Comments
Description
Transcript
Document 1239106
developerWorks® ibm.com/developerWorks/ Comparing Apache Sqoop and IBM InfoSphere Data Replication (IIDR) : Moving incremental data from relational database management system (RDBMS) into the hadoop distributed file system (HDFS) Apache® Hadoop is becoming the most popular enterprise choice for Big Data Analytics but getting your data into hadoop is a challenge. Apache® Sqoop is a utility designed to transfer data between relational databases and hadoop distributed file system. Sqoop can be used for importing data from relational databases such as (DB2/ Oracle etc.) into the hadoop distributed file system (HDFS) or exporting data from hadoop distributed file system (HDFS) back to relational databases. IBM® InfoSphere® Data Replication is a replication solution that captures database changes as they happen in relational database transaction logs and delivers them to target relational databases, message queues, Hadoop distributed file system (HDFS) or an ETL solution such as InfoSphere DataStage® based on table mappings configured in the InfoSphere Data Replication Management Console GUI application. Overview Apache Sqoop is a command-line tool for transferring data between relational databases and Hadoop. Connectors are also available for some NoSQL databases. Sqoop, similar to other ETL tools, uses schema metadata to infer data types and ensure type-safe data handling when the data moves from the source to Hadoop. In this article we will compare Sqoop with IIDR and provide guidance as to how to use the two together. Prerequisites To follow this article, basic knowledge about the following is required. IIDR replication Basic computer technology and terminology Familiarity with command-line interfaces such as bash and UNIX commands like ls/cat. Relational database management systems such as DB2/Oracle etc. Familiarity with Apache Hadoop framework and operation of Hadoop Before you can use Sqoop, a release of Hadoop must be installed and configured. If you don’t already have access to a Hadoop environment you may want to download IBM BigInsights Quick Start Edition from https://www.ibm.com/services/forms/preLogin.do?source=swg-ibmibqsevmw © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ Use Cases Apache Sqoop is designed for big data bulk transfers, it partitions data sets and creates Hadoop jobs to process each partition. Sqoop is the JDBC-based utility for integrating with traditional databases. A Sqoop Import allows for the movement of data into HDFS (a delimited format can be defined as part of the Import definition). With Sqoop, you can import data from a relational database system into HDFS. The input to the import process is a database table. Sqoop will read the table row-by-row into HDFS. The output of this import process is a set of files containing a copy of the imported table. The import process is performed in parallel. For this reason, the output will be in multiple files. These files may be delimited text files (for example, with commas or tabs separating each field), or binary Avro or SequenceFiles containing serialized record data. After manipulating the imported records (for example, with Map Reduce or Hive) you may have a result data set which you can then export back to the relational database. Sqoop export process will read a set of delimited text files from HDFS in parallel, parse them into records, and insert them as new rows in a target database table, for consumption by external applications or users. High-level architecture Apache Sqoop Import loads data from RDBMS into Hadoop distributed File System. Apache Sqoop Export picks data from hadoop distributed file system and loads into RDBMS tables. