEMPF 113.03) CASE C
Plot B.44
*01
w
4j
(.1
r-
wi
w250
0
250
300
730
1000
TIME
1250
(S)
1500
IS0
2000
2250
250O0
Appendix B.23
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
U
0
TErM. DoFr. (rT-SC-OOI - IE-SC-iO2)
TElI.
DIFF. ICNTRLVAR
CASE B
A
T[ilt.
03FF.
ICISALYAR 943)
145) CASE
TMP:1.
01FF. ICITRLVAR 943) CASE C
SC Patl.
SC PR).
PRI.
SC
SC PRI.
4
EXP.
Plot B.45
Li
@a.
a
-
-
-
.
w
0
"230
230
Soo
750
1000
TI ME
a
O
A
+
Sc
Sc
SC
sC
PR).
PFR.
PRI.
PRI.
SIDE
SIDE
SIDE
SIDE
PRESSURE
PfESSURE
PRESSURE
PRESSURE
DIFF.
D0FF.
DIFF.
DIFF.
1250
500
1750
2000
2250
2501
(S)
(POE-PC-OO2) EXP.
(CmIRLVAR 94$) CASE A
(CNIRLVAR 946) CASE B
(CMIRLVAR146) CASE C
Plot B.46
C,)
w
-
00
250
300
730
1000
.1250
TIME (S)
1300
1730
2000
2230
2300
J~vL\ENERGI T ;:iANIK
NP-87/128
AB
Appendix B.24
1.987-1.1'-03
0
I
a
SC FLUID DENS|IT (RMO 5IS.03) CASE A
03S.OlI
CAS S
Sc FLUID D(WSIIT (RHO
SC FLUID aENSITI (RHO 51S.031 CASE C
Plot B.47
%m
w
0
-250
0
250
S;oo
TSO
1000
T'IME
0
A
h
SC MASS FLOW RATE
SC MASS FLOW RATE
1250
1300
1750
2000
2250
250(
(S)
(PFLOVJ SIG) CASE A
(MFLOVJ 5161 CASE A
SC ((ASSFLOWRAILf (ILOWJ
5A6)
CASE C
Plot 93.48
-J
U-.
r,
0
2S0
Soo
7so
I
I-Jil '
2000
1250
TIME (s)
1500
1750
I
2000
2250
2500
STUDSVII\ ENERGITEKNIK AB
NP-87/128
Appendix B.25
1987-11-03
O
a
a
+
SC
SC
SC
SC
LIOUID
LIQUID
LIQUID
LIOUID
LEVEL ILD-PO04oOD8I
LEVEL (CM RLVAR 2491
LEVEL ICNIRLVAR :49)
LEVEL ICN RLVAR 54 )
EXP.
CASE A
CASE a
CASE C
Plot B.49
2
-J
w
w
-j
TIME (S)
O
a
+
SC
SSC
SC
SC
LIOUID IEIPERATUVE
R
LIQUID
1TEMPtRATURE
LIQUID IEIPERATUR
LIOUID TEIMPERATUOE
TE-SE-OS) EXP.
(tIE PF 515.03) CASE A
(TETIPF 515.03) CASE a
ITEnPF 5)1.03) CASE C
Plot B. 50
U)
U)
0~
L
U)
TIME
(S)
STUDSVIK ENERGITEKNIK AB
Appendix B.26
NP-87/128
1987-A.1.-03
a
0
£
SC PRfESSLRE
SC PRESSURE
SC PRESSURE
SC PRESSURE
(Pc-SCS-00t| EXP.
(P 301 CASr A
(P 530) CASE S
(P 530) CASE C
Plot B.51
t0
L
r
C!
w
U,
U,
LU
C-
0
250
:'250
500
4
4
1000
1250
1500
1750
2000
2250
TIME (S)
A
4
so
S1
sc
SC
P1I.-SEC.
PR1.ISEC.
PRI.-SEC.
PR1.-SEC.
TEMP.
I l
TEi'.
TEMP.
O:F.
01FF.
0.
01FF.
DIFF.
(EEXSC-O0I -?E-Sc-0031 ExP.
(CNTRLVAR552) CASE A
(CNRLVAR 952) CASE B
IC'R RLVAR 952) CASE C
0
X:
IL
TIME (S)
2500
I
Plot B.52
Appendix B.27
NP-87/128
STUDSV11% JZNERGITEKNIK AB
1987-11-03
1
o
A
SC HEAT IRANSFER RATE (C-TRLVAR SS93 CASE A
SC HEAT IRAHSIER RATE (CNTRL AR I3)CASE B
SC HEAT IRAN$rER RAIE (C.TRLVAF 9S3 CASE C
Plot B.53
oI
w
0~
"230
0
250
S00
750
1000
TIME
0
4.
PRESSUkIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
LIOUIO
LIOUID
LIOUID
LIOU1O
LEVEL
LEVEL
LEVEL
LEVEL
1250
1500
ISO
2000
2250
25C 0
(S)
tLI-PI39-006) EXP.
(C3TRLVAR 954) CASE A
ICCtRLVAR 9543 CASE B
(CNTRLVAR954) CASE C
Plot B.54
P
sk
c;
-j
w
w
-j
c;
0;
.j
-2S50
0
250
S00
750
1000
1320
TIME (S)
1500
1750
2000
22S0
230 0
NP-87/1 28
STULb3VIK ENERGITEKNIK AB
Appendix B.28
1987-11-03
O
O
£
4
PRESSURIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
LIQUID
LICUID
LIQUID
LIQUID
TEMP. tE-P139-020) EXP.
TEMP. ITEI9P 415.02) CASE A
TEMP. ITEMP 415.02) CASE S
TEmP. (TNETPV413.02) CASE C
TIME
0
0
£
PRESSUkIZER
PRESSURIZER
PRESSURIZER
PRESSURIZER
STEAM TEMP.
STEAM 1EMP.
STEAM TEMP:.
STEAM TEMP.
Plot B.55
(S)
ITE-PI39-01S) EXP.
ITEMPO4;5.07) CASE A
TTEMPO 435.0?) CASE 8
ITEMPO 415.07) CASE C
Plot B.56
TIME (S)
STUDSVIK ENERGITEKNIK AB
Appendix B.29
NP-87/128
1987-11-03
8
O
a
+
PRESSUR•IZER
PRESSUNIZER
PRESSURIZER
PRESSURI|ZER
PRESSURE
PRESSURE
PRESSURE
PRESSURE
0
250
(PC-PC-004)
(P 413.08)
(P 413.08)
(P 415.08)
EXP.
