Comments
Description
Transcript
CHAPTER THREE STOICHIOMETRY Questions
CHAPTER THREE STOICHIOMETRY Questions 18. The two major isotopes of boron are lOB and liB. The listed mass of 10.81 is the average mass of a very large number of boron atoms. 19. The molecular formula tells us the actual number of atoms of each element in a molecule (or formula unit) of a compound. The empirical formula tells only the simplest whole number ratio of atoms of each element in a molecule. The molecular formula is a whole number multiple of the empirical formula. Ifthat multiplier is one, the molecular and empirical formulas are the same. For example, both the molecular and empirical formulas of water are H20. They are the same. For hydrogen peroxide, the empirical formula is OH; the molecular formula is H2 0 2 • 20. Side reactions may occur. For example, in the combustion ofCH4 (methane) to CO2 and H20, some CO is also formed. Also, some reactions only go part way to completion and reach a state of equilibrium where both reactants and products are present (see Ch. 13). Exercises Atomic Masses and the Mass Spectrometer 21. A = atomic mass = 0.7899(23.9850 amu) + 0.1000(24.9858 amu) + 0.1101(25.9826 arnu) A = 18.95 amu + 2.499 amu + 2.861 arnu = 24.31 amu 22. 0.3460(283.4 amu) + 0.2120(284.7 arnu) + 0.4420(287.8 amu) = 285.6 amu 23. A = atomic mass = 0.7553(34.96885 arnu) + 0.2447(36.96590 amu) A = 26.41 amu + 9.046 = 35.46 amu; From atomic masses in the period table, this is chlorine. 24. A = 0.0140(203.973) + 0.2410(205.9745) + 0.2210(206.9759) + 0.5240(207.9766) A = 2.86 + 49.64 + 45.74 + 109.0 = 207.2 arnu; From the periodic table, the element is Pb. 25. Letx =% of IS lEu andy=%of IS3 Eu,thenx+y= 100andy= 100-x. 151.96= x(150.9196) +(100 -x)(152.9209) 100 28 CHAPTER 3 STOICHIOMETRY 29 15196 = 150.9196 x + 15292.09 - 152.9209 x, -96 = -2.0013 x x = 48%; 48% 151Eu and 100 - 48 = 52% 153Eu 26. Let A = mass of l85 Re: 186.207 = 0.6260(186.956) + 0.3740(A), 186.207 - 117.0 = 0.3740(A) A= 27. 69.2 0.3740 = 185 amu (A = 184.95 amu without rounding to proper significant figures.) There are three peaks in the mass spectrum, each 2 mass units apart. This is consistent with two isotopes, differing in mass by two mass units. The peak at 157.84 corresponds to a Br2 molecule composed of two atoms of the lighter isotope. This isotope has mass equal to 157.84/2 or 78.92. This corresponds to 79Br. The second isotope is 81Br with mass equal to 161.84/2 = 80.92. The peaks in the mass spectrum correspond to 79Br2, 79Br81Br and 81Br2 in order of increasing mass. The intensities of the highest and lowest mass tell us the two isotopes are present at about equal abundance. The actual abundance is 50.69% 79Br and 49.31 % 81Br. The calculation of the abundance from the mass spectrum is beyond the scope of this text.. 28. Scaled Intensity Largest Peak = 100 Intensity Compound Mass H212°Te 121.92 0.09 0.3 H 2122Te 123.92 2.46 7.1 H/ 23 Te 124.92 0.87 2.5 H/ 24Te 125.92 4.61 13.4 H 2125Te 126.92 6.99 20.3 H/ 26Te 127.92 18.71 54.3 H 2128Te 129.92 31.79 92.2 H 2130Te 131.93 34.48 100.0 100 50 O---l------1~-----1r_....I...-_+-....L---+--_+--__+--____r 122 124 126 128 130 132 134 CHAPTER 3 30 STOICIllOMETRY Moles and Molar Masses 29. When more than one conversion factor is necessary to determine the answer, we will apply the conversion factors into one calculation instead of determining intermediate answers. This method reduces round-off error and is a time saver. 500. atoms Fe x 30. 500.0 g Fe x 464 x 10.20 g Fe I mol Fe x 55.85 g Fe =. 23 mol Fe 6.022 x 10 atoms Fe I mol Fe = 8.953 mol Fe 55.85 g Fe 23 8.953 mol Fe x 6.022 x 10 atoms Fe = 5.391 x 1024 atoms Fe mol Fe 31 . 23 100 x 1022 atoms C . carat x 0.200gC x ImolC x 6.022x10 atomsC =. 100 12.01 g C mol C carat 32. 21 5.0 x 10 atoms C x I mol C _) = 8.3 x 10 mol C 23 6.022 x 10 atoms C 8.3x 1O-3 mo lCx 12.01gC =O.IOgC molC 33. A1 20 3 : 2(26.98) + 3(16.00) = 101.96 g/mol Na3AIF6: 3(22.99) + 1(26.98) + 6(19.00) = 209.95 glmol 34. HFC - 134a, CH2FCF3 : 2(12.01) + 2(1.008) + 4(19.00) = 102.04 glmol HCFC-124, CHCIFCF): 2(12.01) + 1(1.008) + 1(35.45) + 4(19.00) = 136.48 glmol 35. a. NH3 : 14.01 glmol + 3(1.008 g/mol) = 17.03 glmol b. N2H4: 2(14.01) + 4(1.008) = 32.05 glmol 36. 37. c. (NH4)2Cr207: 2(14.01) + 8(1.008) + 2(52.00) + 7(16.00) = 252.08 glmol a. PP6: 4(30.97 glmol) + 6(16.00 glmol) = 219.88 glmol b. CalP04)2: 3(40.08) + 2(30.97) + 8(16.00) = 310.18 glmol c. N~HP04: a. 1.00 g NH) x 2(22.99) + 1(1.008) + 1(30.97) + 4(16.00) = 141.96 glmol I molNH3 17.03 gNH3 = 0.0587 mol NH) CHAPTER 3 38. 39. STOICHIOMETRY 1 mol N 2H4 b. 1.00 g N 2H4 X c. 1.00 g (NH4)2CrP7 x a. 1.00 g P40 6 x b. 1.00 g CaiP04)2 x c. 1.00 g Na2HP0 4 x a. 5.00 mol NH3 x 32.05 gN 2H4 = 0.0312 mol N 2H4 -3 I mol (NH4)2 Cr20 7 _ - 3.97 x 10 mol (NH4)2CrP7 252.08 g (NH4)2Cr207 1 mol PO 4_6 219.88 g b. 5.00 mol N 2H4 x c. 31 = 4.55 x 10-3 mol P40 6 1 mol Ca3(PO ) 42 = 3.22 310.18g I X moIN~HPO 4 = 7.04 141.96 g 17.03 g NH4 molNH3 = X 10-3 mol Ca3(P04)2 10-3 mol N~HP04 85.2 g NH3 32.05 gN 2H4 = 160. g N 2H4 molN 2H4 5.00 mol (NH4)2CrP7 x 252.08 g (NH4)2Cr207 mol (NH4)2Cr207 40. 