Introduzione al Corso: Che cos`e` la Linguistica - clic
by user
Comments
Transcript
Introduzione al Corso: Che cos`e` la Linguistica - clic
LINGUISTICA GENERALE E COMPUTAZIONALE, PARTE 2 Lezione 1: Cos’e’ la Linguistica Computazionale, Introduzione al corso 1 LINGUISTICA COMPUTAZIONALE • Questa seconda parte di LG&C è un’introduzione alla LINGUISTICA COMPUTAZIONALE (COMPUTATIONAL LINGUISTICS): lo studio di modelli computazionali e statistici dell’INTERPRETAZIONE del linguaggio – Normalmente distinta da CORPUS LINGUISTICS (uso di modelli computazionali e statistici x analizzare CORPORA) 2 QUESTA LEZIONE • Riassunto dei concetti rilevanti di linguistica generale • Interpretazione: quali sono i problemi? • Applicazioni di linguistica computazionale • Piano del corso Livelli di analisi linguistica – un rapido riassunto LIVELLI DI ANALISI LINGUISTICA • Fonetica e fonologia – “cat” = /k/ + /æ/ + /t/ • Parole – Parti del discorso – Morfologia • Sintassi • Semantica • Discorso 5 PARTI DEL DISCORSO • • • • • • • • • NOMI (tavolo, Simona) VERBI (camminare, mangiare, colpire) AGGETTIVI (rosso, rapido) AVVERBI (probabilmente, subito) PRONOMI (io, lui, ci) ARTICOLI (il, la, un) PREPOSIZIONI (di, a, con) CONGIUNZIONI (e, ma, o) [Italiano]: INTERIEZIONI (ahi! ) MORFOLOGIA • Le parole non sono unita’ ‘atomiche’: (in Italiano almeno) si possono quasi sempre scomporre in unita’ piu’ piccole: i MORFEMI • Un MORFEMA e’ “la minima unita’ linguistica dotata di un significato proprio” DUE ESEMPI REPURIFICARE RE- `ripetizione’ + PUR- + `privo di contaminanti’ -IFICARE `rendere’ STRUTTURA DELLE PAROLE • INGLESE: RADICE + AFFISSI – RADICE (boy) – AFFISSI (-s in boy+s) • ITALIANO: TEMA + AFFISSI – RADICE (ragazz-) – TEMA (radice + vocale tematica – e.g., ragazzo) – AFFISSI (-i in ragazz+i) SINTASSI • Words are organized in PHRASES – I put THE BAGELS in the freezer – I put THE BAGELS THAT WE HAD NOT EATEN in the freezer • Phrases are classified according to their main CONSTITUENT, or HEAD: – Noun phrases: • the bagels, the homeless old man that I tried to help yesterday • Mary, she, one of them – Verb phrases: • Mary went to the store and bought a bagel – Adjective Phrases: • John is tall / very tall / quite certain to succeed – Sentences 13 Marking Phrase Constituents • BRACKETING: – [S [NP The children] [VP ate [NP the cake]]] • TREES: AT the S N P NN S childr en V P VB D ate NP AT the NN cak e 14 Sintassi: obiettivo SINTASSI Riconoscere i costituenti Riconoscere una struttura corretta “(io) [ ][Nel mezzo del cammin di nostra vita][[ mi ritrovai][ per una selva oscura]] ” NP PP VP PP Una frase italiana con la struttura (NP PP VP PP) è corretta “[Oscura per mezzo] [nel selva] [del nostra] [mi] [ritrovai] [di cammin vita una]” ?? PP ?? NP VP ?? Una frase italiana con la struttura (?? PP ?? NP VP ??) è scorretta Sintassi SEMANTICA • Due tipi di conoscenza semantica sulle parole: – Conoscenza ‘denotazionale’ – Conoscenza ‘composizionale’ • Quattro tipi di teorie: – Referenziale – Cognitivo / mentalista • Teoria dei prototipi – Strutturale / relazionale Conoscenza denotazionale e conoscenza composizionale • Conoscenza DENOTAZIONALE: conoscenza sulla ‘parola in se’: – Il CAVALLO e’ un ANIMALE dalla lunga criniera … – (Il tipo di conoscenza tipicamente trovata nelle definizioni) • Conoscenza COMPOSIZIONALE: conoscenza sul come la parola si combina con altre parole CONOSCENZA COMPOSIZIONALE • Dal punto di vista composizionale si possono fare almeno due distinzioni : – Tra PREDICATI ed ARGOMENTI – Tra parole FUNZIONALI e parole ‘CONTENUTO’ PREDICATI ED ARGOMENTI PREDICATO Maria ha noleggiato una macchina ARGOMENTI Discourse • Anaphora – John arrived late. He always does that. – My car didn’t start this morning. There was some problem with the engine fan. • Discourse relations: – My car didn’t start this morning BECAUSE there was some problem with the engine fan. NLE 21 Dave Bowman: “Open the pod bay doors, HAL” HAL 9000: “I’m sorry Dave. I’m afraid I can’t do that.” LA LINGUISTICA COMPUTAZIONALE NEL 2014: DOVE DOVREMMO ESSERE .. Amer. Good afternoon, Hal. How's everything going? Hal. Good afternoon, Mr Amer. Everything is going extremely well. Amer. Hal, you have an enormous responsibility on this mission, in many ways perhaps the greatest responsibility of any single mission element. You are the brain and central nervous system of the ship, and your responsibilities include watching over the men in hibernation. Does this ever cause you any - lack of confidence? Hal. Let me put it this way, Mr Amer. The 9000 series is the most reliable computer ever made. No 9000 computer has ever made a mistake or distorted information. We are all, by any practical definition of the words, foolproof and incapable of error. Amer. Hal, despite your enormous intellect, are you ever frustrated by your dependence on people to carry out actions? Hal. Not in the slightest bit. I enjoy working with people. I have a stimulating relationship with Dr Poole and Dr Bowman. My mission responsibilities range over the entire operation of the ship, so I am constantly occupied. I am putting myself to the fullest possible use, which is all, I think, that any conscious entity can ever hope to do. 2004/05 ANLE 23 … E DOVE SIAMO • A Febbraio del 2011 il sistema WATSON sviluppato da IBM ha vinto a Jeopardy! Battendo tre dei piu’ noti campioni del passato – http://www.youtube.com/watch?v=otBeCmpEKTs 2011/12 ELN 24 Modelli di interpretazione nella linguistica computazionale INTERPRETAZIONE: IL MODELLO A ‘PIPELINE’ PREPROCESSING LEXICAL PROCESSING SYNTACTIC PROCESSING DISCOURSE PROCESSING SEMANTIC PROCESSING NLE 26 INTERPRETAZIONE: IL MODELLO A PIPELINE When did Watson won Jeopardy? PREPROCESSING POS TAGGING / WORDSENSE LEXICAL PROCESSING SYNTACTIC PROCESSING PREDICATE/A RGUMENT TOKENIZATION DISCOURSE ANAPHORA IDENTIFY PHRASES NLE SEMANTIC PROCESSING 27 LA STRUTTURA DI WATSON TOKENIZZAZIONE C’ERA UNA VOLTA UN PEZZO DI LEGNO. C’ERA | UNA | VOLTA | UN | PEZZO | DI | LEGNO. | C’ | ERA | UNA | VOLTA | UN | PEZZO | DI | LEGNO |.| PARTI DEL DISCORSO Television/NN has/HVZ yet/RB to/TO work/VB out/RP a/AT living/RBG arrangement/NN with/IN jazz/NN ,/, which/VDT comes/VBZ to/IN the/AT medium/NN more/QL as/CS an/AT uneasy/JJ guest/NN than/CS as/CS a/AT relaxed/VBN member/NN of/IN the/AT family/NN ./. ANALISI SINTATTICA CON CONTEXT-FREE GRAMMARS The cat sat on the mat S NP VP Det the N cat PP V sat Prep on LING 2000 - 2006 NP Det the NLP N mat 36 Processing Steps, IV: Semantic Processing • John went to the book store. John store1, go(John, store1) • John bought a book. buy(John,book1) • John gave the book to Mary. give(John,book1,Mary) • Mary put the book on the table. put(Mary,book1,table1) LING 2000 - 2006 NLP 37 DOVE STA IL PROBLEMA? • Rumore (typos, linguaggio sgrammaticato, etc) • Ambiguità • Il ruolo del senso comune BAD ENGLISH (E ITALIANO) ON THE WEB CHINGLISH: To take notice of safe: The slippery are very crafty (“Take care, slippery”) Note that the level of gap (“Mind the gap”) LANGUAGE CHANGE: I brought two apple's Black is different to white SPAM: Buongiorno sono sempre in attesa delle vostre informazioni affinché possa rapidamente le trasmetta al mio avvocato perché possa rapidamente fare l’analisi della vostra cartella più rapidamente che il possibile. Grazie rapidamente di me gli inviati. AMBIGUITA’ NELLA CLASSIFICAZIONE GRAMMATICALE • Molte forme di parola possono essere associate con parti del discorso diverse: – STATO sia sostantivo (LO STATO ITALIANO) che verbo (NON SONO STATO IO) AMBIGUITA’ DI PARTE DEL DISCORSO: LEGGE1 1 Norma, espressa dagli organi legislativi dello Stato, che stabilisce diritti e doveri dei cittadini Legge delega, che viene emessa dal potere esecutivo su delega del potere legislativo entro un ambito ben precisato Legge ponte, emessa in attesa di un'altra più organica A norma, a termini di legge, secondo ciò che la legge prescrive. 