...

of 3, Recommendations for Severe Accidents"

by user

on
Category: Documents
8

views

Report

Comments

Transcript

of 3, Recommendations for Severe Accidents"
NUREG/CR-6953, Vol. 3
U.
s 1N CSAN
D2010O-2806P
United States Nuclear Regulatory Commission
ProtectingPeopleand the Environment
Review of NUREGo065`4,
Supplement 3, "Criteria for
Protective Action
Recommendations for
Severe Accidents"
TechnOcW Basis for Protective Action
Stratgies
Office of Nuclear Security and Incident Response
AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS
NRC Reference Material
Non-NRC Reference Material
As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Registernotices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.
Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.
NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
FederalRegulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents
U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250
2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000
A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of Administration
Reproduction and Mail Services Branch
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
E-mail:
[email protected]
Facsimile: 301-415-2289
Some publications in the NUREG series that are
posted at NRC's Web site address
http://www.nrc.,ov/reading-rm/doc-collections/nureqs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.
Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained atThe NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738
These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, fromAmerican National Standards Institute
11 West 4 2 Id Street
New York, NY 10036-8002
www.ansi.org
212-642-4900
Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.
The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors'
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).
DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.
UNUREG/CR-6953,
.
Vol. 3
SAND2010-2806P
United States Nuclear Regulatory Commission
ProtectingPeople and the Environment
Review of NUREG-0654,
Supplement 3, "Criteria for
Protective Action
Recommendations for
Severe Accidents"
Technical Basis for Protective Action
Strategies
Manuscript Completed: May 2010
Date Published: August 2010
Prepared by
R. Sullivan, J. Jones', F,J. Schelling 1
N. Bixlerl, and F. Walton'
1Sandia
National Laboratories
P.O. Box 5800
Albuquerque, NM 87185
R. Sullivan, NRC Technical Lead
NRC Job Code R3144
Office of Nuclear Security and Incident Response
ABSTRACT
Volume 3 of NUREG/CR-6953, "Review of NUREG-0654, Supplement 3, 'Criteria for
Protective Action Recommendations for Severe Accidents,"' is the final volume of the
Protective Action Recommendation (PAR) Study. This analysis provides a technical
basis for decision criteria that can be used by licensees and offsite response
organizations to enhance protective action strategy for nuclear power plant accidents
that progress rapidly. The analysis integrated advances in the knowledge of potential
accident sequences, protective action strategies, and consequence modeling. The
emergency preparedness planning basis includes the potential for very unlikely but
credible rapidly progressing accidents, and this analysis was performed to specifically
identify PAR strategies for rapidly progressing accidents to support the PAR logic
diagram developed for an update to Supplement 3 to NUREG-0654/FEMA-REP-1, Rev.
1, "Criteria for Protective Action Recommendations for Severe Accidents." The updated
PAR logic diagram will include a path for General Emergencies and another decision
path for accidents defined as rapidly progressing. The.technical basis developed may
assist licensees and offsite response organizations in tailoring protective action
strategies using site specific evacuation time information. It is expected that application
of the this technical basis may improve the efficacy of protective actions for a rapidly
progressing accident. The analyses performed herein are only applicable to the rapidly
progressing accident.
Paperwork Reduction Act Statement
This NUREG references information collection requirements that are subject to the
Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.). The existing information
collections were approved by the Office of Management and Budget, approval numbers
3150-0011, 3150-0151, 3150-0093, and 3150-0207.
Public Protection Notification
The NRC may not conduct or sponsor, and a person is not required to respond to, a
request for information or an information collection requirement unless the requesting
document displays a currently valid OMB control number.
iii
Contents
A BSTRACT ...................................................................................................................
iii
EXECUTIVE SUM MARY ...........................................................................................
vi
1
2
3
4
INTRO DUCTIO N ............................................................................................
I
1.1
O bjective ..............................................................................................
1
1.2
Scope .................................................................................................
1
1.3
Background .............................................................................................
1
METHO DO LOGY ............................................................................................
2.1
Source Term Selection ........................................................................
5
5
2.2
Site Characteristics ...............................................................................
5
2.3
Scenario Developm ent ........................................................................
6
CO NSEQ UENCE MO DELING ........................................................................
7
3.1
W inMACCS .........................................................................................
7
3.2
Evacuation Speed Param eter .............................................................
8
3.3
Scenario Tim ing ................................................................................
10
3.4
W inMACCS Exceptions ......................................................................
12
PROTECTIVE ACTIO N ANALYSIS .............................................................
13
4.1
Discussion of Results ........................................................................
13
4.2
Sum m ary of Results ..........................................................................
15
5
CO NCLUSIO NS ............................................................................................
17
6
REFERENCES .............................................................................................
19
APPENDIX
............................................................................................
A. Norm alized Results
FIGURES
Figure 1 Evacuation Tail ............................................................................................
A-1
10
TABLES
5
Table 1 Source Term Inform ation ..............................................................................
6
Table 2 Protective Action Scenarios ............................................................................
8
Table 3 Shielding Factors ............................................................................................
Table 4 Evacuation Speeds and Corresponding Travel Time .................................... 8
11
Table 5 Protective Action Tim ing (hours) ...................................................................
