Comments
Description
Transcript
Mechanisms of Acute Toxicity
Mechanisms of Acute Toxicity Dan Wilson, PhD, DABT Science Leader – Cheminformatics The Dow Chemical Company Acute Tox Workshop Sep 24, 2015 Acknowledgements • • • • Barun Bhhatarai Ed Carney Amanda Parks Paul Price Pop quiz: Put these in order of lethality • Which substance has lowest lethal dose? (i.e. the most ‘toxic’) Agent Caffeine Arsenic Aspirin Salt (NaCl) Ethanol Nicotine Botulism toxin Toxicity ranking ? ? ? ? ? ? ? LD50 (/kg bw) ? ? ? ? ? ? ? GHS Cat ? ? ? ? ? ? ? Pop quiz: Put these in order of lethality • Which substance has lowest lethal dose? (i.e. the most ‘toxic’) Agent Caffeine Arsenic Aspirin Salt (NaCl) Ethanol Nicotine Botulism toxin Toxicity ranking 4 3 5 6 7 2 1 LD50 (/kg bw) 130-320 mg 46 mg 1000 mg 3000 mg 14000 mg 1 mg 0.02 ng GHS Cat 3 2 4 5 5 1 1 Acute classification categories Requirement is to classify by LD/LC50 • This can be done using guideline animal studies • Do in vitro alternative methods offer a replacement? • Do in silico alternative methods offer a replacement? In silico approaches - QSAR Why study acute mechanisms? • • • • • • • • • In vitro and in silico approaches not yet a total replacement May direct in vitro HTS assays and enable building of QSARs The ‘future’ is mechanism- (AOP-) based Better enable read-across Focus on identify compounds of high inherent toxicity Important in poisoning cases Acute mechanism in scope for repeat-dose studies Understand if animal data relevant to humans Understanding mechanisms makes us better toxicologists and better able to interpret and troubleshoot studies Challenges of identifying acute MOAs • • • • • • • • • A workshop like THIS has never been held… Not a guideline study requirement Study doesn’t include organ weights, histopath or clin path DBs of LD/LC50 values don’t contain other mechanistic info Studies often conducted at CROs blinded to TM identity Specific mechanisms rarely examined Relationship of mechanistic effect to apical effect not clear Risk assessors didn’t consider acute toxicity ‘sexy’ – rare focus Mechanistic in vitro HTS assays may only look above cytotoxicity noise level yet the MOA may drive cytotoxicity Facts about acute data • Distribution of GHS classification not evenly distributed for oral route - most compounds are GHS 4-5 • Provides information on inherent toxicity • IV Data – Compounds average 40x more toxic by iv than oral route – Sometimes it’s the only data you have, especially for highly insoluble compounds – Compounds that pass limit dose orally may cause lethality in seconds intravenously – Directly applicable for medical devices Ways to identify potential mechanisms • • • • • • • • • • • Determine whether ‘reactive’ or ‘pharmacologic’ 3-D crystalline protein structure mapping HT Gene expression data-mining Identify protein targets using wet-lab binding interactions Examine pathology and clinical pathology data Consider Time-to-death Examine relationship of acute toxicity to HTS data results Similarity to compounds with known mechanisms Years of experience resulting in a logical ‘hunch’ Use systems biology approach Focus on critical targets for high acute toxicity Chemical reactivity • • • • • • • • • Electrophilicity Hardness (HOMO/LUMO) Acylation Schiff