41. a. 5.00 mol P40 6 x 219.88 g = 1.10 mol P40 6 b. 5.00 mol Ca3(P0 4)2 x c. 5.00moIN~HP04x X 103 g PP6 310.18 g = 1.55 mol Ca3(P04)2 141.96g moIN~HP04 = 1260 g (NH4)2CrP7 X 103 g CaiP04)2 =7.IOxI02gN~HP04 Chemical formulas give atom ratios as well as mol ratios. a. 5.00 mol NH 3 x 1 mol N x 14.01 gN = 70.1 g N molNH3 molN b. 5.00 mol N 2H4 x 2 mol N x 14.01 g N = 140. g N mol N2H4 mol N 42. c. 5.00 mol (NH4)2Cr20 7 x a. 5.00mo1PP6x 2 mol N x 14.01 g N = 140. g N mol (NH4)2Cr207 mol N 4molP x 30.97gP=619gP mol P40 6 mol P CHAPTER 3 32 43. c. 5.00 mol N~HP04 x a. 1.00 g NH3 1 mol P x 30.97 g P mol N~HP04 mol P - 155 g P 1 mol NH X 3 x 17.03 gNH3 1 mol N zH4 b. 1.00 g N 2H4 X c. 1.00 g (NH4)2Cr207 x 32.05 g N 2H 4 6.022 x 10z3 molecules NH 3 = 3.54 X 1 mol (NH4)2Cr207 6.022 x 1023 formula units (NH4)2CrP7 x -------------- mol (NH4)2Cr207 2.39 x 1021 formula units (NH4)2Cr207 23 I mol P40 6 x 6.022 x 10 molecules 219.88g molP 0 4 6 = 2.74 x 1021 molecules P 0 4 6 a. 1.00gPP6 b. 1 mol Ca3(P04)2 6.022 x 1023 formula units 1.00 g CaiP04)2 x 310.18 g x mol Ca (P0 )2 3 4 = c. 1.00 g N~HP04 x 1.94 X 1021 formula units C~(P04)2 mol N~HP04 6.022 x ]023 formula units 141.96 g x mol Na HP0 2 4 = 4.24 45. 46. ]022 molecules NH3 22 6.022 x 1023 molecules N zH4 = 1.88 x 10 molecules N 2H 4 mol N 2H4 = x X molNH3 252.08 g (NH4)2CrP7 44. STOICHIOMETRY x 1021 formula units Na2HP0 4 Using answers from Exercise 43: a. 22 3.54 x 10 molecules NH3 x 1 atom N 22 = 3.54 x 10 atoms N molecule NH3 b. 22 1.88 x 10 molecules N 2H4 x c. 1Units ' (NH4)2Cr207 x 2.39 x 102 formula 2 atoms N 22 = 3.76 x 10 atoms N molecule N 2H 4 2 atomsN 21 = 4.78 x 10 atoms N formula unit (NH4)2Cr207 Using answers from Exercise 44: a. 21 2.74 x 10 molecules P40 6 x 4 atoms P 22 = 1.10 x 10 atoms P molecule P40 6 b. 1umts ' Ca (P0 )2 x 1.94 x 102 formula 3 4 2 atoms P 21 = 3.88 x 10 atoms P formula unit Ca3(P04)2 CHAPTER 3 c. 47. STOICHIOMETRY 4.24 x 1021 formula units N~HP04 x 2.839 50. 1g x 1 mol = 2.839 x 10.3 mol 1000mg 176.12g 23 10-3 mol x 6.022 x 10 molecules = 1.710 x 1021 molecules mol X a. 9(12.01) + 8(1.008) + 4(16.00) = 180.15 glmol b. 500. mg x 2.78 49. X 1g x 1 mol = 2.78 x 10-3 mol 1000 mg 180.15 g 23 10-3 mol x 6.022 x 10 molecules = 1.67 x 1021 molecules mol a. 100 molecules H20 x b. 100.0 g H20 c. 150 molecules O2 x a. 150.0 g FeP3 x c. a. 1.5 X ° 1 molH 2 = 1.661 6.022 x 1023 molecules H20 1 molH X ° 2 18.02 g~O b.10.OmgN02 x 51. 1 atom P = 4.24 x 1021 atoms P formula unitN~HP04 Molar mass ofC 6Hs0 6 = 6(12.01) + 8(1.008) + 6(16.00) = 176.12 glmol 500.0 mg x 48. 33 10-22 mol Hp = 5.549 mol H20 1 molO 2 = 2.491 6.022 x 1023 molecules 02 X 10-22 mol O 2 1 mol = 0.9393 mol Fe20 3 159.70 g Ig x 1 mol =2.17 x I0-4 mo IN0 2 1000 mg 46.01 g 10 16 molecules BF3 x 3.00 x 1020 molecules N 2 x 6.02 x 1 mol = 2.5 x lO's mol BF3 23 10 molecules 1 mol N 2 28.02 g N x 2 = 1.40 x 10-2 g N 2 23 6.02 x 10 molecules mol N 2 . 28.02 gN b. 3.00 x 10-3 mol N 2 x 2 = 8.41 molN 2 c. X X 10-2 g N 2 28.02 gN 1.5 x 102 mol N 2 x 2 = 4.2 x 103 g N 2 molN 2 d. 1 molecule N 2 x 6.022 X 1 mol N 2 28.02 g N x 2 1023 molecules N 2 mol N 2 = 4.653 X 10-23 g N 2 34 CHAPTER 3 1O- 1s mol N 2 x e. 2.00 f. 18.0 pmol N 2 x x g.5.0nmoIN 2 x 52. a. 28.02 gN molN2 2 = 5.60 1 mol N 1 x 10 12 2 x pmol 1 mol N 2 x 1 x 109 nmol 10- 14 g N 2 = 56.0 fg N 2 X 28.02 gN 2 = 5.04 X mol N2 28.02 gN mol N 2 STOICHIOMETRY 10- 10 g N 2 = 504 pg N 2 2=I.4 x lO- 7 gN 2 =140ng A chemical formula gives atom ratios as well as mole ratios. We will use both ideas to show how these conversion factors can be used. Molar mass ofC 2Hs0 2N = 2(12.01) + 5(1.008) + 2(16.00) + 14.01 = 75.07 g/mol 1 mol C2Hs0 2N 6.022 x 1023 molecules C2H s0 2N x ----------5.00 g C2Hs0 2N x 75.07 g C2Hs0 2N mol C2Hs0 2N I atom N molecule C H x 2 ° N S 2 =4.01 22 10 atoms N x b. Molar mass of Mg3N 2 = 3(24.31) + 2(14.01) = 100.95 g/mol 5.00 g Mg3N 2 X 1 mol Mg3N 2 X 6.022 x 1023 formula units Mg3N 2 100.95 g Mg3N 2 2 atoms N X ---- mol Mg3N 2 mol Mg3N 2 = 5.97 c. Molar mass ofCa(N03)2 = 40.08 + 2(14.01) + 6(16.00) = 164.10 g/mol 5.00 g Ca(N03)2 x 1 mol Ca(N03)2 2 mol N x 164.10 g Ca(N03)2 6.022 x 1023 atoms N x ------- mol Ca(N03)2 mol N = 3.67 d. ° a. X 1022 atoms N Molar mass ofN20 4 = 2(14.01) + 4(16.00) = 92.02 g/mol 5.00 g N 2 53. 1022 atoms N X 4 X 1 mol N20 4 92.02 g N 20 4 X 2 mol N mol N 20 4 X 6.022 x 1023 atoms N =. 654 x 1022 at oms N mol N 14 mol C ( 12.01 g) + 18 mol H ( 1.008 g) + 2 mol N ( 14.01 g) + 5 mol molC molH molN °( 16.00 g) molO = 294.30 g/mol b. 10.0 g aspartame x 1 mol = 3.40 x 10-2 mol 294.30 g CHAPTER 3 c. STOICHIOMETRY 1.56 mol x _29_4_.3_0-=g mol d . 5 .0 mg x e. 35 = 459 g Ig I mol x 6.02 x 1000 mg 294.30 g x 23 10 molecules = I .0 x 10 19 mo Iecu I es mol The chemical formula tells us that I molecule of aspartame contains two atoms ofN. The chemical formula also says that I mol of aspartame contains two mol ofN. I mol aspartame 2 mol N 6.02 x 1023 atoms N x x ------I .2 g aspartame x 294.30 g aspartame mol aspartame mol N = 4.9 I mol x 294.30 g 6.02 x 1023 molecules mol f. 1.0 x 109 molecules x g. I molecule aspartame x 6.022 54. a. I mol x 294.30 g 1023 molecules mol x 10- 13 g or 490 fg = 4.887 x 10-22 g Molar mass = 21(12.01) + 30(1.008) + 5(16.00) = 362.45 g/mol b. 275 mg C21H300S c. x = 4.9 1021 atoms of nitrogen x 0.600 mol x Ig x x 1000mg I mol C21H300S 362.45 gC21H300S _ -4 -7.59 x 10 mol C21H300S 362.4~ g = 217 g C21H300S mo = 4.98 e. 1.00 x 109 molecules x 6.022 f. x 10 10 atoms H I mol x 362.45 g = 6.02 x 10- 13 g C21H300S 23 10 molecules mol I mol x 362.45 g = 6.019 1023 molecules mol I molecule x 6.022 x x X 10-22 g C21H300S Percent Composition 55 . mass OJ' /0 Cd = mass of Cd in I mol compound molar mass of compound CdS: %Cd = 112.4 g Cd 144.5 gCdS CdSe: %Cd = 112.4 g 19\.4 g x x x 100 100 = 77.79% Cd 100 = 58.73% Cd; CdTe: %Cd = 112.4 g 240.0 g x 100 = 46.83% Cd CHAPTER 3 36 56. STOICHIOMETRY a. C3 HPz: Molar mass = 3(12.01) + 4(1.008) + 2(16.00) = 36.03 + 4.032 + 32.00 = 72.06 g/mo1 %C= 36.03gC x 100=50.00%C; %H= 