Table 6 Section of Site 2, Source Term B-Early (from Appendix A) ........................ 14
Table 7 ETE at which Evacuation is More Protective than Sheltering ....................... 15
v
Executive Summary
Volume 3 of NUREG/CR-6953, "Review of NUREG-0654, Supplement 3, 'Criteria for
Protective Action Recommendations for Severe Accidents,"' is the final volume of the
Protective Action Recommendation (PAR) Study. This analysis provides a technical
basis for decision criteria that can be used by licensees and offsite response
organizations to enhance protective action strategy for nuclear power plant accidents
that progress rapidly. The analysis integrated advances in the knowledge of potential
accident sequences, protective action strategies, and consequence modeling. The
technical basis developed may assist licensees and offsite response organizations in
tailoring protective action strategies using site specific evacuation time information. It is
expected that application of this technical basis can improve the efficacy of protective
actions for a rapidly progressing accident.
The emergency preparedness planning basis includes the potential for very unlikely but
credible accidents which progress rapidly. The analyses documented herein were
performed to specifically identify PAR strategies for rapidly progressing accidents to
support the PAR logic diagram developed for the update to Supplement 3 to NUREG0654/FEMA-REP-1, Rev. 1, "Criteria for Protective Action Recommendations for Severe
Accidents." The updated PAR logic diagram will include a path for General Emergencies
and another decision path for accidents defined as rapidly progressing. The analyses
performed herein are only applicable to the rapidly progressing accident. Volume 1 of
the PAR Study identified a protective strategy for General Emergencies that are not
rapidly progressing. Although not quantified in this study, rapidly progressing accidents
are considered to have a much lower frequency than other potential accident conditions.
The analysts identified accident sequences, developed protective action strategies, and
performed consequence modeling. The results were used to establish decision criteria
to guide the development of site-specific protective action strategies for rapidly
progressing accidents. The analysts strongly considered the relative probability of the
rapidly progressing accident sequences used in the analysis. Such accidents are in
themselves only remotely likely to occur. Although the emergency preparedness
planning basis includes these accidents, their remote probability tempered the protective
action criteria selected.
The results of the consequence analysis show that shelter-in-place is more protective
when evacuation cannot be accomplished within predetermined timeframes. Licensees
developing site-specific protective action strategies for rapidly progressing accidents
should consider that evacuation protects public health and safety more than shelteringin-place when it can be completed within the following timeframes.
For the 0 to 2 mile area around a nuclear power plant: Evacuation is more
protective when the evacuation time estimate (ETE) is less than 2 hours.
For the 2 to 5-mile area: Evacuation is more protective when the ETE is less
than 3 hours.
For the 5 to 10-mile area: Shelter-in-place would likely be the initial protective
action to allow a staged evacuation to proceed. If evacuation is the initial
vii
protective action for this area, it is more protective than shelter-in-place when the
ETE is less than 3.2 hours.
Results also show that the implementation of staged evacuation between the 0-2, 2-5,
and 5-10 mile areas reduces risk when compared to immediate evacuation of the entire
0-10 mile area, or shelter-in-place followed by evacuation for the 0-10 mile area. Sitespecific characteristics and population distribution must always be considered when
determining whether evacuation is the most appropriate protective action. Population
densities, which are typically low within 5 miles of nuclear power plants, and the
geographic dimensions of emergency response planning areas can influence protective
action decisions. Therefore, an understanding of the plume exposure pathway
emergency planning zone must be factored into the development of site-specific
protective action strategies for rapidly progressing nuclear power plant accidents.
viii
I
INTRODUCTION
Volume 3 of NUREG/CR-6953, "Review of NUREG-0654, Supplement 3, 'Criteria for
Protective Action Recommendations for Severe Accidents,"' is the final volume of the
Protective Action Recommendation (PAR) Study. It supplies the technical basis for
licensee development of a site-specific protective action strategy for nuclear power plant
accidents that progress rapidly. Volume 1 of the PAR Study included a comprehensive
evaluation of existing NRC PAR guidance for protective actions and concluded that
shelter-in-place and staged evacuation strategies may be more protective for a rapidly
progressing accident (NRC, 2007). Volume 1 also concluded that Supplement 3 to
NUREG-0654/FEMA-REP-1, Rev. 1, "Criteria for Protective Action Recommendations
for Severe Accidents," (NRC, 1996) should be updated. Volume 2 identified the
importance of communication with the public during an emergency and concluded that
the public would likely comply with alternative protective actions, such as a staged
evacuation (NRC, 2008). Volume 3 builds upon the results and insights gained from
Volumes 1 and 2 to develop a technical basis that may assist licensees and offsite
response organizations in the tailoring of protective action strategies using site specific
evacuation time information.
The emergency preparedness planning basis includes the potential for very unlikely but
credible rapidly progressing accidents. The analyses documented herein were
performed to specifically identify PAR strategies for rapidly progressing accidents to
support the PAR logic diagram developed for the update to Supplement 3. The PAR
logic diagram includes a path for General Emergencies and another decision path for
accidents defined as rapidly progressing. The analyses performed herein are only
applicable to the rapidly progressing accident. Volume 1 of the PAR Study identified a
protective strategy for General Emergencies that are not rapidly progressing. Although
not quantified in this study, rapidly progressing accidents are considered to have a much
lower frequency than other potential accident conditions.
1.1
Objective
The objective of the Volume 3 analysis was to establish a technical basis for developing
PAR guidance for rapidly progressing accidents and to establish criteria for determining
the most appropriate protective action recommendations and decisions for these events.
1.2
Scope
The scope of the analysis included consequence analyses of rapidly progressing
accidents to identify the evacuation speed at which immediate evacuation is more
protective than shelter-in-place. The analysts identified accident sequences, developed
protective action strategies, and performed consequence modeling. The analysis
integrated advances in the knowledge of potential accident sequences, protective action
strategies, and consequence modeling.