CASE A
CASE 5
CASE C
Plot B. 57
9
0
0-
o
w
IA
w
O.
-250
500
1000
730
TIME
8
O
A
*
-c
WPIS VOtTPETR1C FLOW RATE (FT-PI28-104)
wPIS VOLTMIETRIC FLOW RATE (CNTRLVAR
0915 VOLYIIETRIC FLOW RATE (CNTRLVAR
HWIS VOLTIETRIC FLOW RATE (CMIRLVAR
1S00
1750
2000
2250
2504
IXP.
958) CASE A
958) CASE 8
958) CASE C
Plot B.58
f-
0
IL
--
";
0
I
4.
O.4.
0
ft
1250
(S)
9
-
+
4-
+
4-
4
-
jr
I
I_____ I_____
-250
so
4-
_____
250
250
_____
500
300
_____
7S0
_____
1000
TIME
_____
1250
(S)
_____
1500
1300
_____
1750
1730
_____
2000
20 0
_____
2250
2250
2500
2300
STUDSVIK ENERGITEKNIK AB
Appendix B.30
NP-87/128
1987-.11--03
O
a
A
ST"EIM IMASSBALANCE (CRNRLYAR 9S2) CASE A
SYSTM MASS SATI.AC
SSTESf
MASS BM.ANCE
(CNTRLVAl
(CrIRLVAR
I55)
559)
CASE B
CASE C
Plot B.59
CaI
in
th
TIME (S)
8
COOLANT ENERYC BALANCE
0
a
COOLANT ENERT BALANCE (CNIRLYAR 960) CASE B
COOLANTENERGYBALANCE (CNTRLVAR560) CASE C
(CMINLYAR 9601
CASE A
Plot B.60
oa
-5
w
Ca
2
-J
'C
'5
:4 -
LU
-250
0
250
500
750
1000
TIME
1250
(S)
1500
1750
2000
2250
250 0
STUDSVIK ENERuITEKNIK AB
Appendix B.31
NP-87/128
1987-11-03
a
.
CPU TIME (CPUTIME 0) CASE A
COMPUTATION
COMPUTAT ION CPU T IME CCPUTIPI 0) CASE 3
E04FU TATI ON CPU IIME (CPUTIME 0) CASE C
A
Plot B. 61
0
0
0
In
9-
'1
u 0o
0.
0
0
0
d
00
250
500
1000
750
1250
1750
2000
2250
2500
TIME (S)
COMPUTAIION
O
MASS ERROR (EMASS 0)
CASE A
O
COMPUTAt
ION MASS ERROR CEMASS0) CASE 9
SC0MPUTATI0O MASSERROR ([EMASS0) CASE C
Plot B. 62
C
____
w.
(A
I.,
-c
m~f
o-2
0
-4-'
0
0
______
50 -4--
0
100-5
50
|5
20
20
20
____TIME___S)
0
Appendix C.1
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
Case A
CALCULATION-TO-EXPERIMENT DATA UNCERTAINTY ANALYSIS FOR NRC/ICAP.
........................
=
..................
DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL
FIRST LINE
MEAN DIFFERENCE OVER THE INTERVAL
SECOND LINE
MEAN SIGMA OVER THE INTERVAL (ROOT MEANSOUARE OF THE DIFFERENCE)
THIRD LINE
-
----
CODES -
CALC.
EXP.
0.0 -
20.00
- 80.00
- 200.0
-8.28
-6.81
6.65
-8.62
-8.20
8.20
-13.4
-10.1
10.2
-3.84
-3.38
3.38
3.25
3.60
3.61
-4.47
-4.72
4.73
.135E-01
.626E-01
.6586-01
-5.13
-4.03
4.05
3.45
3.22
3.22
-5.46
-4.77
4.79
-. 107
-. 3696-01
.5186-01
-7.44
-5.96
6.00
2.79
3.14
3.14
-7.11
-6.25
5.26
-. 285
-. 196
.194
-8.02
-7.38
7.38
2.76
2.77
2.77
-7.23
-7.00
7.00
-. 231
-. 247
.247
-13.5
-9.79
9.92
3.99
3.32
3.34
-12.6
-9.17
9.29
-. 419
-. 287
.293
-. 107
-. 866E-01
.610E-01
-. 252
-. 176
.182
-. 437
-. 341
.345
-. 301
-. 367
.370
-. 517
-. 378
.364
48.6
56.1
56.6
-72.4
-15.3
49.3
43.7
-48.9
80.2
42.0
58.2
58.6
-2.43
23.8
28.1
-31.2
-21.6
22.2
-.
-. 262
.343
94.1
6.24
31.1
-1.93
-1.39
1.48
155.
20.0
Ill.
-5.16
-3.49
3.56
16.1
68.2
78.2
8.95
-4.46
6.91
-5.64
-5.09
5.09
-11.6
-7.65
7.84
-. 114
-. 6566-01
.7056-01
-. 287
-. 203
.208
-. 201
-. 235
.236
15.5
17.5
20.2
131.
70.6
79.1
42.7
76.7
79.5
-. 359
-. 244
.249
1.18
11.3
16.8
353.
460.
466.
190.
269.
273.
52.6
114.
121.
12.5
26.5
29.0
V SA - V 8X
-2.80
-3.08
3.08
-4.93
-3.99
4.07
-4.64
-5.04
5.04
V GA - V 6)
-3.06
-1.54
2.13
6.59
7.12
7.13
-3.14
-3.00
3.01
.601
.740
.763
-3.03
-3.14
3.15
3.61
5.43
5.90
-4.86
-3.90
3.94
.960E-01
.292
.425
V M - V AX
.479
.618
.633
-. 267E-01
.178
.354
HLIA - HLIX
-31.5
-16.0
19.2
HL2A - HLX2
-29.2
-27.5
27.7
a70
-.810
.651
1.51
-12.0
-21.3
22.0
0.
-. 996E-01
.212
HLSA - HLSX
.680
.695
.706
.806E-01
.291
.421
CLIA - CL1X
-2.62
-13.7
16.3
-60.3
-38.7
45.7
6.02
-16.8
26.4
CL2A - CL2X
744.
749.
749.
662.
700.
700.
586.
631.
631.
