...

Total System Performance Assessment • :.. •••••-

by user

on
Category: Documents
27

views

Report

Comments

Transcript

Total System Performance Assessment • :.. •••••-
Alt
U.S. Department of Energy
Office of Civilian Radioactive Waste Management
-
wvvw.ocrwm.doe.gov
Total System Performance Assessment
Results
•
:..
•••••-
Outline
*
Scenarios and. Modeling Cases
*
Overview of Total System Performance
Assessment- License Application (TSPA-LA)
results
-
Total Dose (summed over scenarios)
- Important Scenarios and Radionuclides
-What
determines
* Shape of expected dose history
+Magnitude
*
of expected dose
Uncertainty in expected dose
Stability of total dose results
*
Results are from TSPA AMR (MDL-WIS-PA-000005)
RevOO ADO1
Departmentof Energy -Office of Civilian Radioactive Waste Management
LLYMIansenNRCTEI
04USUU.ppt
wwuuv'crwm'doe'gov
Future Scenarios for
* Igneous Scenario
• Intrusion Modeling Case
* Eruption Modeling Case
Yucca Mountain
aNominal Scenario
* Nominal Modeling Case
• Early Failure Scenario
* Waste Package Modeling Case
" Drip Shield Modeling Case
* Seismic
• Ground Motion Modeling Case
* Fault Displacement Modeling Case
-A,-
=
water.ontaiwng
waste Package
D
1•4h
WSI8XF.,.O2t.a
LWPUI LI I ICI I L U1 F-l l:l9y
- '..JIILV
LLYMI-ansenNRCTE_040308.PPt
Aii flduiudL-lvt
VVdIZLt
IVIOI Id3CI
I ICI IL
www.ctcrwrn~doegov
3
Total Mean Dose
Contributions. By Modeling Case
A_v5.005_ED_003000_001.gsm; LA_v5.005_EW_006000_001 .gsm
LA_v5.005_IG_003000_001.gsmLAv5.005_SM_009000 001.gsm;
LAv5.005_SF_010800_001.gsm; vEl.004_GS_9.60.100_1OKyrET[eventtime].gsm;
LAv5.005 1OKyrTotalDose_MeanContdbutionsRevOO.JNB
3
I U•
lo2
102
101
PD
U)
100
U)
10-1
U,
0"
10-2
05
10-3
10-4
10-5
10-6
0
2000
4000
6000
8000
10000
Time (years)
uepartment o0energy - u-rice
LL.YMHansen NRCTEO040308.ppt
o0 Llvuian
~atieWateMnaemn
iactive WaSte Management
~VV
t
crvmde
wvw.ocrw4m.doe.gov
4
Uncertainty in Total Expected Dose
(Summed over Modeling Case s)
LA-v5.005_ED_003000_001.gsm; LA_v5.005 EW 006000_001.gsm;
LA._v5.005_IG_003000 001,gsm: LA_v5.005_SF_010800_001.gsm.
LAv5.005 SM 009000_001.gsm: vEl1004 GS 9.60.100_1OKyrET[event time].gsm;
Four questions:
LA v5.005 10kyrTotalDoseCalcs Rev01.gsm; LAv5.005_10Kyr_TotalDose Rev01.JNB
103
1.
What determines the
shape of these curves?
102
'E
E
.
-
•-•
101
-5th
I
I
.
.
I
.
I
.
I
I
*1
-Mean
-
.
Median
95th Percentile
Percentile
-I
I
I
4000
6000
8000
__________________
__________________
___________________
100
.2.
3.
What determines the
magnitude of total
mean dose?
What determines the
uncertainty in total
expected dose?
Qi6Q10.2
C
10-2
C
CL ,104
x
LLI
10-6
4.
Are these results
0
stable?
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMHansenNRCTE_040308.ppt
2000
10000
Time (years)
ww w.ocrwm.doe.gov
5
S hape of Total Expected Dose
vE 1004_GS_9.60.100_20kyr ETlevent timelgsm
rEl.004 GS 9.60.100 20kyr Dose Total Rev00.JB;
102
enile__
103
102
Ma
ineous
rL io
10'
C
• 0
Median
-I
10-2-
108
_
1lW,
2000
4000
6000
8000
10000
0
2C)00
Time (years)
LA vS.005_SM_009000 001.gsm; LAv5.000 SM 009000 001 Total Dose Rev00J8NB
6000
800D
10000
E
5ft Percentile
101
4000
LA_Y5.005_ED_003000_001 .gsm; LA_v5.005_EEW)006000 001 .gsm;
LA v5,005_IG_003000_001.gsm; LA.v5.005_SF 010800_001.gsmr
LAv5,005_SM 009000_001.gsm;vEl004 GS9.60.100 10KyET[event time],gsm;
,005_ 10kyrTotal Dose CaIcs RevOlgsm: LA v5.O05 lOryr Total Dose_Rev0l.NB
U)
0D
0.
Median
95th Percentile
05thPercentile
"a 10-3 -
.....
0
-
100
0
10,
Mean.
102
______pe_
95hPecrd
0D
LA V5.005 IG 003000_01
100t
0
0
co
10-•-
-
CL
-D
1020-
10-6
,
0
2000
4000
,--- T 6000
,
.
8000
100 30
Time-(years)
0
2000
4000
6000
8000
10000
Time (years)
a'
Department of Energy. Office of Civilian Radioactive Waste Management
LL YMHansen NRCTE04030B.ppt
-I,;
ww
Wiocruvm doe goy
6
Uncertainty in Total Expected Dose
LAv5.005_EQ_003000._0DI.gsm; LA_v5.005_EW_006000_001,gsm;
LAv5.005_IG_003000_001.gsm: LAv5.005_SF_010800_i001.gsm;
LA-v5.005_SM_009000_00l.gsm: vEl.004_GS_9.60.lOOlOKslyrE[event time].gsrn:
LA v5.005 10ksr Total Dose Cadcs Rev01.asm; LA v5.005 10lw Total Dose RevOl .JlB
103
102
I
-Medan
5th
E
i
~Percentile
a) 100
00
10
IJJ
-
0
0
10-2-
0,
l~r3
n
C
*0
10410-5
10-6
0
2000
4000
6000 "
8000
10000
0
2000
6000
4000
Time (years)
8000
10000
Time (years)
LA v5.005 ED_003000_001_TotolDoseReoO0.JNB. LAY5 .OOSW 006000_001. Totffl Doe_Re00.JNIE
LA oS.005_iG 003000 001 Total_DOse RoV00.JNB; LAV,_5.005SF010_000001_Total-DOse RevOO.JE
RFV00.JNI
ot
LA v5005_SM_0090000 001 Tota- Dose RevOO..JNB;vE1.004 GS 0.60.100_SE_sca
IMyr_Dose
ResOc
ite rplTotal
00_31EXPDO (0_M_0 EXP0oSE.o
VS.005_20K
LAyV5,305eoLA yS.0025_ 050_300 LA
E)POO
ts: LA _vS.GG5,20Kyr
.-.
~
101
SCCTHRP - stress threshold for SCC initiation (90 to
105, % of yield strength)
IGRATE - frequency of igneous events
SZGWSPDM - logarithm of uncertainty factor in
N
100
8)
U)
groundwater specific discharge
SZFIPOVO -flowing interval porosity in volcanic units
1W
INFIL - infiltration case
MICC14 - biosphere dose conversion factor for C14
103
(0
(T P
88
90
92
R D
94
96
i
98
.100
ba
102
104
106
SSCCTHRP
d
U
•Department of Energy- Office of Civilian Radioactive Waste Management
LLYMHansenNRCTE_040308.ppt
•M .
;EOW
-W
IAI
ocrwvm doe gov
Radionuclides Contributing to
Total Mean Dose at 103,000 Years
.0
LA v5.005 ED 003000_001.gsm;LA V5.005_EW_006000_001.gsm;
LAv5.005 IG_003000_001.gsm, LA v5.005_SM_009000_001 .gsm;
LAv5.005_SF_010800_001.gsm;vEl.004_GS_9.60.1002OkyrET[eventtime].gsm,
LA v5.005_ 0KyrMajor RNs Dos e Rev00.JNB
0
0)
U)
0
0
a)
0
2000
4000
6000
Time (years)
artment of Energy - Office of Civilian Radioactive Waste Management
LL YMHansenNRCTE_040308.ppt
8000
10000
fA!
v•%tv,
8
Stability of Total Dose
LA v5.000 10kyr Total Dose Calcs RevOO.gsm;
LAv5.000_10kyr Total DoseCalcs_RS2_RevOO.gsm:
LA v5.000_10kyr_Total Dose_Calcs_RS3_RevOO.gsm.
. LAvS.0000kyr" TotaLDoseCalcsRev0O.gsm:
LAyv5.0001 Okyr._Total Dose_Caics_RS2_RevOO.gsm;
LAv5.000 10'yr _TotalDose_Calcs_RS3_RevOO.gsm;
LA v5000 10kw Total Dose 3ReoComo RevOO.JNB
LA v5.000 10kvr Cl Total Dose Rev'00.JNJB
Overall Mean ..
.
102
-UppeBound
f)
101
-
0)
0)
U)
0
100*
U)
I
Lower Bound
Mean-I
.
.
Mean-2
Ma-
--
..
______
0
1002
C:
C
4)
-_
_
_
_
__
_
_
_
_
_
10-2
C
CL
104s
a)
-(SA-AN RFig-7-3-.45b
1V.
10-6
0
2000
4000
6000
8000
10000
Time (years)
ILIanI.
I11V I
VI CL
"EIf=[03y
- 0II.Ip
LLYMHansen..NRCTE_.040308.ppt
UI'
5000
10000
15000
20000
Time (years)
Replicated sampling
demonstrates that sample
size is sufficient
LLYC
0
ICSI-LIVtI= VVO•Lt• IVIOd)lgdr~i I I Cl It.
Confidence interval
illustrates precision of
estimate of total mean dose
,wvuu.OCrwm.doegov
9
Summary of 10,000 Year Results
*
Total mean dose determined by contribution from
seismic scenario class
Probability of damage to co-disposed waste packages
within 10,000 yr < 0.2
*
Largest contribution'to mean dose from
*
Magnitude of mean dose determinedý by
-
99Tc
Probability of events (seismic, igneous)
Diffusion of radionuclides through cracks in waste
package outer barrier
Departmentof Energy. Office of Civilian Radioactive Waste Management
.
ýLL
; ...
IvflnansenIi
......
IKU.L I rz-U'IU~O.JL
w w.ocrwm.doe.gov
10
Uncertainty in Total Expected Dose
(post-I 0,000-year period)
LAv5.005 ED 003000_O00.gsm; LAv5.005_EW_006000_000.gsm:
LAv5.005 IG 003000_000.gsm;LAv5.005 SF 010800_000.gsm:
LAv5.005 SM 009000_003.gsm;vEl.004_GS 9.60.100_lMyrET[eventtime].gsm;
LA_v5.005_IMyr TotalDoseCalcsRev00.gsm; LA_v5.005_1MyrTotalDose_Rev0O.JNB
103
102
E
101
100
0
Cu
10-1
10-2
10-3
a)
a)
10-4
Lb
10-5
10-6
0
200000
400000
600000
800000
1000000
Time (years)
U
Delpartment of Energy . Office of Civilian Radioactive Waste Management
LLYMHansenNRCTE_040308.ppt
vvwvv.ocrwm.doe.gov
Total Mean Dose
Contrilt)ution By Modeling Cas
.=
LA v5.005 ED 003000_000.gsm: LA_v5.005_EW_006000_000.gsm
LA_v5.005 IG 003000_000.gsm: LAv5.005_SM_009000_003.gsm:
LAv5.005_SF_010800_000.gsm; vE1.004_GS_9.60.100_lMyrET[event time].gsm;
LA_v5.005_1 Myr TotalDoseMeanContributionsRevO0.JNB
103
102
101
100
0
10-1
10-2
1O-3
10-4
10-5
10-6
0
200000
400000
600000
800000
1000000
Time (years)
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMHansenNRCTE_040308.ppt
Awwr~w.oCrwm.doe.gov
12
Construction of Total Dose
vE1.004_GS._9.60,100_tMWr E'Tjevent time].gsm
vEl,004 GS_9.60, 100 IMytr Dose _TotalRev00.,ONB
103
LAkvS 005 IG.003000.000. sm LA vS .005 IG 003000. 000T otal Dose RevOOJNB
102
102
af
101
E
E
10i
100
0
0
o
1011
1011
-I
d3
0)
C)
0o
6
10-1
1O'S
-
-
e-an
S th Percentile
y10
6
10 0
200000
400000
800000
600000
0
1030060
200000
10°3
IJE'eimiic--
0
€-
C-)
0)
600000
800000
1000000
LA.v5.005_ED 003000O.OO.gsm: LA v5.005_EW_006000_000.gsm:
LAyv5.005 IG_003000 000.gsm; LAV5.005_SF_0100080000,gsm:
LAv5.005_SM_009000_003.gsm; vEl.004 -GS_9.60.100_1MyrET(event timeljgsm;
LA v5.005_IMyrTotal Dose CalcsRevO0.gsm: LA v5.005_Myr Total Dose Rev00.JNJ
LA.V5.005 SM 009000_003.gsm; LA vS005_SM_009000 003 Total Dose RevOO.JNB
-
-.-
-
.lii
li
100
w
10-'
0
0
02hta.
_____
7
E
0
400000
Time (vears)
Time.(years)
i
-
10-
0)
10-2
CC
4)
10-3
0)
10-3
0)
10-4
10510-s10-6s
10-6
0
200000
400000
600000
800000
1000 000
a
Time (years)
LLYMHansenNRCTEO040308.ppt
400000
600000
800000
1000000
Time (years)
I
'Depa rtment of Energy - Office of Civilian Radioactive Waste Management
200000
I
I
1JvC"N'
r'
r.
•. c
13ov
13
Composition of Dose from Seismic GM
LA v5.005_SM_009000_003.gsm LAv5.005_SM_009000_003_TotalDose_RevO0.JNB
(TSPA AMR AniOFin 82-11lbrab
E
0
0
0
200000
400000
600000
800000
0
1000000
400000
200000
600000
800000
1000000
Time (years)
Time (y
103
102
-
From Seismic Damage
to CDSP WP
-
From SCC failure of
CSNF WP
-
From GC failure of
both WPs (advection)
101
E
a)
U)
0
0
100
10-1
10-2
a)
-
10-4
-
-
2<
w
I
___
10r5
I
jor6
I
0
200000
400000
600000
800000
I
1000000
Time (years)
Department of Energy - Office of Civilian Radioactive Waste Management
LL YMHansen NRCTEO040308.ppt
wvvvw, ocrvrn, doe. gov
14
Radionuclides Important to Mean Dose
Early (E) and Late (L)_
-Total
10,
14C
.
LAv5.005_ED_003000_000.gsm: LA_v5.005_EW_006000_000 .gsm
LAv5.005 IG 003000_000.gsm; LA_v5.005_SM_009000_003 3.gsm,-LAv5.005_SF_010800_000.gsm;vE1.004_GS_9.60.100_1MyrET[event time] .gsm;
LAv5.005_ Myr MajorRNs_DoseRevO0 ).JNB;
-
102
36
C1
79Se
9Tc
--
126
_..._.
1291
_
Sn
135Cs
101
_
-,,, _
_
2 26
Ra
.....227.Ac
1OP
=_
0 101
0t-L.
-- '_
......
22 9
..-
23 1
......
10-2
Th
230 Th
Pa
233u
23 4
- -
-'p
-O
-0
u
2.35u
103
---
236
.....237
W)
......
10-U
238u
239
......
-
10r6
0
200000
400000
600000
800000
Np
Pu
241pu
242pu
-O
-I,
-O
1000000
Time (years)
'Department of Energy - Office of Civilian Radioactive Waste Management
LL)YMHansenJNRCTEO0403d8.ppt
,v ,
ovw.Ocrwm. doe. gov
15
Uncertainty in Total Expected Dose
LAv5.005_ED_003000_ 00.gsm; LAv5.005_EW_006000.000.gsm;
LAv5.005 IG 003000 000.gsm;LAv5.005_SF_010800_000.gsm;
LA._v5.005 SM 009000 003.gsm; vEl,004 GS 9.60.100lMyrETU[enttimaj]gsm;
LA v5,005_lMyr_Total_DosejCatcRevOO.gsm: LA vS.OOS iMyrTotal DOSS RevOOJ'NB
103
(T.qPA
102
MP
D
Fri A -2[all-
E
Lii
U)
Co
0
a3.
x
C"
-
n-
Lb
-
0
200000
400000
600000
800000
1000000.
0
200000
400000
Time,
600000
800000
SCCTHRP
IGRATE
WDGCA22
SZGWSPDM
SZFIPOVO
EP1LOWPU
1000000
Time (years)
LAe
10'
.2
,,n
w'---r
LAOS
-,--,-,-5r1
05, SM00L300
-0_3,-~•OSErrr.-r-r~
DU'230
cate050
- R-Vr0.JNo
REVOGO.O
10'
SCCTHRP - stress threshold for SCC
L
0200TooaLDoasRevOOJ2B:
TseR5
eJSF_01080 J-8: LAYTotaLDoR
vOTo0o1eI_0m0
vG030
oAseAM:
00
Lv
F: 010W00_000ToiDose ReOO .00JN
LA_ .
__005050 W3
Dose GS RMsO.MJNB 44_GS 900
..60.100Mtr D .osOR.00:
LA-O.5 S.5p
vLAoS.005tMvO0300_
SEA
... LA... 005 My0..300.E)P10S.E..-e.
10'
r: *
T frfl
...
rr...
LA
,... v5.005
r
_M
rl... 000 00 EXPOOSEA
rr...
05ate
r-...
REVG00.J3JB
-r....
.L
M0
L S5-00.S3Lffl0-T2CLD-0.o.R JN LA
L A 55.
0G5 EDO003000•0TMetes
Rs00.
LAo
5
W0
0_5. REL00.LNB:A
R.00
_0000003
R 02. AEl.004-GS_9.0.200IMyrD Toke-_GS
oe ?Rft: 1
i
•
f
10'
initiation
0
o1
IGRATE - frequency of igneous events 0w
WDGCA22 - Temperature
dependence in A22 corrosion rate
10 z
A
PA!A! IR AD(1 Fig 8.2-2b[
(T
S
lO-"
lo.,'
10e
10.
IGRATE
0
'Department of Energy - Office of Civilian Radioactive Waste Management
LL.YMHansenNRCTE_040308.ppt
lo"
0
0
10'
11)
10•
S102
0
1000
2000
3000
4000
5000
6000
7000
8000
WDGC A22
,.
c rwvm. do.
go
16
Stability of Total Dose
LA v5.000_lMyrTotalDoseCalcs.gsm:
LA_vS.000_ 1MyrTotalDose_CalcsRS2_RevOO.gsm;
LA~v5.000_1Myr TotalDote CelcsRS3.gsm;
LA v5.000 1Mvr Total Dose 3ReDComb RevOO.JNB
103
E)
(SA iR .,.
LA_v5.O00lMyrTotel_Dose_Calcs.gsm;LAv5.000_IM
_TotalDose_Caics_RS2_RevOO.gsm;
LA_v5.OOOiMyrTotalDoseCaicsRS3.gsm;LAv5,000_iMyr_.C _Total DoseRevOO.JNB
4rt'•
. . .
(TSPA AMR, Fig
T3.1-46by)
101
102-
____
_
101`
0)
d)
(1)
0
102._____
10.2-
I10.
610
M
Mean-2
Medan-1
Median-2
S9t-1
i0.7
-
5h-1
0
Mean-3
104 -
.Median-3
95th-2
.
5th-2
..... 5th-3
95th-3
105-
10G6 .
. .
1ia-
a
-
200000
400000
600000
Time (years)
800000
1000000
.
.
.
200000
.
.
.
400000
600000
800000
1000000
Time (years)
Replicated sampling
demonstrates that sample
-size is sufficient
uepartment or tnergy * u-rice or LlVillan Kaioactive
LLYMHansen.NRCTE.040308.ppt
0
.
.
Overall Mean .....