base formation Michael addition reaction SN1 mechanism SN2 mechanism SNAr mechanism Polarizability • • • • • • Molecular wt Protein/DNA binding Substructures Solubility pKa Log KoW Systems biology approach Organism Organs Heart, Liver, Kidney, Nervous System… Cells Muscle, Cardiac, Hepatic, RBCs, Neurons, PMNs… Organelles Nucleus, Mitochondria, Peroxisome, Cytoplasm… Biochemical Pathways Gluconeogenesis, Pentose phosphate pathway, Kreb’s cycle, Electron transport, Fatty acid metabolism, Lipolysis, Lipogenesis, Pyrimidine/Purine biosynthesis, Urea cycle, Glycolysis, Vitamins… Some mechanisms of acute toxicity • • • • • • • • • • Inhibit energy production Antimetabolites Anticoagulants Chelants Inhibit signal transduction Ion channel blockers Inhibit Na+/K+ ATPase Protein synthesis inhibitors Non-specific high chemical reactivity Physico-chemical properties – Acids, Bases – Surfactants – Accept protons and uncouple mitochondrial during diffusion Metabolism - Bioavailability • Physical – – – – – Mucous Chewing Mixing/churning Acid Emulsification • Hormones • Enzymes Protein Digestion • Stomach – HCl denatures – Pepsinogen → pepsin • Small Intestine – Hormones • Cholecystokinin • Secretin – Pancreatic enzymes • Trypsin, peptidases, elastase • Amino acids ↑ insulin, ↓ glucagon • No storage form for protein – amino acids → protein; carbons → carbohydrate/lipid; amino “N” as urea Carbohydrate Digestion • Starch: glucose polymer α(1→4) glycosidic bonds – Amylose • linear, 100’s glucoses – Amylopectin • branched, 1000’s units • linear α(1→4) • branch α(1→6) each 24-30 units – Glycogen • branch each 8-12 units • Pancreatic amylase breaks α-1,4-bonds Lipid Digestion • Stomach – Lingual and Gastric Lipase • Small intestine – Cystokinin → gallbladder • ↓ gastric motility – Secretin → pancreas • bicarbonate neutralizes pH – – – – – – Emulsification → Bile saltss Pancreatic Lipase → FA at C1 and C3 Colipase → stabilizes Lipase Cholesteryl ester hydrolase Phospholipase A2 → FA at C2 Lysophospholipase → C2 Cholesterol O H H - O O H O Deoxycholic acid H H O H O H N Taurochenodeoxycholic acid H H O O SO O H O Potentially labile subfragments Modeling Systemic Bioavailability Simulations Plus Energy production • Adenosine Triphosphate (ATP) used for most energy requiring reactions (e.g., active transport). Isn’t stored, consumption closely follows synthesis • 1 kg created-recycled/hr. A cell uses 10 million ATP molecules/sec and recycles all of its ATP every 20-30 sec • Guanosine Triphosphate (GTP) equivalent to ATP in energy content and preferentially used in some cellular reactions • Flavin Adenine Dinucleotide (FAD) a cofactor reduced to FADH2, an energyrich molecule • Nicotinamide Adenine Dinucleotide (NADH): a cofactor; reducing potential converted to ATP through the electron transport chain • Nicotinamide adenine dinucleotide phosphate (NADPH) is used in fatty acid and nucleic acid synthesis • Phosphocreatine is used to replenish ATP from creatine and ADP Glycogen Glucose 1-P Glucose 6-P Glucose Fructose 6-F Fructose 1,6-Bis P Glyceraldehyde 3-P 1,3 bisPhosphoglycerate Glycolysis 3-Phosphoglycerate 2-Phosphoglycerate Phosphoenolpyruvate Pyruvate Acetyl CoA Dihydroxyacetone P Glycogen Glucose 1-P Glucose 6-P Glucose Fructose 6-F Fructose 1,6-Bis