CL3A - CL3K
-5.17
-. 318
2.11
.252
.441
.475
-. 360
-. '409
.503
.668
.697
.710
-2.03
-5.87
7.38
-. 916
-. 666
.625
-2.37
-1.30
1.54
.105
.279
.402
V 7A - V 7X
V SA -'V UX
V 9A - V OX
HL4A - HL4X
CL4A - CL4X
CL6A - CL6X
CL7A - CLWX
29.0
2.13
22.6
- 2000.
-5.62
-4.90
4.91
.556
.698
.733
C 9A - C 9X
1500.
-. 437
-. 456
.489
.993
.176
.470
C &A- C OX
-
-. 535
-. 356
.398
-. 431
.647
1.35
C 7A - C 7X
-
-. 632E-01
-. 238E-01
.310
C M - C AX
C SA - C 6X
-
-. 1000.
-11.4
-7.87
8.04
-1.82
-1.90
1.90
-1.37
-1.30
1.30
-1.55
-1.42
1.42
-1.14
-1.18
1.19
-1.50
-1.38
1.38
-1.51
-1.49
1.49
-4.32
-3.84
3.84
C SA - C 5X
800.0
-5.90
-5.44
5.44
-5.24
-4.89
4.89
-5.39
-5.31
8.31
-5.67
-5.22
5.22
-5.89
-5.44
6.44
-6.29
-5.74
5.74
-8.73
-7.98
7.96
-2.01
-1.47
1.52
-1.27
-1.14
1.18
-1.20
-. 607
.701
-1.09
-. 817
.851
-1.22
-1.42
1.43
-1.46
-1.53
1.53
-3.51
-3.70
3.71
C 4A - C 4X
-
-5.42
-4.20
4.24
-4.96
-3.73
3.79
-5.34
-3.99
4.05
-5.24
-3.87
3.94
-5.42
-4.00
4.07
-5.45
-4.18
4.24
-8.01
-6.51
6.55
-1.32
-2.39
2.69
-. 770
4.44
6.56
-. 240
2.76
4.24
-. 570
3.76
8.87
-1.98
-2.13
2.18
-1.90
-2.30
2.36
-3.60
-3.09
3.15
C 3A - C 3X
TIME INTERVAL - -
.2196-01
.698E-01
.635E-01
4.34
-1.11
7.02
-1.72
-1.10
1.13
-1.90
-2.25
2.25
.467E-01
.734E-01
.7496-01
-3.20
-2.19
2.24
-2.66
-1.83
1.68
-2.84
-2.02
2.06
-2.60
-1.83
1.&8
-2.91
-2.00
2.05
-3.06
-2.20
2.25
-5.82
-4.55
4.58
.890E-01
.116
.198
167.
94.9
176.
-3.15
-3.47
3.73
-2.49
-2.00
2.02
-. 164
-. 6726-01
.964E-01
-10.7
-7.18
7.32
-10.9
-7.34
7.52
-11.1
-7.53
7.69
-11.4
-7.82
7.98
-11.9
-8.25
8.41
-14.1
-10.4
10.5
-7.43
114.
136.
-. 385
-1.33
1.54
-15.1
-13.7
16.4
-. 6376-01
-. 217
.241
-6.18
-11.8
12.4
-. 686E-01
-. 675E-01
.685E-01
-5.23
-3.74
3.82
-. 367
-. 265
.271
-5.61
-5.22
6.22
-11.2
-7.64
7.81
-. 298
-. 321
.322
-. 490
-. 359
.364
(6)
STUDSVIK ENERGITEKNIK AB
NP-87/128
Appendix C.2
1987-11-03
- COoDS -
CAM.
E.
----
0.0 - 20.00
CLSA - CL6X
.468
.617
•.631
CL9A - CLOX
-
0.00
- 200.0
-. 873E-01
.135
.348
-. 187
-. 122
.125
-8.48
-1.60
3.03
-76.0
-43.6
51.6
CLt. - CLAX
17.8
14.7
14.8
BR1A - BRIX
TIM INTERVAL ---- 500.0
- 10oo.
- 1600.
- 2000.
-. 634
-. 395
.399
-. 476
-. 489
.489
-133.
-88.5
90.4
-. 316
-. 245
.248
-32.1
-71.5
84.4
-13.3
-17.6
16.8
-13.4
-14.0
14.0
-. 669
-. 533
.536
-18.6
-16.7
16.8
1.60
-. 792
5.93
10.2
7.26
10.3
-14.9
-4.67
33.8
7.60
-11.8
12.3
-13.9
-12.5
13.1
-16.3
-13.6
13.7
10.2
44.8
68.3
-32.0
-23.3
30.7
79.3
14.1
32.2
180.
101.
107.
127.
123.
126.