4.032gH x 100= 5.595% H 72.06 g compound 72.06 g compound %0 = 100.00 - (50.00 + 5.595) = 44.41% °or %0 = 32.00 g x 100 = 44.41% ° 72.06 g b. C4H 60 Z: Molar mass = 4(12.01) + 6(1.008) + 2(16.00) = 48.04 + 6.048 + 32.00 = 86.09 g/mol %C = 48.04 g x 100 = 55.80% C; %H = 6.048 g x 100 = 7.025% H 86.09 g 86.09 g %0 = 100.00 - (55.80 + 7.025) = 37.18% ° c. C3H3N: Molar mass = 3(12.01) + 3(1.008) + 1(14.01) = 36.03 + 3.024 + 14.01 = 53.06 g/mol %C = 36.03 g x 100 = 67.90% C; 53.06 g %N = 14.01 g 53.06 g 57. x %H = 3.024 g x 100 = 5.699% H 53.06 g 100 = 26.40% N or %N = 100.00 - (67.90 + 5.699) = 26.40% N In 1 mole ofYBazCU307, there are 1 mole ofY, 2 moles ofBa, 3 moles ofCu and 7 moles ofO. Molar mass = 1 mol Y ( 88.91 g Y) + 2 mol Ba ( 137.3 g Ba) molY molBa + 3 mol Cu ( 63.55 g cu) + 7 mol molCu Molar mass = 88.91 + 274.6 + 190.65 + 112.00 = 666.2 g/mol %Y = 88.91 g x 100 = 13.35% Y; %Ba = 274.6 g x 100 = 41.22% Ba 666.2 g 666.2 g %CU = 190.65 g 666.2 g 58. x 100 = 28.62% Cu; %0 = 112.00 g 666.2 g a. NO: %N = 14.01 gN 30.01 gNO 100 = 46.68% N x b. N02 : %N = 14.01 gN 46.01 gN0 2 c. N Z0 4 : %N = 28.02 g N 92.02 gN 20 4 d. NzO: %N = 28.02 gN 44.02 gN 20 x x 100 = 30.45% N x 100 = 30.45% N 100 = 63.65% N x 100 = 16.81% ° °(16.00 g 0) molO CHAPTER 3 59. STOICHIOMETRY 37 C SH ION4 0 2 : molar mass = 8(12.01) + 10(1.008) + 4(14.01) + 2(16.00) = 194.20 g/mol %C = 8(12.01) g C 194.20 g C gH ION40 2 x 100 = 96.08 194.20 x 100 = 49.47% C C 12 H2PIl: molar mass = 12(12.01) + 22(1.008) + 11(16.00) = 342.30 g/mol %C = __ 12---,(_12_.0_1-,-)-=g_C_ 342.30 g CI2H220t J x 100 = 42.10% C C 2HsOH: molar mass = 2(12.01) + 6(1.008) + 1(16.00) = 46.07 g/mol %C= 2(12.01)gC 46.07 g C2H sOH x 100=52.14%C The order from lowest to highest mass percentage of carbon is: sucrose (C 12 H2P11) < caffeine (CSH ION 40 2) < ethanol (C 2HsOH) 60. From results in Exercise 58: N0 2 = N 2 0 4 < NO < Np 61. There are many valid methods to solve this problem. We will assume 100.00 g of compound, then determine from the information in the problem how many mol of compound equals 100.00 g of compound. From this information, we can determine the mass of one mol of compound (the molar mass) by setting up a ratio. Assuming 100.00 g cyanocobalamin: . mol cyanocobalamm = 4.34 g Co x 1 mol Co 58.93 g Co 1 mol cyanocobalamin mol Co x --~----- = 7.36 x g cyanocobalamin = --=---=--------1 mol cyanocobalamin 62. x 10-2 mol cyanocobalamin 100.00 g x = mo Iar mass = 1360 g/mo I 7.36 x 10-2 mol' There are 0.390 g Cu for every 100.00 g offungallaccase. Assuming 100.00 g fungallaccase: mo I fiungaIIaccase =. 0 390 g Cu x 1 mol Cu 63.55 g Cu x 1mol fungallaccase - . 1 53 4 mol Cu x g fungallaccase =__1_0_0_.0_0....::g:::.....-_, x = molar mass = 6.54 1 mol fungallaccase 1.53 x 10-3 mol x x 10-3 mo I 104 g/mol Empirical and Molecular Formulas 63. a. Molar mass of CH20 = 1 mol C 12.01 g) + 2 mol H ( 1.008 g H) ( molC molH + 1 mol °( 16.00 g) molO = 30.03 g/mol CHAPTER 3 38 STOICHIOMETRY %C = 12.01 g C x 100 = 39.99% C; %H = 2.016 g H x 100 = 6.713% H 30.03 g CHp 30.03 g CHzO %0 = 16.00 gO x 100 = 53.28% 30.03 gCH20 ° or %0 = 100.00 - (39.99 + 6.713) = 53.30% b. Molar Mass of C6H I20 6 = 6(12.01) + 12( 1.008) + 6(16.00) = 180.16 g/mol %C= n.06gC x 100=40.00%; %H= 12(1.008)g x 100=6.714% 180.16 g C6H 120 6 180.16 g %0 = 100.00 - (40.00 + 6.714) = 53.29% c. Molar mass of HCzHJO z = 2(12.01) + 4(1.008) + 2(16.00) = 60.05 g/mol %C = 24.02 g x 100 = 40.00%; 60.05 g %H = 4.032 g x 100 = 6.714% 60.05 g %0 = 100.00 - (40.00 + 6.714) = 53.29% 64. All three compounds have the same empirical formula, CHzO, and different molecular formulas. The composition of all three in mass percent is also the same (within rounding differences). Therefore, elemental analysis will give us only the empirical formula. 65. a. CJ H 40 J 66. a. SNH: Empirical formula mass = 32.07 + 14.01 + 1.008 = 47.09 g 188.35 47.09 b. CH = 4.000; c. CH d. P zOs e. CHzO f. CHzO So the molecular formula is (SNH)4 or S4N4H4' b. NPCl z: Empirical formula mass = 14.01 + 30.97 + 2(35.45) = 115.88 g/mol 347.64 115.88 c. = 3.0000; Molecular formula is (NPClz)J or NJPJCI6 • COC40 4: 58.93 + 4(12.01) + 4(16.00) = 170.97 g/mol 341.94 170.97 - - = 2.0000; Molecular formula: COzCsOs d. SN: 32.07 + 14.01 = 46.08 g/mol; 184.32 = 4.000; Molecular formula: S4N4 46.08 CHAPTER 3 67. STOICHIOMETRY 39 Out of 100.0 g of the pigment, there are: 59.9gTi x ImolTi = 1.25 mol Ti; 40.lgOx ImolO =2.5ImoI0 47.88 g Ti 16.00 gO Empirical formula = Ti02 since mol 0 to mol Ti is in a 2: I mol ratio (2.51/1.25 = 2.0 I). 68. Out of 100.00 g of adrenaline, there are: 56.79 g C x 28.37 gO x I mol C = 4.729 mol C; 6.56 g H x Imol H = 6.51 mol H 12.01 g C 1.008 g H I molO = 1.773 mol 0; 8.28 g N x I mol N = 0.591 mol N 14.01gN 16.00 gO Dividing each mol value by the smallest number: 4.729 = 8.00' ~ = 11.0' 1.773 = 3.00' 0.591 = 1.00 0.591 ' 0.591 ' 0.591 ' 0.591 This gives adrenaline an empirical formula ofCsH 1l 0 3N. 69. Compound I: mass 0 = 0.6498 g HgxOy - 0.6018 g Hg = 0.0480 g 0 0.6018 g Hg x I mol Hg = 3.000 200.6 gHg 0.0480 g 0 x 1 mol 0 = 3.00 16.00 gO X X 10-3 mol Hg 10.3 mol 0 The mol ratio between Hg and 0 is 1: 1, so the empirical formula of compound I is HgO. Compound II: mass Hg = 0.4172 g HgxOy - 0.016 gO = 0.401 g Hg -3 1 mol 0 -3 1 mol Hg 0.401 g Hg x = 2.00 x 10 mol Hg; 0.016 g 0 x = 1.0 x 10 mol 0 . 200.6 g Hg 16.00 gO The mol ratio between Hg and 0 is 2: 1, so the empirical formula is Hg20. 70. 