1.3 Background
NUREG-0396/EPA 520/1-78-016, "Planning Basis for the Development of State and
Local Government Radiological Emergency Response Plans in Support of Light Water
1
Nuclear Power Plants," (NRC, 1978) recommended a distance of about 10 miles for the
plume exposure pathway emergency planning zone (EPZ). The distance was not
precise because political boundaries and geographical features must be considered
when establishing an EPZ. Supplement 3 to NUREG-0654/FEMA-REP-1, Rev. 1,
"Criteria for Protective Action Recommendations for Severe Accidents," (NRC, 1996),
published in July 1996 as a draft report for interim use and comment, provides guidance
that, in the event of a severe accident, licensees recommend evacuation of a keyhole
area that includes a 3.2-kilometer (km) (2 mile) radius and 8 km (5 miles) downwind of
the plant. Supplement 3 considers shelter-in-place for unique instances, such as severe
weather. The approach described in Supplement 3 has resulted in licensees
emphasizing evacuation as an initial protective action, with sheltering considered only
when impediments to evacuation may exist.
The PAR Study (NRC, 2007) assessed the efficacy of alternative protective actions.
Volume 1 of the PAR study evaluated existing NRC PAR guidance contained in
Supplement 3 (NRC, 1996) and assessed whether implementation of alternative
protective actions could reduce potential health effects in the event of a nuclear power
plant accident. A detailed review of core melt accidents described in NUREG-1 150,
"Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants, Final
Summary Report," (NRC, 1990), was conducted for Volume 1 of the PAR Study to find
appropriate accident sequences for use in the analysis. Based on the NUREG-1 150
accident review, the analysts, together with NRC, staff selected a series of source terms
for use in Volume 1 and evaluated the potential consequences to the public under
various protective action strategies. Volume 1 of the PAR study included a rapidly
progressing accident, a progressive accident, and a no-loss-of-containment accident and
evaluated the following protective action strategies:
•
*
*
*
*
*
*
immediate radial evacuation (current strategy)
lateral evacuation (evacuation perpendicular to the plume)
staged evacuation (close-in population evacuates first, others shelter in place
and then evacuate)
shelter-in-place followed by radial evacuation
shelter-in-place followed by lateral evacuation
preferential sheltering in large public structures, followed by radial evacuation
preferential sheltering followed by lateral evacuation
The relative benefit of alternative protective action strategies was compared to the
immediate radial evacuation strategy. Volume 1 concluded that shelter-in-place may be
more protective for rapidly progressing accidents and supported a decision to revise
NUREG-0654, Supplement 3 (NRC, 2007).
Volume 2 of the PAR Study included data gathering to understand public perceptions of
how they might respond to an accident at a nuclear power plant. The study conducted
focus groups and a telephone survey with residents of EPZs. Residents of EPZs receive
annual information about emergency planning within the EPZ and were expected to be
educated and aware of the emergency planning expectations. Information obtained from
the general public focus groups was used to develop a telephone survey questionnaire
designed to support more detailed data collection. The study also conducted separate
focus groups with emergency responder personnel to gain the insight of their
experiences dealing with the public during emergencies.
2
Volume 2 documented the insights gained from the focus groups and presented results
of the national telephone survey of EPZ residents. The results were analyzed at the
national level and NRC regional level, but they were not compiled for use at the State or
reactor site level (NRC, 2008). Results showed that the public would tend to comply
with protective action direction, and that the level of compliance may be improved
through effective communication during the emergency.
3
2 METHODOLOGY
To develop protective action strategy criteria for rapidly progressing accidents, the
analysis integrated advances in knowledge of potential accident sequences, protective
action strategies, and consequence modeling. The approach included the following
activities:
*
*
*
*
*
2.1
select source terms
establish site characteristics
develop protective action scenarios
conduct consequence modeling
analyze results
Source Term Selection
Selecting appropriate source terms for use in the analysis required review of existing
accident sequences identified in previous and current NRC work. The NUREG-1 150
accidents were not appropriate for use because more current information that
considered advances in the understanding of accident progression was available.
Analysts reviewed but did not use the NUREG/CR-6953 Volume 1 source terms
because these also did not consider advances in the understanding of accident
progression. Accident sequences from ongoing NRC projects were reviewed but not
useful for this study because the studies reviewed did not find any credible rapidly
progressing accidents. The two source terms ultimately selected for this analysis were
obtained from recent NRC accident studies that included rapidly progressing releases
that began in less than 1 hour, as shown in Table 1, "Source Term Information." The
duration values in Table 1 are approximate, because each source term had multiple
overlapping plume segments of varying duration.
Source Term
A
B
2.2
Table 1 Source Term Information
Major Plume Duration
Major Plume Delay
(hours)
(hours)
0.5
2.8
0.7
1.6
Site Characteristics
Population is an important factor in determining protective actions as described in
NUREG 0396/EPA 520/1-78-016 (NRC, 1978). Consistent with the NUREG-0396
approach, two sites were selected for this analysis. Site 1 was a high population density
site with more than 200,000 residents within the EPZ, and Site 2 was a medium
population density site with about 50,000 residents within the EPZ. Medium and high
population density sites have longer evacuation time estimates (ETEs) and
correspondingly slower evacuation travel speeds than low population density sites and
were expected to provide more practical information for the study than a low population
density site. The study used actual meteorological data from Site 1 and Site 2.
Although medium and high population density sites were used in the analysis, the results
are applicable to all nuclear power plant sites.