26.3
71.6
75.6
SR2A - BR2X
8.81
7.26
8.22
1.17
3.54
3.93
.404
.630
.766
.1IIE-01
.298
.384
RAA - SR4X
-. 370
-10.6
15.3
-1.82
-1.16
1.34
-1.62
-1.85
1.86
BRSA - BR6X
4.43
15.6
19.7
2.14
3.12
3.68
.956
1.82
1.86
BR6A - BR6X
.551
.781
.809
.344E-01
.232
.384
SPIA - SPIX
-9.06
-9.22
9.42
SP2A - SP2X
-2.32
13.9
18.0
-. 236E-01
.204E-01
.179
-. 471E-01
.279
.315
-. 334
-. 696E-01
.306
-2.02
-1.55
1.57
-4.42
-3.12
3.21
-5.26
-4.77
4.77
-11.3
-7.43
7.63
.942
.551
.661
.804
.672
.680
1.24
1.05
1.05
1.71
1.37
1.38
-. 684E-01
-. 374E-02
.267E-01
-. 127
-. 100
.103
-. 293
-. 213
.219
-. 262
-. 271
.271
-. 474
-. 333
.339
-. 510
-3.64
4.34
-. 930
-. 681
.682
-3.46
-1.83
1.98
-6.33
-4.50
4.60
-6.72
-6.56
6.57
-13.0
-9.20
9.35
-7.42
-6.67
7.10
1.82
-1.79
3.22
1.99
2.34
2.38
1.97
2.67
2.60
1.84
2.39
2.42
1.60
2.26
2.27
3.67
2.60
2.65
SP3A - SP3X
-4.49
-1.64
1.79
-70.6
-41.1
48.9
-77.5
-66.4
57.5
-18.5
-42.9
48.8
-15.7
-14.2
14.3
-16.2
-17.1
17.1
-20.0
-18.2
18.2
833A - nu
-. 620
-. 628
.577
-. 648
-. 899
.600
-. 678
-. 562
.564
-. 576
-. 577
.577
-. 813
-. 566
.666
-.S1i
-. 489
.489
-. 626
-. 672
.574
15.0
11.4
11.8
-. 940
5.88
7.91
-6.73
-3.64
4.09
-6.19
-7.65
7.67
-1.52
-4.17
4.48
2.00
1.53
1.96
-9.52
-1.72
3.63
-. 165
-. 662E-01
.902E-01
-. 476
-. 268
.300
-1.33
-. 882
.918
-2.06
-1.75
1.77
-5.19
-. 296
2.65
-9.63
-8.09
8.22
-3.34
-7.57
7.77
SS4A -
SX
IS33 - SS5X
.101
-..647E-01
210E-01
S IA - S IX
-24.1
-20.6
21.2
P IA - P IX
.816E-01
.446E-01
.55OE-01
.130
.125
.128
.429
-9.41
12.2
.676E-01
.619E-01
.626E-01
.433E-01
.103
.112
5.81
3.06
3.70
3.03
6.75
5.83
.840E-01
.BO1E-01
.803E-01
.836E-01
.839E-01
.839E-01
.844E-01
.838E-01
.838E-01
.839E-01
.840E-01
.940E-01
.839E-01
.842E-01
.842E-01
P 2A - P 2X
-20.1
-12.0
12.9
-2.15
-14.0
16.8
-9.29
-4.86
5.28
-34.9
-23.1
24.2
-56.6
-46.6
46.8
-71.6
-63.4
63.5
-93.9
-82.0
82.2
P 3A - P 3X
-19.8
-13.3
14.0
2.07
-12.2
15.9
5.16
4.12
4.29
-6.62
-. 194
3.53
-21.6
-14.4
15.0
-33.6
-27.6
27.8
-45.5
-39.4
39.5
-. 442
-. 347
.361
-. 387
-. 405
.405
-. 576
-. 442
.446
P4A-
P4X
EC1A - ECIX
.337
.300
.308
-. 670E-03
-. 136
.161
-. 162E-01
.179
.344
-. 985E-01
-. 417E-01
.474E-01
-. 266
-. 178
.185
-. 657E-01
.201E-03
.636E-01
-. 259E-01
-. 386E-01
.393E-01
.198E-01
-. 454E-02
.134E-01
.284E-01
.282E-01
.299E-01
.718E-02
.215E-01
.2456-01
.606E-01
.322E-01
.3486-01
Appendix C.3
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
Case B
CALCULATI O-TO-EXPERIMENT DATAUNCERTAINTY ANALYSIS FOR NRC/CA.
.............................
-.
FIRST LIKE
SECOND LINE
THIRD LINE
-
DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL
MEAN DIFFERENCE OVER THE INTERVAL
(ROOT MAN SOUARE OF THE DIFFERENCE)
MEAN 51GMA OVER THE INTERVAL
CODES
CALC.
EXP.
C 30 - C 3X
--.0.0 - 20.00
.600E-01
-. 206
1.22
-
80.00
-
- 200.0
TIME INTERVAL ---- 600.0
- 1000.
-
1600.
-
2000.
-1.98
-. 957
1.22
-1.86
-1.81
1.51
-3.43
-2.29
2.34
-5.95
-4.92
4.97
-4.71
-5.16
5.17
-7.84
-5.33
5.40
C 48 - C 4X
.600
6.57
8.25
-1.25
-. 639
.924
-1.42
-1.22
1.22
-2.81
-1.94
1.99
-5.60
-4.46
4.63
-4.06
-4.62
4.64
-7.13
-4.62
4.70
C 68 -
C 6X
1.12
4.86
5.92
-1.18
-.10s
.746
-1.61
-1.34
1.34
-2.99
-2.12
2.17
-5.67
-4.72
4.79
-4.20
-5.03
5.05
-7.34
-4.81
4.89
C 68 -
C 6X
.790
5.82
7.41
-1.09
-. 320
.708
-1.20
-1.11
1.11
-2.77
-1.94
1.99
-5.78
-4.61
4.69
-4.49
-4.96
4.96
-7.61
-4.99
5.06
C 78 -
C 7X
-. 600
-. 300E-01
.639
-1.22
-. 923
.964
-1.66
-1.30
1.31
-3.06
-2.11
2.16
-5.96
-4.73
4.81
-4.71
-5.16
6.17
-7.85
-5.29
5.37
C 8B -
C OX
-. s00
-. 199
.684
-1.45
-1.01
1.07
-1.56
-1.41
1.41 .
-3.21
-2.31
2.35
-5.90
-4.91
4.99
-5.10
-5.46
5.48
-8.36
-5.70
5.77
C 98 - C SX
-2.24
-. 975
1.32
-3.50
-3.21
3.25
-4.37
-3.76
3.77
-5.99
-4.65
4.66
-8.54
-7.24
7.29
-7.54
-7.70
7.71
-10.5
-7.84
7.89
C AS -
C AX
-. 343
.646
1.27
.977
,190
.462
.558
.693
.730
-. 641E-01
-. 483E-01
.289
-.535
-. 357
.400
-. 424
-. 4"6
.480
V S8 -
V 5X
-1.61
-1.22
1.25
-4.91
-3.56
3.76
-4.72
-4.96
4.96
-6.00
-5.01
5.03
-8.82
-7.54
7.59
-7.43
-7.94
7.95
-9.73
-7.65
7.59
V68-
V 6X
-1.64
.539
1.74
-3.02
-2.63
2.70
-3.89
-3.30
3.30
-5.30
-4.13
4.16
-7.98
-6.69
6.74
-6.83
-7.10
7.12
-9.81
-7.21
7.27
V 78 - V 7X
5.16
5.25
5.27
3.60
5.11
5.46
3.24
3.59
3.60
3.46
3.22
3.22
2.78
3.14
3.14
2.76
2.77
2.77
3.98
3.32
3.34
V 88 -.V 8X
-1.80
-. 817
.959
-4.03
-3.40
3.53
-4.52
-4.64
4.64
-5.62
-4.86
4.88
-7.64
-6.96
6.98
-6.04
-6.73
6.75
-8.94
-6.61
6.66
V 98 - V 9X
.592
.781
.798
.954E-0I
.310
.433
.750E-02
.898E-O1
.745E-01
-. 123
-. 4746-01
.617E-01
-. 330
-. 251
.269
-. 164
-. 230
.236
-. 246
-. 146
.149
V AB -
V AX
.469
.658
.678
-. 270E-01
.196
.359
-. 113
-. 494E-01
.574E-01
-. 268
-. 186
.192
-. 481
-. 406
.410
-. 224
-. 349
.360
-. 345
-. 237
.240
HLI0 -
HLIX
-34.4
-22.0
22.9
28.0
-. 245
22.3
47.4
64.9
55.5
-76.3
-15.5
48.6
50.2
-50.1
86.0
42.6
63.0
63.6
13.0
25.9
29.1
HL28 - HL2X
-32.1
-30.3
30.5
-14.9
-24.3
24.9
-32.1
-23.2
23.8
92.8
5.79
31.2
159.