1.121 g N x 1 mol N = 8.001 14.01 g N 0.480 g C x I mol C = 4.00 12.01 g C X X 10-2 mol N; 0.161 g H x 1 mol H = 1.60 1.008 g H 10-2 mol C; 0.640 g 0 x 1 molO = 4.00 16.00 g 0 Dividing all mol values by the smallest number: 2 8.001 x 10- = 2.00; 4.00 x 10-2 1 2 1.60 x 10- = 4.00; 4.00 x 10- = 1.00 4.00 x 10-2 4.00 x 10-2 X X 10. 1 mol H 10-2 mol 0 CHAPTER 3 40 71. Out of 100.0 g compound: 30.4 g N x 1 molN = 2.17 mol N 14.01 gN %0 = 100.0 - 30.4 = 69.6% 0; 69.6 gO 2.17 = 1.00; 2.17 STOICHIOMETRY x 1 mol 0 = 4.35 mol 0 16.00 gO 4.35 = 2.00; Empirical fonnula is N02 • 2.17 The empirical formula mass ofN02 '" 14 + 2(16) = 46 g/mol. 92 g = 2.0; Therefore, the molecular fonnula is NP4' 46g 72. Out of 100.0 g, there are: 69.6gS x 1 mol S 1 molN =2.17moIS; 30.4gNx =2.17moIN 32.07 g S 14.01 gN Empirical fonnula is SN since mol values are in a I: I mol ratio. The empirical fonnula mass of SN is - 46 g. Since 184 = 4.0, then the molecular fonnula is S4N4' 46 73. Assuming 100.00 g of compound: 7.74 g H x 1 mol H I molC = 7.68 mol H; 92.26 g C x = 7.682 mol C 1.008gH 12.01 gC The mole ratio between C and H is 1: 1 so the empirical fonnula is CH. empirical fonnula mass = 12.01 + 1.008 = 13.02 g/mol = ~ = 6.00 molar mass empirical fonnula mass 13.02 molecular fonnula = (CH)6 = C6H6 74. Assuming 100.00 g of compound (mass hydrogen = 100.00 g - 49.31 g C - 43.79 gO = 6.90 g H): 49.31 g C x 43.79 g 0 x 1 mol C I mol H = 4.106 mol C; 6.90 g H x = 6.85 mol H 12.01 g C 1.008 g H 1 molO = 2.737 mol 0 16.00 g 0 Dividing alI mole values by 2.737 gives: 4.106 = 1.500' 6.85 = 2.50' 2.73 7 = 1.000 2.737 ' 2.737 ' 2.737 Since a whole number ratio is required, then the empirical fonnula is C3Hs0 2• CHAPTER 3 41 STOICHIOMETRY The empirical formula mass is: 3(12.01) + 5(1.008) +2(16.00) = 73.07 g/mol molar mass empirical formula mass 75. = ° 146.1 = 1.999', mo Iecu Iar fiormu Ia = (C3 H50) 2 2 = C 6 H 10 73.07 4 When combustion data is given, it is assumed that all the carbon in the compound ends up as carbon in CO2 and all the hydrogen in the compound ends up a hydrogen in H20. In the sample of propane combusted, the moles of C and Hare: mol C = 2.641 g CO2 1 mol CO X mol H = 1.442 g H20 x mol H mol C = 2 44.01 g CO2 x ° 1 mol C mol CO2 = 0.06001 mol C I molH 2 IH 2 x mo = 0.1600 mol H 18.02 g H20 mol H20 0.1600 = 2.666 0.06001 Multiplying this ratio by three gives the empirical formula of C3Hs. 76. This compound contains nitrogen and one way to determine the amount of nitrogen in the compound is to calculate composition by mass percent. We assume that all of the carbon in 33.5 mg CO2 came from the 35.0 mg of compound and all of the hydrogen in 41.1 mg Hp came from the 35.0 mg of compound. 3.35 x 10-2 g CO X 2 1 mol CO2 x 1 mol C x 12.01 g C = 9.14 44.01 g CO2 mol CO2 mol C 9.14x 1O- gC x 100=26.1%C 3.50 x 10-2 g compound 4.11 10-2 g H20 %H = 10-3 g C 3 %C= X X X ° 1 mol H2 x 2 mo I H x1' 008 g H = 4.60 18.02 g H20 mol ~O mol H X 10-3 g H 3 x 100 = 13.1% H 4.60 x 10- gH 3.50 x 10-2 g compound The mass percent of nitrogen is obtained by difference: %N = 100.0 - (26.1 + 13.1) = 60.8% N Now perform the empirical formula determination by first assuming 100.0 g of compound. Out of 100.0 g of compound, there are: 26.1gCx ImolC =2.17 molC; 13.1gHx ImolH =13.0moIH 12.01 g C 1.008 g H 60.8 g N x 1 mol N = 4.34 mol N 14.01 gN CHAPTER 3 42 Dividing all mol values by 2.17 gives: 2.17 = 1.00; 13 .0 2.17 2.17 = 5.99; 4.34 2.17 = STOICHIOMETRY 2.00 The empirical formula is CH6N 2 • 77. The combustion data allows determination of the amount of hydrogen in cumene. One way to determine the amount of carbon in cumene is to determine the mass percent of hydrogen in the compound from the data in the problem, then determine the mass percent of carbon by difference (100.0 - mass %H = mass %C). 42.8 mg H2 %H = ° x 1g 1000 mg 4.79 mgH 47.6 mg cumene X 2.016 g H 18.02 g H20 x 1000 mg =. 4 79 mg H g 100 = 10.1% H; %C x = 100.0 - 10.1 = 89.9% C Now solve this empirical formula problem. Out of 100.0 g cumene, we have: 89.9 g C 10.0 7.49 = 1 mol C 12.01gC x .±, 3 1.34 '" = 7.49 mol C; 10.1 g H x 1 molH 1.008gH = 10.0 mol H i.e., mol H to mol C are in a 4:3 ratio. Empirical formula = C3H4 Empirical formula mass'" 3(12) + 4(1) = 40 g/mol The molecular formula is (C3H4)3 or C9H 12 since the molar mass will be between 115 and 125 g/mol (molar mass'" 3 x 40 g/mol = 120 g/mol). 78. First, we will determine composition by mass percent: 16.01 mg CO2 %C = x 1g 1000 mg x 4.369 mgC 10.68 mg compound . mg HO 2 437 x Ig 1000 mg x 12.01 gC 44.01 g CO2 x x 1000 mg = 4.369 mg C g 100 = 40.91% C 2.016gH 18.02 g H20 X 1000mg =. 0489 mg H g %H = 0.489 mg x 100 = 4.58% H; %0 = 100.00 - (40.91 + 4.58) = 54.51% 10.68 mg So, in 100.00 g of the compound, we have: 40.91 g C x 54.51 gO x 1 mol C 12.01 g C = 3.406 mol C; ° ° 1 mol = 3.407 mol 16.00 gO 4.58 g H x 1 molH 1.008 g H = 4.54 mol H ° CHAPTER 3 43 STOICHIOMETRY Dividing by smallest number: 4.54 = 1.33 = .i. Therefore, empirical formula is C 3H40 3. 