Comments
Description
Transcript
Active and capaci faults
23 MAGGIO - VERSO UN AGGIORNAMENTO DEGLI INDIRIZZI E CRITERI PER LA MICROZONAZIONE SISMICA Faglie attive e capaci Active and capable faults P. Boncio Università “G. d’Annunzio” di Chieti-Pescara (Ud’A) [email protected] G. d’Annunzio Chieti-Pescara Definition in “Indirizi e Criteri per la Microzonazione Sismica 2008” Faglia attiva e capace Faglia per la quale esistono evidenze di ripetuta riattivazione negli ultimi 40.000 anni (parte alta del Pleistocene superiore Olocene) e capace di rompere la superficie topografica. Active and capable fault Fault with evidence of repeated reactivation during the last 40,000 years (upper part of Late Pleistocene - Holocene) and capable of rupturing the ground surface. Boncio et al. – Surface Fault Rupture Hazard (SFRH) Zoning Active normal fault In Italy… … it is known that some existing buildings or critical facilities are exposed to Surface Fault-Rupture Hazard. The 2009 L’Aquila earthquake (M 6.3) in central Italy brought back to the attention this still unsolved problem in Italian regulations. Why a PROBLEM ? The Italian regulations “Norme tecniche per le costruzioni” (NTC 08) D.M. 14 gennaio 2008 (G.U. n. 29 del 4.02.2008 suppl. ord. n° 30) 7.11.3.1 Local seismic response 7.11.3.2 Stratigraphic amplification 7.11.3.3 Topographic amplification 7.11.3.4 Liquefaction 7.11.3.5 Slope stability … and the SFRH ?? Why a PROBLEM ? Legend of: “Carta delle microzone omogenee in prospettiva sismica (LIVELLO 1)” “ … only active and capable faults recognized by experts (e.g., in scientific publications).” Working Group MS, 2008 Why a PROBLEM ? Norcia case study (Galli et al., 2005; Gruppo di Lavoro MS Norcia, 2006) Working Group MS, 2008 A “reference” document for Surface Fault-Rupture Hazard • Main purpose: prevent the construction of buildings for human occupancy on the surface trace of active faults. • The A-P EFZ Act requires the State Geologist to establish regulatory zones around the surface traces of active faults (Earthquake Fault Zones). • The EFZs vary in width. The boundaries are placed 150-200 m away from traces of major active faults; Since 1972, last revision 2007 • Local agencies must regulate most development projects (new or renewed constructions) within the zones. Before a project can be permitted, cities and counties must require a geologic investigation to demonstrate that proposed buildings will not be constructed across active faults. • If an active fault is found, a structure for human occupancy must be SET BACK from the fault, generally 50 feet (15 m), unless proven otherwise. 60 to 90 m away from well-defined, minor faults. EFZ Exceptions exist where faults are complex or not vertical. State of the art in ITALY Problems • The national regulations (i.e. NTC08) lack of specific recommendations against Surface Fault-Rupture Hazard. • In “Indirizzi e Criteri per la MS (Working Group MS, 2008)” there is not distinction between Earthquake Fault Zones and Fault Setbacks and general criteria in defining the shape and width of the zones are not explicated. Towards an improvement of “Indirizzi e Criteri per la Microzonazione Sismica” Data from world-wide normal faulting earthquakes Earthquake 1915 Avezzano, Italy M 7.0 Fault Fucino system Kinematics SRL (km) N 1915 Pleasant Valley, USA 7.6 China Mt., Tobin, Pearce, Sou Hills N 1946 Ancash, Peru 6.8 Quiches N 1950 Fort Sage Mts., USA 5.6 Fort Sage Mts. Fairview Peak West Gate 1954 Fairview Peak, USA Gold king Phillips Wash 1959 Hebgen Lake, USA 6.8 Dixie Valley 5.8(v) 21 WRZ (m) 1* - 5 (1); 1* - 40 (2) 8.85 source GG99 1* - 195 (mostly ≤ 120) (1); 750 - 1350 (2) Wa84 1* - 70 Be91 3.5(v) 0.2(v) 1* - 380 M = 5.6 – 7.6 Gi57 31.6 3.8(v) 2.9(h) 1* - 1010 (mostly ≤ 150) Ca96 10 1.1(v) 1.2(h) 1* - 85 Ca96 1* - 120 Ca96 RN 14 0.8(v) 1.7(h) 1* - 40 Ca96 N 8.5 1.0(v) 1* - 580 Ca96 LN 6.2 0.5(v) 