15.7
116.
19.7
73.0
83.3
10.2
-3.06
8.61
NL4X
.990
2.68
3.08
.20OE-0I
.433
.574
-. 620
-. 181
.327
-2.10
-1.50
1.59
-5.70
-4.23
4.32
-4.45
-4.81
4.83
-7.90
-5.08
6.17
HLSB - HLSX
.570
.736
.751
.794E-01
.306
.428
-. 130
-. 9666E-01
.B10E-01
-. 332
-. 268
.274
-. 123
-. 218
.226
-. 186
-. 103
.106
HL4B -
.137E-01
.621E-01
.871E-01
.849E-01
.101
.189
CLIO -
CLIX
-4.96
-17.1
19.4
-61.0
-39.5
45.6
6.69
-17.5
27.7
7.68
16.0
21.0
137.
88.7
80.4
44.4
79.8
83.8
S.77
14.7
18.6
CL28 -
CL2X
742.
745.
745.
661.
699.
700.
8a6.
630.
630.
344.
461.
467.
195.
270.
273.
54.8
117.
124.
14.3
28.5
30.6
CL38 -
CL3X
-9.09
-3.96
4.56
-2.57
-7.95
8.85
3.23
-1.65
7.08
175.
68.7
121.
-8.19
101.
123.
-14.7
-13.6
15.3
-5.21
-11.1
11.0
CL48 -
CLAX
.286
.479
.512
-. 640
-. 469
.524
-1.57
-. 805
.873
-3.26
-3.46
3.73
-. 370
-1.44
1.63
-. 89E-'01
-. 178
.215
-. 5856-01
-. 6186-01
.529E-01
CL68 - CL6X
.820
1.43
1.4$
-2.36
-. 855
1.46
-1.99
-2.17
2.18
-2.67
-2.12
2.14
-5.77
-4.48
4.57
-4.42
-4.95
4.97
-7.63
-5.10
6.18
CL78 -
.557
.736
.755
-. 180
-. 792E-01
.107
-. 402
-. 332
.339
-. 221
-. 305
.310
-. 317
-. 21'
CL7X
.107
.300
.412
.385E-01
.8196-01
.8486-01
Appendix C.4
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
- COOES CAIC. EXP.
0.0 - 20.00
CL88 -
CLSX
.451
CL9B -
CL9X
-13.6
-7.58
7.86
.650
.669
- 50.00
-TIME INTERVAL ---- 200.0
- 600.0
- 1000.
-
1500.
-
-. 937E-01
.146
.347
-. 195
-. 333
-. 579
-. 399
-. 471
.474
-81.2
-50.0
-130.
-90.4
91.9
-31.6
-71.6
83.8
-12.9
-14.9
-12.9
-13.5
13.5
-18.3
-16.2
16.3
55.7
-. 120
.124
-. 257
.260
-. 460
.465
16.2
17.8
14.7
14.8
1.60
-. 792
8.93
10.2
7.26
10.3
-14.9
-4.67
33.8
7.60
-11.8
-13.9
-12.5
13.1
-16.3
-13.6
13.7
BRID - BRIX
7.85
42.3
57.0
-33.7
-24.5
31.0
80.3
164.
131.
121.
122.
26.7
.810
16.6
19.6
1R2B
- 8R2X
8.59
7.08
8.02
BR48 - BR4X
.810
-9.29
14.8
CLAB - CLAX
BR58 -
Sf5X
SACI - BR6X
13.0
32.3
102.
109.
.398
.572
.688
.232
.353
.506
-1.83
-. 737
1.25
-1.61
-1.78
1.78
-2.19
3.19
14.6
19.3
1.91
2.82
3.25
.975
1.78
1.82
.543
.821
.855
.850E-02
.245
.390
2.04
3.51
3. 186
-1.68
1.70
-. 300
-. 192
.196
-3.63
-1.94
2.09
1.96
2.58
2.61
-6.87
-5.24
5.34
-5.52
-6.29
6.30
-9.36
-6.63
6.70
1.84
1.60
3.67
2.60
2.65
-18.2
-16.5
-3.15
-. 689
.954
-76.9
-51.5
57.6
-80.3
-. 341
-. 177
.249
-. 117
-. 152
.162
-. 106
-. 111
.115
-. 125
.125
8.56
4.93
6.64
.540
3.50
4.37
-2;00
-1.35
-1.86
.147
.8156-01
.8376-01
.128
.131
.131
Is -'S
IX
P 1e -
P IX
P 28 -
P 2X
P 38 -
P 48 -
P 3X
P 4X
5018 - ECIX
-16.1
-12.3
13.1
.837E-01
.5686-01
.6366-01
-1.02
-6.51
8.02
.672E-01
.6196-01
.627E-01
-20.1
-11.8
12.7
-2.14
-13.8
16.6
-19.7
-13.0
13.7
1.74
-12.1
15.8
.341
.349
.363
-. 670E-03
-. 135
.161
-7.63
-4.86
4.96
-. 182
-. 252
.257
.117
2.02
2.35
8S5X
-4.46
4.48
-. 335
-. 277
.283
-. 113
1.83
-1.66
3.05
S658 -
-4.02
-. 143
-6.99
-6.88
7.13
am48 - SS4X
-4.94
-3.85
3.95
-. 660E-01
.415E-03
.3306-01
8P28 - S2X
- 9S3X
-. 260
-. 207E-01
.285
.206
.254
1.72
1.37
1.38
-. 980
-. 489
.602
8333
-. 187
1.24
1.05
1.05
-. 480
-3.01
3.66
SP3X
-. 5756-01
-. 1876-01
.149
.803
.679
.686
-7.52
-7.33
7.58
SP38 -
76.1
79.1
.535
.548
.558
SPIX
SPIS -
12.3
2000.