3.406 3' The empirical formula mass ofC]HP3 is'" 3(12) + 4(1) + 3(16) = 88 g. Since 176.1 88 = 2.0, then the molecular formula is C6 Ha0 6 • Balancing Chemical Equations 79. When balancing reactions, start with elements that appear in only one of the reactants and one of the products, then go on to balance the remaining elements. a. ° Fe + Oz ---+ Fez0 3 • Balancing Fe first then gives: 2 Fe + 3/2 Oz ---+ FezO]. The best balanced equation contains smallest whole numbers. To convert to whole numbers, multiply each coefficient by two which gives: 4 Fe(s) + 3 Oz (g) ---+ 2 FezOls) b. Ca + HzO ---+ Ca(OH)z + Hz; Calcium is already balanced, so concentrate on oxygen next. Balancing gives: Ca(s) + 2 HzO(l) ---+ Ca(OH)z(aq) + Hz (g). The equation is balanced. Note: Hydrogen is the most difficult element to balance since it appears in both products. It is generally easiest to save these atoms for last when balancing an equation. ° c. ° Ba(OH)z + H ZS04 ---+ BaS04 + HzO; Ba and S are already balanced. There are 6 atoms on the reactant side and in order to get 6 atoms on the product side, we will need 2 HzO molecules. The balanced equation is: Ba(OH)z(aq) + H ZS04(aq)---+ BaS04(s) + 2 HzO(l). ° Equation is balanced. Balance Fe atoms: FeZS3 + HCI ---+ 2 FeCI] + HzS Balance S atoms: FeZS] + HCI ---+ 2 FeCI] + 3 HzS There are 6 Hand 6 Cion right, so balance with 6 HCI on left: Fe 2S](s) + 6 HCI(g) ---+ 2 FeCI)(s) + 3 H2S(g). Equation is balanced. CHAPTER 3 44 c. CS 2(1) + NH3(g) ---+ STOICHIOMETRY H 2S(g) + NH 4SCN(s) C and S balanced; balance N: CS2 + 2 NH3 ---+ H 2S + NH4SCN H is also balanced. So: CSil) + 2 NH3(g) 81. 82. 83. a. Cu(s) + 2 AgN0 3(aq) ---+ ---+ H 2S(g) + NH4SCN(s) 2 Ag(s) + Cu(N03)iaq) b. Zn(s) + 2 HCl(aq) ---+ ZnCliaq) + Hig) c. Au 2SJCs) + 3 H 2(g) ---+ 2 Au(s) + 3 H 2S(g) a. 3 Ca(OH)iaq) + 2 H3POiaq) b. Al(OH)ls) + 3 HCl(aq) c. 2 AgNOJCaq) + H 2SOiaq) ---+ a. CI2H22011(S) + 12 02(g) 12 CO2(g) + 11 HP(g) b. C6H 6(1) + ---+ ---+ ---+ 6 Hp(I) + CaJCP04)is) AlCl 3(aq) + 3 Hp(l) Ag 2S04(S) + 2 HNOJCaq) J2 0ig) ---+ 6 COig) + 3 HP(g); 2 2 C6H 6(1) + 15 0ig) c. 3 2 Fe + - 02 2 d. C4H IO + ---+ ---+ Multiply by two to give whole numbers. 12 COig) + 6 HP(g) FeP3; For whole numbers: 4 Fe(s) + 3 0ig) 1.2 02 ---+ 4 CO 2+ 5 HP; 2 ---+ 2 FepJCs) Multiply by two to give whole numbers. 2 C 4H IO(g) + 13 0ig) ---+ 8 CO 2(g) + 10 HP(g) e. 2 FeO(s) + 1. 02(g) ---+ FepJCs); 2 4 FeO(s) + 02(g) 84. a. ---+ For whole numbers, multiply by two. 2 Fe20 3(s) 16 Cr(s) + 3 S8(S) ---+ 8 Cr2S3(s) Na2COb) + COig) + HP(g) b. 2 NaHCOb) ---+ c. 2 KClOb) 2 KCl(s) + 3 02(g) d. 2 Eu(s) + 6 HF(g) ---+ ---+ 2 EuFb) + 3 Hig) CHAPTER 3 85. a. 45 STOICHIOMETRY Si02(s) + C(s) Si(s) + CO(g) ~ Balance oxygen atoms: Si02 + C ~ Si + 2 CO Balance carbon atoms: SiOis) + 2 C(s) ~ Si(s) + 2 CO(g) b. SiCIll) + Mg(s) ~ Si(s) + MgCI 2(s) Balance CI atoms: SiCl4 + Mg ~ Si + 2 MgCl 2 Balance Mg atoms: SiCI 4(l) + 2 Mg(s) c. N~SiF6(s) ~ + Na(s) ~ Si(s) + NaF(s) Na2SiF6 + Na ~ Si + 6 NaF Balance F atoms: Balance Na atoms: Na2 SiFis) + 4 Na(s) 86. Si(s) + 2 MgClis) ~ Si(s) + 6 NaF(s) Unbalanced equation: Balancing Ca2+, F-, and pot: On the right hand side there are 20 extra hydrogen atoms, 10 extra sulfates, and 20 extra water molecules. We can balance the hydrogen and sulfate with 10 sulfuric acid molecules. The extra waters came from the water in the sulfuric acid solution. The balanced equation is: Note: The insecticide used is PbHAs0 4 and is commonly called lead arsenate. This is not the correct name, however. Correctly, lead arsenate would be Pb3(As04)2 and PbHAs0 4 should be named lead hydrogen arsenate. 88. 2 NaCI(s) + 2 H20(l) ~ CI2(g) + H2(g) + 2 NaOH(aq) Reaction Stoichiometry 89. The stepwise method to solve stoichiometry problems is outlined in the text. Instead of calculating intermediate answers for each step, we will combine conversion factors into one calculation. This practice reduces round-off error and saves time. CHAPTER 3 46 I mol (NH4)zCrZ0 7 _ 10.8 g (NH4)2CrP7 x 4.28 x 10-2 mol (NH4)2Cr20 7 x 4.28 x 10-2 mol (NH4)2CrP7 x 4.28 X -2 4.28 x 10 mol (NH4)2CrP7 - 252.08 g I mol Cr ° 152.00 g Cr 3 x mol (NH4)zCrZ0 7 Z I mol N 28.02 g N mol N z mol (NH4)zCrZ0 7 4 mol HzO FepJCs) + 2 AI(s) 15.0 g Fe x ---+ 0.269 mol Fe x 91. 1.000 kg Al x 92. a. I mol Fez0 3 2 mol Fe I mol Al z0 3 x mol Fez0 3 101.96 g Al z0 3 1000 g Al x kg Al mol AIP3 I mol Al x =: x ° 3.09 g H20 2 mol Al 2 mol Fe x 26.98 gAl = 7.26 g Al mol Al = 13.7 g AIP3 117.49 g NH4CI04 x 3 mol Al ---+ x = 21.5 g FeP3 mol NH4CI04 3 I 5.4 g = 0.0206 mol = 0.02 I mol 2 mol NH4SCN I mol Ba(OH)/8HzO x 76.13 g NH4SCN mol NH4 SCN = 3.2 g NH4SCN 907 kg x 1000g x I molCuO x I molC x 12.01 gC x 100. gcoke ton kg 79.55 g CuO 2 mol CuO mol C 95 gC = 7.2 94. =4355g Ba(SCNMs) + 10 Hp(l) + 2 NH3(g) I mol Ba(OH)ze8HP 0.021 mol Ba(OH)2e8H20 x x mol HzO 3 mol NH4CI04 26.98 gAl Ba(OH)2e8HP(s) + 2 NH4SCN(s) I .Oton C u = 1.20 g N2 18.02 g HzO 0.269 mol Fe 159.70 g Fez0 3 x 2 mol Fe b. 6.5 g Ba(OH)2e8H20 93. 3 = 6.51 g Cr20 3 2 Fe(l) + AI 20JCs) I mol Fe = 0.269 mol Fe; 55.85 g Fe 0.269 mol Fe x z x mol (NH4)zCrp7 90. ° Z mol CrZ0 3 x Z 10-2 mol (NH4)2CrP7 x STOICHIOMETRY 1.0 x 104 kg waste x 3.0 kg NH4+ 100 kg waste x x 1000 g kg x I mol NH4+ 18.04 g NH4+ X 104 g coke I mol C H70 N z S x ---55 mol NH4+ 3 2 I 1 .I g C SH70 zN = 3.4 x 104 g tissue if all NH4+ converted mol C SH70 zN CHAPTER 3 47 STOICHIOMETRY Since only 95% of the NH4+ ions react: mass of tissue = (0.95) (3.4 95. a. x 104 g) = 3.2 X 104 g or 32 kg bacterial tissue Molar mass = 195.1 + 2(14.01) + 6(1.008) + 2(35.45) = 300.1 g/mol %Pt= 195.1g x 100=65.01%Pt; %N= 28.02g x 100=9.337%N; 300.1 g 300.1 g % H = 6.048 g 300.1 g x 100 = 2.015% H; % Cl = 70.90 g 300.1 g x 100 = 23.63% Cl 65.01% Pt; 9.337% N; 2.015% H; 23.63% Cl = 72.3 g Pt(NH3)2CI2 100. g K PtCl 4 2 x 1 mol ~PtCI4 415.1 g ~PtCI4 x _2_m_o_lK_C_l_ mol ~PtCI4 x 74.55 g KCl = 35.9 g KCl mol KCl 96. = 1.30 x 102 g aspirin Limiting Reactants and Percent Yield 97. a. Mg(s) + Iz(s) ~ Mglz(s) From the balanced equation, 100 molecules of Iz reacts completely with 100 atoms of Mg. We have a stoichiometric mixture. Neither is limiting. b. c. 150 atoms Mg x 1 molecule 12 1 atom Mg = 150 molecules Iz needed We need 150 molecules Iz to react completely with 150 atoms Mg; we only have 100 molecules 12, Therefore, 12 is limiting. 