Mear-i
Mean-2
Upper Bound ---Lower Bound . Mean-3
aste Management
Confidence interval
illustrates precision of
estimate of total mean dose
,Nvvvvv.ocwm
.doe.!gov
17
Summary of I Million Year Results
•
Total mean dose determined by occurrence of
igneous events, seismic damageland general
corrosion
*
Major contributors to dose are technetium,
iodine, plutonium, neptunium, radium
w Waste package outer barrier governs releases
of technetium and iodine
* Chemistry governs release of plutonium from
waste package
-Department of Energy
Office of Civilian Radio-active Waste Management
LL.YM~ansenNIK I ýU4U30.ppt
'U.S. Department of Energy
Office of Civilian Radioactive Waste Management
Repository Barrier :Capabil
www..ocrwm.aoe.gov
Presentation Outline
•
Introduction
*
Multiple barrier repository system
•
Quantification of barrier capability
- Upper Natural Barrier (UNB)
- Engineered Barrier System (EBS)
-
Lower Natural Barrier (LNB)
•
Summary
*
Supporting documentation
wepartment oT tnergy * unice of'.IvIiiin iiacioactivewvasie mdflgernenE
LLYMMacKinnonBarrierý_NRCTE..040308.ppt
W.GC!
2
Introduction
•
The repository system is composed of natural and engineered
features that function together as two natural barriers and an
engineered barrier system
•
A barrier is defined in 10 CFR 63.2 as any material, structure, or
feature that, for a period to be determined by the NRC, prevents or
substantially reduces the rate of movement of water or
radionuclides from the Yucca Mountain Reposqitory to the
accessible environment, or prevents the release or substantially
reduces the release rate of radionuclides from the waste
*
As defined by 10 CFR 63.2, important to waste isolation (ITWI),
with reference to design of the EBS and characterization of natural
barriers, means those engineered and natural barriers whose
function is to provide a reasonable expectation that HLW can be
disposed of without exceeding the requirements of 63.113(b) & (c)
Department of Energy • Office of Civilian Radioactive Waste Management
Lý-I
ac nnon- arr er-
-
-PP
II
VI~i.~.
O...J.
LrI'T
flfl'IO
.
vN~NW.ocnAvm~doe.gov
U_ I~hIOIflIIIIIIUIIII
_lfl
II~U~iOUO~J3
3
Schematic of the Multiple Barrier Repository
SvsteTm
"
_assessment
...
capability of the three
barriers are the same as
the bases used for the
compliance of the
system with the
postclosure performance
assessment objectives
and requirements
___
...
.l°...
•repository
Moou,,
Table
RApprxmateo
r•
°
Pr
SouthBarrier
Yon
-.7
SE "
dob a
assessment as well as an
evaluation of FEPs that
have been excluded from
.the performance
Eassessment
of Energy Office of Civilian Radioactive Waste Management
De .Dpepartment
LLI Mmayc~innun-i DnerIINI'IIU I rUqfu3uO.PPI
capability is based
the abstraction models
of processes included in
the -performance
/
-ý
nd
The technicalof'bases
the for the
www.ocrWm.doe.gov4
Quantification of Barrier Capability
"
Two modeling cases considered for demonstrating
barrier capability
Combined nominal/early failure modeling case
* Drip shield and waste package early failure modeling cases and
the, nominal modeling case are combined into one modeling case
*
Representation of repository futures in which disruptive events
do not occur,
*
Provides a projection of a reference capability
Seismic ground motion modeling case
* Addresses barrier capability as a function of disruptive
conditions
* .Important to demonstration of compliance with the
regulatory standards
Department of Energy Office of Civilian Radioactive Waste Management
LLYMMacKInnon BarrlerNRCTEO040308.ppt
wvvw.ocrwm.doe.gov
5
Upper Natural Barrier
TopogLaphy and Surficial Soils
Unsaturated Zone Flow
" Flow Focusing
" Percolation
" Dryout Zone
Drift Surface
" Capillary Barrier
SDripping
" Evaporation
" Roughness
I'
*1
Intact Drift
Degraded Drift
Unsaturated Zone above Repository
The Upper Natural Barrier (UNB), by I
reducing the rate of movement of water into
be itory,
prevents or substantially reduces the rate of mov•,hent of
radionuclides from the repository to the accessible environment
I
Department of Energy . Office of Civilian Radioactive Waste Management
LL YMMacKinnonBarrierNRCTE 040308.ppt
* Percolation
* Capillarity
* Flow Diversion around Emplacement Drifts
wwvAW .ocrwm.doe.gov
6
Quantification of UNB Capability
*
Topography and surficial soils
Run-on and runoff, evaporation, and transpiration combine to'divert
water and permit only a small fraction of the precipitation at the site
to, infiltrate into the unsaturated zone (Simulation of Net Infiltration
ForPresent-DayAnd PotentialFuture Climates, SNL 2008)
°
Unsaturated zone above the repository
Damping of episodic pulses of precipitation and infiltration
(UZ Flow Models and Submodels, SNL 2007)
-.
Capillary forces in rock adjacent to emplacement drifts limit seepage
into drifts (Abstractionof Drift Seepage, SNL 2007)
Elevated temperatures in the rock during thermal period limit
seepage into the drifts (Abstractionof Drift Seepage, SNL 2007)
S
Department of Energy -Office of Civilian Radioactive Waste-Management
LLYMMacKinnon-Barrler.NRCTE-040308.ppt
I
I
,.doe.gov
.ocI
Quantification of UNB Capability
•
*
(continued)
Characteristics and properties of the topography and surficial
soils are not expected to change in. the 10,000, years after closure
(YMlP •1993, Topical Report YMPI92-41-TPR, Section 3.4)
Drift collapse caused by seismic ground motion may reduce
effectiveness of capillary barrier
Increase in seepage rates
Increase in seepage fraction
*
Metrics: Net infiltration, drift seepage rate, seepage fraction
0
Departmentof Energy- Office of Civilian Radioactive WasteManagement
LLfYMMacKinnon_BarrierNRCTE_040308.ppt
www.ocruvm.doe gov
8
(a)
v5.005 . PReCID
Perc . RavOO.JNB
Mean -- PreciDf• Infil -- Calca.xls:. L.A
..
r
103
*
,.
,
J
,
,
=
,
)
-
,
,
=
I ,
,
,
,
,
......
........ .. - ". ......
............. .............
.. .... .. . ........ 7.-..
... .....
102 -
101 -
. .........................
-------- - -----
Mean Net Infiltration (I) as % of
Precipitation rate:
.
E
- - - -- --- -
100 -
". --.. -- - - -.
;. .
- - -----
2
.
. ........
Key Points:
,
Precipitation
.
Net Infiltration
Post 10,000 Year Percolation
.
.......
~ ........
.~~~
~ -------
climate
. .......
...
I
100
10,000
1,000
0,000
100,000
Time (years)
Mean Drift Seepage (S) as % of
ambient seepage flux (first 10K yrs)
LA_v5.005_NC 000300 000.gsm;LA v5.005_SM_009000_003.gsm; Seepage Flix PercScaledDriftArea.xls;
WeightedSeepage_Rate Calcs.gsm; LA vS.005_Wtd_SeepRate Calca Seismic.gsm;
LA v5.005 SM 009000 003 NC 000300 000 AvgSeepReteRev00.JNB
(b)
ET accounts for 85 to 88% of reduction
in net infiltration
-
10-2
10-3-
Ranges -5% during present-day
climate to 7% during glacial-transition
-
. .... ....
-
S -2to 11%
-
Nominal & Seismic GM
10l
... ........
101
ý0
tll*I-
1
00
CU
Cu
.................
....
....
......
. ..
...........
.
Mean Drift Seepage as % of Post10K Percolation
- -- - -.............
..........
...-------L-------------........................................
---
...........
10-1-
-
ca
10-2-
0.
-
10-3
almost identical
.................................
.......
-I.
*l
100
1,000
Net Infiltration Over Intact Drift
Post 10,000 Year Percolation Over Intact Drift
Seepage - Nominal
See-page - Seismic Ground Motion
10,000
100,000
Time (years)
IF
Department of Energy e Office of Civilian Radioactive Waste Management
LLYMMacKlnnonBarrierNRCTEO040308.ppt
0
1,000,000
Nominal, S - 11%
Seismic GM, S -12 to 48%
(drift-degradation reduces
effectiveness of capillary barrier effect)
(Ref: SNL 2008 MDL-WIS-PA-000005 REV 00 AD 01,
Section 8.3.3.1 .1[a])
wvww.ocrwm.doe.gov
9
Nominal/Early Failure Modeling Case
for Post-1 0,000-year Period
Nominal/Early Failure Modeling Case
for 10,000-year Period (Glacial-transition)
Percolation Subregion
Seepage Fraction for
CSNF Waste Packages
* Percolation Subregion
Seepage Fraction for
CSNF Waste Packages
Subregion
.Index
Quantile
Range
5th
Percentile
Mean
95th
Percentile
Subregion
Index
Quantile
Range
5th
Percentile
Mean
95th
Percentile
1
p < 0.05
0.0020
0.0887
0.2823
I
p < 0.05
0.0082
0.1251
0.3121
2
0.05:< p <
0.30
0.0217
0.2308
0.5780
2
0.05:< p <
0.30
0.0617
0.3402
0.6555
0.30 • p <
0.70
0.0455
0.3294
-0.7439
3
0.30 <
0.70
0.0949
0.4369
0.7943
0.70 < p
0.95
0.0431
0.3848
0.7998
4
0.70 P <
0.95
0.0606
0.4364
0.8439
0.0870
0.4666
0.8386
5
p > 0.95
0.0934
0.4944
0.8802
0.0424
0.3134
0.6950
0.0784
0.3999
0.7449
4
5
p > 0.95
Repository Average
Repository Average
Seismic Ground Motion Modeling Case
for Post-I 0,000-year Period
Seepage Fractions* (SF)
Percolation Subregion
Key Points:
" Nominal & Seismic GM SF identical for 10K
yrs (on average 70% of WPs experience
non-seep environments for 10K yrs)
• Nominal & Seismic GM SF increase with'
drift degradation for post-1 OK
(*Defined as ratio WPs experiencing seepage to all
WPs in repository)
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMMacKinnonBarrierNRCTEO040308.ppt
Seepage Fraction for
CSNF Waste Packages
Subregion
Index
Quantile
Range
5th
Percentile
Mean
95th
Percentile
1
p < 0.05
0.3231
0.4673
0.6923
2
0.05:< p <
0.30
0.3089
0.6491
0.9173
3
0.30 p
0.70
0.3114
0.7193
0.975
4
0.70 p <
0.95
0.226
0.7041
0.9803
5
p > 0.95
0.3107
0.7518
0.9869
0.2912
0.6870
0.9465
Repository Average
www.ocrwm.doe.gov
10
Engineered Barrier System
Engineered Barrier System
\
ITWI
Emplacement Drift:
Provides a stable
environment for other
Engineered Barrier
System features
Pallet:
NON-ITWI
Supports the
waste package and
minimizeslextemal
mechanical and
Invert below NON-ITWI
chemical.interactions
the Waste Packages:
Reduces transport of
;radionuclides out
oflthe Engineered
Barrier System
The Engineered Barrier System (EBS) prevents or substantially reduces
the rate of movement of water to the waste, prevents or substantially
reduces the release rate of radionuclides from the waste, and prevents
or substantially reduces the rate of movement of radionuclides from the
repository to the accessible environment.
U7
Department.of Energy• Office ofCivilian Radioactive Waste Management
LL.YMMacKlnnon_BarrierNRCTE_40308.ppt
Titanium Drip Shield ITWI
above.the Waste Packages:
Preventsor substantially
reduces water from contacting
the waste package
Waste Package: ITWI
Prevents or substantially
reduces water from
contacting the waste form
vNvNw ocrwm.doe gov
Quantification of EBS Capability: Drip Shield
Nominal/Early Failure
Seismic Ground Motion
LA_v5.005 NC 000300_003.gsm;
v5.005_StandAloneWAPDEGDSFailFracRevO0.JNB
1.0
.LA v5.005_SM 009000 003.gsm;
(a)
1.0
Estimate
T:Best
(9000 Values)
Average CDF (Over Epistemic Uncertainty) ............ i.....
0. -
0.8
LL
ý0
.-C
V
a)
0.6
E
. ... . .................
.................
...... ...............
0.6 - ....... ........................
0.
0.4
CO
-0
00-
0.2
0 .2
.. . .. . .. . . .................. ................ ............ .................... ......... i.. . ..•
0
0.0
200.000
250,000
300,000
350,000
400,000
Time (years)
0
0
50.000
100,000
150,000
200,000
250,000
300,000
350,000
T: Time of Drip Shield Failure (years)
Key Points:
Key Points:
0
DS failure under nominal conditions by
general corrosion (GC) of Titanium Grade 7
plate
" DS failure under seismic conditions by
rubble accumulation and plate thinning by
GC
*
Failure times from about 270,000 to 340,000
yrs
" Probability:of DS failure before 100,000
years is 0.0055
(Note: The TSPA model does not include spatial variability in drip shield failure)
De partment.of Energy - Office of Civilian Radioactive Waste.Management
LLtYMMacKlnnon.Barrier NRCTE 040308.ppt
www.ocrwm.doe.gov
12
Quantification of EBS Capability: Waste Package
CSNF WP Breach for Nominal Conditions
LAkv.005_NCý_00030_003.g.M;
v5.005 Stand~one WAPDEGCSNFFimt CrkBresotRev02.JNI3
(a)
100
(b)
95th Percentile
Mean
Median
-5th
Percentile
0)0
...
.P .........
CU
..........
.
.
.. .... ......... ....
=
.........
o~*
1) Z
0)
2.Cl)
00
0)0
10-2.. ...
....
.
..
.......
- -. ---
on
. .
U LL
10-3-
60)
I n-4-
0
200,000
400,000
600,000
800,000
0
1,000,000
I
200,000
4
I
400;000
0
600,000
800,000
Time (years)
Time (years)
Stress Corrosion Cracking
General Corrosion
(of closure-lid welds)
(of Alloy 22 outer barrier)
Key Points:
Key Points:
•
SCC breaches of CSNF WPS becomes more
likely to occur after 170,000 yrs (based on
9 5 th percentile curve)
*
*
By 106 yrs, mean fraction of CSNF WPs
breached by SCC is - 54%
" By 106 yrs, mean, fraction of WP penetrated
Department of Energy . Office of Civilian Radioactive Waste Management
LLYMMacKInnan.BarrierLNRCTE 040308.ppt
1,000.000
GC patch penetrations of CSNF WPs
becomes more likely after 560,000 yrs
(based on 9 5 th percentile curve)
byGCis-9%
wwwNocrwmmdoeegov
13
Lithophysal Rubble Accumulation
1.0
II II
If
a)
I
I
IIII
I
I I
LAv5.005 SM 009000_011.gsm;
v5.005 StandAloneFracRubble Vol AccumLithRevOO.JNB
IIIII
II
I II
I
i ¸¸
i
i¸
II
iI II I I I
i¸
I
I
I
___Mean
-.
0.8 -
0.6
- ..
Median
.
-----------------------------------------.
.
..
.
95th percentile
5th percentile
-
L.L
0.4-
I
------------........
I----------------------......................................
.. .......
. .................
4-
0
. ... ..
C
0
L6
CD
0.2
-
- -- ------------------------------------ ......--------------------------- --
CD
I-I
ED
N~
0.0 100
I
1,000
10,000
100,000
0
0
1,000,000
Time (years)
ODepartment of Energy • Office of Civilian Radioactive Waste Management
LL YMMacKInnonBarrierNRCTE_040308.ppt
IIr~
vwww.ocrwm.doe.gov
14
Quantification of EBS Capability: Waste Package
Seismic Ground Motion Modeling Case
(a)
LA_v5,005SM_0000ool l.gsm;
(c)
0)
Co)
a)
of2
'00
(b)
0
200,000
-
400,000
600,000
Time (years)
800,000
CSNF
(b).0
0
1,000,000
200,000
400,000
600,000
Time (years)
800,000
1,000,000
CDSP
_01l.gsm; (d)
vO1.JNB
-0
'0)
CU)
CL)
CV
15(0
a) *0
(L
, .
WV
co,
cc
0
200,000
400,000.
600,000
800,000
1,000,00(
Time (years)
"Department of Energy - Office of Civilian Radioactive Waste.Management
LLYMMacKlnnonBarrierNRCTEO0403O8.ppt
0
200,000
400,000
600,000
800,000
1,000,000
Time (years)
VwwaOcrwm.doe.gov
15
Mean Activity Released from the EBS
LAkv5.05_NC _000300_000.qsm;LAkv5.005_ED_000300
O0O3.g001;
ULv5.OO5_EW_00600 -00.9sni:
LA_v5.000_RNAdM~yReieasedCalcsEFNarmýMyrRIz..Rev01ab.gsn,:
L.A~v5
.OD5_RNtcvt_AdMlenessedCaIcsEFNomIMy,/rIzRev01c.gsm:
v0.000.AvemgeEBSýRe.ese-IL-RNs~1s;
LA v5.005 EF NomnMyr-EBS-AcRel Rev01JNB
(b)
"In
1
07......-............
00
~--
... . ...
i-..
CU
a)
Inventory
..---.
0-2
9
-
............
....... .............-------
Releases
.... . .....
-~
0-
00
1010
100
108
107
Total
09 I- ..........
-
....
.
.
..... ...
.
Inventory
Total EBS
Releases
0
9 Sr
10)4
--.---
103
C. 102
0p
. .....
------
....... ..........
226
..........
~..
. - .........
.....
.......
..-.
I
3 u
!..
.. , ...................
....
............
237
-
-
1,000
10,000
100,000
1,000,000
.....
-
0
Np
Z9lUT
2390U,
24
0pu'T
43
2 AMT
w
Time (years)
Seismic Ground Motion
Key Points:
Key Points:
*
At 104 yrs, mean activity released from EBS
is less than 4 x 10-5 % of the inventory
0 At
*
By 106 yrs, mean activity released from EBS
is about 7% of total inventory
*. By 106 yrs, mean activity released from EBS is
about the same as Nominal/EF
Department of Energy -Office of Civilian Radioactive Waste Management
LL.YMMacKinnonBarrierNRCTEJ040308.ppt
I
0028403C
_LA 474a.ei
Time (years)
Combined Nominal/EF
-.
-...
10-6100
R,
-----
101
CD 100
Mo
10-1
10-2..
10•-38
10-4-
39pUl
.....
520 l
-. - ------
-Total
105 -
2
0-1
LAvO.005_SM_0090000003.9sm;
NAMI•/R~eise-dCals Sels1Myr RIz Rev01.gsm;
LA vS.005 SM 009000 003 LES Act ReMRev0IJNB
106
2 40
....
. ........
DSr
30
2
...........
.-
LA_'S.005_R
(b)
yrs, meanactivity released from EBS is
about a factor of 100 higher than Nominal/EF
104
vrwwvv ocrwm.doe.gov
16
Lower Natural Barrier
The Lower Natural Barrier (LNB) prevents or.substantially
Unsaturated Zone Wel ded Tuff Units
(under northern half of repository block)
* Dissolved radionuclides
reduces the rate of movement of radionuclides from the
port
repository to the accessible environment.
move through fracture trai
Radionudides sorb onto Dtloids
that move in fracture flow
Unsaturated Zone Nonwelded Tuff Units
(under southern half of repository block)
,
Yucca Mounta in
Dissolved radionuclides move through
matrix transport
• Radionuclides sorbed onto colloids
generally filtered by matrix
-"Unsaturated
Zone below the Repository
. Low percolation water flow rates
- Matrix diffusion
North , -
- Sorption of radionuclides onto rock
Water
Table
-ýtKeposatory,,
"
Saturated Zone
Approximate RMEI Location
* Low groundwater flow rates
* Matrix diffusion
* Sorption of radionuclides onto rock
* Filtration of colloids
/
. .'
•
one Fractured Volcanic Tuffs
Diffusion and sorption slow transport of radionuclides
Saturated Zt
Utfpdl t.inl
eU 0
c-iel~yly -
Notto Scale
•
Lower Natural Barrier
U~llme ot -liVllid
LL.YMMacKinnonIBarrler-NRCTEIý-40308.ppt
n Radioactive Waste Management
-.•
.. •"
.-
South
0026DC LA_0513C
of
""Saturated Zone Alluvium
;"Sorption--"
-slows transport of r--'adionuclides
•Larger effective porosity in alluvium slows transport velocity
V^VW.ocrvm.fdae.gOv
17
Mean Activity Released for the Seismic Ground
Motion Modeling Case
EBS to UZ
SZ to Accessible Environment
LAkV5.005_SM_009WO0
003.gsm;
(b)
.....-.......