0.8(h) N 42 2.8(v) 1* - 400 (mostly ≤ 120) (1); 1* - 705 (2) Ca96 6.1(v) 1* - 300 (mostly < 130) Wi62 NR to RN N to RN Pinarbasi, Erdogmus, Sazkoy, Muratdag 1975 Oroville, USA 5.9 Cleveland Hill 1980 Irpinia, Italy 6.9 Irpinia Notes (1) Measured in paleoseismological trenches. (2) Measured at the surf ace. (1) SR along the main range-f ront f aults. Three local FW splays 115-to-670 mlong, distant up to 50-135 m f rom MF (Pearce f ault). (2) Broad discontinuous zone of SRs parallel to MF (Pearce f ault), 4.5 km-long, in the stepover zone betw een Pearce and Sou Hills f aults (separation betw een f aults = 2.5-to-5 km). WRZ is calculated f or the 5.5 km-long Llamacorral segment on a ~1:43,500 tectonic map and a ~1:3,700 map (Fig. 2 in Be91). Local FW splay, 145 mlong, distant up to 25-30 m f rom MF (central part of the segment). Large WRZ (280-to-380 m) due to a 360 m-long (4.1% of SRL) antithetic HW splay. WRZ > 150 m f or 6.6 km (20.9% of SRL) along lef t-stepping and right-steping bif urcations f rom MF at the "Bell Canyon salient" (major geometric complexity of MF) and at the "US Highw ay 50" lef t-stepping and parallel segments; tw o local FW splays 170-to-270 m long, distant up to 305 m f rom MF. Tw o parallel ruptures, separated by 220-270 m, overlapping f or 395 m, at the souther termination of the main rupture zone. It is unclear w hich one is the MF (possible FW splay?). Probably, partial reactivation of the stepover zone betw een tw o major lef t-stepping segments. Discontinuous ruptures, mostly along lef t-stepping en echelon segments; overlapping zones betw een adjacent segments (separation ranging f rom 140 to 195 m) are not considered in calculating WRZ; WRZ is calculated f or each segment. Discontinuous ruptures; overlapping zones betw een en echelon segments (separation ranging f rom 305 to 625 m) are not considered in calculating WRZ; WRZ is calculated f or each segment. Discontinuous complex ruptures along right-stepping en echelon and/or parallel segments; maximum WRZ (580 m) f or 1.4 km-long system of 3 parallel segments (central part of SR zone). (1) SR along the main range-f ront f ault: WRZ > 120 m only f or 2.28 km (5.4 % of SRL) along lef t-stepping bif urcations f rom MF near "The Bend" (major geometric complexity of MF; i.e.,relay zone betw een northern and southern Dixie V. segments) and at the southern termination of the MF; tw o local FW splays 285-to-320 m long, distant up to 140-260 m f rom MF near "The Bend". (2) Broad discontinuous zone of SR on the piedmont of "The Bend" area (i.e., major geometric complexity of MF). WRZ > 150 m f or 1.24 km (4.7% of SRL) along sharp bend betw een northern and southern segments of the Red Canyon f ault (major geometric complexity of MF); three local FW splays 440-to-800 m-long, distant 90-to-780 m f rom MF (near the bend of Red Canyon f ault). WRZ > 130 m in broad def ormation zones at lateral terminations of major f ault segments (bif urcations f rom MF, systems of en echelon f ractures). One HW splay, 175 m-long, distant 170-to-210 m f rom MF (Akcaalan segment). Local FW splays, 170-to-190 m-long, distant 30-to-55 m f rom MF (Akcaalan segment). (1) Large WRZ (260-to-450 m) results f rom overlapping of tw o right-stepping major f ault segments (a w estern segment, f ormed by the south and northw est colinear breaks of Cl76, and an eastern segment, f ormed by the northeast break of Cl76). (2) WRZ measured individually f or the tw o rightstepping segments. Local short f ootw all crack, ~60 m-long, distant ~30 m f rom MF (south break). Kinematics = normal or normal-oblique Hebgen, Red 7.1 Main fault %SRL HW, ≤150 %SRL HW, ≤40 %SRL FW 100 100 0 98.0 (calculated for (1)) 90.6 2.2 100 94.2 2.6 95.9 95.9 0 79.1 70.2 1.4 100 95.7 0(?) 