1 molecule 12 200 atoms Mg x = 200 molecules 12.; Mg is limiting since 300 molecules 12 1 atom Mg are present. CHAPTER 3 48 d. 0.16 mol Mg x 1 mol 12 1 molMg 1 mol I = 0.16 mol 12; Mg is limiting since 0.25 mol 12 are present. e. 0.14 mol Mg x f. 0.12 mol Mg x g. 6.078 g Mg x 1 mol Mg x 1 mol 12 253.8 g 12 24.31 g Mg 1 mol Mg x mol 1 = 63.46 g 12 2 2 1 molMg STOICHIOMETRY = 0.14 mol 12 needed; Stoichiometric mixture. Neither is limiting. 1 mol I 2 = 0.12 mol 12 needed; 12 is limiting since only 0.08 mol 12 are 1 mol Mg present. Stoichiometric mixture. Neither is limiting. h. 1.00gMgx 1 mol Mg 24.31 g Mg x 1 mol 12 1 mol Mg x 253.8 g 12 mol 12 =10.4g1 2 10.4 g 12 needed, but we only have 2.00 g. 12 is limiting. I. 98. From h above, we calculated that 10.4 g 12 will react completely with 1.00 g Mg. We have 20.00 g 12. 12 is in excess. Mg is limiting. 2 H2(g) + 02(g) -+ 2 HP(g) a. 50 molecules H2 x 1 molecule °2 = 25 molecules O2 2 molecules H2 Stoichiometric mixture. Neither is limiting. b. c. 100 molecules H2 x 1 molecule 02 2 molecules H2 = 50 molecules 02; O2 is limiting since only 40 molecules O2 are present. From b, 50 molecules of02 will react completely with 100 molecules ofH2. We have 100 molecules (an excess) of02. So, H2 is limiting. d. 0.50 mol H2 x e. 0.80 mol H2 x f. 1.0 g H2 X 1 mol 02 2molH2 1 mol 02 2 molH 2 = 0.25 mol 02; H2 is limiting since 0.75 mol O2 are present. = 0.40 mol 02; H2 is limiting since 0.75 mol O2 are present. 1 molH 1 molO 2 x 2 = 0.25 mol O2 2.016 g H2 2 mol H2 Stoichiometric mixture, neither is limiting. CHAPTER 3 g. 5.00 g Hz x 1 mol Hz x 2.016 g Hz 99. a. 49 STOICHIOMETRY mol Ag = 2.0 gAg moIS s =2.0gS s x x 1 molO z 2 mol Hz 32.00 g 0z x molOz 1 mol Ag = 1.9 107.9 gAg 1 mol S g =7.8 256.56 g Sg X x = 39.7 g 0z; Hz is limiting since 56.00 g Oz are present. 10-z mol Ag l0-3 moIS s From the balanced equation the required mol Ag to mol Ss ratio is 16: 1. The actual mol ratio is: z 1.9 x lO- mol Ag = 2.4 7.8 x 10-3 mol Sg This is well below the required ratio so Ag is the limiting reagent. 1.9 10- z mol Ag X 8 mol AgzS 247.9 g AgzS x x 16 mol Ag b. 1.9 10-z mol Ag X 1 mol Sg 256.56 g Sg x = 2.4 g AgzS mol AgzS x 16 mol Ag = 0.30 g Ss mol Sg 0.30 g Ss are required to react with all of the Ag present. Ss in excess = 2.0 g Ss - 0.30 g Ss = 1.7 g Ss in excess 100. a. 10.0 g Hg x 9.00 g Brz x 1 mol Hg = 4.99 200.6 gHg 1 mol Br X lO- z mol Hg ' z = 5.63 159.80 g Brz X 10-z mol Brz The required mol ratio from the balanced equation is 1 mol Brz to 1 mol Hg. The actual mol ratio is: 5.63 x lO- z mol Br = 1.13 4.99 x 10- z mol Hg This is higher than the required ratio so Hg is the limiting reagent. 4.99 x 10-z mol Hg x 1 mol HgBrz mol Hg 4.99 x IO- z mol Hg x 1 mol Brz 1 mol Hg x 360.4 g HgBrz mol HgBrz x 159.80 g Brz mol Br2 excess Brz = 9.00 g Brz - 7.97 g Brz = 1.03 g Brz = 18.0 g HgBr z produced = 7.97 g Brz reacted CHAPTER 3 50 b. STOICHIOMETRY 5.00 mL Hg x 13.6 g Hg x 1 mol Hg = 0.339 mol Hg mL Hg 200.6 g Hg 5.00 mL Br2 3.10gBr2 ImolBr2 x = 0.0970 mol Br2 mLBr2 159.80gBr2 x Br2 is limiting since the actual moles of Br2 present is well below the required 1: 1 mol ratio. 0.0970 mol Br2 x 101. 1 mol HgBr2 ---+ 103 g Ca3(P04 )2 x x 360.4 g HgBr2 mol Br2 Ca3(P04 )2 + 3 H2 S04 1.0 x mol HgBr2 = 35.0 g HgBr2 produced 3 CaS04 + 2 H3P0 4 1 mol Ca (PO) 3 4 2 = 3.2 mol Ca3(P04)2 310.18 g Ca3(P04)2 1.0 x 103 g cone. H2 S04 x 98 g H2S04 100 g cone. ~S04 x 1 mol H2S04 98.09 g H2S04 = 10. mol H2 S04 The required mol ratio from the balanced equation is 3 mol H2 S04 to 1 mol CaJCP04 )2' The 10. mol H2S04 actual ratio is: = 3.1 3.2 mol Ca3(P04)2 This is higher than the required mol ratio so CaJCP04)2 is the limiting reagent. 3.2 mol Ca3(P04 )2 x x mol Ca3(P04)2 3.2 mol Ca3(P0 4 )2 x 102. 3moiCaS04 2 mol H3P04 136.15gCaS04 mol CaS04 x mol Ca3(P04)2 97.99 g H3P04 mol H 3P04 = 1300 g CaS04 produced = 630 g H3P04 produced An alternative method to solve limiting reagent problems is to assume each reactant is limiting then calculate how much product could be produced from each reactant. The reactant that produces the smallest amount of product will run out first and is the limiting reagent. 5.00 x 106 g NH 3 5.00 x 106 g O2 X 5.00 x 106 g CH 4 1 molNH X 3 17.03 g NH 3 x 2 lHCN mo = 2.94 x 105 mol HCN 2 mol NH 3 1 mol °2 x 2 mol HCN = 1.04 x 105 mol HCN 32.00 g 02 3 mol 02 1 mol CH X 2 I HCN 4 x mo = 3.12 x 105 mol HCN 16.04 g CH4 2 mol CH4 O2 is limiting since it produces the smallest amount ofHCN. Although more product could be produced from NH 3 and CH4 , only enough O2 is present to produce 1.04 x 105 mol HCN. The mass of HCN produced is: CHAPTER 3 1.04 5.00 51 STOICHIOMETRY X X lOs mol HCN x 27.03 g HCN = 2.81 x 106 g HCN molHCN 106 g O 2 1 mol 02 X X 6 mol H 20 32.00 g 02 x 3 mol 02 18.02 g H 2 ° = 5.63 X 1 mol H 20 106 g HzO The balanced equation requires a 1: 1 mol ratio between reactants. 9.17 mol of C 2H 6 will react with all of the CI 2 present (9.17 mol). Since 9.98 mol C 2H 6 is present, then Cl 2 is the limiting reagent. The theoretical yield of C 2H sCI is: 1 mol C2H sCI 9.17 mol CI 2 x Percent yield = 64.51 g C 2H sCI mol C 2H sCI mol Cl 2 = 592 g C 2H sCI actual x 100 = 490. g x 100 = 82.8% theoretical 592 g 1.50 g C 7H6 0 3 x 2.00 g C4 H 6 0 3 x 1 mol C 7H 60 3 138.12 gC 7H6 0 3 1 molC H 4 X ° 6 3 = 1.09 X 10-2 mol C 7HP3 .= 1.96 X 102.09 g C4H 6 0 3 10- 2 mol C 4H6 0 3 C 7H 60 3 is the limiting reagent since the actual moles of C 7H 60 3 is below the required 1: 1 mol ratio. The theoretical yield of aspirin is: 1.09 x 10-2 mol C 7 H6 0 3 x % yield = 1.50 g 1.96 g 105. 