.
..
.-.....
...
i.*.........
....
LA vL555
nsR
. . .....
.
106
10~
104
103
102
101
100
10-1.10-2-
.
........
................
-
........-...
-
~
CS
234U
U
Total
-
Inventory
Total SZ
Releases
--
a)
-
......
.
102
-242pUT
....
...
..
......
..
.....
10-2-
23 Np
......
239pul
.•°240JpuT
.... 24opUT
.
.
10-4
Y-
10-5
t
O52S40CL.A_1474..ai
100
OTh
241AmT
10-6
10-6.
.--.
23
..
..
.....
...
....
..
.~~~~~
........
~.......
....
......
....
.
226Ra
7
-
-------.------ - --
-......
-_---------.
....
100
10-1
242pflT
Tc
234U
-
.~~ ~ ~..... ..
--
--
.-----
10-3-
10-3-
9
137CS
- 237Npr
... 24OpUl
IJNB
Iv-.
.
...............
!.
102
104
103
MRa
PU'
51ReRO1
....
-.....
....
106
137
239
0m09sL3 SZ At
.......
.
10:
106
107
Inventory
Total EBS
Releases
90
Sr
Se'is MyrRlzRevO1.gsm;
LAvS.005_RNActivityReleasedCalcs
1010
108
£2
LA_aSO5_SM_00o000 _0D3.gsr;
(a)
LAOv5.0OS_RNActivityReleaedCalca Sef1_lMyr .RlzRev01:gsm;
~~ ---~
~~
---.-----------1 1U
i
#'Mi
M
M -•II -• L- •1 1
1,000
0
10,000
.
...
242puT
.
242PUl
...
.....
------.
100,000
1
-
243AmT
I, 004
1,0040,000
Time (years)
Key Points:
" At 104 yrs, total mean activity released from SZ
is about 50% of activity released from EBS
* By 106 yrs, total mean activity released from
SZ is about 5 % of total inventory (vs 7% from
EBS)
*
L
Mean activity releases from SZ dominated by
99
Tc
uepartment or tnergy - umce or Livilan Hadioactive waste Management
LLYMMacKInnonBarrierNRCTEO040308.ppt
*
9°Sr
*
Reduction in activity released from LNB (104 yrs
239 Pu (99% and 90%),
and
106 yrs): 24 Am !(100%),
24 2
23 7
2 34
& 1 37 Cs from EBS confined to LNB
pu (99% and 66%),
Np (78% and 23%),
U
(89% and 32%)
.
Mean activity releases of 2 3 0Th & 22 6Ra from SZ
-determined by precursor 2 34 U release
wvww.ocrwm.doe.gov
18
Summary
o
•
The Yucca Mountain repository system is comprised of three
barriers, the UNB, EBS, and LNB
These barriers have the functions of (1) preventing or substantially
reducing the rate of movement of water to the waste, (2)
preventing or substantially reducing the release rate of
radionuclides from the waste, and (3) preventing or substantially
reducing the rate of movement of radionuclides from the
repository to the accessible environment
*
Barriers include multiple features that have processes and events
that may act on or within the features to affect the capability of the
performance of the barrier
*
Rationale and basis for ITWI classification and qualitative
demonstration of barrier capability is provided in Postclosure
Nuclear Safety Design Bases (SNL 2008)
°
A complete evaluation of all potential FEPs, including the technical
basis for-their inclusion or exclusion in the performance
assessment, is presented in Features,Events, and Processesfor
the Total System PerformanceAssessment: Analyses (SNL 2008)
Depaitmentof Energy Office of Civilian Radioactive Waste Management
ac nnojlbaff el-K
L_"V V PPI
LL
IIIIIIO~flh)IUI1__CIIIC
www.ocrwm'.doe.gov
_flfIJ
~UlV.JU.
1
1
JI19
Supporting Documentation
*
*
Postclosure Nuclear Safety Design Bases
(SNL 2008) provides
-
Rationale and basis for ITWI classification
-
Provides qualitative description of barrier capability
Total System Performance Assessment ModelI
Analysis for the License Application
(SNL 2008, Section 8.3[a])
-
*
*
Provides quantitative assessment of barrier capability
Technical bases for barrier capability are contained in
-
Features,Events, and Processesfor the Total System Performance
Assessment: Analyses (SNL 2008)
-
Performance Assessment analysis and modeling reports
All barrier capability identified as important to waste
isolation is included in the TSPA model
Department of Energy• Office of Civilian Radioactive Waste Management
LLYMMacKinnonBarier_NRCTEO040308.ppt
www.ocrwm.doe.gov
20
Fracture vs. Matrix Releases
Mean Travel Time
(years)
1.0
0.8
0.6
0.
0.2
0*
0a
0
('1
• ,•,•
Easting (m)
0
r-•,
.
100
.
.. "-.
101
.
..
-10-
10
.Time (years)
10
101
Source: MDL-N BS-HSO00020, REV 02 ADD 02
ePariment of Eerfgy O:office of civilian Radioactive Waste Management
LL._YMMacKinnon_Barder _SupplementaLNRCTE 040308.ppt
,ww~vw.crwrm.doe.gov
A- I
Mass Breakthroug.h Curves at 18-km Distance
Showing SensitiVity to Matrix Diffusion for a
Nonsorbing Radionuclide
-3.-
ICI
NOE
'Th
no
Iael
Is ia-lua
w..
h the
,•'•Je,•;•m•
',tl•r~ldi~.
••:i•
W..rt
mteI iie
• •ralll•r
re
cae
i
. f mmaIxl
wrs w :~
am
mal
d
a.Ikren
and -do nat
MDL-NBS-HS-000021 REV 03 ADD 02, Figure 6-3
ergy .. Office of Civilian Radioactive Waste Management
LLYMMaci~innonBarrierSupplementaLNRCTE._040308.ppt
vu~wnw.acrvvm doe .qo~t
A-2
Summary of Simulated Transport Times in the SZ
Under Glacial-Transition Climatic Conditions
Range of Median Transport
Time (years)
Median Transport Time Among
All Realizations (years)
10-22190
230
1,000 - >1,000,000
>1,000,000
42,000 to >1,000,000
>1,00,000
3,000 to >1,000,000
95,000
Neptunium
100 to 455,300
3,700
Irreversible Colloids:
Plutonium
Americium
100 to 501,900
4,500
Radium
18,000 to >1,000,000
731,000
Strontium
9,000 to >1,000,000
286,000
200 -to 931,200
8,900
10 to 1,790
60
200 to >1,000,000
14,900
3,000 to >1,000,000
>1,000,000
Species
Carbon
Technetium
Iodine
Reversible Colloids:
Americium
Thorium
Protactinium
Reversible Colloids:
Cesium
Reversible Colloids:
Plutonium
Uranium
Fast Fraction of Irreversible Colloids:
Plutonium
Americium
Selenium
Reversible Colloids:
Tin
MDL-NBS-HS-000021 REV 03 ADD 02, Table 6-10[a].
w
artment ofEnergy• Office of Civilian RadioactiveWasteManagement
ILLYMMac)CinnonBarrierSupplementaLNRCTE.040308.ppt
mvtw ocrvwr.doe.qav
A-3
,U.S. Department of Energy
Office of Civilian Radioactive Waste Management
wvvw.ocrwm.doe.gov
Total System Performance Assessment
Model Support and -C
Presentation Outline
*
.Regulatory drivers for TSPA model development
*
TSPA Model and Code Verification, Validation, and
Confidence-Building
-
TSPA Model Information Flow and Data Transfer
-
During-Development Model Validation Activities
* Verification of inputs and software
* Model stability testing: statistical stability, temporal stability, spatial
stability
* Uncertainty characterization reviews
* Surrogate waste form analyses for DOE-owned and naval SNF
Post-Development Model Validation Activities
* Corroboration of abstraction models with results of process-level models
" Corroboration with auxiliary analyses
Corroboration with natural analogue information
Technical review
Department of Energy . Office of Civilian Radioactive Waste Management
LL Sevounian ModelSunnort NR.TE 040308 nnf
www.ocrwm.doe.gov
2
Links to 10 CFR 63 and NUREG-1 804
Proposed 10 CFR 63.114. Requirements for Performance Assessment
-
10 CFR 63.114(a)(7). "Provide the technical basis for the models used to represent
the 10,000 years after disposal...such as comparisons made with outputs of
detailed process-level models..."
* NUREG-1804, Section 2.2.1.4.1.3 Acceptance Criterion 3: "The Total
System Performance Assessment Code Provides a Credible
Representation of Repository Performance"
-
(1) Assumptions made within the total system performance assessment code are
consistent among different modules of the code. The use of assumptions and
parameter values that differ among modules of the code is adequately documented
(2) The total system performance assessment code is properly verified, such that
there is confidence that the code is modeling the physical processes in the
repository system in the manner that was intended. The transfer of data between
modules of the code is conducted properly
(3) The estimate of the uncertainty in the performance assessment results is
consistent with the model and parameter uncertainty; and
(4) The total system performance assessment sampling method ensures that
sampled parameters have been sampled across their ranges of uncertainty
uepariment 01, nergy - uriice or uvilian Kaaioacuve waste managemeni
LLSevougian.ModelSupportNRCTE_040308.ppt
vwwv.ocrwm.doe.gov
3
TSPA Model and Code Verification,
Validation, and Confidence-Building,
(including Proper Data Transfer)
[Acceptance Criterion 3(2) of NUREG-1804, Section 2.2.1.4.1.3]
Department of Energy Office of Civilian Radioactive Waste Management
LL-Sevouglan-ModeJlupporflNIRCL I -4U.1U.ppt
www.ocnrwm.doe.gov
4
Model Validation Approach
* During-Development Confidence-Building Activities
Verification of inputs, software, submodel implementation, and
submodel coupling
- Model stability testing: statistical stability, numerical accuracy,
temporal stability, spatial stability
- Uncertainty characterization reviews
-
-
Surrogate waste form analyses for DOE-owned and naval SNF
* Post-development Confidence-Building Activities
-
-
Corroboration of abstraction model results with the results of
process-level models
Corroboration with auxiliary analyses
* Deterministic single realization analyses
* Comparison of TSPA Model results to Simplified TSPA Analysis
Comparison of TSPA Model results to EPRI PA results
C
• Performance Margin Analysis.(PMA): remove key conservatisms
I
-
Corroboration with natural analogue information
-
Technical review
Department of Energy - Office of Civilian Radioactive Waste Management
LL_SevouglanModelSupportNRCTEO040308.ppt
v
ocrwnim.doe.gov
5
During-Development Model
Validation Activities
Department of Energy . Office of Civilian Radioactive Waste Management
LLSevougian ModeSuppoarNRCTE_ 040308.ppt
rww.ocrwm.doe.gov
6
During-Development Model Validation
Activities
* Computer code and input verification
Verify GoldSim & EXDOCLA software and
Dynamically Linked Libraries (DLLs)
* Qualification of Software, IM-PRO-004
* Supplemental verification tests are performed on the DLLs
within the TSPA model framework
-Verify input parameters
* Input parameter values in the TSPA Input Parameter Database
are verified against the source information in a DTN or AMR
submodels, model components and coupling
among submodels and model components
-Verify
* When applied in the TSPA model, specified inputs produce
expected results
,FýDepartment of Energy Office of Civilian Radioactive Waste Management
LL Sevouglan ModelSupportNRCTE_040308.ppt
wvw;ocrwm.doe.gov
TSPA Principal Model Corm onents & Submodels
h
.[
...................
Legend
Total System
Performance Assessment
Waste Form Degradation
and Mobilization
Unsaturated Zone Flow
Engineered Barrier System
Flow and Transport
Engineered Barrier
System Environment
Unsaturated Zone Transport
Waste Package and
Drip Shield Degradation
Saturated Zone Flow
and Transport
-Q
SBiosphere
SEvents
LL Sevouglan ModelSupport NRCTEo040308.ppt
00817DC_0002a.ai
Principal TSPA-LA
Model Components
Indicates general flow
of Information among
principal model components
and submodels.
Department of Energy • Office of Civilian Radioactive Waste Management
l
TSPA AMR (MDL-WIS-PA-000005) Figure 1-23
www.ocrwm.doe.gov
8
TSPA Information Flow
• Nominal scenario class
• Shows primary types of
information passed
from process models to
TSPA abstractions, and
among TSPA
abstractions and
submodels
P60
• Other diagrams are
applicable to early
failure, seismic, and
igneous scenario
classes
* TSPA AMR Sections
6.1.4 and 6.3.X
LJUeCIdIti1i121
UI*
~r-I~!YY -
JI I I(e UI L.IVIIldfl ridUI~cILLIVt
LL-Sevougian-ModeISupport-NRCTE040308.ppt
Legend
a5eWIvIcnagement
www~ocrwm.doe.gov
9
Examples of Verification
V4.042_GS_9.6D.100 VRFY010.gsmr;
v4,042 GS_9.60, oO.VRFY_010 SZ3D 237Np REV0O.JN6
1.0
DLL.Verification: Comparison of the
237 Np breakthrough curve generated
by the SZConvolute DLL in the
TSPA model with the DTN source
data
-
.
--
0.8
X0.6
.
.
. ....
I
Verifcation
.
.i
....... ... .....
..............
.... .....
-
-
U
z
0.4--.-.-
0.
0.4
0.0
,
, r
.
............
.-....
---....... ...............
.......
._--.
...
.. . .
.
.
10
100
1,000,
10,000
Time (years)
o4.042_GS9g.60
100_.Rev06..VRFY.,_0e19aogm
v4.042-GS0.60.I0Q0.VRFY.019a..RTACo
'
lofds.w-.Adv4ecJu REt/V0.JNB
0,
*
Verification of the EBS Transport
Submodel: Comparison of 2 3
concentrations
_-
....
co c nrain
generated by the
.....
.............
...........
.. ........
..........
... .......
.......
.. .............. ...
by an Excel spreadsheet (as
RTA
in OfEBS
L-WIS-PA-000001,Pr~vided
AppendixtheB
providedý inAN
Appendix B
of
C80-0,,
•: . . . . . . . . . .
: -....................
..
....
•....
.•:..;
•:" •....
0-7 . ....... =i. . . . . -. 4. ....
. . . . . . . . . . . . . . . . . ..........
....................
......................
........
.....
.
.-
..
-----.-.
.
_
Illustrative figures from TSPA AMR
Cpuolloids
eOCorrosioPrducs
Corln
Produ
ooo,,o
•
V`,10 •-4-
model report)_
--
.
o Groundwater Coil0ids
an
TSPA model with those generated
ANL-WIS-PA-000001,
the
m
orde)lrepo
. EBS RTA
_..
FeO orlosioPrducs
C------Waste Form Colloids
...
............
..,
__.
0
500
1,000
__
_
1,500)
_
2,000
Time (years)
(MDL-WIS-PA-000005) Figures 7.2-12 and 7.2-9
Department of Energy - Office of Civilian Radioactive Waste Management
II Rmvnrrnian MnrrrIInnnrt NRCTF 0403'08
nn
www.ocllll.doe.gov
.10
During-Development Model Validation
Activities
* Model stability testing
Statistical stability
Numerical accuracy
-
Temporal stability
-
Spatial stability
uepdr[menit or tnergy • unice or LIViI!dn rnaUIoacLIve WadSe vivdrnagemenh
LL.Sevougian ModelSupport NRCTEO040308.ppt
vvww.ocrwm.doe.gov
11
Statistical Stability for the Epistemic Uncertainty:
1,000,000-Year Total Dose (over all modeling cases)
e 95% Confidence Intervals
* Replicate testing
-
for Mean
3 different random seeds
-
- Visual test
Assume t-distribution
- Use the 3 replicates
LAkvS.000 .lMyrTotal Dose Calcs.gsm;
LA v5.00 lMyr Total Dose CalcsRS2_RevOO.gsm;
LA_v5.000_1Myr_TotalDoseCaicsRS3.gsm;
LAv5.000_1 MyrTotal Dose 3RepCompRevO0.JNB
(a)
(b)
LA-v5.000l MyrCl Total Dose Rev00.JNB
103
E
E
a,
LAyv5.000 iMyr Total Dose Calcs.gsm;
LAv5.000 1Myr_Total Dose Galcs RS2_Rev0O.gsm;
LA v5.0001 MyrTotalDoseCalcsRS3.gsm;
102
10o~
.-- --...--.............-.
..
E
Cl)
a)
0
0
2
10-1.
r-
10-2-
t-
10-1
CD 1 0 -
10 . . .Median-i
- -.-.------.-.-.-...-.......
95th-i
........................
5th-
w 10-7r
-'
, ,
'
' i'-1
-.
Median-2......
Median-3
95th-2
.. ....
95th-3 ....
5th-2
5th-3
5i .. ...
5th-3
a,
--- - ----------------- ------
.......
---------------------..............
ýRffl
-1-
100.
0
C.,
..........
.............
................................
----------...............
101
10-.1
......
............
..........
... ...............
...
. ....
.. . .. ..
--------.............
10-3
10-4.
............................
................ ..........
.
10-5-.----.--.
.9
O verall Mean
Upper Bound
Lower Bound
....... .....
.....
---
.
Mean-2
- Mean-3
...
IV
0
200,000
400,000
600,000
800,000
1,000,000
Time (years)
0
200,000
400,000
600,000
800,000
1,000,000
Time (years)
Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.1-16 (a and b)
N
ad
____
Department of 'Energy - Office of Civilian Radioactive Waste Management
LL Sevougian ModelSupportNRCTE_040308.ppt
lid
ww uv.ocrwm.doe.gov
12
Statistical Stability for the Epistemic Uncertainty:
1,000,000-Year Total Dose
" Bootstrap simulation (re-sampling)
* Gives sampling distribution and confidence
intervals of mean for a single L.H.S. sample
(b)
LA_S.000 ED_003000B00.iism; LA vS.000_EW_006000 012.gsm;
LAkvS.000 IG_003000.017.gsm; LA v5.000_SM_009000.000.gsm;
LA 0v.000_SF_010800 000.gsm; vEl.004_GS_9.60.100-lMyr._ETievent time].gsm;
LAvS.o00DIMyr Tota Dose_Rev00.JNB; LA-v5.O0O IMyrTotaI Dose._8BSv2_1kRS2211.gsm;
LAv5.000..Myr TotalDoseMeanCBRev00JNB
(a)
-----------
----
E
a)
E
1•
E
0
M
0
a)
M
-
105
cj
Upper Confidence Interval
MeanLower Confidence Interval
10-t
0
200,000
400,000
600,000
Time (years)
Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.1-48[a] (a and b)
Department of Energy . Office of Civilian Radioactive Waste Management
LL Sevouglan ModelSupport NRCTEO040308.ppt
vjvvvW oorwn.doe gnu
13
Numerical Accuracy
1,000,000-Year Nominal Modeling Case
* Effect of number of'realizations
LAv5.000_NC_000300._000.gsm; LA v5.000 NC 001000._000.gsm;
LA v5.000 NC Num RIz DoseCompare Rev00.JNB
.4 "
I
I
t
;
LHS 300
102
-
101
-
1-1
-
100
LHS 1,000
---------------
Mean
Medi an
95th
5th
-
---
Median
9 5th
5th
........ ........ ......... .........
......
- ---------
-------------------
----------------
------------------------------.........
.....
----.
.-----...----------------
-
--------
-- Mean
--J ---------..... - -------I...
-------------
Cn
0
10-1
-
10-2-
----------------------------------------------- -l
....
I. .........
--
- ......m I.........
--
10-3_
_0
;;;;;;ý
- -------------
.~i
.....
----------------------------------------------------------- -------------------
---- - ---
10-4_
--------------
--- -----I
10-5_
I .................
-----------------...........----- -------- --
.................
... ....
--------
-----------
------ -- -------- -------------- ---- ------ -- -------- -- -----------
............
. ...............
........