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ Incremental Import Apache Sqoop provides an incremental import mode which can be used to retrieve only newer rows than some previously imported set of rows. Sqoop provides two types of incremental import namely a) append and b) lastmodified. Usage and example of append mode You should specify append mode when importing a table where newer rows are continually being added with increasing row id values. You specify the column containing the row’s id with --check-column. Sqoop imports rows where the check column has a value greater than the one specified with --last-value. At the end of an incremental import, the value which should be specified as --last-value for a subsequent import is printed to the screen. When running a subsequent import, you should specify -last-value in this way to ensure you import only the new or updated data. This is handled automatically by creating an incremental import as a saved job, which is the preferred mechanism for performing a recurring incremental import. sqoop import \ --connect jdbc:db2://192.168.255.129:50000/cdcdb \ --username BIADMIN \ --password passw0rd \ --table TEST7 \ --m 1 \ --incremental append --check-column ID --last-value 4 --direct \ --target-dir sqoopincr [biadmin@bigdata bin]$ sqoop import --connect jdbc:db2://192.168.255.129:50000/cdcdb --username BIADMIN --password passw0rd -table TEST7 --incremental append --check-column ID --last-value 9 --target-dir sqoopincr 15/03/09 07:49:38 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 15/03/09 07:49:39 INFO manager.SqlManager: Using default fetchSize of 1000 15/03/09 07:49:39 INFO tool.CodeGenTool: Beginning code generation 15/03/09 07:49:39 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:49:39 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:49:39 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /mnt/BigInsights/opt/ibm/biginsights/IHC © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ 15/03/09 07:49:39 INFO orm.CompilationManager: Found hadoop core jar at: /mnt/BigInsights/opt/ibm/biginsights/IHC/hadoop-core.jar Note: /tmp/sqoop-biadmin/compile/3368a44b029fb4068a56ff5cd8d04a7e/TEST7.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 15/03/09 07:49:41 INFO orm.CompilationManager: Writing jar file: /tmp/sqoopbiadmin/compile/3368a44b029fb4068a56ff5cd8d04a7e/TEST7.jar 15/03/09 07:49:41 INFO tool.ImportTool: Maximal id query for free form incremental import: SELECT MAX(ID) FROM TEST7 15/03/09 07:49:41 INFO tool.ImportTool: Incremental import based on column "ID" 15/03/09 07:49:41 INFO tool.ImportTool: Lower bound value: 9 15/03/09 07:49:41 INFO tool.ImportTool: Upper bound value: 10 15/03/09 07:49:41 INFO db2.DB2ConnManager: importTable entered 15/03/09 07:49:41 INFO db2.DB2ConnManager: getPrimaryKey() tabSchema,tabName=BIADMIN,TEST7 15/03/09 07:49:41 INFO db2.DB2ConnManager: getPrimaryKey() tabSchema,tabName=BIADMIN,TEST7 15/03/09 07:49:41 INFO mapreduce.ImportJobBase: Beginning import of TEST7 15/03/09 07:49:42 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:49:43 INFO db2.DB2InputFormat: getSplits for table,mapTasks="TEST7",4 15/03/09 07:49:43 INFO db2.DB2Util: partitioning key not found for BIADMIN.TEST7 15/03/09 07:49:43 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN("ID"), MAX("ID") FROM "TEST7" WHERE ( "ID" > 9 AND "ID" <= 10 ) 15/03/09 07:49:44 INFO mapred.JobClient: Running job: job_201502271841_0022 15/03/09 07:49:45 INFO mapred.JobClient: map 0% reduce 0% 15/03/09 07:49:59 INFO mapred.JobClient: map 100% reduce 0% 15/03/09 07:50:00 INFO mapred.JobClient: Job complete: job_201502271841_0022 15/03/09 07:50:00 INFO mapred.JobClient: Counters: 18 15/03/09 07:50:00 INFO mapred.JobClient: File System Counters 15/03/09 07:50:00 INFO mapred.JobClient: FILE: BYTES_WRITTEN=213660 15/03/09 07:50:00 INFO mapred.JobClient: HDFS: BYTES_READ=101 15/03/09 07:50:00 INFO mapred.JobClient: HDFS: BYTES_WRITTEN=35 15/03/09 07:50:00 INFO mapred.JobClient: org.apache.hadoop.mapreduce.JobCounter 15/03/09 07:50:00 INFO mapred.JobClient: TOTAL_LAUNCHED_MAPS=1 15/03/09 07:50:00 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=9097 15/03/09 07:50:00 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=0 15/03/09 07:50:00 INFO mapred.JobClient: FALLOW_SLOTS_MILLIS_MAPS=0 15/03/09 07:50:00 INFO mapred.JobClient: FALLOW_SLOTS_MILLIS_REDUCES=0 15/03/09 07:50:00 INFO mapred.JobClient: org.apache.hadoop.mapreduce.TaskCounter 15/03/09 07:50:00 INFO mapred.JobClient: MAP_INPUT_RECORDS=1 15/03/09 07:50:00 INFO mapred.JobClient: MAP_OUTPUT_RECORDS=1 15/03/09 07:50:00 INFO mapred.JobClient: SPLIT_RAW_BYTES=101 15/03/09 07:50:00 INFO mapred.JobClient: SPILLED_RECORDS=0 15/03/09 07:50:00 INFO mapred.JobClient: CPU_MILLISECONDS=1040 15/03/09 07:50:00 INFO mapred.JobClient: PHYSICAL_MEMORY_BYTES=268967936 15/03/09 07:50:00 INFO mapred.JobClient: VIRTUAL_MEMORY_BYTES=1465724928 15/03/09 07:50:00 INFO mapred.JobClient: COMMITTED_HEAP_BYTES=1048576000 15/03/09 07:50:00 INFO mapred.JobClient: File Input Format Counters 15/03/09 07:50:00 INFO mapred.JobClient: Bytes Read=0 15/03/09 07:50:00 INFO mapred.JobClient: org.apache.hadoop.mapreduce.lib.output.FileOutputFormat$Counter 15/03/09 07:50:00 INFO mapred.JobClient: BYTES_WRITTEN=35 15/03/09 07:50:00 INFO mapreduce.ImportJobBase: Transferred 35 bytes in 17.8041 seconds (1.9658 bytes/sec) 15/03/09 07:50:00 INFO mapreduce.ImportJobBase: Retrieved 1 records. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ 15/03/09 07:50:00 INFO util.AppendUtils: Appending to directory sqoopincr 15/03/09 07:50:00 INFO util.AppendUtils: Using found partition 2 15/03/09 07:50:00 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments: 15/03/09 07:50:00 INFO tool.ImportTool: --incremental append 15/03/09 07:50:00 INFO tool.ImportTool: --check-column ID 15/03/09 07:50:00 INFO tool.ImportTool: --last-value 10 15/03/09 07:50:00 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create') The last successful incremental import was done when the ID column of the table has maximum value of 9. Before running the above incremental import, there was just one more record added into the table with last value 10 for the column ID. Hence, during the subsequent incremental import, it just fetches/imported only one row (newer rows) and also printed --last-value 10 to the output log. You can look at the incremental changes into the hadoop file system via following command [biadmin@bigdata bin]$ hadoop fs -ls -R sqoopincr -rw-r--r-- 1 biadmin biadmin 36 2015-03-04 10:28 sqoopincr/part-m-00000 -rw-r--r-- 1 biadmin biadmin 34 2015-03-04 10:31 sqoopincr/part-m-00001 -rw-r--r-- 1 biadmin biadmin 35 2015-03-09 07:49 sqoopincr/part-m-00002 [biadmin@bigdata bin]$ hadoop fs -cat sqoopincr/part-m-00002 10,Soma,2015-03-09 07:49:20.962439 During the incremental import, the file generated was part-m-00002 and browsing the content of that file shows that only one rows added has been imported. (last value =10). The files part-m-00000/ sqoopincr/part-m-00001 were the output of previously incremental import. For every incremental import into the HDFS, a new file gets created with only the incremental rows. Usage and example of last modified You should use this when rows of the source table may be added/updated and having a timestamp column, and each such update will set the value of a last-modified column to the current timestamp. Rows where the check column holds a timestamp more recent than the timestamp specified with --last-value are imported into the hadoop distributed file system. [biadmin@bigdata bin]$ sqoop import --connect jdbc:db2://192.168.255.129:50000/cdcdb --username BIADMIN --password passw0rd --table TEST7 --incremental "lastmodified" --check-column JOINING -last-value "2015-03-09-07.49.20.962439" --target-dir sqoopincrlastmod 15/03/09 07:55:57 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ 15/03/09 07:55:57 INFO manager.SqlManager: Using default fetchSize of 1000 15/03/09 07:55:57 INFO tool.CodeGenTool: Beginning code generation 15/03/09 07:55:57 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:55:57 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:55:57 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /mnt/BigInsights/opt/ibm/biginsights/IHC 15/03/09 07:55:58 INFO orm.CompilationManager: Found hadoop core jar at: /mnt/BigInsights/opt/ibm/biginsights/IHC/hadoop-core.jar Note: /tmp/sqoop-biadmin/compile/55cec73f5eeb4a054f5c20b9935cc589/TEST7.