Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT
by user
Comments
Transcript
Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT
Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT To Begin: A Cartoon in 2d r k scattering planewave r r r r i ( k ⋅ x -wt ) E, H ~ e r 2p k =w /c = l To Begin: A Cartoon in 2d r k • • • • • • • • • • • • • • • • • • • • • • • • a • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • planewave r r r r i ( k ⋅ x -wt ) E, H ~ e r 2p k =w /c = l for most l, beam(s) propagate through crystal without scattering (scattering cancels coherently) ...but for some l (~ 2a), no light can propagate: a photonic band gap Photonic Crystals periodic electromagnetic media 1887 1987 1-D 2-D periodic in one direction periodic in two directions 3-D periodic in three directions with photonic band gaps: “optical insulators” (need a more complex topology) Photonic Crystals periodic electromagnetic media can trap light in cavities 3D Photonic C rysta l with Defects and waveguides (“wires”) magical oven mitts for holding and controlling light with photonic band gaps: “optical insulators” Photonic Crystals periodic electromagnetic media High index of refra ction Low index of refra ction 3D Photonic C rysta l But how can we understand such complex systems? Add up the infinite sum of scattering? Ugh! A mystery from the 19th century conductive material + + e– + e– r E + current: + r r J = sE conductivity (measured) mean free path (distance) of electrons A mystery from the 19th century crystalline conductor (e.g. copper) + + + + + + + + e– e– r E + + + + + + + + + + + + + + 10’s + of + periods! + + + + + + + + current: r r J = sE conductivity (measured) mean free path (distance) of electrons A mystery solved… 1 electrons are waves (quantum mechanics) 2 waves in a periodic medium can propagate without scattering: Bloch’s Theorem (1d: Floquet’s) The foundations do not depend on the specific wave equation. Time to Analyze the Cartoon r k • • • • • • • • • • • • • • • • • • • • • • • • a • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • planewave r r r r i ( k ⋅ x -wt ) E, H ~ e r 2p k =w /c = l for most l, beam(s) propagate through crystal without scattering (scattering cancels coherently) ...but for some l (~ 2a), no light can propagate: a photonic band gap Fun with Math r r 1∂ r w r —¥E=H =i H c ∂t c r r 1 ∂ r r0 w r —¥H =e E + J = i eE c ∂t c First task: get rid of this mess dielectric function e(x) = n2(x) 2 r r Êw ˆ 1 —¥ —¥H =Á ˜ H Ë c¯ e eigen-operator eigen-value + constraint r —⋅ H = 0 eigen-state Hermitian Eigenproblems 2 r r Êw ˆ 1 —¥ —¥H =Á ˜ H Ë c¯ e eigen-operator eigen-value + constraint r —⋅ H = 0 eigen-state Hermitian for real (lossless) e well-known properties from linear algebra: w are real (lossless) eigen-states are orthogonal eigen-states are complete (give all solutions) Periodic Hermitian Eigenproblems [ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ] [ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ] if eigen-operator is periodic, then Bloch-Floquet theorem applies: can choose: r r r r i ( k ⋅ x -wt ) r r H( x ,t) = e Hkr ( x ) planewave periodic “envelope” Corollary 1: k is conserved, i.e. no scattering of Bloch wave r Corollary 2: Hrk given by finite unit cell, so w are discrete wn(k) Periodic Hermitian Eigenproblems r Corollary 2: Hrk given by finite unit