-------------------------0
10-61
i
0
200,000
400,000
600,000
ii
JI
I
I
800 ,000
i
I
I
W
I
1,000,000
Time (years)
Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.2-2
V t::POI LI I Ir.I 1. U
Siffr 1 t:19Yy -
VIIIJiL~UUI
IiVIIIdl
LL-Sevougian-ModeSupport_NRCTE_0403O8.ppt
rIIn
IdLLIVe VVdbLe IVidFidYt2.IIeIIL
-~
www~ocrwm.doe.gov
14
Numerical Accuracy of the Aleatory Integration:
10,000-Year Seismic Ground Motion Modeling Case
e Expanded set of aleatory futures
- Base case: 6 event times,, 5 damage fractions
- Expanded case: 12 event times, 8 damage fractions
LAkv5.000 SM_00900900.5.gsm; LAvS.000 SM 009D00.010.gsm;
eO.N
_pl Da-.rnagee6
I-OO
MO 09G000Ep1
LA•50OO
gele-6 Rev0.JNB
_____S000SM
103
1LA
,
,
v5.000
LA v5.000_SM_009000_..10.gsm;
'
"
'
RevO0.JNB
SM_0091O000Epl-Ev100
Damage Fraction
102
E
0•....
•
o0
..... ...........
..... . ........ ..
- . .. .. .. . . .. ..--.- .----
• 10 1
lo,
.......
10'U•
,.....'U
.............. ........... .
.'.............
0.0i0
......
---
II
I
' "
...........
"
l e -4
•
20,000
15,000
10,000
--
................
.....
0
5,000
10,000
15,000
20,000
Expanded
-
. . . . 3,000 yrs
6,000yrs
-12,000
yrs
18,000yrs "
-
Time (years)
Time (years)
Base
200 yrs
.......... 1,000 yrs
le-9
•jj
5,000
0
l e -8
....................
...
.................
"J I6L
0.0001
..
--
e-6
le-7
......
............
............
. ........
......
."..
I-
II o~~~~~ool~~~~..
i ......
! ...... ' -.... ..I• - "
1
5e-31le-3
le-5
1/.•/
I
U'
.0
.. ----........
-..
.
..........
...
*
100 yrs
1,600 yrs
3,200 yrs
4,800 yrs
6,400 yrs
8,000 yrs
--
..........
-
9,600 yrs
11,200 yrs
12,800 yrs
14,400 yrs
16,000 yrs
19,200 yrs
-
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.3.2-8 and 7.3.2-9
Department of Energy. Office of Civilian Radioactive Waste Management
LL Sevouglan ModelSupport NRCTE_040308.ppt
vwvWv.ocrwvm.doe.gov
15
Numerical Accuracy of the Aleatory Integration:
10,000-Year Seismic Ground Motion Modeling Case
• Expected dose for five different epistemic
realizations: base case vs. expanded case
LAv5.000_SM 009000 005.gsm; LA_v5.000_SM_009000 010.gsm;
SM 009000 10k Dose CompareRev00.JNB
.4,.,.oLA_v5.000
I
E
E
I
I
Base
-#1
-#2
102
|
I
I
I
-#3 -#--
#4
-#5
!I
I
1I
I
-
Expanded Event Times
and Damage
-#1
-- #2
101
cI-,
.0
10o
0
7Fu
I
--............................
............
#4
--
-#5
-----------------.f .......... ...........................................
....................................-----------..........................
-----------
10-1
10-2
-----------------------------
-D
a)-
-------.-.-------------------------............. .............................
-
-
...... . . . .'........................
------------------ ------
10-3
w
---------------
10-4
------ •-----
4
------- ------- - --------------- ------------ -----------
-------------- ----co
10-5
0
5,000
10,000
15,000
20,000
Time (years)
Ill ustrative
ire,from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.2-11
Department of Energy . Office of Civilian Radiioactive Waste Management
LL SevouglanModelSupporNRCTEO040308.ppt
v•vwv.oarwm.doe.gov
16
Temporal Stability:
10,000-Year Seismic-Ground Motion Modeling Case
* Two different timestep schemes for a given
repository future
LA_v5.000_SM_009000-005.gsm; LA_v5.000_SM_009000_013.gsm;
4.asm: LA v5.000 SM 10k TimeSteD Dose Comoare 1 Rev01.JNB
100
E
E
(I)
0
0
10-1
10-2
0
5,000
10,000
15,000
20,000
Time (years)
Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.3-8
).epartment of Energy - Office of Civilian Radioactive Waste Management
LL-Sevougian-ModelSupportNRCTE040308.ppt
A
I rww.ocrwm.doe.gov
17
Spatial Stability:
10,000-Year Drip Shield Early Failure Modeling Case
* Comparison of the Effect on EBS Release of the
:Representative versus the Comprehensive ThermalHydrologic Data Sets for 99Tc, 1291, and 239 Pu
LA_v5.000_ED 000300 002.gsm;
LAv5.000_ED_000300007.gsm:
LA v5.000 ED 000300 002 and 007 RNsCompareRevO0.JNB
(a)
Uu
Representative
.M 107
9 9T c
1291
1291
2 39
(C 106
104
Comprehensive
9 9Tc
2 39
Pu
-----------------------i.....................--- ......................---
pu
--
-
_---.......................-
----------------------- --------
105
- --
LU
7
Co
E
L------------- -.
-- -----.-
......
.. .
-- . ..............
------ ------
....
.. . . . ..........
.. .. .. .. .. ..... ...-. ........1 ° -.... --.....
-- ------------ ...... .......
o102
.. . . . . .
10th Percentile Infiltration
Scenario, Low Host-Rock
Thermal Conductivity,
Percolation Subregion 1
.............----
--------------.......
.............. . ----........
.......
. .... ------..
.............. ....... ....... ......... ..... .---...... .........---.....
co 101
w
100
10
1
100
1,000
10,000
100,000
1,000,000
Time (years)
Illustrative figure from TSPA AMR (MDL-WIS-PA-000005).Figure 7.3.4-1 (a)
uepartment
OTtner gy •
Office of Civilian Radioactive Waste Management
Kl~r-'
LLSevouglan_1VodelSu V1301ý_
-
WE
vo.w.oc-wvm.doe.gov
nA18
During-Development Model Validation Activities
ratSAData inpýut Packae
"I-,, upportingAnyss
Unceritainty characterization
reviews
TSPA Stoc asti,
Parameter
-,Confirm
.reflect
...
Expertj an
-
=t
N6A°m
parameter representations
the major sources of
uncertainty and/or variability
Verify that probability distributions
were derived using sound statistical
methods and interpretations
-
Ensure parameter representations
are reasonable and defensible
-
Uncertainty and sensitivity analyses
LEGEND
PASIT Performance Assessment Systems
Integration Teem
TSPA AMR (MDL-WIS-PA-000005)
Figure 7.4-1
Vt:Y!
"I "=I~t-iUS rl 1,11 y - 'USI ce US ý.JVIIld ii
LL-Sevougian-ModelSupport-NRCTE_040308.
Kai-toacEive vvastre'vianagemeni
VWVW.oCrWM.d1Oe.9'OeV
19
During-Development Model Validation Activities
* Surrogate waste form validation
- N-Reactor fuel as a surrogate for DOE
SNF (excluding naval SNF)
- CSNF as a surrogate for naval SNF
LAv5.005_1G_000300_002.gsm:
LA._v.005_IG_000300 003.gsm;
LA_v5.005.IG_000300_002_and_003 Dose Compare RevOG.JNB
-Av5.000_ed_003300 002.gsm; LAv.5,000.ed 000300_018.gsm;
LAkv5.000_ed_000300_017.gsm; LP EDDSNFWeighted-Sum RevO.JNB
100
103
...............................
. ....
10-1
.......... .....
-.-
a)
..
10-2
DSNF Surrogate
W eighted Sum
102
DSNF Surrogate Rev.1
101
-----------...... .
................. ..i . .... . ......
.......÷. .... ..............
---------.
.........
E
•
-
i-•
_
-
CSNF Waste Package
S-----
Naval Waste Package
C:
......................... .........................
1
. ....--...
....-........... ...--...... .. ...._
r. . . . . . . ur
. ...
ga....t....Di.._SN.-. W steFo m ....
Surro!ate DOE SNF, Waste Form
,1()-6
(Drip Shield Early Failure Cdse)
0
200,000
0
-I
-*
600,000
'-I
400,000
-- .
800,000
0
.
.
i
i
I
i
......
...... ....................
100
0)
..........................
10-1Ca)
0
10-2-
.
1,000,000
Time (years)
.
........... -........ ...
- -.
--
- - .. .. .. .. .. .. ..
....
........... .~......
............
. ......... -
10-3-
1o-5
a)
J
-
......
10 -4
-I
--
-----'
,---
E)
E
0)
C/)
I
.i,]Naval-
10-4-
iU
a
(1gm eous Intruskin)
10-s-,4 £•1
-- I•,
SNFSurroga..
I
0
•
I
.
.
2,000
.
.
.
4,000
.
.
I
I
i
6,000
i
0
I
8,000
i
fi
10,000
Time (years)
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.5-20 and 7.5-5[a]
Dep artment of Energy Office of Civilian Radioactive Waste Management
LLQV
UI
UJ~
f .JLpJJ LfllC.
_ýevougan_ o e uppm__
L.CflU.3
-
.20
-PP
vvwwwocrwm.doe.gov
Post-Development Model Validation
Activiti els
Department ofEnergy Office of Civilian Radioactive Waste Management
LL Sevou
in
r#, MR,CE
FMAodelo
Fl.
-
n
040-40
,*pflfI
F
Avvvw.ocrwm.doe.gov
21
Post-Development Model Validation Activities
*
Corroboration of direct input abstraction
results with validated process models
TSPA model is an integration of abstractions and
'process models
Abstractions provided to the TSPA code are
corroborated with their underlying process models
during their individual development and post.development validation phases
0
PDepartment of Energy • Office of Civilian Radioactive Waste Management
LL Sevougian ModelSupport NRCTE_040308.ppt
ww~AIocrwm.doe.qov
22
Post-Development Model Validation Activities
*
Corroboration of results with auxiliary analyses
-
Single realization analysis
-
Comparison to independently developed Simplified
TSPA analysis
-
Comparison to EPRI IMARC analysis
-
Performance Margin Analysis (PMA)-effect of key
conservatisms
5 LVeMIIvidId9IVF I!I
I
L.'ePdl
IIIICI IL Ul IEItiiy
- %JI IILI: 01 %-IVI IIdF I Mlc
LLSevougian-ModeISupportNRCTEO_40308.ppI
23
Single Realization Analysis
*
Provide insight into submodel coupling
*
Investigates the interactions and cause-effect
relationships between model components
*
Comprehensive understanding of the
performance of the system
*
Error-checking and model verification
:'Department of Energy Office of Civilian Radioactive Waste Management
LLSevougIan ModeISupportNRCTE 040308.ppt
www.ocrwfm.doe.gov
24
Single Realization Analysis:
1,000,000-Year Seismic Ground Motion Modeling Case
LAV 05005 MQ0900000003.ooe:
LAAv.05_OSMqD9oOOOO3TataDosaew RlzliOAveatztGsttzo4O41-eVOO.JNO
.A 005..SM_000_0.03.gsm;~
y5"
NB
LA 5ý0.0D5.
SMO9OO ý0_003._TotaýDoseý-.wRlz155_Re0O0J
- c realHiat'ilon'
Representative
.....
...
...e stm
103
111
10
2 101
C
103 -
1.I.1
realization
....................7............
aleator
Repqrsentative
......................................................
102
101
100
E
e 100
E
I
......
..- .~- . .. . .
101
.
0
1010-2-
o
<
.......................
...
................ ........
.
i................
. ........ ...
.... ...- . ..............
..
..
...
.........
10-3
Tj
" o10-4-
Mean
Median
95th Percentile
5th Percentile
.
INijý
U
,<
10-4-
Episten
Vector 155 (Expectation Over 30 Aleatory Samples)
Aleatory Vector 21 (Equivalent to GoldSim Realization 4•41)
10-5-_
15
Epstemic Vector 155
1
10-
0
200.000
400,000
600.000
800,000
1
6.
1.000.000
.
1
-
200,000
Time (years)
-
-
.
.1..
..
.
.
.
.
600,000
400,000
.
.
.
.
1
.
'
.
I
800,000
.
.
1,00 0,000
Time (years)
LA oSOO6SKSM0090W00005ev:
LA v5.00S_SM_000D 005 DSFaU RubbieVoLROACOJN9
500
4
400 WL
.o
(3
......
. .. ... .
E
0.6-
a)
0.8.
A2
300 C)
0.
0
00
2
-.
200
E
L
Drip shield faliures
& rubble,"accumulation
I
LI.. ha
z
c0I
100 c
-
0.2-
E
-
C,,
Drip Shield Frame Failure Fraction
Drip Shield Plate Failure Fraction
Accumulated Rubble Volume Fraction
0
0
200,000
400,000
600,000
800,000
1,000,000
200,000
Time (years)
400,000
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005),
Figures 7.7.1-52[a], 53[a], 55[a], and 56[a]
--
Department of Energy . Office of Civilian Radioactive Waste Management
LLSevouglan__ModelSupportNRCTE_040308.ppt
600,000
800,000
1,000,000
Time (years)
•m m•ii
~III-~
www.ocrwm.doe.gov
25
Single Realization Analysis:
1,000,000-Year Seismic Ground Motion Modeling Case
LA.5.0M5
100
Total
-- kOpening
OpeningArea
Area
-
C
'i----.Patch
Opening Area
E 10.1-
N
zV)
CSNF
i •F
WP-Op'en
ng-,.Are-a
i...
....
...........
..........................
a-.
aL)M
...
102-2
0
C
....
.~
..
.......
MO
(0
0
2
ot
4D
10-4
0
0
I
i n -5 I
0
200.000
400,000
600,000
800,000
1,000,000
0
.
I
.
i
I
200,000
Time (years)
I
I
I
I
.
.
.
. .
400,000
600,000
Time (years)
.
I
.
800,000
I
.
I
I
a
1,000,000
10s
C
0
0
-J
a)
a)E 23
S
C
0
100
L)
21
-•00
2
LCL
C
0)
U
C
.0
(D
0)
19
CU
Co
UG
(0
17
a.
P.
104
S
N
15
1 fl3
0
200,000
400,000
6 00,000
Time (yearrs)
800,000
100,0000
os0ca000,
0
200,000
400,000
600.000
Time (years)
800,000
1,000,000
OO817OCM4-,
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005),
Figures 7.7.1-59[a], 60[a], 61f[a], and 65[a]
Department of Energy , Office of Civilian Radioactive Waste Management
LLSevougian-ModelSupportNRCTEO040308.ppt
vvww.ocrwm doe. gov
26
Single Realization Analysis:
1,000,000-Year Seismic Ground Motion Modeling Case
EBS Releases
Lower Natural Barrier Releases
LA_v5.005_SM_009000_004.gsm:
3004_SZRelTc99_Pu242_RevOO.JNB
0)
0Y)
V)
0,
ca,
A)
"0
0,
0)
-i
U)
400,000
600,000
1,000
Time (years)
0
200,000
400,000
600,000
800,000
1,000,000
Time (years)
-
9Tc -Dissolved (CDSP)
-
99Tc - Dissolved (CSNF)
242
pu - Aqueous (CDSP)
242
242
242
242
pu - Aqueous (CSNF)
pu -Irreversible Waste Form.Colloids (CDSP)
Pu - Irreversible Iron Oxyhydroxide Colloids (CDSP)
pu - Irreversible Iron Oxyhydroxide Colloids (CSNF)
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.7.1-69[a] and 7.7.1-73[a]
Department of Energy, Office of Civilian Radioactive Waste Management
LLSevougian ModelSupport NRCTEO040308.ppt
vvwYw.ocrwvm.doe.gov
27
Simplified TSPA Analysis
*
Simplified representations of mathematical
equations that describe many degradation,
release, and transport processes
Stand-alone FORTRAN 90 computer program
*
*
Higher level abstraction of the same TSPA
FEPs; reduction in spatial and temporal
variability
*
Simplified UZ and SZ transport models
:!bDepartment of Energy Office of Civilian Radioactive Waste Management
LL Sevouglan ModelSupportjNRCTEO040308.ppt
I
I
vwi.ocrwrmndoe.gov
28
Simplified TSPA Analysis
DTM;MO0708SIMPLFI.000- Nominal Dose Total.xis;
gs;
..
Early.F.1ai Dose Towl.sl,
DTN: MOO70SIMPLFI.FLOO.
v5.005 N(_=C
LA ,5.00_k-W_00Q00000.mm;LA
TOP SWna~o. ar.I~y
Rofl~lJN
1 02
a_l
.Myr_R.v00[alJNB
io
TSPA STrMT'.b-m.m
I
O00
TSPA STMO"mSItse..Bass.1Myr ROvOIaI.JNB
102
101
.
100
.
EF
TSPA Analysis
Simplified
TSPA-LA Modl
101
SimplifiedTSPAAnalysis
1=
...
--.- -.
°---
..........
TSPA-LA Model
"
----
.......
E,
-01.
.....
0)
10-2 -E
4)
--------
i
Ca
---
E
200,000
400,000
600,000
800,000
200;000
1,000,000
400,000.
Time Slice (years)
U0
0
102
OTH:MOOTOESNPUFIM6
0W. SelnIc GM Dove Totat.xo
LA_0s.005_SM_009000_003,.0,;
TSPA•rMTlmeSkeBaM tMyr_RosMacHB
___
___
600,000
8001000
1,000,000
Time Slice (years)
___
,
t.
DTN:MOO70SIMPLIFi.000Ig,,eousIntflsis,, DoseTobLa~xs;
LAv5.OOSJG,003000..O00.qso:
102
u
Ignou Intr
-
E,
02
cc
200,000
400,000
600,000
600,000
1,000,000
200,000
400,000
Time Slice (years)
600,000
800,000
1,000,000
Time Slice (years)
Illustrative figures from TSPA AMR (MDL-WIS-PA-000005),
Fiaurea
LLI00d1Ilt1J[L
ul cietyly
- uume ot --tviiiaf
LLSevougian-ModelSupport-NRCTEO04O3OB.ppt
tidUlodLIIVe Vvds1e
7-.72-3ral.u6ral
naYernemLn
rlas and .12al
A
%n%%w.ocrwm.doe.gov
29
EPRI Analysis
*
Independent third-party assessment of key
technical and scientific issues
*
Logic-tree vs. Monte Carlo sampl-ing-based
*
Same model components and FEPs
*
Differences in the results can be explained by
differences between the two models,
(DOE TSPA uses the most recent
submodel updates)
www.ocrpm.doe.g
,DepartmentofEnergy Office of Civilian Radioactive Waste Management
LL_
LL-,ýievougianmuuriz)uppoti,_tmmi, I r--V4VJuo.PP,
UU9anMU~I~ppU1P4N.
I~u~U~UOppt30
30
Comparison to EPRI Analysis
LAy5.005_NC_000300_00D.gsm; LA v5.005_EW 006000000.gsm;
NV+NCMajor RNs RevOO.JNB
Total
14
C
36Cl
Dose
.. 4,
--
79
1291
237
99
Np
233Uj
23
-.-
---
8
U
pu
236U
Total
Sn
1291
135
D
I)
Cs
Ra
226
227
234U
240
Tc
126
-
229Th
239
pU
235U
Se
-
i
229
-
Ac
Th
.
100, . 0-
1,000,00
23 1
-
......
Pa
233U
0l
.
.......
S235U
S236U
237
......
-
100
1,000
10,000
100,000
1,000,000
-
23
Np
8U
239pu
...... 24Opu
--
242ptU
Time (years)
e Nominal Plus Early Failure Waste Packages
* At 1,000,000-yrs dose results are comparable
* 129z and 99Tc are significant dose contributors in both PAs
Illustrative figure on the right from TSPA AMR (MDL-WIS-PA-000005), Figures 7.7.3-3[a]
wwwo"wm.oego
Office of Civilian Radioactive Waste Management
Department of Energy•
LLSevougian _ModelSupportNRCTE _040308.ppt
www.orrwm.dae.qov
31
Performance Margin Analysis
*
IncIlude less conservative alternative
conceptual models
•
Narrower parameter uncertainty distributions
in cases where conservative bounding: values
were assumed
Includes additional coupli ng among different
•
physical and chemical processes'.
L'epdIrtuneI1vi r[Iefyy *
uf1i~ t~
Iv~indfl fdUI~dCLIveVVd5tlMAdnaqement
ILSevouglan-ModeJSupportNRCTEo04O3Oa.ppt
vvvvw.ocrwm.doe.gov
32
Performance Margin Analysis
(a).