-. 497
-. 392
.393
2.39
-71.3
71.5
-41.9
2.40
2.42
2.26
2.27
-15.9
-16.9
-19.4
-17.5
17.6
-. 207
-. 169
.170
-. 297
-. 234
.235
-. 370
-. 321
.323
1.63
.574
1.55
3.26
2.77
2.84
-6.27
1.33
3.04
-13.0
48.0
13.2
-. 141
16.9
1.46
-2.84
2.67
.306E-01
.108
.121
-. 182
-. 7946-01
.102
-. 517
-. 351
.362
-1.24
-1.90
-1.58
1.60
1.03
.862
1.09
-1.46
-8.88
-5.78
6.27
-9.70
-2.94
-8.05
8.27
.8396-01
.BOE-01
.801E-01
.921
1.25
.836E-01
.838E-01
.8386-01
.844E-01
.8386-01
.838E-01
-. 857
.883
-9.06
9.08
.839E-01
.8406-01
.8406-01
.839E-01
.842E-01
.842E-01
-56.2
-47.2
47.6
-70.3
-63.1
63.2
-90.2
24.3
4.76
-6.88
-. 489
-21.5
3.52
-15.1
15.6
-32.2
4.13
-". 0
-37.6
37.8
-. 412
.417
-9.35
-4.77
5.22
3.96
-35.1
-23.2
-. 144E-01
.200
.349
-. 105
-. 3296-01
.439E-01
-. 281
-. 189
.196
-. 5586-01
-. 107E-02
.532E-01
-. 2566-01
-. 392E-01
.3996-01
.209E-01
-. 392E-02
.134E-01
-. 486
.3106-01
.320E-01
.336E-01
-26.7
26.8
-. 310
-. 388
.391
.259E-02
.205E-01
.237E-01
-79.4
79.6
-. 402
-. 301
.303
.504E-01
.2396-01
.267E-01
Appendix C.5
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
Case C
CA•LCULATION-TO-EXPERIMENT
FIRST LINE
SECOND LINE
THIRD LINE
-
DATA UNCERTAINTY ANALYSIS FOR NRC/ZCAP.
DIFFERENCE BETWEEN CALCULATED AND (AVERAGED) EXPERIMENTAL DATA AT END OF THE INTERVAL
MEAN DIFFERENCE OVER THE INTERVAL
MEAN SI(3M OVER THE INTERVAL (ROOT MEAN SOUARE OF THE DIFFERENCE)
CODES -
----
CALM.
EXP.
C 3C -
C 3X
C 4C -
C 4X
C 50 -
0.0 -
20.00
-
S0.00
- 200.0
TIME INTERVAL ---- 500.0
-
1000.
-
1800.
-
2000.
-2.01
-. 947
1.21
-1.99
-1.92
1.92
-3.94
-2.59
2.67
-6.52
-65.44
5.48
-5.17
-5.73
6.74
-5.11
-5.80
5.66
.550
6.51
8.22
-1.27
-. 530
.911
-1.49
-1.31
1.31
-3.32
-2.24
2.32
-6.06
-4.98
5.04
-4.52
-5.19
5.21
-7.43
-8.08
6.15
C 5X
1.07
4.80
6.69
-1.19
-. 908E-01
.733
-1.66
-1.41
1.42
-3.60
-2.42
2.49
-6.44
-5.24
5.30
-4.67
-5.61
6.63
-7.60
-5.27
5.34
C 6C -
C 6X
.750
5.77
7.39
-1.08
-. 299
.683
-1.23
-1.16
1.17
-3.28
-2.23
2.31
-6.35
-5.13
5.20
-4.96
-5.52
5.54
-7.77
-5.46
5.52
C 7C -
C 7X
-. 650
-. 812E-01
.666
-1.18
-. 896
.929
-1.58
-1.36
1.36
-3.57
-2.40
2.47
-5.52
-5.25
6.32
-5.17
-5.74
5.75
-8.11
-5.75
5.62
.IOOE-01
- 260
1.21
C aC - C
8X
-. 550
-. 247
.599
-1.46
-. 986
1.04
-1.47
-1.42
1.43
-3.69
-2.55
2.63
-6.54
-5.42
6.49
-5.56
-6.02
6.03
-8.66
-6.16
6.22
C 90 - C
9X
-2.29
-1.03
1.38
-3.47
-3.17
3.21
-4.31
-3.77
3.76
-6.45
-4.80
4.93
-9.09
-7.75
7.80
-7.98
-8.24
8.25
-10.8
-8.30
8.36
-. 6SDE-0l
-. 5654-01
.295
-. 537
-. 357
.399
-. 425
-. 449
.462
C AC - C AX
-. 3S2
.549
1.27
1.00
.207
.486
.744
.786
.814
V sC - V ax
-1.64
-1.19
1.22
-4.96
-3.56
3.75
-5.06
-5.16
5.16
-6.50
-5.41
5.42
-9.37
-6.06
8.11
-7.07
-6.44
8.46
-10.0
-8.02
8.05
V SC - V eX
-1.69
.495
1.76
-3.00
-2.60
2.67
-3.91
-3.31
3.31
-5.76
-4.36
4.40
-8.63
-7.20
7.26
-7.27
-7.65
7.66
-10.1
-7.68
7.73
V ?C - V 7X
5.17
5.28
5.31
3.74
5.13
6.47
3.36
3.70
3.70
3.45
3.24
3.24
2.7$
3.14
3.14
2.75
2.77
2.77
3.98
3.32
3.34
-1.85
-. 669
1.01
-4.86
-3.39
3.52
-4.63
-4.74
4.74
-6.08
-5.16
5.19
-8.19
-7.46
7.48
-6.48
-7.27
7.29
-9.23
-7.07
7.11
V 9C - V 9X
.5687
.779
.798
.113
.316
.434
-. 167
-. 689E-01
.902E-01
-. 376
-. 297
.303
-. 183
-. 270
.276
-. 261
-. 173
.175
V AC - V AX
.464
.656
.676
-. 310
-. 200
.213
-. 526
-. 451
.456
-. 253
-. 390
.400
-. 360
-. 264
.266
HLIC - NLIX
-34.3
-21.9
22.8
28.2
.208
22.7
49.1
56.4
66.0
-73.5
-16.6
62.9
47.7
-53.6
67.6
38.2
56.1
68.6
10.5
23.7
27.3
HL2C - HL2X
-32.1
-30.3
30.6
-14.9
-24.3
24.9
-32.3
-23.3
24.0
-239.