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 15/03/09 07:55:59 INFO orm.CompilationManager: Writing jar file: /tmp/sqoopbiadmin/compile/55cec73f5eeb4a054f5c20b9935cc589/TEST7.jar 15/03/09 07:55:59 INFO tool.ImportTool: Incremental import based on column "JOINING" 15/03/09 07:55:59 INFO tool.ImportTool: Lower bound value: '2015-03-09-07.49.20.962439' 15/03/09 07:55:59 INFO tool.ImportTool: Upper bound value: '2015-03-09 07:55:59.163688' 15/03/09 07:55:59 INFO db2.DB2ConnManager: importTable entered 15/03/09 07:55:59 INFO db2.DB2ConnManager: getPrimaryKey() tabSchema,tabName=BIADMIN,TEST7 15/03/09 07:55:59 INFO db2.DB2ConnManager: getPrimaryKey() tabSchema,tabName=BIADMIN,TEST7 15/03/09 07:55:59 INFO mapreduce.ImportJobBase: Beginning import of TEST7 15/03/09 07:55:59 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM "TEST7" AS t WHERE 1=0 15/03/09 07:56:00 INFO db2.DB2InputFormat: getSplits for table,mapTasks="TEST7",4 15/03/09 07:56:00 INFO db2.DB2Util: partitioning key not found for BIADMIN.TEST7 15/03/09 07:56:00 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN("ID"), MAX("ID") FROM "TEST7" WHERE ( "JOINING" >= '2015-03-09-07.49.20.962439' AND "JOINING" < '2015-03-09 07:55:59.163688' ) 15/03/09 07:56:01 INFO mapred.JobClient: Running job: job_201502271841_0024 15/03/09 07:56:02 INFO mapred.JobClient: map 0% reduce 0% 15/03/09 07:56:16 INFO mapred.JobClient: map 100% reduce 0% 15/03/09 07:56:17 INFO mapred.JobClient: Job complete: job_201502271841_0024 15/03/09 07:56:17 INFO mapred.JobClient: Counters: 18 15/03/09 07:56:17 INFO mapred.JobClient: File System Counters 15/03/09 07:56:17 INFO mapred.JobClient: FILE: BYTES_WRITTEN=213714 15/03/09 07:56:17 INFO mapred.JobClient: HDFS: BYTES_READ=101 15/03/09 07:56:17 INFO mapred.JobClient: HDFS: BYTES_WRITTEN=35 15/03/09 07:56:17 INFO mapred.JobClient: org.apache.hadoop.mapreduce.JobCounter 15/03/09 07:56:17 INFO mapred.JobClient: TOTAL_LAUNCHED_MAPS=1 15/03/09 07:56:17 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=10337 15/03/09 07:56:17 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=0 15/03/09 07:56:17 INFO mapred.JobClient: FALLOW_SLOTS_MILLIS_MAPS=0 15/03/09 07:56:17 INFO mapred.JobClient: FALLOW_SLOTS_MILLIS_REDUCES=0 15/03/09 07:56:17 INFO mapred.JobClient: org.apache.hadoop.mapreduce.TaskCounter 15/03/09 07:56:17 INFO mapred.JobClient: MAP_INPUT_RECORDS=1 15/03/09 07:56:17 INFO mapred.JobClient: MAP_OUTPUT_RECORDS=1 15/03/09 07:56:17 INFO mapred.JobClient: SPLIT_RAW_BYTES=101 15/03/09 07:56:17 INFO mapred.JobClient: SPILLED_RECORDS=0 15/03/09 07:56:17 INFO mapred.JobClient: CPU_MILLISECONDS=1020 15/03/09 07:56:17 INFO mapred.JobClient: PHYSICAL_MEMORY_BYTES=272326656 15/03/09 07:56:17 INFO mapred.JobClient: VIRTUAL_MEMORY_BYTES=1465704448 15/03/09 07:56:17 INFO mapred.JobClient: COMMITTED_HEAP_BYTES=1048576000 15/03/09 07:56:17 INFO mapred.JobClient: File Input Format Counters © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ 15/03/09 07:56:17 INFO mapred.JobClient: Bytes Read=0 15/03/09 07:56:17 INFO mapred.JobClient: org.apache.hadoop.mapreduce.lib.output.FileOutputFormat$Counter 15/03/09 07:56:17 INFO mapred.JobClient: BYTES_WRITTEN=35 15/03/09 07:56:17 INFO mapreduce.ImportJobBase: Transferred 35 bytes in 17.722 seconds (1.9749 bytes/sec) 15/03/09 07:56:17 INFO mapreduce.ImportJobBase: Retrieved 1 records. 