2 (est.) Complesso delle norme costituenti l'ordinamento giuridico di uno Stato: la legge è uguale per tutti Essere fuori della legge, non essere garantito dalla legge o non sentirsi a essa soggetto Dettar legge, imporre a tutti la propria volontà. 3 Scienza giuridica: laurea in legge; dottore in legge; facoltà di legge Uomo di legge, specialista nella scienza giuridica. 4 Autorità giudiziaria: ricorrere alla legge In nome della legge, formula con cui i rappresentanti dell'autorità giudiziaria intimano a qc. di obbedire a un comando della stessa: in nome della legge, aprite! 5 (est.) Ogni norma che regola la condotta individuale o sociale degli uomini: le leggi della società. 6 (est.) Regola fondamentale di una tecnica, di un'arte e sim.: le leggi della pittura. 7 Relazione determinata e costante fra le quantità variabili che entrano in un fenomeno: le leggi della matematica, della fisica. LEGGE2 leggere v. tr. (pres. io lèggo, tu lèggi; pass. rem. io lèssi, tu leggésti; part. pass. lètto) 1 Riconoscere dai segni della scrittura le parole e comprenderne il significato: imparare, insegnare a leggere; leggere a voce alta (ass.) Fare lettura, dedicarsi alla lettura: trascorro gran parte della giornata leggendo. 2 Interpretare certi segni convenzionali o naturali: i ciechi leggono con le dita; leggere un diagramma (fig.) Leggere la mano, ricavare dati sul carattere e sul destino di qc. basandosi sulle linee della mano. 3 (lett.) Interpretare uno scritto, un passo: i critici dell'Ottocento leggevano erroneamente questa strofa (est.) Interpretare, valutare scritti, eventi e sim. secondo particolari criteri: leggere un film in chiave ironica. 4 (fig.) Intuire i pensieri e le intenzioni di qc.: gli si legge il terrore sul volto. STATISTICHE SULL’AMBIGUITA’ NEL B.C. Unambiguous (1tag) 35,340 Ambiguous (2-7 tags) 4,100 2 tags 3,760 3 tags 264 4 tags 61 5 tags 12 6 tags 2 7 tags 1 (“still”) Part of Speech Tagging and Word Sense Disambiguation • [verb Duck ] ! [noun Duck] is delicious for dinner • I went to the bank to deposit my check. I went to the bank to look out at the river. I went to the bank of windows and chose the one dealing with last names beginning with “d”. Syntactic Disambiguation • Structural ambiguity: S NP I S VP V NP NP VP made her V duck I VP V NP made det N her duck Semantics Same event - different sentences John broke the window with a hammer. John broke the window with the crack. The hammer broke the window. The window broke. LING 2000 - 2006 NLP 46 Scope ambiguity NLE 47 IL RUOLO DEL SENSO COMUNE • Winograd (1974): – The city council refused the women a permit because they feared violence. – The city council refused the women a permit because they advocated violence NLP APPLICATIONS • Mature, everyday technology that hardly anybody notices anymore – E.g., tokenization, normalization, regular expression search • Solid technology that is intensively used but can (and is) still be improved – E.g., lemmatization; spelling correctors; IR / Web search; Speech synthesis • Used in real applications, but substantial improvements still desired – E.g., POS tagging; term extraction; summarization; speech recognition; text classification (e.g., for spam detection); sentiment analysis – Spoken dialogue systems for simple information seeking (railways, phone) • ‘Almost there’ technology – exists in prototype form – E.g., information extraction, generation systems, simple speech translation systems • Pie in the sky – Full machine translation, more