P Glyceraldehyde 3-P Dihydroxyacetone-P 1,3 bisPhosphoglycerate 3-Phosphoglycerate 2-Phosphoglycerate Phosphoenolpyruvate Lactate Gluconeogenesis Pyruvate CO2 Acetyl CoA Citrate Oxaloacetate Malate Fumarate Isocitrate Kreb’s TCA Cycle ɑ-Ketoglutarate Succinyl-CoA Succinate TCA Cycle Glycogen NADPH Glucose 1-P 6-P Gluconolactone Glucose 6-P NADPH Ribose 5-P Ribulose 5-P 6-P Gluconate Glucose Fructose 6-F Xyulose 5-P Sedoheptulose 7-P UDP Glucose Fructose 1,6-Bis P Glyceraldehyde 3-P Erythrose 4-P Dihydroxyacetone-P 1,3 bisPhosphoglycerate 3-Phosphoglycerate Glyceraldehyde 3-P 2-Phosphoglycerate Pentose-Phosphate Pathway Phosphoenolpyruvate Lactate Pyruvate CO2 Acetyl CoA Citrate Oxaloacetate Malate Fumarate Isocitrate Kreb’s TCA Cycle ɑ-Ketoglutarate Succinyl-CoA Succinate Glycogen NADPH Ribose 5-P Ribulose 5-P 6-P Gluconate NADPH Glucose 1-P 6-P Gluconolactone Glucose 6-P Fructose Glucose Fructose Fructose 6-F Xyulose 5-P Sedoheptulose 7-P UDP Glucose Erythrose 4-P Fructose 1,6-Bis P Glyceraldehyde Glyceraldehyde 3-P Dihydroxyacetone-P 1,3 bisPhosphoglycerate Glycerol-P 3-Phosphoglycerate Glyceraldehyde 3-P Phosphoenolpyruvate Fatty acyl CoA Pyruvate Malonyl CoA CO2 Lipids Fatty acids Acetyl CoA Acetoacetate Citrate β-Hydroxybutarate Oxaloacetate Malate Glycerol Triacylglycerol 2-Phosphoglycerate Lactate Fructose 1P Isocitrate Kreb’s TCA Cycle Ketones ɑ-Ketoglutarate Methylmalonyl CoA Fumarate Succinyl-CoA Succinate Propionyl Co A Fatty acyl CoA (odd-number carbons) Glycogen NADPH Glucose 1-P 6-P Gluconolactone Glucose 6-P NADPH Ribose 5-P Ribulose 5-P 6-P Gluconate UDP Glucose Glucose Fructose Fructose 6-F Xyulose 5-P Sedoheptulose 7-P Erythrose 4-P Fructose 1,6-Bis P Glyceraldehyde Glyceraldehyde 3-P Dihydroxyacetone-P 1,3 bisPhosphoglycerate 3-Phosphoglycerate Glyceraldehyde 3-P Ala Cys Gly Ser Thr Amino Acids NH3 Glycerol-P CO2 Carbamoyl-P Urea Fatty acyl CoA Pyruvate Malonyl CoA Citruline Kreb’s Urea Cycle Arginine Acetyl CoA Arginosuccinate Fumarate Homocysteine Phe Tyr Ile Met Val Thr Oxaloacetate Fatty acids Acetoacetate Ile Citrate Asn Asp Ornithine Phosphoenolpyruvate CO2 Glycerol Triacylglycerol 2-Phosphoglycerate Lactate Fructose 1P β-Hydroxybutarate Leu Phe Tyr Trp Lys Isocitrate Gln Malate Kreb’s TCA Cycle ɑ-Ketoglutarate Glu Methylmalonyl CoA Fumarate Succinyl-CoA Succinate Propionyl Co A Fatty acyl CoA (odd-number carbons) Arg His Pro Glycogen Ribulose 5-P 6-P Gluconolactone Glucose 6-P Niacin NADPH Ribose 5-P NADPH Glucose 1-P 6-P Gluconate Ala Cys Gly Ser Thr Thiamin Niacin Lipoic Acid Riboflavin Carbamoyl-P Niacin Pyridoxine Urea Arginine CO2 Biotin Fumarate Homocysteine Vit B12 Phe Tyr Ile Met Val Thr Pyridoxine Fatty acids Niacin Leu Malonyl CoA Phe Biotin Acetoacetate Tyr Niacin Trp β-Hydroxybutarate Lys Acetyl CoA Citrate Oxaloacetate Ile Isocitrate Niacin Arginosuccinate Fructose 1P Fatty acyl CoA Pyruvate Asn Citruline Kreb’s Urea Cycle Phosphoenolpyruvate Lactate Asp Ornithine Glyceraldehyde Glyceraldehyde 3-P Dihydroxyacetone-P Niacin 1,3 bisPhosphoglycerate Glycerol-P Glycerol 3-Phosphoglycerate Riboflavin Triacylglycerol 2-PhosphoglycerateNiacin Erythrose 4-P Glyceraldehyde 3-P CO2 Fructose Fructose 1,6-Bis P Thiamin Sedoheptulose 7-P NH3 Glucose Fructose 6-F Xyulose 5-P Vitamins UDP Glucose Pyridoxine