-19.9
65.0
167.
-. 940
121.
17.0
66.5
76.2
9.98
-3.62
6.36
NL4C - HL4X
.940
2.64
3.05
.600E-01
.464
.575
-. 600
-. 173
.320
-2.57
-1.76
1.89
-6.28
-4.74
4.82
-4.90
-5.36
5.38
-6.20
-5.56
5.62
ML1.
- HL5X
.565
.733
.750
.103
.313
.429
-. 176
-. 926E-01
.111
-. 370
-. 314
.319
-. 153
-. 269
.267
-. 201
-. 130
.132
CLIC - CLIX
-4.92
-17.2
19.4
-65.0
-41.1
47.7
-8.92
-26.3
32.3
11.0
6.58
16.0
133.
96.2
77.2
43.5
76.2
79.4
4.39
16.2
19.4
CL2C - CL2X
742.
745.
745.
657.
698.
699.
566.
621.
621.
364.
457..
461.
197.
276.
276.
65.7
123.
130.
14.1
26.1
30.4
CL3C - CI.3X
-9.04
-3.95
4.56
-2.75
-7.96
6.88
-. 470
-2.07
6.67
202.
67.6
145.
-6.53
104.
126.
-14.6
-13.7
15.4
-5.27
-11.2
11.9
CLAC - CLAX
.2865
.479
.513
-. 787
-. 509
.561
-. 605
-. 649
.685
-3.08
-3.16
3.61
-. 391
-1.22
1.47
-. 835E-01
-. 228
.254
-. 594E-01
-. 623E-01
.6368-01
CL6C - CL6X
.790
1.45
1.50
-2.41
-. 680
1.46
-2.39
-2.39
2.39
-3.17
-2.54
2.56
-6.32
-4.99
5.07
-4.63
-5.42
8.44
-7.96
-5.68
5.64
CLC - CL7X
.552
.734
.766
-. 170E-01
.526E-01
.6278-01
-. 232
-. 131
.147
-. 449
-. 380
.386
-. 252
-. 34S
.353
-. 332
-. 246
.247
V BC - V &X
-. 570E-02
.204
.366
.975E-01
.299
.411
.232E-01
.777E-01
.612E-01
-. 805E-01
-. 323E-01
.4019-01
.187E-01
.7051-01
.752E-01
.767E-01
.187
.278
Appendix C.6
NP-87/128
STUDSVIK ENERGITEKNIK AB
1987-11-03
- COOES-
CALC.
EXP.
CL8C -
CLSX
CL9C -
CL9X
CLAC - CLAX
MRIC - BRIX
TIME INTERVAL - - -
----
0.0 - 20.00
- 80.00
-
200.0
-
600.0
-. 376
-13.6
-7.63
7.90
-52.5
-40.5
44.2
-27.4
-38.9
40.7
-23.1
-27.5
28.9
-. 624
-. 505
.609
-10.1
-11.5
13.1
17.8
14.7
14.8
1.60
-. 792
8.93
10.2
7.26
10.3
-14.9
-4.67
33.8
7.60
-11.8
12.3
7.89
42.2
57.0
-38.3
-25.6
32.5
66.8
4.87
27.8
167.
88.4
95.8
128.
117.
119.
-. 266
.275
-4.12
-2.24
2.41
-5.76
-7.43
5.85
-5.98
-6.84
6.85
2.14
2.41
2.46
1.99
2.66
2.67
1.85
2.41
2.43
1.61
2.28
2.29
-9.65
-7.10
7.16
3.67
2.60
2.65
BR6X
.538
.819
.855
.228E-01
.253
•390
-. 263E-01
.193E-01
.312E-01
SPIC -
SPIX
-7.56
-7.37
7.62
-. 450
-2.98
3.65
-. 208
-. 169
.170
-14.6
-14.5
14.15
-. 268
-. 236
.236
-19.4
-17.3
17.4
-. 369
-. 319
.321
-. 590
-1.96
2.00
1.08
.$94
1.07
2.83
2.21
2.29
-6.65
.319
2.82
.223E-01
.101
.115
-. 227
-. 109
.132
-. 563
-. 396
.406
-1.27
-. 8a"
.923
-1.92
-1.61
1.63
.912
.821
1.01
-3.23
-. 264
1.24
-8.88
-6.42
S.68
-9.72
-9.05
9.07
-2.86
-8.00
8.22
-22.4
-26.9
28,1
-12.9
-17.3
17.8
-13.7
-11.0
11.2
-. 105
-. 111
.115
-. 138
-. 122
.123
-- 1.91
-1.35
1.43
6S4C -
334X
8.50
4.91
5.62
.360
3.19
4.48
S35C -
S3SX
.145
.635E-01
.680E-01
.132
.134
.134
8 10 -
S iX
P 10 -
P IX
P 2C -
P 2X
-20.1
-11.8
12.8
-2.03
-13.8
16.6
-9.24
-4.73
5.18
P 3C -
P 3X
-19.8
-13.0
13.8
1.90
-12.0
15.7
4.92
3.99
4.15
P 40 -
P 4X
6CIC -
ECIX
.336
.245
.349
-. 670E-03
-. 135
.161
.671E-01
.618E-01
.626E-01
.839E-01
.•00E-01
.8015-01
.836E-01
.838E-01
.838E-01
.839E-01
.640E-01
.840E-01
.939E-01
.842E-01
.942E-01
-68.7
-47.7
48.1
-70.8
-63.7
63.8
-90.5
-79.9
80.1
-7.42
-. 836
3.76
-21.7
-15.4
15.8
-32.0
-26.7
26.9
-43.7
-37.6
37.7
-. 531
-. 458
.462
-. 339
-. 428
.432
-. 417
-. 328
.329
-. 931E-01
-. 287E-01
.397E-01
-. 327
-. 212
.223
685E-01
-. 2765-01
-. 400E-01
.407E-01
.234E-0?
-. 318E-02
.146E-01
-. 148E-02
.533E-01
.844E-01
.838E-01
.8386E-C
-35.6
-23.4
24.6
-. 280E-02
.206
.348
-.
1.27
17.1
20.3
-1.01
-. 525
.630
SR6C -
.826E-01
.559E-01
.6266-01
13.7
-. 314
-. 219
.222
.546
.766
.863
-. 606
-6.17
7.82
27.2
73.2
76.7
-13.6
-. 215
-. 294
•298
1.70
2.16
2.17
-16.1
-12.3
13.1
13.1
-. 381
-. 322
.327
2.09
2.89
3.29
-. 117
-. 153
.162
-16.3
-12.5
-.