LA~vS.OOSJkyroctal_DoseRevOO.JNB;LA~y5.000...0kywTta!Eýose..ResOO.JNB;
LA olO1.G61OifyrstaLDsseLRov0O.JNB: LAJTSPAPMACoipare...lOK TotoIDoseRevO2.JNB
*
. j
'
r -"
011A
102
E.
* Submodel conservatisms
propagated through the total
system do not underestimate
the totall mean annual dose
U)
U)
ci,
0
0
TSPA-LA V5.000 Total Dose .................. t.......................
-PMA Total Dose
--
......................
..
i
TSPA-LA V5.005 Total Dose .............
101
.............................
. ... .. ................... !........ ... .... ........i. .... .... . ...... ............ .... . ... .... ...
°T
...........
10....
101
.
..
ia
.
..
......
................ ... .....
T............ .............. .i .....
• .. . ..
10- 1 ...........
2 ..................
-
C
C
(U
U)
...... ....
.
..... . . .. ............
.
.......
. . ......
..
i..
...... ......
---... ....
-------. . ...... ......
-------- -----------. ...
10- 1 0 -4 -
10-4-
* PMA dose is more than a
factor of 10 lower at 10,000
years and a factor of 2 lower
at 1,000,000 years
10, 000
8,000
6,000
Time (years)
(b)
~
i
j02
0to
LAv5.005l Myr_Totaf_DoseRevO0.JNS;LA vS.0G0- Myr_TGtaI_Dose_e•O.JNB;
PMA Cmomee1MotaLDoseReO2.JNB
Rev500Na:TSPA
LA v0081MyrTotaiOase
.
. . . .....
.
...........
i00
U)
0I
0
10-1 ........
C
10-3
. .
..
.....
. ....
...
........
.
.....
.... ...........
. ..... ...... . ... + .
(D. 10 -1
* The evaluated conservatisms
do not introduce any risk
dilution in TSPA results
4,000
2,000
0
..... .
...................
...
.
1
0
10......
.......
...
.......
A- LA
-
.00 T
. .. ...
.........
...... .
.......
-
....
....... ....... ......... .... .............
Dose
.
PMA
Total Dose
SPA-LA VS5.005
Total Do)see
.-
....... ..... ........... ........ .........
....----........
....
.........
....
.....
...
....
' .. . ... ....
10-5 .....
0
200,000
400,000
600,000
800,000
1,000.000
Time (years)
lustrative
pe from TSPA AMR (MDL-WIS-PA-00000 5) Figure 7.7.4-7[al](a and b)
,ULpLSug
IanMoIILdI
ruL pp
t' - VI
R& E UI
In
LL Sevouglan ModelSupport NRCTE -040308.ppt
IIIdyeIIIeIII.
Fv.OCr
33VIIIOl
33
Natural Analogues
•
Compare repository conditions and materials
to observed conditions and materials for time
periods relevant to the lifetime of the repository
•
Provide-insights and build confidence in the
conceptual and numerical models used to
represent processes and events
*
TSPA analogues
1995 volcanic eruption at Cerro Negro,
Nicaragua
Radionuclide transport at the Nopal I uranium
deposit in the Sierra Peria Blanca .in Chihuahua,
Mexico
ueparimenror tnergy •urrice Oy Livitan Kaaioactive wase managemenr
LLSevougianModelSupportNRCTE_040308.ppt
wvww.ocrwm~doe.gov
34
Natural Analogues
•
•
Confirm ASHPLUME
software code is capable
of calculating ash
deposition from an
eruption that could occur
at Yucca Mountain
-
Cerro Negro
-
Measured Data
Ashplume vl.4
Ashplume v2.0
ASHPLUME calculation
for ash deposition
around Cerro Negro
compares well with
observed data
TSPAAMR (MDL-WIS-PA-000005)
Figure 7.8-1
Department of Energy. Office of Civilian Radioactive Waste Management
LLSevouglan ModelSupport NRCTEO040308.ppt
vvww.ocnwm.doe.gov
35
Natural Analogues
-
Pena Blanca
•
Analogue for the evolution, fate, dissolution and
transport of SNF placed in the repository
*
Uranium deposit is geologically, climatically,
geochemically, and hydrologically analogous to
Yucca Mountain
•
Hydrogeologic and geochemical investigations at
Nopal 1 indicate that there has been relatively little
transport, of the radionuclides from the ore deposit
and that few radionuclides have traveled very far
from their sources
De.Depaftment of Energy- Office of Civilian Radioactive Waste Management
LL Sevougian ModelSupportNRCTE_040308.ppt
VUwW.ocrwAm~doe.gov
36
Independent Technical Review
* Successive iterations of the TSPA model have been
subject to independent reviews by technical staff and
various external organizations
* Duringq the development of subsequent iterations of the
TSPA model, recommendations from the technical
review of the preceding iterations are considered
* In add.ition to routine NWTRB reviews, three recent
technical reviews include
TSPA-VA model peer review conducted in 1999
-
TSPA-SR model review by an international review team in 2002
TSPA-LA draft model review by an independent validation
review team completed in 2006
91Depiartmrent of Energy -Office of Civilian Radioactive Waste Management
r
SLLevouglanMode)Support.NRCTE_040308.ppt
wWv.ocflWnl.doe.gov
37
References
* SNL 2008. Total System PerformanceAssessment
Model/Analysis for the License Application, MDL-WISPA-000005 REV 00 AD 01.
,uepariment CT -nergy * uTrIce OT t'vIVuan maoioactive waste management
LL Sevougian ModelSupportNRCTE_040308.ppt
-
wuw.ocruTm.doe.gov
38
Computational Strategy for 10,000-year Seismic
Ground Motion Modeling Case
Calculate Exmectation over Aleatorv Uncertainty
Annual Dose Integrat!d
over DamagewArea,
(P event times)
Interpolated Seismic Futures,
(multiple event times)
tO
I
ItO
10
STO tOO19W
4'V%
TW
2
Annual Dose for
Possible Seismic Futures,
(6 event times, 5 damage areas)
Ot
W!ý9
V
Expected annual dose
curve, given e
BID
KI
IJ
t 0
10
ID'
Sto.
10
lb. b;
.......................................
LMZD
11T0Y0
100
101
RItO
I
0
300 expected Annual
Summary metrics or
Dose Curves
3
uncertainty in expected
591a0
LLfieVoUgian-Modelsupport NRGTEOG40308.ppt
5
annual dose curves
of
~A1MW
co,
*dO1~1(l'40
wvvw.ocrwm..doe.gov
!U"S. Department of Energy
Office of Civilian Radioactive Waste Management
Nominal Scenario: Mode 1-Abstractions of
Waste Pack
E
Outline
*
Waste Package Corrosion Mechanisms
-
General Corrosion (GC) (ANL-EBS-MD-000003)
-
Microbially Influenced Corrosion (ANL-EBS-000003)
Localized Corrosion (LC) (ANL-EBS-000003)
-
Stress Corrosion Cracking (ANL-EBS-000005)
-
- Waste Package Crack and Patch Failures vs. Time
*
Drip Shield Corrosion Mechanisms
- General Corrosion (ANL-EBS-MD-000004)
-
*
Drip Shield Failures vs. Time
Nominal Scenario Dose Curves
Depafrtient of Energy. Office of Civilian Radioactive Waste Management.
LLYMBROWNNRCTE_040408.ppt
www.orvwm.doe.gov
2
Objectives of Waste Package and Drip
Shield Degradation Abstraction
* Provide the Engineered Barrier System (EBS) flow
and transport model and waste form degradation and
mobilization model:
Number of patch and crack breaches per failed waste
package (WP)
-Number of failed drip shields (DS)
- Waste package and
drip shield thinning
for seismic consequences
-
-
ANL-EBS-PA-000001
Li/FjludlI
LiI
ui FL C9
UI
JII
I,-:
LIYMBROWNNRCTE_040408.ppt
MIM~liI nCJu IUOLI•I.tL
:M:
IVICII!qgt:l I ICIIL
•VOcr
3
Waste Package.General Corrosion
.
1.00 1 --
*
a. 200 -]
- -- -
(b)
>0.75
o_
ainty
-Low Uncerlity
-Medium Urin
certainty
-- High Unce,rtainty
S Measured Data
150
CD
L
0
CU.
50
100
CU
CU
C.
10.
0.25
150
E
CU
0.00
10,
10
.
10
Time (years)
ANL-EBS-MD-000049 fig 6.3-76[a]
10,
Spatial variability (WP-to-WP)
0 Co, pre-exponent corrosion
60 0 C,
rate at
based on Weibull
distribution fit to weight-loss
data
[tIIiei U1 II1teyy - LI
U
ILUU
UlLiVIdI I rMdUjUdLLIVe
20
25
30
0
ANL-EBS-MD-000003 fig 6-23
. C,, temperature dependence,
based on normal distribution
from polarization data
-
Uncertainty
SfIC, Microbially Influenced
Corrosion multiplier
Spatial variability
(patch to patch)
Spatial variability
(patch-to-patch)
LLYMBROWNNRCTEO04O4O8.ppt
'
T)
Rate-= fmcexp CO
Temperature profik
UCPCJdI
15
General Corrosion Rate (nm/yr)
MI~xpC
-
10
0
10ý
Stewnanayement
vwww.ocrwm.doe.gov
4
General Corrosion of the Waste Package
*
5-yr crevice geometry specimen weight-loss
*
Activation energy from polarization resistance
1.00
25 0C
0.80
1.00
-25*C
- 600C ------- ------ ---------------------------------------------0.90-100-C
------------------------------------------------------0..080 ..
_16O.C ----------
0.70
-
0.90
2000 C
200-C -------------------- ------J-----------------------I ----------0.70-
--------m
--------------------------------- ----- ---------0.60 ----------0.50
-----------------------------------------------------------------------
0.40
---------- ---------------- ---------------------------------------------
-----------------~ ~ ~
IL 060 .0
~
-----~ I~-- _~ _- Lo---------High--2-----
-------------- ------------ --------
O0,5 -.
--- - IMed-u-----AHg.Lw5
0.40;
------------------------------------------------------------------A
----- -------------------------------ý- ------------0.20 ----------0.30
E
-
0•.o..2
0.10
------
0.00,
0.i 01
-,i--: ----7--
0.1
1
F7 ----- -----
i0
100i
--- 17----------f-
1000
o
0
Low-Hlow25' C
-Medium-Madi um 25TC
--------
10000 .. 100000 1000000
Corrosion Rate (nmlyr)
Corrosion Rate Range for Median.
Activation. Energy
-High-High 20,01C
.A A.
o0o1
0.1
1
10
100
1000
10o00
100000. 1000000
Corrosion ýRate (nmlyr)
Corrosion Rate Range for 25°C and 200'C
ANL-EBS-MD-000003 fig 6-27
ANL-EBS-MD-000003 fig 6-26
ueparimenm or Lnergy • uriTce or Llviiian Kaaloactlve waste Managemem
LLYMBROWNNRC'rE_040408.ppt
vwww.ocrwm.doe.gov
5
Microbially Influenced Corrosion
= .Alloy 22 incubated with sterile or nonsterilized YM rock
-
FMIc 1-2x multiplier on GC rate, no localized corrosion effect
-
Concentrated (10x) groundwater with 0.1% glucose
-
Applied at a relative humidity threshold of 75-90% (uniform)
Nonreacted
43 months sterile
microcosm
5 years
57 months non-sterile
microcosm
ANL-EBS-MD-000003 fig. 6-55
/
'Department Of Energy. Office of Civilian Radioactive Waste Management
LL_YMBROWNNRCTE_040408.ppt
wwwiocrCwm.doe.gov
6
Waste Package Localized Corrosion
*
*
Waste package areas contacted
by seepage may be subject to LC
w'
If seepage occurs at relative humidity
(RH) <.~70% model initiates
LC - salt separation:
70%
*If seepage occurs at RH > ~70%
.--+ °
40.,
-
_-__
.40
--
1
L
Vatca
L(MV•?,•
SSC)
Model vs Data Ercre
IE....
Compare
_
long-term corrosion potential, to
* Ercrev, crevice repassivation potential
*
Ecorr,
cow
_Ercrev model initiates LC
Ecorr and Ercrev functions of T, pH, [Cl
o0I
-],
+
+ 1..-
•
If Ecorr
V
Dat
[NO 3-]
I
I
\
L
........
o
Model vs Data EcC
00
500
6rr
ANL-EBS-MD-000003 (fig 6-34,41)
>> Uncertainty in fitting parameters
>> Spatial variability from thermal and chemical variations
*
LC corrosion rates result in rapid penetration of WP
b6De artmnentbof Energy . Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTE_040408.ppt
vvw~oorwmn.doe.gov
Waste Package Stress Corrosion Cracking
•
Only inclosure weld regions (in absence of seismicity)
Weld region is plasticity burnished
Initiates at incipient defects or
Weld
weld flaws
*Growth by Slip
Dissolution Model
Stress Corrosion Cracking (SCC)
Initiation Criterion of
Area for Stress Corrosion Cracking:
,
Joining Outer Lid to Waste
PckageOue Shell
Outer Shell
Pac
90-105% of yield stress
-
(25mm Alo
(50 mm Stainless Steel)
2)
Waste Package
Rate of crack
Waste Package
growth a function of
(5mm Alloy
"
Waste Package
,Inner
Shell
- Inner Closure Lid
(50 mm Stainless Steel)
Stress intensity factor
> Uncertainty
" Repassivation rate
>
E:
Uncertainty
"'Departmentof Energy• Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTE_040408.ppt
www
r;ocrwm.doe.goV
8
Nominal Scenario Waste Package
,Breaches
(a)
LAv5.005 NC_000300_003.g3r;
100
g
Cu V
Crack Breaches (diffusive release)
10-1
'd -,Z
Stress Corrosion Cracking
00
r-.
U-
10-4
200,000
400,000
600,000
800,000
1,000,000"
Time (years)
(b)
U)
100
Patch Breaches (diffusive release if
drip shield intact, advective release if
drip shield failed)
0)0
-c
.2
CU
10-2
CO-
000
General Corrosion
10-3
LL
00
Localized Corrosion
0
200,000
400,000
600,000
800,000
1.000,000
Time (years)
MDL-WIS-PA-000005.fig. 8.3-6[a]
Department of Energy . Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTE_040408.ppt
vvww ocrwm.doe. gov
9
Drip Shield General Corrosion
*
Titanium grade 7 drip shield plates
- Benign conditions on DS inner surface, aggressive
conditions on outer surface
Uncertainty only
No temperature dependence
1.0~
0.8---
"LI
0.
"T
- ----
Benign-----------.,--Condition
. . /I'/
I.....
"•%. .4intermediate,
1
E
Condition
1......Condition C
M)I
0
----------- L-----
10
,
Aggressive
d,
20
30
40
50
60
Corrosion Rate (nm/yr)
ANL-EBS-MD-000004 fig. 6-8[a]
Luepartment-ot Inergy * utrice or uvilian Kadloactive waste,Management
LL YMBROWN NRCTE_040408.ppt
oil
www.ocrwm.doe.gov
ýf
10
Drip Shield Structural General Corrosion
Titanium Grade 29 Structural Material
Grade 7 aggressive condition rate is used multiplied
by Grade 29/Grade 7 ratio
Ratio based upon CDF of corrosion rate ratios for
several different conditions
1.000
0.900
0.800
.)
(D
EL
0.700
0.600 ---
0.500
0.400
ANL-EBS-MD-000004 fig. 6-20[a]
E
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
1' Grade 29/Ti Grade 7 Corrosion Rate Ratio
p
'Department of Energy . Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTE_040408.ppt
ww.ocrwm.doe.gov
11
Drip Shield Failures
LAv5.000 NC 000300_000 .gsm; LA-v5000_SM_009000_000.gsm;
v5.000_DS FailureTimeHistogram Rev0O.jnb
0.5
i
(0
I
I
I
--- - ------ -------------------
-
L
0.3-
(D
.,i
------------- - - - - - --- - - -- - - - - - - -- - - - - - - - - - - - -
4-
----------r------- ------
0
I
I
Nominal
Seismic Ground Motion ------------
0.4-
N
I
------
------
: ------
0.2-
t
n
I-I
Il
M
t
C-,
L..
LL
0.1
0.0
-
-------------
IM
I
100
120
I
II
II
140
160
180
I
200
220
C)
LLi4,
240
260
I
280
)0 320
CD
340
Drip Shield Failure Time (x 1,000 yrs)
MDL-WISPA-000005 fig 8.1-4 [a]
Department.of Energy - Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTE_040408.ppt
www.ocrwm.doe.gov
12
Dose Results Nominal Scenario
LAv5.005_NC_000300_000.gsm; LA_v5.005_NC_000300_000_Total_DoseRevOl.JNB
14
'U.,
-------------- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -
102
101
C/)
0
100
10-1
10-2
0~
10-3
x
LU
10-4
10-5
10-6
0
200,000
400,000
600,000
800,000
1,000,000
Time (years)
MDL-WIS-PA-000005 fig.8.2-1 [a].O
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMBROWNNRCTEO04O408.ppt
wwwIocrwm.doe.gov
13
Summary
•
Waste Package General Corrosion, Microbially
Influenced Corrosion and Localized Corros ion:
Result in advective releases if drip shield has failed
Result in diffusive releases if drip shield is intact
*
Waste Package Stress Corrosion Cracking:
-
*
Results in diffusive releases
General corrosion results in waste package and
drip shield thinning which feeds seismic
consequence abstractions
Luepartment
01
energy - unice o0
LLYMBROWN_NRCTE_040408.ppt
,liian haoioacuve vvaste ivianagement
wvvw.ocrwm.doe.gov
14
)ffice ofUCivilianwRadioactive Waste Management
Engineered Barrier. System (EBS)
Transport.Model Abstractions
Presentation Outline
*
EBS flow and transport model:conceptualization
*
model
transport
flow and
Discretization •for
U i s rption)
n lu
-,•"•'
•.'EBS
•:•
Col loid facilitated transport (inc ld.in sorption)
*
Sorptiton model in the corrosion, prducts domain
*
EBS-unsatu;ratedzone (UZ) interface - treatment of
co0!loids
•
EBS performance
*
Summary
*grit~r~mg
LL YMMacKinnoan_EBS TransportNRCTE,
4o4.ppt
f
=y
mw2
M
Objective of EBS Transport Abstraction
Computes
p
the advective and diffusive
radionuclide massflux through various
compo,,nents- of-the .EBS once the-waste package
is b~rea•ched •,;andi wastefo~rm starts to degrade
• Provides
*-Provide
-time-dependent radionuclide mass flux
from EBS to the fracture and matrix nodes of the
UZ transport model
I
I
VfIAR
n.n
dAV.
a.[
nnVoI~LII
I g
r
nsp
ftA.IP
AflfO
4
pp
Inputs, Outputs,
Basis for. Miodel Co0:nftidaen-ce
-1'c~~ I
•waste; Managemeint
LL-YMMaCKiflfOf~l..U
i ranspontjNtui tUq4u4U.ppI
-X
wwwocvn
b
4m
Model, Assumptions
• No diffusive or advective transport in the EBS when
temperatures are above 10°C-source term can still degrade
* When T< 100°C but RH<95%, no-diffusive transport in
packages that.!havei
no seepage
Waste form5degrades, but water is consumed in the chemical
t (H95,%corresponds to about 10 monolayers of
adsorbed water)
* Presence of continuous thin films on the interalsof the WP
and waste formn (when above twwoconditions are not
appliicable)
* WP is assumed, to be in contactwith the invert
Continuous thin water film assumed between WP and invert for
diffusive transport
* All d.rif-seepage falls onto drip shield (DS), and all flux
throug~h the DS falls onto: the WP
IDI
pARAtmen
6f.C
of~ergy.obfl
SPO
-
0vI 6inruiociv Waste*
-
WE
M
OngMetW1.flnJOiU
5
EBS Flow Conceptual Model
° EBS :flow modiel
describes: the 'mass
balance, of -waterwithin
various EBS
components
SeepageFlux into the Drift and
Condensagtori-f!ux:.fromDriftWalI
¶
Diversion
around
Drip Shield
• Continu~ity of flow
assumed
* Evaporation• is not
modeled (conservative
assumption)
-4--
Flux Into
the Invert
7
Flow out of the
Invert to UZ
Unsaturated:
Zone
00731OCO012JI
Modified from ANL-WIS-PA-000001 REV 02
,wlt#.crwrn"
O
"6
EBS
*
I
sort Conceptual Model
After the waste form. starts
degrading:, mass&can be
mobilized`and released through
the breacfhed WP: into the invert
and to the UZ
-
Drip Shield
Crown Seepage
I and 2D advective and'
1D
diffusive transporft including
WNste
ackage
radioactive, decay andP
(equilibrium and-kinetic) sorption
Species dependent free-water
diffuSion coefficient used
Wk
InIvert WickingZ7,
-.
