Comments
Description
Transcript
Stima pioggia netta
Stima pioggia netta BILANCIO IDROLOGICO DI PIENA STIMA PIOGGIA NETTA Dati bacino Chisone a S. Martino Ilaria Brignone Aimonetto Ilaria Brignone Aimonetto 1 Stima pioggia netta Introduzione L’elaborato che segue intende sviluppare considerazioni in merito al riesame dei risultati ottenuti con il metodo razionale sui dati a disposizione per il bacino del Chisone presso San Martino. In prima approssimazione si ricerca il valore di confronto per la portata di piena, determinato utilizzando il metodo della corrivazione con ietogramma costante e metodo psi per la valutazione degli assorbimenti iniziali. Si è proceduto poi con il computo delle piogge nette tramite metodo SCS-Curve Number ricercando quindi il valore massimo di portata da confrontare con quello preliminarmente ricavato con formula razionale. Ilaria Brignone Aimonetto 2 Stima pioggia netta CAPITOLO 1 Formula razionale Vengono preliminarmente forniti i dati relativi al bacino studiato. In particolare è fondamentale conoscere l’area totale del bacino, la lunghezza dell’asta principale e le quote massima, minima e media. Area bacino 581 km2 hmax 3234 m slm hmin 415 m slm hmedia 1739 m slm Lasta principale v 56,28 1,5 km m/s H' 1324 m slm Tabella 1- Dati del bacino Il valore H’ è determinato dalla differenza tra quota media e minima ed inoltre il valore di velocità del deflusso si rivelerà utile per la determinazione di un tempo di corrivazione sperimentale di confronto con il tempo ottenuto dalla formula di Giandotti. In questo ambito viene anticipato l’ulteriore dato necessario nel metodo della corrivazione, ovvero le aree comprese tra le isocorrive del bacino coincidenti per ipotesi con le isoipse. 2 zj [m] aj [km ] 3234 2764 0 17,415 2294 81,27 1824 133,515 1354 174,15 884 415 121,905 52,245 Tabella 2- Aree delle fasce tra isocorrive Si procede calcolando il tempo di corrivazione, con la nota formula sperimentale di Giandotti. Ilaria Brignone Aimonetto 3 Stima pioggia netta Per controprova è possibile calcolare un tempo di corrivazione a partire dalla lunghezza dell’asta principale e dalla velocità di deflusso. Si nota come il valore ottenuto sia sensibilmente differente. A questo punto si riporta la formula del metodo razionale: In cui: Ψ è un coefficiente di afflusso, che indica la permeabilità media. È possibile assumere tale valore pari a 0,402. A è l’area totale del bacino. i (tc) è l’intensità di precipitazione media ricavabile tramite i parametri noti delle curve di possibilità pluviometrica, per un periodo di ritorno pari a 100 anni. K100 a n 2,37 17,438 0,506 Tabella 3- KT (GEV) dati di Pragelato, a ed n noti Utilizzando i valori proposti nella precedente tabella ed una durata d pari al tempo di corrivazione nella sua formulazione approssimata (tc = 6h) si ottiene: Da cui deriva la portata di piena per periodo di ritorno pari a 100 anni: Ilaria Brignone Aimonetto 4 Stima pioggia netta CAPITOLO 2 Stima pioggia netta con metodo ψ Per poter affinare il calcolo finora svolto, si procede applicando il metodo della corrivazione sulle piogge nette, con ietogramma costante. Si applica innanzitutto una forzante sul bacino. Si ricorre ad uno ietogramma ad intensità costante (ietogramma rettangolari) di durata variabile tra 1/6 e 6/6 del tempo di corrivazione, con intensità media derivata dalla cpp come riportato nel paragrafo precedente. Nella fattispecie si ottiene: Ietogramma costante 18,00 16,00 17,082 17,082 17,082 17,082 17,082 17,082 14,00 t i 0 0,000 1 17,082 2 17,082 3 17,082 2,00 4 5 17,082 17,082 0,00 6 17,082 12,00 i [mm/h] 10,00 8,00 6,00 4,00 0,000 0 1 2 3 4 5 6 tempo [h] Figura 1- Ietogramma costante con intesità media Utilizzando lo schema di calcolo per il metodo della corrivazione è possibile ricavare l’idrogramma di piena, che riporta l’andamento delle portate nel tempo per l’evento di piena considerato. Ilaria Brignone Aimonetto 5 Stima pioggia netta U1 aj i in U2 