advanced dialogue 2004/05 ANLE 49 Part I: Mature Technologies • Research in NLE has been going on for many years and in many forms – e.g., as part of compiler technology, information retrieval, etc. • The results of this work are a number of wellestablished technologies that are hardly considered ‘research’ anymore 2004/05 ANLE 50 Basic Word Processing TOKENISATION: StringTokenizer st = new StringTokenizer("this is a test"); while (st.hasMoreTokens()) { System.out.println(st.nextToken()); } prints out: this is a test WORD COUNTING / FREQUENCIES 2004/05 ANLE 51 Regular Expressions for Search, Validation and Parsing • Basics (e.g., search in Google) – cat OR dog – “Regular * in Java” • More advanced (e.g., regular expressions in PERL, Java, etc.) (for advanced search, user input validation, etc.) – – – – – – • /[Ww]ordnet/ /colou?r/ /Mas*imo Poesio/ [a-z|A-Z]* [^A-Z] /$[0-9]+\.[0-9][0-9] Note also: SUBSTITUTION – s/colour/color/ • ELIZA: – s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ 2004/05 ANLE 52 Part II: Solid Technology that could still use improvements • Over the last ten to twenty years new applications have appeared which are by now fairly well established, but whose results are still not 100% accurate (nor is clear they ever will!) 2004/05 ANLE 53 Stemming, lemmatization and morphological analysis • Stemming: – FOXES -> FOX • Lemmatization: – 'screeching, screeches, screeched,' and 'screech' -> 'screech' +ING – 'were' -> 'be‘ +PAST • (Sometimes) used for: Information Retrieval – But: not in GOOGLE • More general morphological analysis: – Wissenschaftlichemitarbeiter -> Wissenschaft + mitarbeiter Scientific collaborator (Researcher) – Uygarlastiramadiklarimizdanmiscasina -> – Uygar +las +tir +ama +dik Civilized +BEC +CAUSE +NEGABLE +PPART – +lar +imiz +dan +mis +siniz +casina +PL +P1PL +ABL +PAST +2PL +AsIf – `(behaving) as if you are among those whom we could not civilize’ 2004/05 ANLE 54 Morphological Analysis: the Xerox tools 2004/05 ANLE 55 Word Prediction • Systems that can complete the current word / sentence (e.g., to help people with disabilities) • E.g., the Aurora System • Or textHelp! 2004/05 ANLE 56 Spelling correction • Word: – Gettin -> getting – Alway -> always – But : • olways -/-> always • Definittely -/-> definitely • Some shells: > set correct = cmd > lz /usr/bin CORRECT>ls /usr/bin (y|n|e|a)? 2004/05 ANLE 57 Part of Speech Tagging • Assign a PART OF SPEECH to each word: – ‘dog’ -> NOUN – ‘eat’ -> VERB • Book that flight VB DT NN • Applications: all over the place! – IR – IE – Translation 2004/05 ANLE 58 TEXT CLASSIFICATION: SPAM DETECTION From: "" <[email protected]> Subject: real estate is the only way... gem oalvgkay Anyone can buy real estate with no money down Stop paying rent TODAY ! There is no need to spend hundreds or even thousands for similar courses I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook. Change your life NOW ! =========================================== ====== Click Below to order: http://www.wholesaledaily.com/sales/nmd.htm =========================================== ====== Dear Hamming Seminar Members The next Hamming Seminar will take place on Wednesday 25th May and the details are as follows Who: Dave Robertson Title: Formal Reasoning Gets Social Abstract: For much of its history, formal knowledge representation has aimed to describe knowledge independently of the personal and social context in which it is used, with the advantage that we can automate reasoning with such knowledge using mechanisms that also are context independent. This sounds good until you try it on a large scale and find out how sensitive to context much of reasoning actually is. Humans, however, are great hoarders of information and sophisticated tools now make the acquisition of many forms of