cell, so w are discrete wn(k) band diagram (dispersion relation) w3 w map of what states exist & can interact w2 w1 k ? range of k? Periodic Hermitian Eigenproblems in 1d e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 ikx H(x) = e Hk (x) a Consider k+2π/a: e i( k + 2p )x a e(x) = e(x+a) 2p È ˘ i x ikx H 2p (x) = e Í e a H 2p (x)˙ k+ k+ Í ˙˚ Î a a k is periodic: k + 2π/a equivalent to k “quasi-phase-matching” periodic! satisfies same equation as Hk = Hk Periodic Hermitian Eigenproblems in 1d e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 k is periodic: k + 2π/a equivalent to k “quasi-phase-matching” a e(x) = e(x+a) w band gap –π/a 0 π/a irreducible Brillouin zone k Any 1d Periodic System has a Gap [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Start with a uniform (1d) medium: e1 w 0 k w= e1 k Any 1d Periodic System has a Gap [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Treat it as “artificially” periodic bands are “folded” by 2π/a equivalence e1 a e(x) = e(x+a) w + p x a e Êp Æ cosÁ Ëa –π/a 0 π/a - p x a ,e ˆ Êp ˆ x˜ , sinÁ x ˜ ¯ Ëa ¯ k Any 1d Periodic System has a Gap [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Treat it as “artificially” periodic a e1 w 0 Êp ˆ sinÁ x ˜ Ëa ¯ Êp ˆ cosÁ x ˜ Ëa ¯ π/a x=0 e(x) = e(x+a) Any 1d Periodic System has a Gap [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Add a small “real” periodicity e2 = e1 + De e(x) = e(x+a) e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 w 0 a Êp ˆ sinÁ x ˜ Ëa ¯ Êp ˆ cosÁ x ˜ Ëa ¯ π/a x=0 Any 1d Periodic System has a Gap [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Add a small “real” periodicity e2 = e1 + De state concentrated in higher index (e2) has lower frequency a e(x) = e(x+a) e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 w Êp ˆ sinÁ x ˜ Ëa ¯ Êp ˆ cosÁ x ˜ Ëa ¯ band gap 0 Splitting of degeneracy: π/a x=0 Some 2d and 3d systems have gaps • In general, eigen-frequencies satisfy Variational Theorem: r 2 w1 ( k ) = min r E1 r —⋅eE1 = 0 r r 2 “kinetic” — + ik ¥ E1 2 c r 2 Ú e E1 inverse Ú( ) “potential” r 2 w 2 ( k ) = min "L" bands “want” to be in high-e r E2 r —⋅eE 2 = 0 * Ú eE1 ⋅ E 2 = 0 …but are forced out by orthogonality –> band gap (maybe) algebraic interlude algebraic interlude completed… … I hope you were taking notes* [ *if not, see e.g.: Joannopoulos, Meade, and Winn, Photonic Crystals: Molding the Flow of Light ] 2d periodicity, e=12:1 a frequency w (2πc/a) = a /l 1 0.9 0.8 0.7 0.6 0.5 0.4 Photonic Band Gap 0.3 0.2 TM bands 0.1 0 irreducible Brillouin zone M r k G X G TM X E H M G gap for n > ~1.75:1 2d periodicity, e=12:1 1 0.9 0.8 Ez 0.7 0.6 0.5 (+ 90° rotated version) 0.4 Photonic Band Gap 0.3 0.2 TM bands 0.1 Ez 0 G – + TM X E H M G gap for n > ~1.75:1 2d periodicity, e=12:1 a frequency w (2πc/a) = a /l 1 0.9 0.8 0.7 0.6 0.5 0.4 Photonic Band Gap 0.3 TE bands 0.2 TM bands 0.1 0 irreducible Brillouin zone M r k G X G TM X E H G M E TE H 2d photonic crystal: TE gap, e=12:1 TE bands TM bands E TE H gap for n > ~1.4:1 3d photonic crystal: complete gap , e=12:1 I. II. 0.8 0.7 0.6 21% gap 0.5 0.4 z 0.3 U' G X K' U'' U W W' K L 0.2 0.1 I: rod layer II: hole layer L' 0 U’ L G X W K gap for n > ~4:1 [ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ] You, too, can compute photonic eigenmodes! MIT Photonic-Bands (MPB) package: http://ab-initio.mit.edu/mpb on Athena: add mpb