•
Waste Package
Leakage
*
Both dissolved: and colloidfacilitated! transport considered
*
Effect of continued degradation
ofWP internals included. (metal
corrosion products)
*
AMR_EBSPCUE_11 . i
EBS Radionuclide Release
Chemical conditions inside the WP and invert determined separately
•(for solubifity
•andlcolloid stabiity calculations).
EMeig y
W
Ii
j*ý
LLYMMacKinnon_EBS Transport.NRCTE..040408.ppt •
ý
pi
ON
mama
.ie:
-7 11100-
'0
,i7
10,0
,
70
1adirOjo111vawa
1
7
Spaial Dicreiz-atio
fr EBS Transpor
Four T-"tiaspr Doma ns:
V Waste Form Domain
Waste
Form
: .z
r
* Corrosion Products Domain
Domain
(Inside TAD
Canister)
* Invert Domain
* EBS-UZ -nterface Doma'in.
Corrosion
Products
Domain
(Includes.TAD
Canister, Plus
Area Outside
TAD Canister)
Note: For CodisposalWP the: Waste Form
Domain is furtherdivided.into HL W and
DSNF waste form subdomains
CSNF WP Configuration
LL..YMMacKinnonEBS Transport'.NRCTEO 4O4OB.ppt
WF Domain--Im; plemeentation v¾
Commercial spent nuclear fuel
(CSNF)-singls
e waste form domai n"
-represents,
f•el rod's and steel
inside theTAD canister
°Co-dlisposal-two WF subdomains
HLW (glass logs) and: DSNF with
canister steel and steel support
tubes_
WF colfloids are generated
Pore volume is time-dependent and
grows as both waste frm and steel
degrades (noý cladding credit taken) L
Saturation is computed from water
vapor adsorption isotherms when
there is no advection after the
breach; flUl saturation assumed in
cases whereltherelis advection
RP
F Rod
A.
un-M.j
.",Tz,
P'' .W:
2-
IP_)0z /0" '1l
,
20
o
0n
0
,
0
,1
(13
a
0.4
",5
0 ,6
Relaive Humnidity
Deputmsn Wuteosngme9
of ns~!y * ffkeof MI~ut~edo~etv~
L%-
ac nnon-
Sp
It-NIKUlt:_U-tVýUG.PpL
o .7
0 8
0 '9
1,0
WF Domain---Implementation
(continued)
Waste Form Domain
Waste form domain is
conceptualizedas, a homogenous
u
mixture of fuel and steel
componenits
-a
Volume expansion associated with
fuel alterationand.corrosion
products formation is.expected to
fll
th~e and
iside
TADsvessel
canister
for,upl
CSNiF.
theofinner
for
CSNF Fuel Pallet Degradation
and Radlonucllde Mobilization
(mllllrneter-scale)
.............
Acforation
>-
*
*
Unaltered
Inner Vessel
U02 matrix
anhsler
ffuslon Areas of the
1l1
Centered Nodes
CDSP WPs
*
Alteration of U0 2
causing splitting
of cladding and
of rind
/
Diffusive length and area is based
on the-geometry (as shown)
Corrosion Products Domain
- Cell Centered Nodes
Diffusion coefficient (assumes
porous medium,
Archie's law):
DwF= 3S 2D0
Outer Barrier
Diffusion coefficient corrected for
temperature
ate Form Domain
005170c_084-1l
(CSNF configuration
10
LL YMM~acKnnon P-t:1
nanspor_..NKL; I
_U4u4UtS.ppt
Corrosion Product Domain--Implementation
Waste Form Domain
Corrosion Products Domain
* Represents steel corrosion
....
products (iron oxyhydroxides)
•U-P.aq
from degradation of steel-that
is outside the fuel basket or
Fo
•.....
1Puc
fuel canisters
" Equilibrium and kinetic
sorption modeled on the
stationary corrosion products
,
8-.0.
7.
and on the iron c oxyhydroxide
oll ids
7.0
.5
co lloids
.........
..
..
-------- -.- --
* Saturation is computed, from
ds rAi
water vapor adsorption
-..
*
.e
.....
..
•'
-.
4.0 : . ...........
.
:
.......
-%
..........
".
...........
. .. ,,"FeOOH
........................
o--
e0
F.0
eO
FOH
,° 1/
13• FeOOH
2.0
...
..
---
-------
up
A
o Cr2,O
.
Cr
2 3
- McCafferty & Zettlemoyer 1970
-
Morimoto et
al.
1969
Kuwabara et al. 1987
-Micale et a?19g85
-
-,,. 1964
rn et1 ot. 41985
--JMIcale
- JnKoc&Mie
19
87
Ishikowa
1983 199,1
- Kandori
Kittaka et&al.
- Nagaoetal.u1995
r
- Haruuet at. 2005
- Kittakta. 1984
CrOx Gel- Carruthers at at. 1971
*
.
15
1980
.0
where thr
rva
FeOOH
-- Hofmann oet al. 2004
HFO
3
-- --.
--- ----.
---------.....
.......
........
2..0 ------2--------
ction a er the breach;
sadveationb ach; fl
satura-hr aftuern
asum
i the
detion
dincae
Fe 2 03
F0203
3.*
2.50
eDeviations
Fe 20 3
Fe 2 3
5-9 ...................
--- - .. . .. .
0
~~~~~~~~
....
- --..........
~~~4.5
-ur-------- /;.
.........
.. ..............
isotherms whenl there is no
95% Prediction Interval
3 Standard Deviations Interval
---
.----.
6.0
•
FHH M odel Fit
............................................................... -:-......... ,Standardard
6.5
P o re volum e .is men
en
*
or
vlu
e
s
im
-dpedet
ow steel degrades
and growsns ras
od
--------------- --------------------------- -- -I.........
*: NI(OH)2
-
0.1
Micale et al. 1976
035DC
em
"sdecir
0
-
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
015.ai
1
Relative Humidity
Vfoe
11
Corrosion Product Domain-Implementation
(continued)
This domaiin is divided :into two
-cells:
Inner Vessel
*
*
-
Corrosion Products cell
-
Outer Barrier cell
rs
Z.
Diffusive length and areas are based:
onthe geometry, however,.outer
the
barrier
diffUSive a~reafoirthe
cell is, the breach area.that varies by
the scenarioclass being modeled
Diffusion coefficient (assumes
porous medium, Archie's law)
Dcp= 0cp 3S w2D0
FCell Centered Nodes
Vj/I
Corrosion Products Domain
Cell Centered Nodes
Outer Barrer
Waste Form Domain
00817DC_0084a.al
*
Diffusion coefficient also corrected,
fortemperature
Ii:Mv
LL 'YMMacKinnon -EE
Lansport_NRCTE_040408.ppt
(CSNF configuration)
12
Invert Dlomla!n" Iple
etat ion
* Assumes rectangullar geometry (fixed diffusive length and area)
SReversible so~rption, on the crushed tuff!modeled (same as that for
devitrified rock unit in the UZ transport model)
* Stability checked for all colloids moving from Wp to invert
(groundwater c lOiids, can occur in the invert if there is drift-seepage)
* Water volume of invert is
R.2
based on computing the bulk
0..
water contentfrm d.ual
continuum reres, nation of -o.5
invert: intergrlarandu.
intragranular
iontinuum,.
* Diffusion Coefficient:
Ism
ais
..
-
....
-
-.-
0
(based;on experimental data)
D = D 0q
1.863Sl.
863
1 0 ND(,u=0.033,cr=0.218)
(ND = Normal Distribution)
-4.0
-20-
-
-1.0
-0.5
0.0
l0glot -2
,WageMngt1n
Kift
W1
w~cwf.o.~v1
13
EBS-UZ Interface Mode l Domain-Imple mentation.
• 2-D dual continuum: UZ domain
(fracture and matrix, continua)
* Reversible sorption in the UZ
matrix contiinuum
° Hydrologic properties and
I
percolation flux are. consistent
with the 3-D UZ model
• Mass. flux (glyr). going from
Near Field
UZ Domain
invert to UZ domain: is
intercepted and passed to: UZ
transport model (FErHM) at each
time step for each radiionuclide
* Mass flux introduced into
fracture and matrixk nodes of the
UZ transport model (FEHM)is
based on the advective and
L
diffusive mass flux going into .
the fracture and matrix cells of
the EBS-UZ domain
I
L_0acri'nn on6EBSi
TrOficesorNC' v 0A4t
RadlOT0V4
LLYMVIVacKInnon-EBS TransportNISRCTE_040408.ppt
M8panagement
UZ Fracture
Left
UZ Matrix
Left
UZ Fracture
Mid
UZ Matrix
Mid
UZ Fracture
Right.
UZ Matrix
Right
W~AIUocrm.004aV14
Colloid Facilitated Transport in EBS
Three classes. of collolids modeled. Complex
mineralogies a..are:s-impl ified for purposes of
mode:liiing:.
form colloids
-Waste
Qlvýll w
SSmectite miineralogy (HLW degradation)
Uiranophane• mineralogy (from CSNF and DSNF),
* Pu-Zr oxide mineratogy (from CSNF degradation)
oxyhydroxide
(corrosion product)
coilloids
•
-Iron
*
Ferrilhydrite and goethite mineralogy for sorption,
(Hematite mineralogy for stability calculation)
Ground t (seepage water). colloids
-
*
Smectite m:ineralogy
ndwater
id
w~wa~lAfl. i
aclinnon-EBS TransportNRCTE_040408.ppt
4Mo
Sorption .of Radionuclides on Colloids
*
Type of Sorptvionon Colloids:
'Wastel-form colloids
> HLW glass degradation colloids - reversible and irreversible
> SNF uranium mineral colloids - reversible
>) CSNF degradation rind colloids - irreversible
SI.ron oxyhyd roxide colloids - reversiible and ilrreversible
*. Groundwater colloidsf
-'reversible
*
Reversible sorption, on waste form and groundwater colIoids, modeled
for9 elements!: U Np, Pu,Am, Cs, Pa, Th, Sn, and Ra(in all domains)
*
Sorption on., itron oxyhydroxide co.lloids is based on surface
compliexation based.ompetitive sorption model for 5 e!lements: U, Np,
Am nodu
TPu,.
dtomain)
Irrevers.ible sorpti
tnpmodeled for onily two elements: Pu and Am as a
kinetiic process (only In the waste fodrm and corroson products domain)
Reversiible s.orption on waste form.and groundwater col:loids is based
on sarmpledi"ne1ar adsorption isotherm(Kd)
*
*
*
Initially. sampled Kd may be further adjusted to limit sorption from
exceed~ing the sorption capacity.. Sorption
sitesare pa:hitioned
linearly
dissolved
amongst:he- rad inuclides- based ontheir sampled Kdd
concent-ration'in ~solution,
"Qepai~~~~~~~~nont111
seMngm
Ei.uvgy
.LL YMMaclinnonEBI
.LLM~acinnnEB
ranspo•._NRCTE 040403.ppt
11.
ansprtNGTEOU4I~~p6
-Ff~~CI~n~doa~Y
Sorption Model in Corrosion
Products Domain
A surface comipilexati.on based competitive sorption model is
deeevelopedi for radionuclide sorption on stationar corrosion
products: and itron oxyhydroxide colloids.
The: elements considered: for competitive sorption are U, Np,
Pu, Am, Th, andrNit
along with: carbonate ions
and Mo are much. lower in concentration and thus not
•
*
-(Cr
modeled; Ca 2 ., Mg2 *, and SO42 - have small biindii-ng, constants
and thus have negligible effect; not modeled in final calcs.)
*
Also used to compute the pH in the corrosion product
domain
Sorption oly.applied to steel degradation products inthe
corrositon, p.roducits domai.n
Sorption onrcorrosion: products: in the Waste Form domain is
ignored
Sorption
only ,modeled•
on iron
oxides (ferrihydrite and
goethite) from
degradation
of steel
*.
-
Sorption on: NiO and Cr20 3 is conservatively ignored
II-
U~~dIIiJUIL
-. I nr17AiIID
...
.
•. °•:U..
nno -EEDS
a anspoi I.-NrU. 1 C;-V4UqUO.ppL
EBS
Total
LA v5.005_EF. NomIMyrEBS ActReL RevO1.JNB
. Inventory
Performance-
Total EBS
Releases
.0 Sr
-
Combined Nomrainal
and Early Failure
Modeling Cases
...
9"Tc
137CS
226Ra
2 30
U
Trh
234u
23 7
Np
239pu T
_______________
1
____________240P
T
_______________239P
0)
20Pul
*
Prior to 170,000 years. releases are
primarily from early WPfailure and early
DS failure. Afterwards, prHmafilyrfrom
WP failure due to nominal processes
:
-
=
104
243AmT
10-61
1 00
1000
10000
100000
1000000
Time (years)
0.018 (smaller
contributor)
Radionuclides that are. modeled: as non-sorbing with no
solubility limit are released rapidly following waste-form
DSfailure times (from general.
corrosion). range between 270,000 and
340,000 years
* Increase in •release around :10,000years is due to
contribution,' from early failure -iofCSNFWP.: Prior
to that the reiease-is from early failure of CDSP WP
"
-
Am
PU
N
-4
Expected number of EF WP = 1.09
Expected number ofEF DS
1PMT
.U-
10-3
(dominant contributor)
-
24
99Tc, 1291)
degradation (e.g.,
Solubility limits the dissolved concentration of actinides
in waste form domain
" U, Np, Pu, Am, and Th undergo reversible sorption on the
stationary corrosion. prod ucts!(also separate!y on the
crushedituff in invert). Superscript "I" represents mass
associated'irreversibly with colloids. "T" denotes total
mass.
* Nominal releases are mostly from diffusion due to larger
number of WPs failing by SCC. Patches are unlikely prior
to 600,000 years
Diffusion coefficient of colloids is significantly smaller than
Note: No diffusive releasesfrom WP while RH < 95% and
T < 100"C (under-noflow conditions inside.WP).
About 69% of the WPs are in the non-seeping
environmentl(31% in seeping environment). This
affects the mass fraction going to UZ fractures vs.
UZ matrix
dissolved species
....L
i%
LL._YMMacKinnonE
ranspor•_NRCTEo040408.ppt
_
.
_
"... .•:wi
•:" I
.v
ocv•, rn
, .¶3 .OV
.d
18
EBS
PerformanceSeismic Ground
Motion Modeling Case
Releases
99Tc
"-
13 7
__________
C.5
234U
.
23__
9UT
_
______
Cs
5
2rRa
230
Th
__
V Prior to 170,000 years releasesi are
primarily from processes related to
vibratory ground motion-inducedMWP
failures.
239 pul
240puT
.
..
•
-242puT
243
10-5
10.
Seismically-induced SCC of the. CSNF WPs is -not
likely prior to,61,000 years, whereas thatfor CDSP
WPs may occur much earlier
In the first 10,000 years CDSP.WPs are the
predominant contributors tothe release
* DS failure times, (from combined seismicallyinduced ruptures and general corrosion) range
from about 409600 years and 300,000years
* About 30% of the WPs are in the non-seeping
environment.(70% in seeping environment) for the
post-I0,000 year period due to ground motioninduced drift collapse. This affects the mass
I.•action
going to UZ fractures vs. UZ matrix
-
_-Total
___
S0.Sr
t5
* Between 170,000 and 600,000 years
contribution to releases are from both
nominal ,andivibratory ground ,motioninduced DS and WP failures
* Past. 600,000 years releases are primarily
from failure-of WPs by nominalprocesses
Total Inventory
EBS
-
_
___.__
2pu ,
-
100
1000
10000
100000
1000000
Time (years)
* Radionuclides that are modeled as non-sorbing with no
solubility limit are released rapidly following waste-form
degradation (e.g., 99Tc, 1291)
* Solubility limits the dissolved concentration of actinides
in Waste form domain
* U, Np, Pu, Am, and Th undergo reversible sorption on the
stationary corrosion products (also separately on the
crushed tuff in invert). 226 Rarelease is derived from decay
of the parent radionuclides (23ZTh and 234U)
* Opening arearesultingfrom SCC from ground-motion
damage is greater than that'from SCC from nominal
processes leading to larger diffusive area
-
Patches are unlikely prior to 300,000r years
~V~L~u~f~ht.t~o~uv19
LL_YMMacKinnon_EIBS TransportNRCT
I _40408.ppt
EBS Release of
23 7Np-
Nominal Modeling Case
LAkv5.000_NC9000300000O.gsm; NO 1M00O-00_ESNP237_PRCC_-HT.JNB
. -A
Iu-- _ .
104
(
kV5.000 NC 000300000O.gsm;
NO-IMDO_300* ESNP237C.mview;NOJIM0300-ESNP2-37PRCC-HT.JNB
.
.
I '
.
..
..
Release frorn first 50G sam :les
(out of 300. amples)sho n
- -•-
Y)
0.
102-
IQ.
-!
eVJ
z0
CI)
0
"a)
w
0
>0
_
-•__
_________
----
•
P•,-
0.
E
10.
,
¢ f-
200000
400000
600000
Time (years)
800000
10000C
-200000
400000
600000
800000
1000000
Time (years)
Epistemicallv Uncertain Variables with Larmest Partial Rank Correlation Coefficients (PRCC):
WDGCA22: Temperature dependent slope term of Alloy 22 general corrosion rate (Kelvin)
EPINPO2: Logarithm, of the, scale factor used to characterize uncertainty in NpO2 solubility at an
ionic.strength' below l modal,
PHCSNS:
Pointer variable used to determine pH in CSNF Cell I under vapor influx conditions
GOESITED: Density of sorptionw sites on goethite (siteslnm2 )
WDZOLID' ,Deviationfrom median yieldstrength range for outer lid .(dimensionless)
CORRATSS: Stainless steel corrosion rate (pmlyr)
ww .ocrw k '"'-v
LL YMMacdinnon-
fhtportLNRCTE-040408.ppt
20
Summary
*
EBS transport model. computes the advective and diffusive
radionuc.lideo ýmass flux• throug'h various components ofthe-EBS
once •the waste package- is breached and waste form starts to
degrade
*
*
*
Provides: time-dependent radionuclide mass flux from EBS to the
fracture and matrix nodes of the unsaturated zone (UZ): transport
model
SBoth dissolved and colloid-facilitated transport considered;
three classes of colloids modeled
A surface• complexationbased• competitive sorption model is
implemeinted for radionuclide sorption- on stationary corrsion
products and iron oxyhyd-roxide colloids
Summarized key aspects of EBS performance that determine
transport and reJlease of radionuclides in the combined
nomiinallearlyfailturedemonstration modeling case and seismic
ground motion modeling case
D=rII. •.RQ of =lc
n "ofCMI^,-,
-
.