100 98.4 0 100 100 0 56.4 53.6 0 95.6 (calculated for (1)) 92.9 1.4 95.3 91.3 6.5 98.4 89.9 1.3 35.5 (1); 100 (2) 35.5 (1); 100 (2) 1.6 NL to N 42 2.75(v) 0.8 (h) 1* - 285 (mostly < 130) Ta71 N to NR 3.8 0.55(v) 1* - 450 (1); 1* - 30 (2) Cl76 N 30 1.3(v) 1* - 25 PV90 Measured in paleoseismological trenches. 100 100 0 100 not quantified 0 FW splay N 12-15 1(v) 1* - 70 Pa93, PC04 The Pisia and Shonos rupture zones occurred at or a f ew meters dow nslope of the MF. Near the f oot of an alluvial f an the Shinos rupture zone divided in a series of right-stepping en echelon f ractures w ith WRZ of ~70 m. Lost River N to NL 33.3 2.7(v) 1.0(h) 1* - 780 (mostly ≤ 140) Cr87 WRZ > 140 at major geometric complexities of MF (e.g., 1.3 km-long West Spring Block, southern section of MF, WRZ up to 780 m) and at a ~1.7 kmlong HW graben, partially reactivated in 1983, up to 240 m-w ide (northern section, Gooseberry Creek). Local FW splay, 740 m-long, distant up to 120 m f rom MF (southern section, site E of Cr87). 92.3 82.5 2.2 5.8 Kalamata N 6 0.18(v) 1* - 60 Ly88 Detailed description laking; maximum WRZ obtained f rom 1:59,000 tectonic map (Fig. 2b of Ly88). 100 ~95 0 6.3 Edgecumbe, Onepu, Rotoitipakau (preexisting) and Aw aiti, Otakiri, Te Teko, Omeheu (new ) N 21.7 (1); 16.3 (2) 2.5(v) 1* - 80 Be89 (1) obtained by summing the length of each individual f ault; (2) length of the system along the average strike. WRZ exceeds 40 m only at 5 sites along the Edgecumbe f ault. 100 not quantified (>98) 0 6.6 Aliakmon River N 30 0.18(v) 1* - 70 Ch98, Mo98 WRZ f rom 1:4,000 map in Fig. 2 of Ch98 (only part of SRL); surf ace ruptures coinciding w ith or very close to pre-existing MF scarps. 6.2 Egion N 7.2 0.03(v) 1* - 60 KD96 En echelon ruptures at the w estern termination of MF; separation betw een segments f rom 80 to 150 m. 100 FB06 WRZ f rom ~1:10,000 maps in Fig. 3 of FB06 (only part of SRL); (1) f ault is draw n w ith dextral component on map, but is said lef t in the text and photo; (2) maximum value in the northern strands. 100 1981 Corinth, Greece 6.7 Pisia, Shinos 1983 Borah Peak, USA 7.3 1986 Kalamata, Greece 1995 West Macedonia 1995 Egion, Greece 1.0(v) 18 earthquakes 7.3 Canyon, N 26.5 Width of West the Rupture Zone Yellowstone Basin Akcaalan, (WRZ) 1970 Gediz, Turkey 1987 Edgecumbe, New Zealand 59 MD (m) 7.2 Louderback Mts. 1954 Dixie Valley, USA N 36 2006 Machaze, Mozambique 7.0 2009 L'Aquila, Italy 6.3 Borah Peak 1983 M 7.3 Crone et al., 1987 BSSA Machaze Paganica, San NL (1) >15 (3040) 2.05(v) 0.7(h) 1* - 140 (2) N 13 0.12(v) 1* - 140 this paperMost constrained data along the Paganica f ault. not quantified 100 not quantified 0 not quantified 98.7 (Paganica) 0 Data from world-wide normal faulting earthquakes For simple fault traces, without major complexities: • WRZ mostly ≤ 120-150 m; • >95% of SRL with ruptures in the HW within 150 m from MF trace; • >80-90% of SRL with ruptures in the HW within 40 m from MF trace; • FW splays are not systematic features: absent or <1.5-2.5% of SRL. Zoning Surface Fault-Rupture Hazard along normal faults Boncio et al., 2012 BSSA Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Roma, aprile 2013 Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Livello 1 di MS NB: La ZAFAC rimanda obbligatoriamente al Livello 3 Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Livello 1 di MS Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Livello 3 di MS Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Livello 3 di MS ZR e Zl possono essere asimmetriche: Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Livello 3 di MS Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica Verso un aggiornamento degli Indirizzi e Criteri per la Microzonazione Sismica ... lastly • Italy lacks of official maps of active/capable faults. Official maps are required, for example, by the Eurocode 8 – Part 5 in order to build regulatory zones around active faults. Therefore, there is an urgent need of a national-scale OFFICIAL map of active/capable faults. !