5
2.3 Scenario Development
Scenarios were used to define bounding conditions for the analysis. Six scenarios
shown in Table 2, "Protective Action Scenarios," were defined and used multiple
evacuation speeds for the 0-2 mile, 2-5 mile, and 5-10 mile areas around a nuclear
power plant. Each of these scenarios included varied durations for shelter-in-place to
help define the time at which evacuation was more beneficial than shelter-in-place.
Scenarios
A
B
C
D
E
F
Table 2 Protective Action Scenarios
0-2 miles
2-5 miles
5-10 miles
Immediate evacuation
SIP then evacuate
SIP then evacuate at 8 hours
SIP then evacuate
Immediate evacuation
SIP then evacuate at 8 hours
Immediate evacuation
Immediate evacuation
SIP then evacuate at 8 hours
SIP then evacuate
SIP then evacuate
Immediate evacuation
SIP then evacuate
SIP then evacuate
SIP then evacuate
Immediate evacuation
Immediate evacuation
Immediate evacuation
All scenarios began at time zero, or T=0. In this study, T=0 represented the time at
which plant operators become aware that a General Emergency condition exists.
However, it is likely that operators would be aware of precursor events that create the
potential for a rapidly progressing accident before this hypothetical T=0 and would make
a notification to local authorities. Licensees are required to notify the State within
15 minutes of becoming aware that a General Emergency condition exists and provide a
protective action recommendation. The analysis expects that for a rapidly progressing
accident, local authorities would activate sirens and Emergency Alert System messages
within about 15 minutes from the time they were notified. Completion of these two
activities could take 30 minutes between T=0 and the time that the public is notified. It
would be expected that the population responds promptly to the sounding of sirens and
official notification. The protective actions shown in Table 2 are defined as follows:
Immediate Evacuation-Residents evacuate the affected area beginning
30 minutes after the start of the accident.
Shelter in Place then Evacuate-Residents within the affected area begin
sheltering 30 minutes after the start of the accident. In the scenarios, shelter
periods were incrementally increased at 30-minute intervals up to 5 hours.
Shelter in Place then Evacuate at 8 Hours-Residents within the 5-10 mile
area begin sheltering 30 minutes after the start of the accident and stay in the
shelter for 8 hours, then evacuate.
In Scenarios A, B, and C, residents of the 5-10 mile area are assumed to shelter until
the plume has passed. The analysis assumed that this would occur about 8 hours after
the start of the event providing time for the plume to pass or field teams to provide
monitoring information. In Scenarios D and F, a more immediate evacuation was
modeled for this area, and in Scenario E, shelter-in-place durations were incrementally
increased at 30-minute intervals up to 5 hours.
6
3 CONSEQUENCE MODELING
The MELCOR Accident Consequence Code System Version 2 (MACCS2) was
developed at Sandia National Laboratories for the NRC for use in probabilistic risk
assessments for commercial nuclear reactors to simulate the impact of accidental
atmospheric releases of radiological materials on the surrounding environment. The
principal phenomena considered in MACCS2 are atmospheric transport using a
Gaussian plume model, short-term and long-term dose accumulation through several
pathways (including cloudshine, groundshine, inhalation, deposition onto the skin, and
food and water ingestion), mitigative actions based on dose projection, early and latent
health effects, and economic costs. The following phenomena can be incorporated
within a single calculation:
o
o
o
°
•
*
o
Release characteristics;
Meteorological sampling;
Atmospheric dispersion and deposition considerations;
Exposure pathways and duration;
Protective actions and dose mitigation;
Movement of population as cohorts;
Individual and population doses; and
Health and economic consequences.
Standard MACCS2 modeling for NRC assessments uses the parameters in Sample
Problem A which is discussed in the MACCS2 user's manual (NRC, 1998).
3.1
WinMACCS
This project utilized the most recent version of the MACCS2 analysis codes, called
WinMACCS. In general, WinMACCS employs code enhancements that primarily
simplify user input, improve code performance, and enhance existing functionality. They
do not represent a major phenomenological model development effort.
This parametric study used WinMACCS Version 3.4.3 as the consequence model. The
WinMACCS code integrates four modules that include ATMOS, EARLY, CHRONC, and
COMIDA (NRC, 1998). For this analysis, only the ATMOS and EARLY modules of
WinMACCS were used. ATMOS was used for atmospheric transport and deposition,
and EARLY was used to perform the emergency phase calculations. CHRONC is used
for intermediate to long phase calculations, which were not needed to support early and
near field effects (NRC, 1998). COMIDA is the ingestion pathway model, also not
needed to support early and near field effects. The early phase calculations assumed
an emergency phase duration of 1 week, which gave sufficient time for the plume to exit
the problem domain. Normalized mean consequence results were produced and used
to support the study conclusions.
Consequence modeling typically begins with the use of parameters in Sample Problem
A described in the MACCS2 user's manual (NRC, 1998). Many of the parameters used
in this analysis were consistent with Sample Problem A. Some of the parameters were
consistent with the current and ongoing NRC projects, and some parameters were
specific to this project, such as evacuation speed. The approach to selected
WinMACCS parameters is described below.
7
*
The analysis did not use the potassium iodide prophylaxis model to support the
risk-based conclusions because the effect would be uniform.
•Hotspot and Normal Relocation occur outside the EPZ, so these parameters
were not a factor in this analysis.
The analysis selected the weather-binning option for meteorological sampling.
For this option, hourly weather data were binned in up to 40 bins that differentiate
wind speed, atmospheric stability class, and precipitation rate.