n."-
nspo _
aAAIv,'=
-
-pPl
tA,,gna
nt
OV.AJV21
•U.S. Department of Energy
Office of Civilian Radioactive Waste Management
Disruptive Scenario Classes:
Seismic Consequence Ab tr-
www.ocrwm.doe..gov
Presentation Outline
" Definition of seiSmic scenario class
• Key characteristics and assumptions of seismic
consequence models
" EBS State I abstractions: initial configuration
* EBS State 2 abstractions: after drip shield
framework failure
* EBS State 3 abstractions: after drip shield plate
rupture
* Seismic fault displacement abstraction
* Other processes
* Example results
bdepartrmentofEnergy .Office of Civilian Radioactive Waste, Management
LLYMSevouglanSeismIc NRCTE 040408.ppt
www.ocrwm.doe.gov
2
Definition of Seismic Scenario Class
* The seismic scenario class is defined.as the set of
possible repository futures that contain one or
more seismic events
* The seismic scenario class includes all FEPs that
are part of the nominal scenario class (all
"expected" FEPs), plus FEPs associated with
seismicity
o Two TSPA modeling cases:
Seismic ground motion modeling case
Seismic fault displacement modeling case
Department of Energy. Office of Civilian Radioactive Waste Management
LL-YMSevouglan-Seismic-NRCTE-040408.ppt
wwVwI.ocrwm.doe.gov
Definition of Seismic Scenario Class
(continued)
* The annual exceedance
frequency (k) of seismic
events of varying
magnitudes (PGV) is
defined by the (mean)
bounded seismic hazard
curve
* Not all, events can cause
Engineered Barrier System
(EBS) damage; small PGVs
(iLe., more frequent, but
small, events) are unlikely
to have a consequence
I-
()
a)
a)
a,
L)
.M
* For most events of any
magnitude, damage to the
waste package (WP) is
generally in the form of very
small stress corrosion
cracks (resulting from
residual stresses caused by
plastic deformation)
Department of Energy Office of Civilian-Radioactive Waste Management
LL YMSevougianSeismicNRCTE.040408.ppt
4
6
10
Horizontal PGV (m/s)
MDL-WIS-PA-000005, Figure 6.6-6
W'.N
crwm doe.9o'
4
Conceptual Model-Overview
* Source term-Ground motion
time history from a potentially
damaging seismic event
Altered
-seepage
Stresi,
cracki
SEBS consequence models:
Potential damage to waste packages and
•
drip shields from spent nuclear fuel cladding
from seismically nduced rockfall, ground motion,
i
andfault.displacement
Rubble accumulation and
c,. on
loading in drift
is intact: cracking or
rupture
-
Water
Table
WP damage after DS has
failed: cracking or puncture
Nomial:,~an
DS orroionTransport
-Nominal.WP
•,
North
Drip shield (DS) fragility
(static and dynamic
loading)
WP damage when DS
waste
and DS corrosion,
processes
of radionuclides"
through saturated zone
DrawringNot To Scale
7DC_0100.ai
0081
* Changes to thermal hydrology,
seepage, and transport
ueparnment OT tnergy * urrmce OT ullvnan Kaoloacrive waste management
LLYMSevouglanSeismic NRCTEO040408.ppt
MDL-WIS-PA-000005, Figure 6.6-4
,w.ocrwvm.doe.qov
Characteristics of Seismic Consequence Models
" Most of the following presentation describes the seismic ground
motion abstractions. (rather than the fault displacement
abstraction)
" Seismic scenario class includes bothf nominal and seismic
degradation processes in the EBS
* Nominal and seismic WP degradation processes are strongly
coupled through the thickness of the Alloy 22 outer barrier and the
state (intact ordegraded) of the WP internal structures
e General corrosion patch and stress, corrosion cracking (SCC)
failures: in the WPs occur due to nominal corrosion processes
* Seismic DS damage in the form of framework buckling and plate
rupture is based on
-
The thickness of the DS components, which is determined by the
titanium general corrosion rate
dynamic loading on the DS from: rubble'and vibratory ground
motion (i.e., as a function of the PGV level of the seismic event)
-The
Department of Energy' Office of Civilian Radioactive Waste Management
LL-YmSevouglan-Seismie-NRCTE-040408.ppt
vwvvw.ocrwm.doe.gov
Characteristics of Seismic Consequence Models
(continued)
*
Seismic damage to WPs depends on the presence of the DS:
For intact DSs, SCC damage to the WP occurs through package-topallet impacts (most important) and package-to-package impacts
(nearly negligible); there is a small chance of rupture damage
For failed DSs (by general corrosion, ground motion, rubble
loading), crack damage to the WP occurs from stresses induced by
the surrounding rubble during strong ground motions; there is a
small probability of puncture of the.WP by internal fragments
*
Effect of fault displacement failures (X < 2.5x1O-7 per yr) is
expected to be small
*
Cladding credit not taken in TSPA Model
-
Cladding would be completely'damaged in long timeframes based
on simple fragility models
Department of Energy. Office of Civilian Radioactive Waste Management
LL_YMSevouglanSeismic.NRCTE.040408.ppt
wvvw.ocrwm.doe.gov
7
Model Assumptions
* The initial mechanical condition (or strength) of EBS components
(WP or DS) for each event is a function only of spatially averaged
thickness (due to general corrosion thinning), i.e., previous seismic
damage does not affect the strength or configuration of the EBS
components, with two exceptions:
-
State of waste package internals: intact or degraded
- WP rupture model when the DS is intact: incipient or immediate ruptures
" Total WP and DS damaged areas from multiple events is the sum of
the damaged areas from the individual events
" Total rubble accumulation from multiple events is the sum of the
rubble from the individual events
* No expl~icit spatial variability in the TSPA model for damaged areas on
WPs and DSs from vibratory ground motion, except for that due to
coupling with nominal processes (however, drift-scale variability is
incorporated in the underlying process-level damage abstractions)
'Department
ioc
•of
Energy -Office of Civilian Radioactive Waste Management
U
evoug an- elsm q-
ClfI.
-I n
-uaiOII5.
o J1
_PP
www'ocrwm'.doe.gov
8
Treatment of Uncertainty
* Aleatory uncertainty in the time ofground
event, PGV
of
motion
curve),
hazard
the event (seismic
time history for a given event, occurrence and
extent of WP damage, occurrence of DS failure, and
rockfall volume
• Epistemic uncertainty in the friction coefficients,
residual stress thresholds to initiate stress
corrosion cracking in Alloy 22, general corrosion
rates of Alloy 22 and Ti Grade "7and Ti Grade 29
LepMtent of Energy- Office of Civilian Radioactive Waste Management
LLVMSevougian Seismic NRCTEO04O4O8.ppt9
9Arwm.doe.gov
Conceptual Model for EBS Evolutiotn
State 3
(c) After Drip Shield
Plate Failure
Fragility analysis for
rupture of DS plates.
WP damage defined
by 2-D calcs for WP
surrounded by rubble
MDL-WIS-PA-000005, Figure 6.6-5
Ut!PdrLITIt~IL 01 CrIelgy - Vitice UI %J
LL-YMSevougian-Seismic-NRCTEO040408.ppt
nl ridUdlLC1iVt vdv5edlivIandgemeUl
Time
vw.ocr
gov
10
EBS State 1 SCC Damage:
* Codisposal WP probability of
SCC damage for a 23-mm thick
(a
!
1.0
0.8
is 0.6-0.8
M.
EO0.8-1
0.4-0.6
M 0.2-0.4
11 0-0.2
-0.6
(a)
(Intact DS, Intact Internals)
• CSNF WP probability of SCC
:damage for a 23-mm thick
* 0.9-1
* 0.8-0.
-
0
•
cuE
0.2 2. C
-0.4
* 0.7-0.8
F1.0
0.9
!
0 0.6-0.7
M 0.5-0.6
0 0.4-0.5
1110.3-0.4
-0.8
-0.7
-0.6
o 0.2-0.3
1 0.1-0.2
0.3
105
0.4 .0 MU
0.2
0.1
0.0
S90
1.05
0.4
pG•/."
loo5
* Codisposal WP mean damage
area for a 23-mm thick
(a)
5.0
0
A
4.0
0
• 100% YS Data
S105%YS Data
3.0
-----.......
--
-
Quadratic Fit - 90% YS
-
Quadratic Fit - 100% YS
-
Quadratic. Fit - 105% YS
.....
......
---. . .-..
. .-. . ...................
--
2.0
1.0
.... ... ... ... .... ...--...-...--...
C)](I
00i .0
1
..............
2
4
PGV- H1 (m/s).
ueparrment Or tnergy - urrice or tuv
LLYMSevougiarnSelamicjJRCTEO040408.ppt
-
. . .-----..
- ...... . ........
3
4.07
2.44ls
P*1.o5s
0.4
pGIP"
.
ls
[DIRS 183478] Figure 6.6-10(a)
-
. ... .... .... .... ... .... . ... .... ...
...........
20
a_
• CSNF WP mean damage
area for a 23-mm thick
9B0%YYS Data
4q,
.a)
-0.5
0 0-0.1
0.0
0
5
0.00408 m2 at PGV=4.07
mls and RST=90% Y.S.
0.0 m2 for all other data
points
MDL-WIS-PA-000005,
Fi~qures 6.6-11 and 6.6-13
in Kaaloactive waste
inagement
wv
w.ocrwm.doe.gov
11
EBS State 1 SCC Damage:
Codisposa] WP probability of
SCC damage for a 17-mm thick
(Intact DS, Degraded Internals)
eCSNF WP probability of SCC
damage for a 17-mm thick
1.0
.1.0
SO;B-i
:0.6 t•.
210.6-0.8
00.4-0.6
-:0.6
11111.2-0.4
'0.4m:E
190-0.2
_=0)
0.2
N 0.8-1
B•
o.6-0.8
S0.8 40
D 0.4.0.6
0.6
> (D
= 0.2-0.4
:0 0-0.2
0.
0.0
105
pG\.MA
0.4
.
9ý 0
00817DC00257.ai
* Codisposal WP mean damage
area for a 17-mmt thick
0)
-0.4
00 U
,0.2
a -"
0C
0.0
j
a$ 1001
S105
0~
_
2.4
2;44
s
0OB17DC_0256.ai
* CSNF WP mean damage area
for a 17-mm thick
6.0
6.0
5.0
5.0.
C..'
2
2
4.0
C
-A
<
3.0
o
2.0
4.0
A,
13.03<
16
2.0
C
ca
a.)
1.0
0.0
0
1
2
3
4
5
PGV-H1 (m/s)
MDL-WIS-PA-000005, Figures 6.6-11 and 6.6-13
Department of Energy. Office of Civilian Radioactive Waste: Management
LLYMSevougian Seismic NRCTE_04408.ppt
0.0
2
3
PGV-HI (m/s)
MDL-WIS-PA-000005, Figures 6.6-10 .and 6.6-12!
vvvVw.ocrwm.doe.gov
12
(a)
0.2
EBS State 1: WP Rupture
(Intact DS, Degraded Internals)
0.18
C,
0~
-
0.16
-
*
0.14
-
0.12
-
..............
* Data - Incipient Rupture
(immediate) Rupture
Data -Rupture
.....
-----il- ---- --- I-----
-------
0.1
* Probability of incipient and
immediate rupture
- incipient rupture requires a
subsequent seismic event to
cause damage
- WP rupture allows advective
releases
" Mean damage area is sampled
uniformly
- between 0 m2 and the WP
cross-sectional area 2.78 or
3.28 m2
Incipient Rupture
-
0.08
---.
-0
a.
.--
./---
0.06
.
0.04'
... - ----
0.02
0.
0
1
2
3
4
5
PGV-H1 (m/s)
(b)
n ,
0.18-
*
0.16-
*
ca. 0.14
.4-
0
Incipient Rupture
Data - Incipient Rupture .
S-(Immediate) Rupture
Data - Rupture
.......
.
.
.
.
....
.
--.....---------------...
. .........
---... ........................
................... ....-t. ... ---
0.12
0.1'-
.....
.
.............. ...
-2
IL
.
0.06-
.. .......
.. .
...-
..
.. ..
..... ............
........
/
. . .....................
.-
-------- -
0.040.02
t
;0
1
2
5
3
PGV-HI (m/s)
MDL-WIS-PA-000005, Figure 6.6-14
I
Department of Energy • Office of Civilian Radioactive Waste Management
LLYMSevougian.Seismic NRCTE.040408.ppt
www.ocrw•m.doe.gov
13
Conceptual Model for EBS Evolution
Kinematic analyses
and damage catalogs
define damaged areas
for a WP moving
freely beneath the DS.
WP SCC or rupture
may occur, degrading
internals
.Fragility analysis for
rupture of DS plates.
WP damage defined
by 2-D calcs for WP
surrounded by rubble
DS Failure,,
MDL-WIS-PA-000005, Figure 6.6-5
uepdriment OT Energy - urrice or uvlitan Kacloactive waste Management
LLYMSevouglan SeismicNRCTE 040408.ppt
Time
wwvw.ocrwm~doe.gov
14
EBS Evolution State 2: Rubble Accumulation
Weighted Probability
of Lithophysal
* Rubble from multiple
events is defined as the
sum of the volumes from
individual events until the
drift is full
Rockfall
MDL-WIS-PA-000003,
Figure 6-52
* Volume of rubble that fills
the drift is an epistemic
parameter [U(30,120)
m 3/m]
* DS fragility abstractions
are basedý on lithophysal
rubble volume* Abstractions for
nonlithophysal rockfali
are developed for use in
the seepage abstraction.
90
-
80
Mean Rubble Volume in
E 70
the Lithophysal Zone
60
50
MDL-WIS-PA-000005,
Figure 6.6-7(a)
20
n
0
PGV-H1 (m/s) "
bDeparitment of Energyo Office of Civilian Radioactive Waste Management
LLYMSevougianSeismlc NRCTEO040408.ppt
wvvw.ocrwm.doe.gov
15
EBS Evolution State 2:
(a)'
Drip Shield Framework Collapse
=,0.8
'Probability of DS Framework Failure
1.0 -
* Response surface for the
probability of DS framework
failure:
-
-
PGV levels of 0.2, 0.4, 1.05, 2.44, and
4.07 m~s
thickness reductions of 0, 5, 10, 13
mm for plates and structural
elements of framework
--
5mm Plate
-
": 0.6
the waste packages (always
occurs before plate failure)
15 mm Plate
----
LL
* Failureý of the DS framework
prevents kinematic motion of
-0-•
:
0.4 -------
.0
0.2..
10% rubbifiill ...........
1(a
10mm Plate
I
.
2 mm Plate
.
--......
-
-.-------------------
.. .....
-
... ...
0.0
0
1
2
3
5
4
PGV-H1 (m/s)
(b)
(D,
1.0
.--. 15 mm Plate
~0.8
---7-(b) 50%1J'Uhib he
0,0.6
'
Plate-~5mlt
A-3-0m
1f-e
2mm Plate
0.4
ca
-0+
0.2
0.0.
C.
)
4
I
5
PGV-H1 (m/s)
(c)
1.0
M, 0.8
'0 0.6
-
Static rubble loads for drifts that are
10%, 50%, and 100% filled with
lithophysal rubble
* DS is still a barrier to seepage
10.4
S.0
20.
'10.0
PGV-H1 (m/s)
iMDL-WIS-PA-000005, Figure 6.6-9
Department&of Energy . Office of Civilian Radioactive Waste Management
LLYMSevouglan Seismic NRCTEO040408.ppt
wvvw.ocrwmdoe.gov-
16
EBS State 2 SCC Damage:
* CodisposalWP probability of
SCC damage for a 17-mm thick
(Buckled DS, Degraded Internals)
0 CSNF WP probability of SCC
damage for a 17-mm thick
1.0
- 1.0
0.8
I10.6-0.8
EO
0.4-0.6
* 0.2-0.4
r0i0-0.2
0.8 -0
4-
0.4
Er
OA
M0.6-0.8
ol
- 0.4-0.6
0.8-1
0 0.2-0.4
110-0.2
-0.6 •.)
0.4
0.2 a.
0.2 a.
0.0
go0
A•0 90
00817DC_0257.ai
* Codisposal WP mean damage
area for a 17-mm thick
0.0
4.07
1oo
1.05
pG'J-"' (MIS)
ccE
2.0•
1.o05
M IS
0.4
p"A
GJ
00817DC_0256.ai
* CSNF WP mean damage area
for a 17-mm thick
6.0
5.0
E
4.0
0
A
0
0)
0
A
3.0
2.0
C
"6
CO
a)
1.0
0.0
0
1
2
3
4
5
2
MDL-WIS-PA-000005, Figures 6.6-11 and 6.6-13
LJepdrd riernn UT enrergy * urrIce O0 U'
LL_YMSevouglanSeismic.NRCTE_040408.ppt
in i'auloa[uive
• 3
PGV-H1 (mis)
PGV-H1 (m/s)
anagernenE
MDL-WIS-PA-000005. Fiaures 6.6-10 and 6.6-12
vwvuw.ocrwm.doe.gov
17
Conceptual Model for EBS Evolution
(a). Initial Configuration
Kinematic analyses
and damage catalogs
define damaged areas
for a WP moving
freely; beneath the DS.
WP SCC or rupture
may occur, degrading
internals
MDL-WIS-PA-000005, Figure 6.6-5
Dbepartmenti of Energy • office of Civilian Radioactive Waste Management
LLYMSevouglan Seismlc.NRCTEO040408.ppt
Time
W~A~
A1ocrwm.doe gov
18
EBS State 3:
Drip Shield Plate Rupture
Probability of DS Plate Rupture
(a)
1.0
I5ram Plate'
-4-
-U- lOmm plael
0,e
Ll~
.L
--
!
"
i
,I
2mm Plate |'
........ i.......(a) -10% rubble fill 0.6
0
"CO 0.4
"
Failure of the DS plate results in
complete failure as a barrier to
flow
1L 0.2
0.0
1
0
4
3
2
PGV-H1 (m/s)
5
(b)
4
4 N•
" Response surface for
probability of DS plate failure:
-
-4-- w
. 0.6
---
15 mm Plate
10 mm Plate
5mmPlate
2ram Plate
(b))50% rIbble-filI-
0
0.4-
PGV levels of 0.2, 0.4, 1.05, 2.44,
and 4.07 m/s
0.2
0.0
thicknesses of 2 mm, 5mm
10 mm, and 15 mm
2
--
4
3
PGV-H1 (m/s)
-plate
1.0
(ca
static rubble loads for drifts that
area 10%, 50%, and 100% filled
with lithophysal rubble
C--.
-
11
2
0.8
L
0.6
PltetI
-4 1-5mm
--ml- 0MMPlate
-e-2 MM Plate
C 1 .Oriub-AlefI
N 0.4
EKr>
.0
~11
2
LL 0.2rtl-i
0.
•
0.5
1
1.5
2
,
•
C
2.5
3
3.5
4
4.5
PGV-H1 (m/s)
MDL-WIS-PA-000005, Figure 6.6-8
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMSevouglanSelsmtcNRCTE O404OB.ppt
wvuvv.ocrwm.doe.gov
19
EBS State 3: WP CrackDamage
Failed DS, Degraded Internals
. 0.4-0.5
B 0.3-0.4
e Probability of SCC damage for
a 17-mm thick CSNF WP
surrounded by rubble (same
abstraction is used for the
CDSP WP)
~,0.5
o 0.2-0.3
* 0.1-0.2
0.4
* 0-0.1
0.3
cD
0.2 .0 E
2 c
-0.1 0-02
-0.0
A 6 90
l• 2.44
cmlXA
0.4 .05
-105
00817DC_0261.ai
4
= Mean damage area for a 17mm thick CSNF (or CDSP) WP
surrounded by rubble under a
failed DS at 4.07 m/s
Iy
= 0.0083948x
2
- 1.775504
0]
Bx+ 94.01.16401
--
A
j
i
(V31
..
.
....
. ....
......
. ..... ..
......
. .....
aJ)
0)
8V
0
[Abstraction also used for CSNF (or CDSP) WP
with intact internals under a buckled DS]
0
90
100
110
120
Percent of Yield Strength (%)
MDL-WIS-PA-000005, Figures 6.6-15(b) and 6.6-16(b)
n Radioactive Waste Management
www.ocrwm.doe.gov
20
EBS State 3: WP Puncture
(Failed DS, Degraded Internals)
Probability of puncture
0.___ucrfo1-
for a CSNF W P
surrounded by rubble
under a failed DS
* for
SamaCDSP
e abstraction
fo
ra. WP used
0
Dam age larea given by
a uniform distribution
U (O,
0 .1 Mi
2)
0.18
-.
-
c:
-.-
Puncture for 23-mm OCB
Data - 23-mm OCB
@
-------------------0.1 --2
i
--------------
Puncture for 17-am OCB
Data-17-mm OCB
--0.2 ----
.0.14--.-.---------......
-...
.................................
---------------------------..........
--.----. . . . . . ....................
. .-...........
. . .--------------. . . . . . . . ...
................. ........................-----7..i7..
012
-- ..................
00 01
------------
-
---....
---------.......................
0.08~~~~~~~---..................
...........
.
..............
--------.--------------
0 .0 6
0.04
..... .. . . .
0.02
0
...... .........
i .......... .................
.. . .
- -- -----------------..
..- ---------------- ......
.•-. -. . ....
. ---------. .......
..
...........
------
---------1-
021
2 2.
353
4
5
PGV-H1 (m/s)
MDL-WIS-PA 000005, Figure 6.6-17
Department of Energy Office of Civilian Radioactive Waste Management
LL YMSevouglan Seismic NRCTE_040408.ppt
i
vwvw.ocrwm.doe.gov
21
Summary of WP Damage States
* There are eight possible WP damage states and
associated abstractions:
1.
2.
3.
4.
5.
6.
7.
8.