Niacin Gln Arg His Pro Riboflavin ɑ-Ketoglutarate Glu Thiamin Vit B12 Niacin Methylmalonyl CoA Lipoic Acid Biotin Fumarate Succinyl-CoA Propionyl Co A Malate Succinate Riboflavin Fatty acyl CoA Niacin (odd-number carbons) Glycogen Ribulose 5-P 6-P Gluconolactone Glucose 6-P Niacin NADPH Ribose 5-P NADPH Glucose 1-P 6-P Gluconate Glyceraldehyde Ala Cys Gly Ser Thr Thiamin Niacin Lipoic Acid Riboflavin Niacin CO2 Biotin Asp Kreb’s Urea Cycle ArginoMitochondrial Ornithine succinate Urea Electron Transport Phe Tyr Fumarate Homocysteine Vit B12 Ile Met Val Thr Pyridoxine Fatty acyl CoA Fatty acids Niacin Leu Malonyl CoA Phe Biotin Acetoacetate Tyr Niacin Trp β-Hydroxybutarate Lys Pyruvate Acetyl CoA Citrate Asn Citruline Arginine Phosphoenolpyruvate Lactate Pyridoxine Fructose 1P Glyceraldehyde 3-P Dihydroxyacetone-P Niacin 1,3 bisPhosphoglycerate Glycerol-P Glycerol 3-Phosphoglycerate Riboflavin Triacylglycerol 2-PhosphoglycerateNiacin Erythrose 4-P Glyceraldehyde 3-P Carbamoyl-P Fructose Fructose 1,6-Bis P Thiamin Sedoheptulose 7-P CO2 Glucose Fructose 6-F Xyulose 5-P NH3 UDP Glucose Oxaloacetate Ile Isocitrate Niacin Pyridoxine Niacin Gln Arg His Pro Riboflavin ɑ-Ketoglutarate Glu Thiamin Vit B12 Niacin Methylmalonyl CoA Lipoic Acid Biotin Fumarate Succinyl-CoA Propionyl Co A Malate Succinate Riboflavin Fatty acyl CoA Niacin (odd-number carbons) Pyruvate Dehydrogenase Complex CH3 Thiamin coenzyme CO2 Lipoic acid coenzyme Thiamin coenzyme Coenzyme A-SH Lipoic acid coenzyme Flavin coenzyme Flavin coenzyme NAD+ NADH + H+ Arsenic inhibits S O OH Pyruvate Dehydrogenase Complex CoA O O Pyruvate Acetyl CoA Mitochondria Lipoic Acid: Cofactor for 2nd Enzyme HO O S S R + N S R H Hydroxyethyl derivative bound to reactive carbon of TPP OH TPP O H Lipoic acid Arsenic inhibits NH2 N N S HS OH + O N N O HO HO P O O O O O O O P HO O P O NH OH O NH S HS SH OH + OH OH H Coenzyme A-SH O NH2 N N N N P O O O O HO O SHHS O HO HO O O P O P O NH OH OH NH OH + S O H OH Acetyl CoA Reduced Lipoic acid Dihydrolipoyl transacetylase O Niacin – Vitamin B3 O OH N NH2 NH2 Nicotinic acid N N O N NH2 O N O O N O Nicotinamide HO NH2 N H HO P NH2 O O OH P O N N N N O N O O + O O O OH HO OH HO P NH2 O O OH P O OH + NAD N + O O HO NADP + O O HO P OH O O Tryptophan NH2 NAD+ + N R :H- Hydride ion H H O NH2 NADH N R Riboflavin – Vit B2 O H3C N H3C N H NH N R FAD (oxidized quinone form) O 2H+, 2e- O H3C N H3C N N R H NH O FADH2 (reduced hydroquinone form) FMN and FAD tightly bound to enzymes that catalyze oxidation or reduction Fish acute toxicity vs. ToxCast HTS Mitochondrial Electron Transport Intermembrane space H+ H+ H+ ATP Synthase Matrix III H O ADP H+ TCA Cycle ATP O2 2 Succinate NADH FADH2 Q IV H+ III H+ II I H+ Mitochondria membrane potential assay Sakamuru S et al. Physiol. Genomics 2012;44:495-503 Mitochondrial tox predicts upper boundary to Daphnia toxicity Daphnia acute LC50 (mg/l) AC50 Inhibition of Mitochondrial Membrane Potential ( AC50 Inhibition of Mitochondrial Membrane Potential (uM) AC50 Inhibition of Mitochondri al Membrane Potential ( Mitochondrial toxicity predicts upper bound to acute intravenous toxicity AC50 Inhibition of Mitochondri al Membrane Potential ( Rat Intravenous LD50 (mg/kg) AC50 Inhibition of Mitochondrial Membrane Potential ( AC50 