The analysis used the Linear No Threshold dose-health effects model and
Federal Guidance Report FGR-13 dose conversion factors (EPA, 1999).
The analysis used the WinMACCS radial evacuation application. Evacuation was
modeled to the EPZ boundary, which was assumed to be 10 miles from the plant.
Consistent with WinMACCS applications, beyond 16 miles the evacuating population
received no further dose. The analysis used a 30-minute delay to give time for an
emergency action level declaration and for offsite response organizations to sound
sirens and alert the public via EAS messages.
One of the parameters varied in this study was the duration of shelter-in-place. The
duration was incrementally increased to aid in bounding when shelter-in-place is more
protective. Varying the shelter-in-place also represented a longer mobilization time.
Shielding values for shelter-in-place were applied for the duration that residents were
sheltered (see Table 3, "Shielding Factors").
Table 3 Shielding Factors**
Factor
Cloudshine
Groundshine
Inhalation
Evacuation
1.00
0.50
0.98
Normal
0.75
0.33
0.41
Sheltering
0.60
0.20
0.33
**A value of 0 indicates complete shielding, and a value of 1 indicates no
3.2
Skin
0.98
0.41
0.33
shielding.
Evacuation Speed Parameter
Use of the ETE to develop travel speeds required consideration of the mobilization time,
loading of the transportation network, distance, and speed (NRC, 2005). An initial
representative speed was derived from review of ETE studies. Iterative calculations
identified bounding speeds at which evacuation was shown to be more beneficial than
sheltering. Table 4, "Evacuation Speeds and Corresponding Travel Time," identifies the
speeds used in the analysis.
Table 4 Evacuation Speeds and Corresponding Travel Time
Speed
0 to 2 miles
2 to 5 miles
5 to10 miles
(mph)
(hours)
(hours)
(hours)
1
2
3
5
2
1
1.5
2.5
3
0.7
1
1.7
8
To model evacuation in WinMACCS, evacuees were loaded onto the roadway network
at a specified time, and a single speed was used. However, evacuations typically occur
as a distribution in which the percent of public evacuating the area increases over time
until all members of the public have evacuated. As evidenced in existing evacuations,
travelers who depart the area first experience shorter delays because the traffic volume
and corresponding congestion is generally lower. Evacuees who depart during
the middle portion of the evacuation, when the greatest numbers of people are seeking
to leave, generally experience the highest congestion because the demand on the
roadway network is at its greatest, exceeding the available capacity in many areas.
Evacuees who depart later, although potentially putting themselves at greater risk, enter
the network after a large percentage of evacuees has left and the roadways again can
meet the volume. This later group is generally able to avoid the delays associated with
the peak evacuation demand period; however, they take the longest time to complete
the evacuation.
Evacuations are typically represented as a curve that is relatively steep at the beginning
and tends to flatten as the last members of the public exit the area (see Figure 1,
"Evacuation Tail"). This distribution curve is relatively steep for shorter duration
evacuations from areas the size of an EPZ, and the distribution curve is less steep for
longer duration evacuations typical of those for hurricane which may begin days in
advance of landfall. The point at which the curve tends to flatten occurs when
approximately 90 percent of the population has evacuated. The last 10 percent of the
population is called the evacuation tail (Wolshon, 2010). When making protective action
decisions and recommendations, use of the 90 percent ETE value is appropriate
because it ensures that the vast majority of the public have been considered, and that
the time is not skewed by the few percent that take an extraordinarily long time to
evacuate.
As an example, Figure 1 shows a 90 percent ETE at approximately 5.25 hours and a
100 percent ETE at approximately 9 hours. Similar curves have been observed in
review of more than 20 nuclear power plant ETEs. Using Figure 1 as an example, if
decision-makers believe that a release would start in about 6 hours, they may decide
that because the 100 percent ETE is 9 hours, shelter-in-place is more protective.
However, in this example, the vast majority of the population would be evacuated before
the release. The evacuation tail is both observed in actual evacuations (Wolshon, 2010)
and is evident in ETE modeling. The evacuation tail was investigated in the PAR Study
Volume 2 telephone survey, and data showed that use of a 10 percent assumption for
the evacuation tail was appropriate (NRC, 2008). It is important that the tail be
understood and considered when making protective action decisions and
recommendations, and the 90 percent ETE value should be used for these decisions.
9
100%
90%
80%
70%
60%
coo 50%
40%
30%
20%
10%
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.
Elapsed Time (hr)
Figure 1 Evacuation Tail
3.3
Scenario Timing
The analysts developed timing for each of the scenario activities identified in Table 2,
"Protective Action Scenarios," to supply a spectrum of conditions for analysis. Table 6,
"Protective Action Timing," shows the detailed timing for each of the protective action
scenarios outlined in Table 2. For all scenarios, the 30-minute (0.5 hours) delay before
the public implements any protective action is included in the Delay to Shelter column.
Table 5 provides the timing for the protective action scenarios, and the table headings
are defined below.
Delay to Shelter is the delay from the time of the start of the accident until the
public enters the shelter.
Delay to Evac is the length of the sheltering period from the time the public
enters the shelter until the point at which they begin to evacuate.
Depart is the sum of the Delay to Shelter and Delay to Evac and represents the
time evacuees entered the roadway network.
As an example of how to apply the values in Table 5, consider Scenario B, Row 2
(highlighted in gray). For the 0-2 mile area, the Delay to Shelter is 30 minutes
(0.5 hours), and the normal activity shielding factors are applied during this period.
