...

Math 5520 Lecture 28 Jeffrey Connors April 6, 2016 University of Connecticut

by user

on
Category: Documents
13

views

Report

Comments

Transcript

Math 5520 Lecture 28 Jeffrey Connors April 6, 2016 University of Connecticut
Math 5520 Lecture 28
Jeffrey Connors
University of Connecticut
April 6, 2016
Non-conforming FE spaces can also be considered
Consider the model problem
−∇ · A∇u = f , on Ω,
u = 0, on ∂Ω.
For conveniece, we will let A be constant and SPD. The weak
problem is to find u ∈ H01 (Ω) such that
a(u, v ) = L(v ), ∀v ∈ H01 (Ω).
Now, consider using the following FE space:
Vh =
v : v |E ∈ P1 (E ), ∀E ∈ τh
and v is continuous at all edge midpoints .
Then Vh * H01 (Ω) (non-conforming).
Break up the variational form by element
We define a “discrete” variational form
XZ
ah (u, v ) =
A∇u · ∇v dx, ∀u, v ∈ Vh + H01 (Ω).
E ∈τh
E
Note that a(u, v ) = ah (u, v ) if u, v ∈ H01 (Ω). The FE solution
uh ∈ Vh satisfies
ah (uh , vh ) = L(vh ), ∀vh ∈ Vh .
Now define a norm by
X
kw k2h =
|∇w |2L2 (E ) , ∀w ∈ Vh + H01 (Ω).
E ∈τh
We will have coercivity (constant α1 ) and continuity (constant α2 )
of ah (·, ·) over Vh + H01 (Ω), since A is constant and SPD.
The following result is a generalization of Ceá’s lemma
Lemma (“Second Strang Lemma”)
ku−uh kh ≤ C
|ah (u, wh ) − L(wh )|
inf ku − vh kh + sup
vh ∈Vh
kwh kh
wh ∈Vh \{0}
!
.
Proof. Apply the triangle inequality:
ku − uh kh ≤ ku − vh kh + kvh − uh kh .
Then we focus on bounding the term kvh − uh kh . Apply coercivity:
α1 kuh − vh k2h ≤ ah (uh − vh , uh − vh ).
Then add and subtract u in the first argument;
α1 kuh − vh k2h ≤ ah (u − vh , uh − vh )
+ ah (uh , uh − vh ) − ah (u, uh − vh ).
Proof of lemma...
It follows that
α1 kuh − vh k2h ≤ α2 ku − vh kh kuh − vh kh
+ |ah (u, uh − vh ) − L(uh − vh )|
|ah (u, uh − vh ) − L(uh − vh )|
⇒ kuh − vh kh ≤ C ku − vh kh +
kuh − vh kh
!
|ah (u, wh ) − L(wh )|
.
≤ C ku − vh kh + sup
kwh kh
wh ∈Vh \{0}
Now use the bound with the first inequality in the proof:
ku − uh kh ≤ C
|ah (u, wh ) − L(wh )|
ku − vh kh + sup
kwh kh
wh ∈Vh \{0}
!
The desired result follows by taking the infimum over vh ∈ Vh .
.
Bounding the approximation error
Assume:
I Ω is convex and polygonal,
I f ∈ L2 (Ω).
Then H 2 -ellipticity holds for our problem; u ∈ H 2 (Ω). Set
vh = Ih u in the lemma. We note next that
ku − Ih ukh ≤ C h|u|H 2 (Ω) .
This actually follows from our earlier interpolation error arguments;
the steps bounded the error on each element and then summed
over the elements. It remains to bound the consistency error term.
Since u ∈ H 2 ,
XZ
ah (u, wh ) − L(wh ) =
A∇u · ∇wh − fwh dx
E ∈τh
=
XZ
E ∈τh
E
E
− (∇ · A∇u + f ) wh dx +
XZ
E ∈τh
∂E
(A∇u · nE ) wh dσ.
Use the fact that we have a strong solution
It follows that
ah (u, wh ) − L(wh ) =
XZ
(A∇u · nE ) wh dσ.
∂E
E ∈τh
Denote the set of three edges of each E by SE , so e ∈ SE means
that e is an edge of E . Define
Z
1
w eh =
wh dσ.
|e| e
Then
ah (u, wh ) − L(wh ) =
X XZ
E ∈τh e∈SE
since
R
e∈SE1
A∇u · nE1 dσ +
R
e∈SE2
(A∇u · nE ) (wh − w eh ) dσ,
e
A∇u · nE2 dσ = 0.
Get into the form of error estimates over the edges
Note that since
Z
(wh − w eh ) dσ = 0,
e
we can add in the constant ∇(Ih u) · nE :
X XZ
ah (u, wh ) − L(wh ) =
A∇ (u − Ih u) · nE (wh − w eh ) dσ.
E ∈τh e∈SE
e
Apply Cauchy-Schwarz...
|ah (u, wh ) − L(wh )|
X X
≤
kA∇ (u − Ih u) · nE kL2 (e) kwh − w eh kL2 (e)
E ∈τh e∈SE
The terms with wh − w eh are easily bounded since wh is linear. The
interpolation errors are handled using previous results.
Apply the estimates below and the result follows
It holds that
1/2
kA∇ (u − Ih u) · nE kL2 (e) ≤ C hE |u|H 2 (E )
1/2
kwh − w eh kL2 (e) ≤ C hE |wh |H 1 (E ) .
Therefore,
|ah (u, wh ) − L(wh )| ≤ C
X
hE |u|H 2 (E ) |wh |H 1 (E )
E ∈τh
≤ C h |u|H 2 (Ω) kwh kh .
Then dividing through by kwh kh and taking the supremum over
wh ∈ Vh yields the desired result.
Fly UP