186
-. 126
.136
3.18
14.5
19.3
-. S41
-. 181
.250
-13.9
1.72
1.37
1.38
BRSC - 5R5X
-28.7
-39.9
44.9
-18.2
-15.9
16.0
1.24
1.05
1.05
-2.65
-2.02
2.06
-3.18
-. 721
.990
-11.1
-9.95
9.97
-. 419
.420
.904
.685
.693
-1.95
-1.98
1.98
SP3X
-. 512
-. 512
.616
-7.92
-5.33
5.41
-1.88
-. 734
1.25
8P3C -
-. 428
-4.52
-5.03
5.04
.780
-9.27
14.8
1.83
-1.66
3.06
2000.
-5.49
-4.36
4.45
9R4C - BR4X
-6.99
-5682
7.07
-
-. 252
.529E-02
.208
.243
.500
.522
SP2X
1600.
-. 245E-01
.286
.325
.427
.653
.774
8P2C -
-
-. 606E-01
-. 481E-01
.159
2.31
3.54
3.89
- 863X
1000.
-. 163
-. 9816-01
.101
.345
8.59
7.08
8.01
S33
-
-. 716E-01
.155
.446
.648
.670
BR2X
BR2C -
-
.3366-01
.346E-01
.361E-01
.430E-02
.2281-01
.2586E-01
.5136-01
.255E-01
.280E-01
STUDSVIK ENERGITEKNIK AB
NP-87/128
Appendix D.1
(1)
1987-11-03
STUDSVIK
THIS TAPE CONTAINS DATA FROM THE ICAP PREDICTION CALCULATION
WITH THE RELAP5/MOD2/36.04 FOR THE LOFT EXPERIMENT NO. L3-6.
CONTENTS,
I.
II.
FILE
1.
2.
3.
4.
5.
6.
7.
a.
THIS DESCRIPTIVE TEXT
INPUT CASE A, STEADY STATE
B,
-",UPDATES
C,
-",UPDATES
DATA, EXPERIMENT
- CASE A
- CASE B
- CASE C
COMPUTER
NAME
WORD SIZE
CYBER 170-810
60
TAPE FORMAT
NUMBER OF TRACKS
PACKING DENSITY
RECORD SIZE
BLOCKING FACTOR
CODED
CONTROL WORDS
9
1600 BPI
80
64
EBCDIC
NO
III. DATA FORMAT,
FOR EACH OF THE FILES 5 THROUGH 8
TITLE RECORD(S). (FORMAT I5,A75)
FIELD 1. THE NUMBER OF DATA CHANNELS ON THE FILE
FIELD 2, PROBLEM IDENTIFICATION
UP TO FIVE ADDITIONAL IDENTIFICATION RECORDS
MAY BE ADDED BY 'C' IN COLUMN 1 OF FIELD 1
DATA SET RECORD 1, (FORMAT 215,A60)
FIELD 1, NUMBER OF DATA POINTS
FIELD 2. THE ENGINEERING UNIT CODE (EUC)
VARIABLE
FIELD 3. IDENTIFYING TEXT OF THE DATA
REMAINING DATA SET RECORDS FORMAT 5(E16.9)
FOR THE
EACH DATA CHANNEL SUBMITTED IS GIVEN THROUGH TWO DATA
SETS, THE FIRST OF WHICH IS THE TIME DATA SET.
THE TWO SETS HAVE THE SAME NUMBER OF DATA POINTS.
THE TIME DATA SET IS IDENTIFIED BY EUC-77 (FIELD 2)
AND THE IDENTIFYING TEXT 'TIME' (FIELD 3).
TO A + B
U.S. NUCLEAR REGULATORY COMMISSION
NRC FORM 335
I2-891
NRCM 1102.
1. REPORT NUMBER
Add Vol.. Suoo.. Rev..
(Asigemd
by NRC.
and
Addendum
Numbemr. If any.)
NIJREG/1A-0033
BIBLIOGRAPHIC DATA SHEET
3201.202.
[See instructionson the reverse)
STUDSVI K/NP-87/128
2. TITLE AND SuBTITLE
Assessment of RELAP5/MOD2,
Cycle 36.04
3.
Against LOFT Small Break Experiment L3-6
DATE REPORTPUBLISHED
EA
,,ONTH'
July
i
1990
4. FIN OR GRANT NUMBER
N/A
6. TYPE OF REPORT
5. AUTHORIS)
Technical
John Eriksson
7. PERIOD COVERED inctveoi•ws.
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC. provide Oivision. Office or Region,'U.S. Nucleit, Rgularo,' Commisson. and mailing ad•oress.,it conttrtor,
yowao,.
nao" and mailing address.)
Swedish Nuclear Power -Inspectorate.....
Box 27106
10252 Stockholm
Sweden
9. SPONSORING ORGANIZATION - NAME AND ADDR ESS III NRC. type "nwSeasooow"; ifcontractor. provide NRC Oivision. Office of Region. U4 Nuclea Regulatory Commisuon.
and mailing addres.)
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
10. SUPPLEMENTARY NOTES
11.ABSTRACT 200 words orie
The LOFT small break experiment L3-6 has been analyzed as part of.Sweden's
contribution to the International Thermal-Hydraulic Code Assessment and
Applications Program (ICAP).
Three calculations, of which two were sensitivity studies, were carried out.
following quantities were:varied:
The
the content of secondary side fluid and the feed water
valve closure
the two-phase characteristics of the main pumps
All three predictions agreed reasonably well with most of the measured data.
sensitivity calculations resulted only in marginal improvements.
The
The predicted and measured data are compared on plots and their differences are
quantified over intervals in real time.
12. KEY WORDS/DESCR!PTORS fList words orohrases that wll &mistresearcher in locating the
or..i
.
3.AVAIASILI8TY STATEMENT
Unlimited
RELAP5/MOD2/ Cycle 36.04 Against LOFT Small Break
Experiment L3-6
14.sEcURT
CLASSIFICATION
IThis PaOW
Unclassified
(This Roorr•l
Uncl assi fi ed
15. NUMBER OF PAGES
16. PRICE
NRC FORM 335 !2-8)
NUREG/IA-0033
ASSESSMENT OF RELAPS/MOD2, CYCLE 36.04 AGAINST LOFT
SMALL BREAK EXPERIMENT L3-6
JULY 1990
Fly UP