Delay to Evacuation is also 30 minutes for the 0-2 mile area, and the shielding factors
for sheltering are applied during this period. These values indicate that it takes
10
00
10.00
30 minutes for residents to receive the warning, and then they shelter for 30 minutes
before evacuating. Evacuees from the 0-2 mile area depart at 1 hour, which is the sum
of the Delay to Shelter and Delay to Evacuation times and the shielding factors for
evacuation are then applied.
For the 2-5 mile area, the Delay to Shelter is 30 minutes, but the Delay to Evacuation is
0 minutes, indicating that the evacuees from within the 2-5 mile area depart at
30 minutes without sheltering. For the 5-10 mile area, the public is sheltered at
30 minutes for a duration of 8 hours and departs at 8.5 hours.
Table 5 Protective Action Timing (hours)
Scenaro
A
Delay to
Shelter
Dea
2-5 Miles
Delay to
Evac
Delay to
Shelter
Depar
Delay to
Shelter
5-10 Miles
Delay to
Evac
Depar
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.5
0.5
0.5
0.0
0.5
0.5
0.5
1.0
0.5
8.0
8.5
0.0
0.0
0.5
0.5
0.5
0.5
1.0
1.5
1.5
2.0
0.5
0.5
8.0
8.0
8.5
8.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
2.0
2.5
2.5
3.0
0.5
0.5
8.0
8.0
8.5
8.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
3.0
3.5
4.0
4.5
5.0
3.5
4.0
4.5
5.0
5.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.5
0.5
1.0
1.5
1.0
0.5
8.0
2.5
3.0
3.5
4.0
4.5
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
2.0
2.5
3.0
3.5
4.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
2.0
0.0
0.0
0.0
4.5
5.0
5.0
5.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.0
8.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
C
0-2 Miles
Delay to
Evac
0.5
0.5
0.5
11
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
Scenario
D
F
Delay to
Shelter
0-2 Miles
Delay to
Evac
Depart
Delay to
Shelter
2-5 Miles
Delay to
Evac
Depart
Delay to
Shelter
5-10 Miles
Delay to
Evac
Depart
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4.0
4.5
5.0
4.5
5.0
5.5
0.5
0.5
0.5
4.0
4.5
5.0
4.5
5.0
5.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.0
1.5
2.0
2.5
3.0
1.0
1.5
2.0
2.5
3.0
3.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
1.0
1.5
2.0
2.5
3.0
1.0
1.5
2.0
2.5
3.0
3.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
1.0
1.5
2.0
2.5
3.0
1.0
1.5
2.0
2.5
3.0
3.5
0.5
3.5
4.0
0.5
3.5
4.0
0.5
3.5
4.0
0.5
0.5
0.5
4.0
4.5
5.0
4.5
5.0
5.5
0.5
0.5
0.5
4.0
4.5
5.0
4.5
5.0
5.5
0.5
0.5
0.5
4.0
4.5
5.0
4.5
5.0
5.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
3.4 WinMACCS Exceptions
WinMACCS does not fully represent the emergency phase in two areas. First,
WinMACCS does not facilitate input of a roadway loading function for evacuation to
realistically represent how vehicles enter the roadway network. When the evacuation
mode is used in WinMACCS, the model loads all vehicles onto the roadway at a single
specified time, identified as 'Depart' in Table 5. Second, WinMACCS does not account
for air changes per hour within shelters. The air change per hour rate influences how
quickly contamination enters the structure. The contaminant concentration inside may
eventually equilibrate with the concentration outside, causing the benefit of sheltering to
diminish with time (EPA, 1992). Therefore, although longer shelter-in-place durations
may in some instances show greater benefit, the results would be affected if infiltration
were considered.
To address these parameters, the study varied shelter-in-place duration and established
evacuation speeds as a linear value of distance divided by the ETE. The distance-overETE ratio resulted in slower speed values than would be expected in an actual
evacuation. The lower shielding value of the vehicles traveling for longer periods offsets,
to some extent, the effect of infiltration that was not considered in the sheltering model.
12
4 Protective Action Analysis
The objectives of this analysis were to establish a technical basis for developing PAR
guidance for rapidly progressing accidents and to find criteria for choosing protective
action recommendations for these events. Establishing the technical basis required an
analysis of protective actions to determine when immediate evacuation was more
protective than shelter-in-place for the rapidly progressing accident.
4.1
Discussion of Results
The analysis of protective actions included consequence modeling of two sites, two
source terms, three speeds, and six scenarios, which resulted in 48 WinMACCS output
files. Each output file had 11 durations representing a range of departure times, from
0.5 to 5.5 hours at 30-minute increments. In total, 4,752 consequence results were
generated for evaluation.
The large quantity of data produced in this complex analysis required in-depth analysis
and some interpretation. To facilitate data interpretation, the data output was normalized
to present a common platform for review of the risk of early fatalities and the risk of
latent cancer fatalities. Normalizing the results required dividing all early fatality values
for both sites and both source terms by the maximum early fatality consequence value.
Likewise, all latent cancer fatality values for both sites and both source terms were
divided by the maximum latent cancer consequence value. This process produced a set
of normalized risk values which range from 0.00 to 1.00 and are presented in
Appendix A, "Normalized Results."
The normalized risk values provide the percent of maximum early or latent risk. The
process allowed for the comparison of early risk among the scenarios, source terms, and
sites and latent risk among the scenarios, source terms, and sites. However, the early
risk values have no relation to the latent risk values and cannot be compared with any
meaning.