No damage
SCC of WP under an intact DS with WP internals intact
SCC of WP under an intact DS with WP internals degraded
WP rupture under an intact DS with WPj internals degraded
SCC of WP under a buckled DS with internals intact
SCC of WP under a buckled DS with internals degraded
SCC of WP under a failed DS
WP puncture under a failed DS
* Consequences are based on the magnitude of the event
(PGV), the residual stress threshOld (RST) for Alloy 22,
and the Alloy 22 thickness for the eight modeled states
of the system at the time of the event
yepdrumrlen 01 tneryy - uriice ot%.
LLYMSevouglan-Seismic-NRCTEO04O4O8.ppt
n raoloactive waste inanagemenT
vwwwocrwm.doe.gov
22
Fault Displacement Abstraction
" The conceptual model was developed using displacement data from
known and hypothetical (generic) faults
" The fault-displacement damage abstraction is based on a
comparison of clearances between. potentially displaced EBS
components
-
Independent of component thicknesses (nominal corrosion processes
not included)
* Expected number of WPs that could fail from fault displacement is
small (the number of WPs lying on known, or generic, faults is about
214)
* Damaged area on the WP is determined by sampling a uniform
distribution with a lower bound of 0 m2 and an upper bound equal to
the WP cross sectional area
-
The same damaged area applies to all failed WPs
The resulting damage allows advective 'flow and transport
The associated drip shield is taken to be 100% damaged
O TDepartment of Energy . Office of Civilian Radioactive.Waste Management
LL YMSevougian Seismic NRCTE 040408.ppt
Nvww.ocrwA/m.doe.gov
23
Other Processes
* Seepage
-
Seepage flux is interpolated between'the intact-drift seepage flux and
the fully collapsed seepage flux as a function of rubble accumulation
in lithophysal zones
Collapsed-drift seepage fractions are used for the entire simulation
but different seepage fractions are applicable for the first 10,000 years
versus the post-I0,000-year period
Separate calculations of rubble (rockfall) accumulation for lithophysal
and nonlithophysal zones
* EBS Environment
-
WP temperature and WP relative humidity are changed after the drift
fills with rubble (small effect because rubble accumulation is slow)
* EBS Flow and Transport
-
The WP damage area fraction (sum of seismic damage and corrosion
damage) is an input to the diffusive transport and the water flux
calculations of the EBS Transport submodel
Department of Energy. Office Of Civilian Radioactive Waste Management
LLVYMSevougian-Seismic_NRCTE_040408.ppt
vvNww.ocrwnm.doe.gov
.
24
Example Results
" Lithophysal
Rubble Accumulation
* Drip Shield Plate Failure
* Waste Package Breach Fractions
- Seismic and nominal processes
- Seismic processes alone
* Waste Package Damage Area
IF
-
Crack and patch damage by both seismic and nominal
processes
-
Damage area on-a per failed WP basis (failed by cracks or
general corrosion patches or both)
.Department of Energy . Office of Civilian Radioactive Waste Management
,,.&....... to. O^,o_.. ,I..
f
o.n=,
U-N VI.eUvoU
Ugllan_•,ewcI |II•1
•iI,
U%.,-.QU. JJ ,
.wvw
.ocrWm.doe.gov
25
Lithophysal Rubble Accumulation
ai)
LAkv5.005 SM 009000_011.gsm
v5M005,StandAloneFrac_Rubble VolIAccum Lith_ RevOO.JNB
1.0:
:-o
C-
0.8
0,.6
0
0.4
75
I-
.0.21
0O.0
-
100
10000
1.000
100000
1000000
Time,(years)
DTN: MO0803TSPAPSAR.000
_________________
___________________
Department of Energy - Office of Civilian Radioactive Waste Management
LLYMSevougianSeismic_NRCTE_040408.ppt
I1'
gjr~
wwr
.owrwm.doe.gov
26
Probability of Drip Shield Plate Failure
Seismic Ground Motion
(includes general corrosion)
General Corrosion
LA_v5.005_NC_000300_0 CO.eM;
0a
LA.vS.005_SM_009000_003.gsm;
v5.005 StandAlone WAPDEG.CDFO_DSFaiLTime RevOO.JNB
(a)
1.0
1.0 -
0.8
/
-
-
-
..........
Best Estimate (9000 Values)
Average CDF (Over Epistemic Uncertainty)
0.8-
LL
:9
co 0.6
E
0.6
0.
0
0.4
2
0.4-
...............
IL
-0
0.2
0.2" .
a1-
--F
0.0 -t200,000
250,000
300,000
0.0 -
350,000
400,000
Time (years)
50,000
0
100,000
150,000
200,000
250,000
Key Points:
I
T: Time of Drip Shield Failure (years)
Key Points:
*
*
DS failure under nominal conditions by
general corrosion (GC) of Titanium Grade 7
plate
Failure times from about 270,000 to 340,000
yrs
300,000
350,000
DS failure under seismic conditions by
rubble accumulation and plate thinning by
GC
Probability of DS failure before 100,000
years is 0.0055
i
(Note: The TSPA model does not include spatial variability in drip shield failure)
Department of Energy - Office of Civilian Radioactive Waste Management
LL YMSevougian SeismicNRCTE_040408.ppt
wwvv.ocrvr.doe.gov
27
Expected Fraction of Breached Waste Packages
• By seismic processes only
(d)
LkvA 005_SM_009000ý01.9-Yr
(b)
v5 00
9 Pereentle
5tahn
Me
Median
Sth Percentile
10-
E)
tandAlan- ý
FaJLCSNj-ejsmj
amage0nlyRev01 JNS
!CSNF
I
--------------...........
-7:
C a)
a)
2
10-2 -
...........
tWU,
0)0
120)
CLa
x-a
W
U)
Mu
10-3-
3:
..........
......
........
10-40
Time (years)
400,000
600,000
800,000
1,000,000
Time (years)
By seismic and nominal processes
0
200,000
(C)
* By seismic and nominal processes
(a)
LA .v5.000 SM 00000k Ohlasin
WP FaIllCSNF Seismic_RovO3.JN5
5
0c
.0
-D 4D _
Ca,
000
W U)
LLC
00
0
200,000
400,000
600,000
800.000
1,000.000
Time (years)
MDL-WIS-PA-000005, Figure 8.3-8(c and d)[a]
Depariment of Energy - Office of Civilian Radioactive Waste Management
LLYMSevouglanSeismic_NRCTE_040408.ppt
Time (years)
MDL-WIS-PA-000005, Figure 8.3-8(a and b)[a]
ww/.ocrwmn.doe.gov
28
Breached WP Surface Area: (nominal and seismic processes)
LA_vS.005_SM 009000 011.gsm;
(a)
(a)
a)
a)
0)
CU
0)
,0)
LL~
U)
x
wJ
w
0
200.000
400,000
Time (vears)
C0L)
L
U
95th percentile
Mean
Median
5--peroente
0)LL
C
10-3.
0)0-2.
C•S.NF.patch damagei
(per failed WVP)
.....
.................I ....
..... . . .
-i I , .,
LV0>
100-4M
( ,-io-..
. ........................... 4..............
w0)~
v5.005 StandAlole Patch DamCSNFSeenicRaevG4.JI
10-1-
faldP
(pe
(D(D
2
LA 05.005_SM 009000001 Igam;
(a)
CDSP patch damage
.
(pr......
a e W . . . . ..
95th percentile
Mean
Median
5th percentile
10-1
1,000,000
Time (years)
LAk5.005 SM_09G000 O11.Usm;
LA_.005 SM 000000_011_AvgDam_Calc.g,;
45.005 Stad/•Aone Patch Da- CDSP Sam-Ic ReO4. JN0
ioo
800,000
600,000
.. ............ ....... i. . ...................... -.............................. ..... ,
......
..
........
CO10-4-
10-5
w
0
.
..
-i.......................
a)-
10--60
-
200,000
400,000
600,000
800,000
1,000,000
0
200,000.
400,000
600,000
800,000
1,000,000
Time (years)
Time (years)
MDL-WIS-PA-000005, Figures 8.3-9(a)[a], 8.3-1 0(a)[a] , 8.3-11 (a)[a], 8.3-12(a)[a]
Ut!Pd FIL
LI I tUIIL 01 CFrieryy - V IILL- O1 LI
LL-YMSevougian-Betsmic-NRCTEO040408.ppt
in t-tdUlodL1ive vvidste ridtndylem~enc
vvww.ocrwm.doe.gov
29
Summary
* Detailed damage analyses developed for degraded
states of the EBS components.
-
Intact DS analyses
-
Failed DS analyses
* Conservatism removed from the upper end of the
seismic hazard curve
* Seismic consequence abstractions for CSNFITAD
package and codisposal package, including kinematic
analyses, damage catalogs, and analyses for WP
surrounded by rubble
* Multi-realization TSPA results reflect the varying
probabilities and damage areas of the underlying
abstractions
Department.of Energy Office of Civilian Radioactive Waste Management
LLjYMSevougian SeismicNRCTE_040408.ppt
Wv.w
oc~rwm doe.gov
30
U.S.
Department
ofEnergy
I..Department
Energy Waste Management
Office of Civilian of
Radioactive
Disruptive Scenaros":
Igneous- Eruptil
.
doe.gov
www.ocrwm.
Vvvvvv.ocrwm.doe..gov
TSPA-LA Model Components for the
Volcanic EruDtio.n Modelina Case
Waste Entrainment
in Ash. Plumne
*Wind Speed
- Wind Direction.
event Probablility
-Eruption.
Characteristics
MDL-WIS-PA-000005 Rev 00
Figure 6.5-7
Department of Energy Office of Civilian Radioactive Waste, Management
LLYMSwiftStathamNRCTED040408.ppt
0o81c o15,a
w wwocrwm.doe gov
2
Distribution of Basaltic Rocks in the
Yucca Mounta in Region
Legend
ý,PýAe
B I asailts:. ::i
PlMiocene
-
MDL-WIS-PA-000005 Rev 00
Figure 6.5-1
Unknown age
7.7.caldV -0
OWho
y
.
.
,________
I,.--•r
Department.of Energy- Office of Civilian Radioactive Waste, Management
LLYMSwiftStathamNRCTE_040408.ppt
.. 1.-11W
iN ww.ocrwm.doe.gov
3
Annual Frequency of Intersection by Dike
Probabilistic Volcanic Hazard Analysis
Expert Interpretations (1996)
(a)
5
4
3
I
0
0
a_
1
0.
/L.\
I
AM
BC
GT
*5th,
50th, and 95thMean
GW
MK
CL MS
W
RC
RF
I0
4
WD
C-R
WH
I
Aggregate
(A
L)
.!...........I
"i
0-12
Annua10-10
• ey10o910-8nr0tn
Annual Frequency of Intersectibn
.
10-o
10-5
ANL-MGR-GS-000001 REV 03 ACN 01
Finur 6-lB .
Department of Energy, Office of Civilian Radioactive Waste- Management
LLYMSwiftStatham_NRCTE_040408.ppt
www .ocrwmrdoe gov
4
Volcanic Interaction with
Repository Submodel
-
-
-
-
-
d
00817DC_0014b.ai
MDL-WlS-PA-000005 Rev 00
Figure 6.5-10
Probability of Conduit Intersecting Repository Footprint
Probability of Intersecting Conduit Contacting Waste
Mean Probability of Conduit Intersecting Waste
bDeparment of Energy. Office of Civilian Radioactive Waste Management
LLYMSwlftStatham_NRCTE_040408.ppt
0.28
0.30
=
=
(1.7 x 10-8) x (0.28) x (0.30)
1.4 x 10.9 per year
www.ocrwm.doe.gov
5
Volcanic Interaction with
Repository Submodel
Not To Scale
For Illustration Only
00Q400Aj24.
Igneous Dike
ANL-MGR-GS-000003 Rev 03 Figure 5-1
ANL-MGR-GS-000003 Rev 03 Figure 6-8
U.n
Number of dikes in a swarm: 1-5 (P of I = 0.40)
Dike width: normal, mean 8 m, 9 5 th 12 m
Dike spacing: uniform, 0.5-1500 m
Number of conduits: 1-3 (P of I = 0.85)
Conduit diameter: normal, mean 15 m, 9 5 th 21 m
0.6
0.40
2
a.L
0.2
MDL-WIS-PA-000005
Rev 00 Figure 6.5-11
ANL-MGR-GS-000003 Rev 03 Table 4-1
0.0
0
2
4
6
8
Number of Waste Packages -Fit(Igneous Eruption)
LCL_
ILIIt1tathIILNUI
ICTEYY - V4I4ILI
UI %-I
LL YMSwiftStatham NRCTE 040408.ppt
)CILLIVt
MYCII11=111.
vwww.ocrwm.doe.gov
6
Atmospheric Transport of Contaminated
TeDhra Submodel (ASHPLUME)
Ash Pl,urmne
PM~
i
Ash Fail
North
•
Volcanic
Conduit*~
!i
k
A~sh Layer on Surface
••'•
Potentially
Contaminated
ou
Dike__7
•,,...;,South
18kkm
MDL-WIS-PA-000005 Rev 00
Figure 6.5-12
JI
Department of Energy -Office of Civilian Radioactive Waste, Management
LLYMSwiftStatham_NRcTE040.408.ppt
IW vwwiocrwm.doe.qov
7
Atmospheric Transport of Contaminated
Tephra Submodel - Key Parameters
Uncertainty
Type
Value(s)
Constant relating eddy diffusivity and particle
-fall time (cm 2 /s 512 )
Fixed value
400
Erupt Power
Eruptive power (W)
Aleatory
Erupt Velocity
Initial Rise Velocity (cmls)
Aleatory
Beta Dist
Column diffusion constant
Epistemic.
0.01 - 0.5 (uniform)
Dash Mean
Mean ash particle diameter (cm)
Epistemic
0.001 - 0.01 - 0.1 (log Tri.)
Dash sigma
Ash particle diameter standard deviation (log
cm)
Epistemic
0.301 - 0.903 (uniform)
D_min
Minimum waste particle diameter (cm)
Fixed value
0.0001
D_mode
Mode of waste particle diameter (cm)
Fixed-value
0.0013
D_max
Maximum waste particle diameter (cm)
Fixed value
0.2
Rhocut
Waste incorporation ratio
Fixed value
0.0
Erupt Time
Eruption duration (seconds)
Aleatory
DTN: LA0702PADE03GK.002
Wind Direction
Wind direction (degrees)
Aleatory
DTN: MO0408SPADRWSD.002
Wind Speed
Wind speed (cm/s)
Aleatory
DTN: MO0408SPADRWSD.002
Magma Partitioning
Fractional multiplier on waste mass to account
for waste-containing magma erupted in scoria
cone and lava flows
Aleatory
0.1 - 0.5 (uniform)
TSPA Parameter
Parameter Description
C
Department of Energy - Office of Civilian Radioactive Waste Management
LLYM SwiftStathamNRCTE_040408.ppt
1.0 x 109
-
1.0 x 1012 (log uniform)
4
1.0 -1.0 x-10
(uniform)
MDL-WIS-PA-000005 Rev 00
Table 6.5-4 •
wwvw.ocrwvm.doe.qov
8
Tephra Redistribution Submodel
(FAR- Fortymile Wash Ash Redistribution)
535000
Two Model Domains
1) Drainage Basin
540000
545000
550000
555000
560000
565000
570000
575000
580000
°
0,
Moiization from hill
0
slopes
Channel transport
mixing/dilution
2)
-
Alluvial Fan (RMEI
Vlocation)
Diffusion into soil
column
Channel and Divides
MDL-WIS-PA-000005 Rev 00
Figure 6.5-13
oo
i;n...'Elevation (m) "
.Low:
o
842.046[
00317DC0519..1
epartrnent of Energy - Office of Civilian Radioactive Waste Management
LL_YMSwiftStathamNRCTE_040408.ppt
"I
I
w ww.ocrwm.doeýgov
Tephra Redistribution Submodel
(continued)
ASHPLUME results calculated for a
hypothetical vent located at YM and
superimposed on FAR domain
(Example shown with wind to east)
MDL-MGR-GS-000006 Rev 00 Figure 6.3.3-2
uepartment
OT
tnergy - urrice or L.viian Kaamoactive waste management
LLYMSwiftStathamNRCTE_040408.ppt
MDL-MGR-GS-000006 Rev 00 Figure 6.3.3-9
www.ocrrWm.doe.gov
10
Tephra Redistribution Submodel
Vertical Transport of Radionuclides in Soil
Cd(z,50)/(Cdodw)
Surface transport of contaminated tephra
assumed to be instantaneous
0.0
011
0.2
C.3
0.4
0
Subsequent
vertical migration in soil
estimated assuming
bulk transport from all
processes can be represented by diffusion
(Fick's Law)
U
i-
0)
&2 C(z,t)
el'C.(Zt)
0'
Rate of transport depends on effective
diffusivity and layer thickness
Effective diffusivity constants are uncertain
parameters based on field measurements of
137Cs
Validated by comparison to data from
Chernobyl and Harwell
-.
-.TDe
L _ M....... .
....
-
fl~~dI;-~
.. ~ ~
-a
.
.LLYMSwiftStatham NRCTE_040408.ppt
4
6
t>O
.az 2 "
at
2
i
~
fl~UIUdLLjV~
l
Lt
-
vva~I.~ management
vvsteManagement
8
0
11
2
I1~
Example calculation: normalized
concentration versus depth for a divide
sample point 50 years after deposition
MDL-MGR-GS-000006 Rev 00 Figure 7.1.3-3
I
w
Vw.ocrwvm.doe.gov
11
Tephra Redistribution Submodel
Key Parameters
TSPA Parameter
Distribution
Uncertainty
Name
Parameter Description
type
Type
Value (s)
CriticalCr~tiaL~l°e--a
Slope a
moblization
fromfor
hRlsIopes
Crifical gradient
tephra
Unifom
Epistem~i
0.21-0A7
Drainage _Density a
Average drainage density for
the Fortymile Wash drainage
basin
Unrifxmm
Epistemaic
ScourDepl~a
Scour depth in Fortymrle Wash
at the fan apex
RFOIFlArea
Area of the Fortynile Wash fan
Fraction, F, of the Fortyniile
Constant
Wash fan subectto fluvial
Unifom
LChannelsa
Depth of permeable soil on
channels, L-, of the Fotynre
Wash fan (RMFEI location)
Constant
L_Dividesa
Depth of permeable soil on
divides, L•. of the Fortymile
Wash fan (RMEI location)
Uniform
Frcto._Channel-a
__________actiity
Epistemc
Dffus*ty of waste in divides,
QD:,or the Fortymile Wash fan
(RMEI location)
Uniform
bý_ililage
Tillage depth
MDL-WlS-PA-000005 Rev 00
Table 6.5-5
200 cm
102 -140 cm
__
D_Diidesa
T
0109 - 0.54
Episteric,
Unifomicrn/yr
b"
33 kin
fixed value
Difusivityof waste in
channels, D. of the Ftdymnle
Wash fan (IRMEI location)
Tephra setled density
fixed vakue
3-2
Episternic
DChannelsa
Ash Density a
20- 33 km"
Epistenric
Epistemic
0035 - 0166
I0rt1 -
9
I
Episternc
3130 - 1,50) kghm3
tmean = 1000
,fm"
stdw. dev. = 100
3
Episternic
0,65- 0.3Dmj
Tonrcated
nornul
edtt.-.kgI
Uniform
uepartmeni.OT tnergy • urnce or yLvan Kaaioacnve vvasme ivianagement
LLYMSwiftStathamNRCTE_040408.ppt
VVww.ocrwm.doe.gov
12
Biosphere SubmodeI for the
Volcanic Eruption Modeling. Case
• •
Animail
[gestio
~Subm.Odel
..
.Eruption.Case
Bios. here Dose Conversion
•5
Factors (BDCFs) for Volcanic
Eruption Case
. ,.
Ingestion pathway
External
Eue
External exposure
pathway
T
jInhalation
Accounts for high air
mass loading following
and longerterm soil stabilization
bmeeruption
h Mron
nta
-
N W841
BCMDL-WIS-PA-000005
tS
pathway
Rev 00
Figure 6.3-11-6
00817DC 0050.ai
*LJUpr
mnent of Energy Office of Civilian Radioactive Waste: Management
I13
i
LL-T MOWIROLa HaM-11M, I
CVf0408.ppt
WWW.ocrrjm.doe.gov
Fly UP