Inhibition of Mitochondrial Membrane Potential (uM) Mitochondrial toxicity doesn’t predict upper bound to oral rat toxicity AC50 Inhibition of Mitochondri al Membrane Potential ( Rat Oral LD50 (mg/kg) AC50 Inhibition of Mitochondrial Membrane Potential ( AC50 Inhibition of Mitochondrial Membrane Potential (uM) LD50 values adjusted downward by % bioavailable AC50 Inhibition of Mitochondri al Membrane Potential ( Rat Oral LD50 (mg/kg) AC50 Inhibition of Mitochondrial Membrane Potential ( ester group AC50 Inhibition of Mitochondrial Membrane Potential (uM) Antimetabolites H N H2 N Dihydrofolate reductase 2-steps requiring 2 NADPH H N Tetrahydrofolate (THF) H H H N N 5 O Methotrexate LD50 135 mg/kg O HN 10 HN O Purines HO H N H H N H H N H H2O 5 O Methionine O N 10 N10-Formyl-THF HO H N H H N 5 N + TMP H NADPH + H+ NADP+ 10 N5N10-Methenyl-THF H N H H H N 5 H N N NADH + H+ NAD+ 10 H N5N10-Methylene-THF H H 5 H HN H H 10 N5-Methyl-THF Purine synthesis O O O O O P O P H O - O O O NH2 O P O-O - - - O OH HO Gln O O Gla NH2 + - NH2 P - OH ATP O - O ADP + Pi O NH2 O OH HO O O - O O O HO Gln H 2N P - O NH2 NH O O HO OH OH PRPP Purines built on existing ribose sugar supplied by Pentose Phosphate Path O - O P O ADP N O P ATP NH NH2 Gla ADP O O ATP O O P - NH O O - NH O O NH O O HO OH OH Asp P - O N HO O O OH HO + ATP O - HO H2N ADP + Pi N O O - O P - O O O O NH N N - O O H2O OH O - H2N H Fumarate O - O O P OH O - O N NH2 N O O O HO OH O H NH2 O H2N OH HO O CO2 O THF NH2 Gln O - N10 Formyl-Tetrahydrofolate O NH2 OH HO O HN O N O O - - O - H2N O O HO HO OH OH N10 Formyl-Tetrahydrofolate THF O FOLIC ACID ANALOGS Methotrexate etc inhibit reduction of dihydrofolate to THF; ↓ DNA replication in cancer and normal cells HO HO P O N N O O N HN HN H2O O O - O O P - O N O O HO OH Inosine 5'-Monophosphate (IMP) HO OH NH2 N Pyrimidine Biosynthesis O NH2 O O O OH HO Gln NH2 O - NH2 Gla O CO2 O P H2 N ATP - O ADP Carbamyl Phosphate O - OH O O OH O NH NH2 O NH2 HO HN THF dUMP HO N5N10 Methylene Tetrahydrofolate P O OH N O FMN CoQH2 FAD CO2 HO P O O O N O O OH PP PRPP O O HO Dihydro Orotate CoQ HN OH dTMP OH O O O N H O HO O O HN O Asp H H2O OH H N O HN OH HO OH UMP Base synthesized then added to preformed ribose O Orotate Anticoagulants • Cofactor of enzyme that carboxylates γ-glutamyls in Prothrombin and Factors VII, IX and X • Without carboxylation, don’t bind membrane phospholipids • Deficiency in infants - hemorrhagic disease of the newborn • Natural K vitamins free of toxic side effects O CH3 O OH CH3 CH3 OH O NH 2 HO NH2 CH3 O O HO Vitamin K O Glutamate H3C CH3 Warfarin is structural analog of Vit K LD50 8.7 mg/kg OH O Carboxyglutamate Chelators 104mg/kg rat iv 280 ug/kg rat iv Signal transduction Tetrodotoxin Inhibits voltage-gated sodium channels Oral LD50 334ug/kg Cardiac glycosides (Inh Na+/K+ ATPase) 28.3 mg/kg rat LD50 oral 10.8 mg/kg rat LD50 iv Michael acceptors Acrolein LD50 26 mg/kg Acids • Trifluoromethanesulfonic acid • pH of 10% solution = 0.1 • Acute oral LD50: 1605.3 mg/kg bw – GHS Cat 4; H302: Harmful if swallowed • Acute dermal LD50: > 50 mg/kg bw – test results inconclusive because of severe local effects on skin at 2000 mg/kg bw • Acute inhalation LC50: ???? – study scientifically unjustified Future mechanistic approaches… Questions?