6.0 g Al x x = mol C 7H6 0 3 180.15 g C9 H S0 4 x ------ mol C 9 H S0 4 = 1.96 g C9Hg04 100 = 76.5% 1 mol AI 26.98 mol AI % yield 1 mol C 9 H S0 4 x 2 mol AIBr3 2 mol Al 50.3 g x 100 = 85% 59 g x 266.68 g AIBr3 mol AIBr3 = 59 g AIBr3 52 106. CHAPTER 3 P4(s) + 6 F2(g) ~ STOICHIOMETRY 4 PF3(g); The theoretical yield ofPF 3 is: 100.0 gPF 3 (theoretical) 120. g PF3 (actual) x 78.1 g PF3 (actual) = 154 g PF 3 (theoretical) 1 mol PF3 6 mol F2 38.00 g F2 = 99.8 g F2 154 g PF 3 x 87.97 g PF x 4 mol PF x mol F2 3 3 99.8 g F2 are needed to produce an actual PF 3 yield of78.1%. Additional Exercises 107. 9.123 X 10-23 gx 6.022 x 1023 atom atom mol =' 54.94g mol The atomic mass is 54.94 amu. From the periodic table, the element is manganese (Mn). 108. a. 2(12.01) + 3(1.008) + 3(35.45) + 2(16.00) = 165.39 g/mol b. 500.0 g x d. 5.0 g C H ClP2 2 3 1 mol = 3.023 mol; 165.39 g c. . x 10-2 rna I x 165.39g = 33 . g 20 mol 23 1 mol x 6.02 x 10 molecules x 3 atoms CI 165.39 g mol molecule X = I mol CI e. 1.0 g CI x f. 500 molecules x 35.45 g x 1 mol C2H3Cl30 2 3 mol Cl I mol x 23 6.022 x 10 molecules 109. 165.39 g C2H3CI 30 2 mol C2H3Cl 30 2 165.39 g = = X 1022 atoms of chlorine 1.6 g chloral hydrate 19 1.373 x 10- g mol Empirical formula mass = 12.01 + 1.008 = 13.02 glmol; Since 104.14/13.02 = 7.998 : : : 8, then the molecular formula for styrene is (CH)s = CsHs. 2 .00 g CsHs x 110. x 5.5 925 x 1022 at oms H I mol CgHg x 8 mol H x 6.022 x 1023 atoms H =. mol H 104.14 g CgHg mol CgHg 41.98 mg CO2 x 6.45 mg Hp x 12.01 mg C = 11.46 mg C; %C = 11.46 mg x 100 = 57.85% C 44.01 mg CO2 19.81 mg 2.016 mg H = 0.722 mg H; %H = 0.722 mg x 100 = 3.64% H 18.02 mg H20 19.81 mg %0 = 100.00 - (57.85 + 3.64) = 38.51 % ° CHAPTER 3 53 STOICmOMETRY Out of 100.00 g terephthalic acid, there are: 57.85gCx ImolC =4.817moIC; 3.64gHx ImolH =3.6ImoIH 12.01 g C 1.008 g H ° = 2.407 mol 38.51 gO x I mol 16.00 gO ° 4.817 = 2.001' ~ = 1.50' 2.407 = 1.000 2.407 ' 2.407 ' 2.407 C:H:O mol ratio is 2: 1.5: I or 4:3 :2. Empirical formula: C4H30 2 Mass ofC4H30 2 III. 4(12) + 3.(1) + 2(16) = 83; :::: 166 = 2; Molecular formula: CSH6 0 4 83 Assuming 100.00 g E3Hs: mol E = 8.73 g H x I mol H x 3 mol E = 3.25 mol E 1.008 g H 8 mol H x gE I mol E = 91.27 g E , x = molar mass ofE = 28.1 g/mol; atomic mass ofE = 28.1 amu 3.25 mol E 0.483 g CuS04 x 0.272 g H20 x 0.0151 I molCuS0 4 159.62 g CuS04 I mol H2 0 18.02 g H20 mol~O = 0.00303 mol CuS04 = 0.0151 mol H20 4.98 mol H20 ----; Compound formula = CuS0 4-5H20, x = 5 I mol CuS04 0.00303 mol CuS04 lB. 2.00 xl 06 g CaCO3x 114. a. I mol CaC03 100.09 g CaC03 x I mol CaO x 56.08 g CaO -_ 1.12 x 106 g CaO mol CaC03 mol CaO Only acrylonitrile contains nitrogen. Ifwe have 100.00 g of polymer: 8.80 g N x % C3 H3N = I mol C3H3N ----=-------'----- 14.01gN x 53.06 g C3H3N ImolC 3H3N 33.3 gC H N 3_3_ 100.00 g polymer = 33.3 g C3H3N = 33.3% C3H3 N 54 CHAPTER 3 STOICHIOMETRY Only butadiene in the polymer reacts with Br2: 1 mol Br2 0.605 g Br2 x x 1 mol C4 H6 159.80 g Br2 x 54.09 g C4 H6 mol Br2 mol C4 H6 = 0.205 g C 4H6 %C 4H6 = 0.205g x 100= 17.1%C4 H6 1.20 g b. Ifwe have 100.0 g of polymer: 33.3 g C3H3N x 17.1 g C4 H6 x 1 molC 3H3N 53.06 g 1 mol C4H6 54.09 gC 4H6 49.6 g CsHs x Dividin b 0.316: g y = 0.628 mol C3H3N = 0.316 mol C 4H6 1 molCgH g 104.14 g CgH g = 0.476 mol CsHs 0.628 = 1.99' 0.316 = 1.00' 0.476 = 1.51 0.316 ' 0.316 ' 0.316 This is close to a mol ratio of 4:2:3. Thus, there are 4 acrylonitrile to 2 butadiene to 3 styrene molecules in the polymer or (A4B2S3)n' 115. 4 Al(s)+ 3 02(g) a. ---+ 1.0 mol Al x b. 2.0 mol Al x c. 0.50 mol Al x d. 64.75 g Al x e. 75.89 g Al x f. 51.28 g Al x 2 AI 20 3(s) ° 3 mol 2 = 0.75 mol 02; AI is limiting since 1.0 mol O2 is present. 4 mol Al 3 molO 2 4 molAl = 1.5 mol 02; Al is limiting since 4.0 mol O2 is present. 3 molO 2 = 0.38 mol 02; Al is limiting since 0.75 mol O2 is present. 4 mol Al 1 mol Al x 26.98 gAl 1 mol Al x 4 mol Al x 26.98 gAl 1 mol Al 26.98 gAl 3 mol 02 x °2 4 mol Al 3 mol ° 2 3 mol 4 mol Al 32.00 g 02 mol 02 x 32.00 gO mol 02 x = 57.60 g 02; Al is limiting. 2 = 67.51 g 02; Al is limiting. ° 32.00 g 2 = 45.62 g 02; Al is limiting. mol 02 CHAPTER 3 116. 55 STOICHIOMETRY a. CH4(g) + 4 S(s) b. 120. g CH4 x ~ CSll) + 2 HzS(g) or 2 CHig) + Sg(s) ~ 2 CSz(l) + 4 HzS(g) 1 mol CH4 16.04 g CH4 = 7.48 mol CH4 ; 1 mol S 120. g S x = 3.74 mol S 32.07 g S The required S to CH4 mol ratio is 4: 1. The actual S to CH4 mol ratio is: 3.74 mol S 7.48 mol CH4 = 0.500 This is well below the required ratio so sulfur is the limiting reagent. The theoretical yield ofCSz is: 3.74 mol S x I mol CS 4 mol S 76.15 g CS 2 = 2 x mol CS 2 71.2 g CS z The same amount of CS z would be produced using the balanced equation with Sg. 117. 453 g Fe x 1 mol Fe 55.85 g Fe mass % Fez0 3 = 118. a. x 1 mol Fe20 3 2 mol Fe 648 g Fe 03 2 752 gore x x 159.70 g Fe20 3 = 648 g Fep3 100 = 86.2% Mass of Zn in alloy = 0.0985 g ZnCl z x %Zn = mol Fep3 65.38 g Zn 136.28 g ZnCI 2 = 0.0473 g Zn 0.0473 gZn x 100 = 9.34% Zn; %Cu = 100.00 - 9.34 = 90.66% Cu 0.5065 g brass b. The Cu remains unreacted. After filtering, washing, and drying, the mass of the unreacted copper could be measured. 119. Assuming one mol of vitamin A (286.4 g Vitamin A): mol C = 286.4 g Vitamin A x 0.8386 g C x 1 mol C = 20.00 mol C g Vitamin A 12.01 g C mol H = 286.4 g Vitamin A x 0.1056 g H x 1 mol H g Vitamin A 1.008 g H = 30.00 mol H Since one mol of Vitamin A contains 20 mol C and 30 mol H, then the molecular formula of Vitamin A is Czo H30E. To determine E, lets calculate the molar mass ofE. 286.4 g = 20(12.01) + 30(1.008) + molar mass E, molar mass E = 16.0 g/mol From the periodic table, E = oxygen and the molecular formula of Vitamin A is CZOH 300. CHAPTER 3 56 STOICHIOMETRY Challenge Problems 120. 