The analysts considered uncertainty related to shelter-in-place when reviewing the risk
results for the shelter-in-place protective action. Uncertainties exist about whether
residents will enter a shelter before plume arrival and shelter for the required duration,
and whether communications will be available to instruct residents to stay sheltered and
leave at the optimal time to minimize exposure. Uncertainty about the protection
afforded by the specific shelter is also a factor. These uncertainties do not diminish
shelter-in-place as a protective action when it is appropriate, but they did influence the
review of the data when determining the point at which evacuation is more protective
than shelter-in-place. In general, when results showed evacuation benefit was close to
the shelter-in-place benefit, the analysts selected evacuation even if the risk was
marginally higher than sheltering.
The following examples, which reference values in Table 6, "Section of Site 2, Source
Term B-Early, from Appendix A," describe the data interpretation process:
*
Scenario A identifies risk with respect to shelter for the 2-5 mile area, and Table 6
shows that at 1 mile per hour (mph), the normalized risk of an early fatality peaks at
0.05. The risk values are highest from 2.5 hours to 3.5 hours which indicates that
13
residents who shelter-in-place and then depart between 2.5 and 3.5 hours would
travel under the plume and receive a greater dose than those who evacuate earlier
or stay sheltered longer and then evacuate. The review of this scenario identified the
0.02 risk value (highlighted in the 2-5 column of Table 6) as the threshold point at
which evacuation was more protective than shelter-in-place. The 0.02 risk value
corresponds to a departure time of 2 hours (highlighted in the 2-5 column of Table 6).
The 2 hour departure time was added to a 3 hour travel time, which is the time
required to travel 1 mph for the 2-5 mile distance (1 mph x 3 miles = 3 hours), for a
total of 5 hours. The example shows that if the ETE is 5 hours or less for the 2-5
mile area, evacuation is more protective for Site 2, Source Term B, Early. This result
appears in Table 7, "ETE at which Evacuation is More Protective than Sheltering."
Scenario B identifies risk with respect to shelter for the 0-2 mile area. Scenario B
shows that at 1 mph, the lowest normalized risk of an early fatality is 0.02 and peaks
at 0.08. At 2 mph, the lowest normalized risk is 0.00, but review of the raw data
confirmed that the normalized risk of 0.01 was appropriate for use. The review of
this scenario identified the 0.01 risk value (highlighted in the 0-2 column of Table 6)
as the threshold point at which evacuation was more protective than shelter-in-place
and corresponds to a departure time of 1 hour (highlighted in the 0-2 column of Table
6). The 1 hour departure time was added to a 1 hour travel time, which is the time
required to travel 2 mph for the 0-2 mile distance (2 mph x 2 miles = 1 hour), for a
total of 2 hours. This example shows that if the ETE is 2 hours or less for the 0-2
mile area, evacuation is more protective for Site 2, Source Term B, Early. This result
also appears in Table 7.
Table 6 Section of Site 2, Source Term B - Early (from Appendix A)
2-5 Miles
Imph
DLTEVA
DEPART
0-2 Miles
2-5 Miles
0-2 MIles
0.5
0.0
0.5
0.02
0.00
0.00
0.5
0.5
1.0
0.02
0.00
0.00
0.5
0.5
1.0
1.5
0.02
0.01
0.00
0.0
0.5
0.5
1.5
2.0
0.02
0.02
0.00
0.5
0.0
0.5
0.5
2.0
2.5
0.02
0.04
0.00
2-5 mi: SHEL TER
0.5
0.0
0.5
0.5
2.5
3.0
0.02
0.05
0.00
5-10 mi: SHELTER
0.5
0.0
0.5
0.5
3.0
3.5
0.02
0.04
0.00
0.5
0.0
0.5
0.5
3.5
4.0
0.02
0.02
0.00
0.5
0.0
0.5
0.5
4.0
4.5
0.02
0.01
0.00
0.5
0.0
0.5
0.5
4.5
5.0
0.02
0.00
0.00
0.5
0.0
0.5
0.5
5.0
5.5
0.02
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
0.5
0.5
1.0
0.5
0.0
0.5
0.07
0.00
0.01
0.5
1.0
1.5
0.5
0.0
0.5
0.08
0.00
0.03
0.5
1.5
2.0
0.5
0.0
0.5
0.08
0.00
0.05
0-2 mi: SHEL TER
0.5
2.0
2.5
0.5
0.0
0.5
0.05
0.00
0.05
2-5 mi: EVAC
0.5
2.5
3.0
0.5
0.0
0.5
0.02
0.00
0.04
5-10 mi: SHELTER
0.5
3.0
3.5
0.5
0.0
0.5
0.00
0.00
0.03
0.5
3.5
4.0
0.5
0.0
0.5
0.00
0.00
0.01
0.5
4.0
4.5
0.5
0.0
0.5
0.00
0.00
0.00
0.5
4.5
5.0
0.5
0.0
0.5
0.00
0.00
0.00
0.5
5.0
5.5
0.5
0.0
0.5
0.00
0.00
0.00
0-2 Miles
Scenario
DLTSHL
DLTEVA
DEPART
DLTSHL
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0-2 mi: EVAC
Scenario A
Scenario B
i
I
2mph
The above description was typical of the data review, where one protective action was
shown to have a higher or lower risk over a given time period. The data review
14
completed a similar comparison for all scenarios to find the threshold travel speed and
associated departure time. Using this information, the analysis calculated the ETE to
find the time at which evacuation was more protective than sheltering. Table 7 presents
these results.