15/03/09 07:56:17 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments: 15/03/09 07:56:17 INFO tool.ImportTool: --incremental lastmodified 15/03/09 07:56:17 INFO tool.ImportTool: --check-column JOINING 15/03/09 07:56:17 INFO tool.ImportTool: --last-value 2015-03-09 07:55:59.163688 15/03/09 07:56:17 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create') In this example of lastmodified, the value of JOINING column parameter "--check-column JOINING -last-value "2015-03-09-07.49.20.962439". It will import rows all the rows having timestamp greater than "2015-03-09-07.49.20.962439". After the completion of the import, it also prompts us the next value of JOINING columns should be provided for subsequent import. Another option is to save this sqoop incremental import as a job. This is handled automatically by creating an incremental import as a saved job, which is the preferred mechanism for performing a recurring incremental import. Difference between InfoSphere Data Replication incremental change and Sqoop incremental import It is worthwhile to mention the major differences between IIDR capturing the incremental changes from source and delivering it to target and Sqoop incremental import from relational databases into hadoop distributed file system. IIDR is able to learn about rows deleted from the source database. Sqoop can never capture information about deleted rows. IIDR uses the concept of Journal Control Fields which are specific types of database log information that are made available for each row that is replicated e,g, user name who made the change, the Commit timestamp of the change, the actual action that occurred on the source (Insert, Update or Delete), The Commit group ID and a number of others. These columns can be included in the data written to Hadoop. Sqoop cannot provide this information. IIDR will generally have a lower impact on the source system by doing log based change capture versus the direct database queries done by Sqoop IIDR can capture changes regardless of the design of the source application. Sqoop can only capture incremental changes in specific situations. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ Using Sqoop and IIDR together IIDR’s CDC does have the ability to do an initial synchronization via a process called a Refresh. After the refresh has completed mirroring would be initiated. It is also possible to use an external tool such as Sqoop to do the initial synchronization and CDC to perform the mirroring after the external refresh has completed. External tools such as Sqoop can be advantageous for large initial synchronizations as there are performance benefits. For IIDR, when targeting non-database targets such as HDFS during the refresh, if there are transactions on the source database during the duration of the IIDR refresh (in-doubt period) then there could be duplicate records on the target. The duplicates on the target will also occur if the client chooses to do the initial synchronization (refresh) externally (outside of IIDR). For many clients, having duplicate records in HDFS after a refresh will not be an issue. If duplicate records as a result of a refresh while active is not acceptable, there are options such as ensuring that the database is quiesed during the refresh. Alternatively, a client can run a process/utility e.g HDFS ( hive/hbase/etc) or other ways to remove duplicate records on the target after the refresh in-doubt period. Conclusion This article has described the commands used by apache sqoop import to incrementally import the changed data from RDBMS to hadoop file system and major differences between sqoop & InfoSphere Change Data Capture replication. It has also described how the two technologies can be used together. Resources Learn Learn more about how IBM InfoSphere Change Data Capture integrates information across heterogeneous data stores in real time. Discuss Participate in the discussion forum. Get involved in the CDC (Change Data Capture) community. Connect with other CDC users while exploring the developer-driven blogs, forums, groups, and wikis. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks developerWorks® ibm.com/developerWorks/ Get involved in the My developerWorks community. Connect with other developerWorks users while exploring the developer-driven blogs, forums, groups, and wikis. © Copyright IBM Corporation 2015 Infosphere Data Replication comparison with Apache Sqoop Incremental Import Trademarks