U3 portata*3,6/A 0,089923 0,20982 0,29974 U4 0,2298 U5 U6 0,13988 0,02997 Q(k) 52,245 P1 17,082 6,9 0,6175 0,61751 99,6593 121,905 P2 17,082 6,9 2,0584 0,61751 1,44086 332,198 174,150 P3 17,082 6,9 4,1167 0,61751 1,44086 2,05837 664,395 133,515 P4 17,082 6,9 5,6948 0,61751 1,44086 2,05837 1,57808 919,08 81,270 P5 17,082 6,9 6,6554 0,61751 1,44086 2,05837 1,57808 0,96057 17,415 P6 17,082 6,9 6,8612 6,2437 4,8029 2,7445 0,61751 1,44086 2,05837 1,57808 1,44086 2,05837 1,57808 2,05837 1,57808 1,57808 0,96057 0,96057 0,96057 0,96057 1074,11 0,20584 1107,33 0,20584 1007,67 0,20584 775,128 0,20584 442,93 1,1664 0,96057 0,20584 188,245 0,2058 0,20584 33,2198 Figura 2- Schema di calcolo per portate di piena-metodo psi Come emerge dalla figura proposta è necessario un metodo per la determinazione della pioggia netta. In questo caso si è scelto di utilizzare il metodo ψ. L’ipotesi alla base del metodo è quella di considerare l’assorbimento del suolo di una quota parte di precipitazione in maniera proporzionale, ovvero l’intensità di pioggia netta dall’inizio dell’evento fino all’istante t generico è valutata come una percentuale dell’intensità totale di precipitazione nello stesso tempo, tramite un coefficiente di afflusso. Laddove ψ è usualmente assunto costante e pari ad un opportuno valore per tutta la durata della precipitazione. Nel caso in esame ψ=0,402 per cui: Dalla trattazione sviluppata segue un valore di picco di piena pari a 1107 m3/s che corrisponde al valore ottenuto con la formula razionale. Ilaria Brignone Aimonetto 6 Stima pioggia netta Idrogramma piena-ietogramma costante- PSI 1200,00 1.107 1000,00 800,00 Q [m3/s] 600,00 400,00 200,00 0,00 1 2 3 4 5 6 7 8 9 10 11 tempo [h] Figura 3-Idrogramma di piena (metodo psi) Ilaria Brignone Aimonetto 7 Stima pioggia netta CAPITOLO 2 Stima pioggia netta- Metodo SCS-CN Lo sviluppo successivo richiede la stima della portata massima adottando come forzante del bacino una pioggia netta desunta dal metodo del Curve Number introdotto dal Soil Conservation Service (SCS). Il volume specifico di pioggia netta P e, dall’inizio dell’evento meteorico fino all’istante generico t è legato al volume specifico di pioggia lorda P, caduta nel medesimo intervallo temporale, dalla relazione: Nella quale S è il massimo volume specifico di acqua che il terreno può trattenere in condizioni di saturazione ed Ia è la cosiddetta perdita iniziale. Questa relazione è valida soltanto per: mentre nel caso in cui l’altezza di pioggia risulti minore di Ia si ha Pe = 0. I parametri S ed Ia possono essere determinato attraverso operazioni di taratura del modello, ma in maniera semplificata si adotta Ia = 0,2S verificata con buona approssimazione. La valutazione di S può invece essere ricondotta a quella dell’indice CN, tramite: con S espresso in mm. L’indice CN, numero adimensionale compreso tra 0 e 100, è una funzione della natura del suolo, del tipo di copertura vegetale e delle condizioni di umidità del suolo antecedenti la precipitazione. Nella fattispecie esistono quattro gruppi che distinguono le tipologie di terreno sulla base delle capacità di assorbimento del terreno nudo a seguito di prolungato adacquamento: a ciascuno di essi corrisponde un determinato valore di CN. Per quanto riguarda l’influenza dello stato di imbibimento del suolo all’inizio dell’evento meteorico, il metodo individua tre classi caratterizzate da differenti condizioni iniziali (AMC). Nel caso studio in esame, non avendo a disposizione dati idropluviometrici specifici non è possibile risalire in maniera sufficientemente valida alla caratteristiche litologiche e di uso del suolo del bacino. A tal fine si è adottato un valore di CN pari a 74 dal quale è possibile dedurre il valore di S. Ilaria Brignone Aimonetto 8 Stima pioggia netta Si calcoli poi la pioggia totale, come prodotto dell’intensità media per il tempo di corrivazione. A questo punto, applicando la formula del metodo si ottiene la pioggia