8SRb - - = 2.591; Assuming 100 atoms, let x = number of 8sRb atoms and 100 - x = number of 87Rb 87Rb atoms. ~ = 2.591 x = 259.1 - 2.591 x x = 259.1 = 72.15% 8sRb 100 - x ' , 3.591 0.7215 (84.9117) + 0.2785 (A) = 85.4678, A = 85.4678 - 61.26 = 86.92 amu = atomic mass of 87Rb 0.2785 121. First, we will determine composition in mass percent. We assume all of the carbon in 0.213 g CO2 came from 0.157 g of the compound and that all ofthe hydrogen in the 0.0310 g H20 came from the 0.157 g of the compound. 0.213 g CO2 X 12.01 g C 44.01 g CO2 0.0310 g H20 x = 0.0581 g C; %C = 0.0581 g C x 100 = 37.0% C 0.157 g compound 3 2.016 g H = 3.47 18.02 g H20 X 10-3 g H; %H = 3.47 x 10- g = 2.21 % H 0.157 g We get %N from the second experiment: 0.0230 g NH x 3 14.01 gN = 1.89 x 10-2 N 17.03 g NH g 3 2 %N = 1.89 x 10- g x 100 = 18.3% N 0.103 g The mass percent of oxygen is obtained by difference: %0 = 100.00 - (37.0 + 2.21 + 18.3) = 42.5% So out of 100.00 g of compound, there are: 37.0 g C x 1 mol C 1 mo1H = 3.08 mol C; 2.21 g H x = 2.19 mol H 12.01 g C 1.008 g H 18.3gNx 1 molN 1 molO =1.31moIN; 42.5g0 x =2.66moI0 14.01gN 16.00g0 Lastly, and often the hardest part, we need to find simple whole number ratios. Divide all mole values by the smallest number: 3.08 1.31 = 2.35; 2.19 = 1.67; 1.31 1.31 = 1.00; 1.31 2.66 = 2.03 1.31 Multiplying all these ratios by 3 gives an empirical formula of C7HsNP6' CHAPTER 3 122. 1.0 x 57 STOICHIOMETRY 106 kg HN0 3 X 1000 g HN03 kg HN0 3 X 1 mol HN03 63.02 g HN0 3 7 = 1.6 x 10 mol HN0 3 We need to get the relationship between moles ofHN03 and moles ofNH3 • We have to use all 3 equations. 2 mol 3 x _ _ HN0 __ 2 mol N02 3 mol N02 x 2 mol NO 4 mol NO = 16molHN03 24 molNH3 4 mol NH3 Thus, we can produce 16 mol HN0 3 for every 24 mol NH3 that we begin with: This is an oversimplified answer. In practice the NO produced in the 3rd step is recycled back into the process in the second step. 123. Total mass of copper used: 10,000 boards x (8.0 cm x 16.0 cm x 0.060 cm) x 8.96 g board cm 3 = 6.9 x lOs g Cu Amount ofCu removed = 0.80 x 6.9 x lOs g = 5.5 x lOs g Cu 5.5 x lOs g Cu x 1 mol Cu x 4 mol NH 3 63.55 g Cu 124. a. x mol Cu 17.03 g NH mol NH3 3 = 5.9 x lOs g NH3 From the reaction stoichiometry we would expect to produce 4 mol of acetaminophen for every 4 mol ofC6H s0 3N reacted. The actual yield is 3 moles of acetaminophen compared to a theoretical yield of 4 moles of acetaminophen. Solving for percent yield by mass (where M = molar mass acetaminophen): % yield = 3 mol 4mol x x M M x 100 = 75% b. The product ofthe percent yields of the individual steps must equal the overall yield, 75%. (0.87) (0.98) (x) = 0.75, x = 0.88; Step III has a % yield = 88%. CHAPTER 3 58 125. 10.00 g XCI 2 + excess CI2 ---+ 12.55 g XCI4 ; 2.55 g CI reacted with XCI 2 to form XCI 4 . XCI 4 contains 2.55 g CI and 10.00 g XCI 2 • From mol ratios, 10.00 g XCI2 must also contain 2.55 g CI; mass X in XCI 2 = 10.00 - 2.55 = 7.45 g X. 2.55 g CI x So, 3.60 X I mol CI x 1 mol XCI 2 x 1 mol X = 3.60 35.45 g CI 2 mol Cl mol XCI 2 3.60 x X 10-2 mol X 10-2 mol X must equal 7.45 g X. The molar mass of X is: 7.45 g X ------==::.......--- 126. STOICHIOMETRY 10-2 207 =-g; mol X A ' mass = 207 amu so X'IS Pb • tomlC mol X 4.000 g M 2 S3 ---+ 3.723 g M0 2 There must be twice as many mol ofM02 as mol ofM2 S3 in order to balance M in the reaction. Setting up an equation for 2 mol M02 = mol M2 S3 where A = molar mass M: 2( 4.000 g ) _ 3.723 g 8.000 _ 3.723 A + 2(16.00)' 2 A + 96.21 A + 32.00 2 A + 3(32.07) 8.000 A + 256.0 = 7.446 A + 358.2, 0.554 A = 102.2, A = 184 glmol; atomic mass = 184 amu 127. Consider the case of aluminum plus oxygen. Aluminum forms AI3+ ions; oxygen forms 0 2- anions. The simplest compound of the two elements is AIP3' Similarly we would expect the formula of any group 6A element with Al to be A1 2 X3. Assuming this, out of 100.00 g of compound there are 18.56 g Al and 81.44 g of the unknown element, X. Let's use this information to determine the molar mass of X which will allow us to identify X from the periodic table. 18.56 g Al x 1 mol Al 26.98 gAl x 3 mol X = 1.032 mol X 2 mol Al 81.44 g of X must contain 1.032 mol of X. The molar mass of X = 81.44 g X = 78.91 glmol X. 1.032 mol X From the periodic table, the unknown element is selenium and the formula is A1 2 Se3. 128. NaCI(aq) + Ag+(aq) 8.5904 g AgCI x ---+ AgCl(s); KCl(aq) + Ag\aq) ---+ AgCI(s) 1 mol AgCI x 1 mol CI- = 5.991 x 10-2 mol CI143.4 g AgCI 1 mol AgCI The molar masses of NaCI and KCI are 58.44 and 74.55 glmol, respectively. Let x = g NaCI andy= g KCI: x + Y = 4.000 g and _x_ 58.44 + - y - = 5.991 74.55 X 10-2 total mol Cl- or 1.276 x +y = 4.466 CHAPTER 3 59 STOICHIOMETRY Solving using simultaneous equations: 1.276 x + y = 4.466 - x - y = -4.000 0.276 x = 0.466, x = 1.69 g NaCI and y = 2.31 g KCl % NaCI = 1.69 g x 100 = 42.3% NaCl; % KCl = 57.7% 4.000 g 129. 1.252 g Cu x 1 mol Cu = 1.970 63.55 g Cu X 10-2 mol Cu The molar mass of Cup is 143.10 g/mol and the molar mass ofCuO is 79.55 g/mol and note that Cu 20 contains twice the mol Cu as compared to CuO. Let x = g Cu20 and y = g CuO, then x + y = 1.500 and: 2( x ) + _y_ = 1.970 143.10 79.55 X 10-2 total mol Cu or 1.112 x + y = 1.567 Solving by the method of simultaneous equations: 1.112 x + y = 1.567 -x - y = -1.500 0.112 x = 0.067 x = 0.067/0.112 = 0.60 g = mass Cup %CuP = 0.60 g = 40.%; %CuO = 100. - 40. = 60.% 1.500 g