local knowledge easy. The question is: how to combine this beyond narrow individual use, given that knowledge (and reasoning) will inevitably be contextualised in ways that may be hidden from the people/systems that may interact to use it? This is the social side of knowledge representation and automated reasoning. I will discuss how the formal reasoning community has adapted to this new view of scale. When: 4pm, Wednesday 25 May 2011 Where: Room G07, Informatics Forum There will be wine and nibbles afterwards in the atrium café area. SENTIMENT ANALYSIS Id: Abc123 on 5-1-2008 “I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, …” SENTIMENT ANALYSIS Id: Abc123 on 5-1-2008 “I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, …” SENTIMENT ANALYSIS Id: Abc123 on 5-1-2008 “I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, …” Stylometry: Who wrote this? “On the far side of the river valley the road passed through a stark black burn. Charred and limbless trunks of trees stretching away on every side. Ash moving over the road and the sagging hands of blind wire strung from the blackened lightpoles whining thinly in the wind.” Stylometry: Who wrote this? “On the far side of the river valley the road passed through a stark black burn. Charred and limbless trunks of trees stretching away on every side. Ash moving over the road and the sagging hands of blind wire strung from the blackened lightpoles whining thinly in the wind.” Cormac McCarthy Speech Synthesis • Speech Synthesis (the automatic production of speech from text or other computerencoded source) is much easier than speech RECOGNITION and is currently a very hot area in industry • For a British example, check out Rhetorical Systems • US: AT&T 2004/05 ANLE 65 Parte 3: tecnologie più avanzate • Da tecnologie usate per anni ma ancora problematiche, a tecnologie solo disponibili in forma prototipale • (Non ci occuperemo di queste tecnologie nel corso) Speech Recognition • Speech Recognition fairly solid (and works very well for digits) – E.g., IBM’s Via Voice: • http://www4.ibm.com/software/speech/enterprise/dc enter/demo_0.html 2004/05 ANLE 68 Summarization • Summarization is the production of a summary either from a single source (singledocument summarization) or from a collection of articles (multi-document summarization) • An example is the Columbia Newblaster Machine Translation • Machine translation is one of the earliest attempts at language technology (from the ’40s) • Still mostly useful to get a quick idea of the content of a text, but can sometimes works reasonably well • An example: Newstran.com Machine Translation Machine Translation 2004/05 ANLE 72 INFORMATION EXTRACTION: REFERENCES TO (NAMED) ENTITIES SITE LOC CULTURE EXAMPLE OF IE APPLICATION: FINDING JOBS FROM THE WEB foodscience.com-Job2 JobTitle: Ice Cream Guru Employer: foodscience.com JobCategory: Travel/Hospitality JobFunction: Food Services JobLocation: Upper Midwest Contact Phone: 800-488-2611 DateExtracted: January 8, 2001 Source: www.foodscience.com/jobs_midwest.htm OtherCompanyJobs: foodscience.com-Job1 CONTENUTO DEL CORSO • Il pacchetto NLTK, implementato in Python, permette di sperimentare tecniche CL anche a chi ha poca esperienza di programmazione • Durante il corso – introdurremo Python ricapitolando gli aspetti della linguistica computazionale gia’ introdotti in IDUL – Useremo NLTK per sperimentare • POS tagging • Parsing • classificazione • Seguiremo abbastanza fedelmente il testo di Bird Klein & Loper Il Testo http://www.nltk.org/book ALTRE INFORMAZIONI • Sito: – http://clic.cimec.unitn.it/massimo/Teach/ELN/ • Esame: – Sviluppare un progettino in Python, da presentare all’orale • Ricevimento: – Su appuntamento SCARICARE Python e NLTK • Primo compito: Seguire le istruzioni a http://www.nltk.org/download