netta: È necessario produrre uno ietogramma netto a fronte dello ietogramma rettangolare lordo precedentemente calcolato. Lo schema di calcolo da utilizzare è quello passo passo di valori integrali di pioggia netta e la successiva sottrazione dei valori precedenti. Occorre preliminarmente individuare un passo di integrazione, a tal fine si è scelto un valore approssimato del tempo di corrivazione pari a 6 h. Noto l’intervallo di tempo è possibile moltiplicare quest’ultimo per l’intensità di pioggia e ricavare quindi la pioggia lorda P in mm, di cui è opportuno calcolare la cumulata. Successivamente, applicando per ciascun valore di pioggia cumulato la formula del metodo, si ricava la pioggia netta Pe cumulata. Occorre però rispettare il vincolo che sta alla base dell’utilizzo della formula, ovvero verificare che tutti i valori di precipitazione lorda P rispettino la relazione: Nei punti in cui questa condizione non fosse soddisfatta il valore di precipitazione effettiva sarebbe nullo. Un esempio si ha per il primo intervallo riportato in Tabella 4. Al fine di poter tracciare lo ietogramma netto occorre calcolare le progressive differenze tra valori di pioggia netta cumulata, ricavando il ΔPe: Nella tabella che segue si compendiano i risultati ottenuti. Ilaria Brignone Aimonetto 9 Stima pioggia netta Pe [mm] ΔP [mm] i [mm/h] P [mm] Pcum 17,082 17,082 17,082 17,082 17,082 17,082 17,082 17,082 17,082 34,165 51,247 68,330 0,000 2,522 9,095 18,238 0,000 2,522 6,573 9,143 17,082 17,082 85,412 29,111 10,873 17,082 17,082 102,495 41,204 12,093 Tabella 4- Pioggia netta Ietogramma netto 12,00 12,093 10,00 10,873 9,143 8,00 i [mm/h] 6,00 6,573 4,00 2,00 0,000 2,522 0,00 1 2 3 4 5 6 tempo [h] Figura 4- Ietogramma netto Analogamente al caso precedente sviluppato con il metodo psi è necessario ripercorrere lo schema di calcolo del metodo della corrivazione, per la quale l’unico dato differente risulta essere l’intensità di pioggia netta che corrisponde ai valori calcolati in Tabella 4, ovvero la colonna ΔP moltiplicata per l’intervallo di tempo unitario. aj in 52,245 121,905 174,150 133,515 P1 P2 P3 P4 0,000 2,522 6,573 9,143 81,270 17,415 P5 P6 10,873 12,093 portata*3,6/A 0,0000 0,2268 1,1203 2,9573 5,4460 7,9726 8,8925 7,5993 U1 U2 U3 U4 U5 U6 0,08992 0,20982 0,299741824 0,229802 0,13988 0,02997 Q(k) 0 0 0,22678 0 36,6002 0,59109 0,52916 0 180,796 0,82216 1,37922 0,755941519 0 477,278 0,97771 1,91838 1,970308504 1,08742 2,28133 2,740536429 2,53731 3,259039933 3,624734068 0,579555 0 878,916 1,51057 0,35277 0 1286,69 2,101078 0,91948 0,07559 1435,15 2,498597 1,27892 0,19703 1226,44 4,5739 2,778963 1,52089 0,27405 738,177 2,0174 0,3625 1,69154 0,3259 325,593 0,36247 58,4992 Figura 5- Schema di calcolo per portate di piena-metodo SCS-CN Ilaria Brignone Aimonetto 10 Stima pioggia netta Il valore ottenuto come picco di piena, in Figura 5, è pari a 1435, superiore al corrispettivo dato individuato con la formula razionale. Il risultato ottenuto appare realistico in quanto con l’utilizzo di questo metodo si tengono in conto parametri e fenomeni trascurati invece con altri metodi. Idrogramma piena-ietogramma costante-CN 1600,00 1.435,15 1400,00 1200,00 1000,00 Q [m3/s] 800,00 600,00 400,00 200,00 0,00 1 2 3 4 5 6 7 8 9 10 11 tempo [h] Figura 6-Idrogramma di piena (metodo SCS) Conclusioni Si può quindi concludere che il picco di piena ottenuto con la formula razionale, benché molto utile in ambito di progettazione preliminare, richieda approfondimenti ulteriori con l’utilizzo di metodi di stima della pioggia netta. Nella breve analisi sviluppata si è messo a confronto il metodo psi e il metodo SCS-CN. Il metodo psi, inserito all’interno del metodo della corrivazione, dà luogo ad un risultato corrispondente a quello ottenuto con la formula razionale. Utilizzando invece il CN il picco di piena ottenuto è di circa il 30% superiore rispetto l’analogo valore di portata del metodo razionale. Ilaria Brignone Aimonetto 11