Site
Table 7 ETE at which Evacuation is More Protective than Sheltering
Consequences Area
Source Term A
Source Term B
Evacuate when ETE is:
Evacuate when ETE is:
0-2
< 1.5 hours
< 2 hours
Early Risk
1
Latent Risk
Early Risk
2
Latent Risk
2-5
< 2.5 hours
< 4 hours
5-10
< 5 hours**
< 5 hours**
0-2
< 1.2 hours
< 1.2 hours
2-5
< 1.5 hours
< 1.5 hours
5-10
< 2.2 hours
< 3.2 hours
0-2
< 2 hours
< 2 hours
2-5
< 3 hours
< 5 hours
5-10
< 5 hours**
< 5 hours**
0-2
< 5 hours**
< 5 hours**
2-5
< 2 hours
< 2.5 hours
5-10
< 2.7 hours
< 3.2 hours
**Results show essentially no consequences at any ETE.
4.2
Summary of Results
This analysis strongly considered the relative probability of rapidly progressing source
terms. The accidents used in this analysis are in themselves only remotely likely to
occur. Accidents in this probability range are sometimes referred to as "speculative,"
and analyses confirm that they are very unlikely. Although the emergency preparedness
planning basis includes such accidents, their remote probability tempered the protective
action criteria selected. To this end, the analysis closely studied the normalized risk
values and raw output to determine the most appropriate ETE value for each area and
each source term. The normalized risk values provide the percent of maximum early or
latent risk and range from 0.00 to 1.00. Professional judgment was used in determining
the criteria most appropriate for general guidance at nuclear power plants nationwide.
Consistent with the guidance of NUREG-0396/EPA 520/1-78-016 (NRC, 1978), the early
fatality risk had greater weight in the decision process than latent cancer risk. Because
the vast majority of sites within the reactor fleet are either medium or low population
density, the recommended ETE values were more closely aligned with the Site 2,
medium population density results.
The conclusions derived from Table 7 are presented below in terms of radial distance
from the plant. The licensee's site-specific strategies would be developed following the
criteria identified in this report and would be contained in emergency plan implementing
procedures:
15
0-2 mile area: If the ETE is less than 2 hours, evacuation is more protective.
2-5 mile area: If the ETE is less than 3 hours, evacuation is more protective.
5- 10 mile area: If the ETE is less than 3.2 hours, evacuation is more
protective. However, within the area from 5 to 10 miles around a nuclear power
plant, shelter-in-place would likely be the initial protective action to allow a staged
evacuation to proceed. If evacuation is the initial protective action for this area, it
is most protective when the ETE is less than 3.2 hours.
If evacuation cannot be accomplished within the specified timeframes, shelter-in-place
would be the most appropriate protective action, followed by evacuation when it is safe
to do so. Evacuation, if needed after shelter-in-place, would be based on accident
conditions, field measurements, and other information obtained throughout the incident.
Scenario F, which was immediate evacuation of the full EPZ, was compared to the
staged evacuation of the 0-2, 2-5, and 5-10 mile areas. Results also show that the
implementation of staged evacuation of the 0-2, 2-5, and 5-10 mile areas reduces risk
when compared to immediate evacuation of the entire 0-10 mile area, or shelter-in-place
followed by evacuation for the 0-10 mile area.
16
5 CONCLUSIONS
The analysis to develop PAR guidance for rapidly progressing accidents considered a
spectrum of accidents and varied protective actions and timing to calculate when
evacuation is more protective than sheltering. Evacuation is always more protective
than sheltering when it can be completed before arrival of the plume; however, rapidly
progressing accidents limit opportunities to complete evacuation prior to plume arrival.
The results of this analysis demonstrate that source term and evacuation speed affect
the efficacy of the protective action. Evacuation speeds were established for the
analyses and then converted into ETEs for application in emergency planning. Because
the vast majority of sites within the reactor fleet are either medium or low population
density, the recommended ETE values were more closely aligned with the Site 2 results.
This approach supplied results that are applicable at the reactor fleet level. The
conclusions of this report suggest that licensees use the following ETE values for a
rapidly progressing accident when developing a site-specific protective action logic
diagram:
0 to 2-mile area around a nuclear power plant: Ifthe ETE is less than
2 hours, evacuation is more protective.
2 to 5-mile area: Ifthe ETE is less than 3 hours, evacuation is more protective.
5 to 10-mile area: Shelter-in-place would likely be the initial protective action to
allow a staged evacuation to proceed. If evacuation is the initial protective action
for this area, it is most protective when the ETE is less than 3.2 hours.
If evacuation of this area cannot be accomplished within the specified timeframes,
shelter-in-place would be the most appropriate protective action, followed by evacuation
when it is safe to do so. Evacuation, if needed after shelter-in-place, would be based on
accident conditions, field measurements, and other information obtained throughout the
incident.
Immediate evacuation of the full EPZ was compared to the staged evacuation. Results
also show that the implementation of staged evacuation of the 0-2, 2-5, and 5-10 mile
areas reduces risk when compared to immediate evacuation of the entire 0-10 mile area,
or shelter-in-place followed by evacuation for the 0-10 mile area. This result is
consistent with the findings in Volume 1 of the PAR Study (NRC, 2007), which also
showed that staged evacuation was more generally beneficial than evacuation of the full
EPZ.
To best achieve the goal of protecting the public health and safety, it is appropriate to
use the 90 percent ETE value when determining whether evacuation is the most
appropriate protective action.
Limitations: The analyses performed herein are only applicable to the rapidly
progressing accident. Although not quantified, this type of accident is generally
considered to have a lower frequency than other potential accident conditions.
17
Site-specific characteristics and population distribution must always be considered when
applying these criteria and deciding whether evacuation is the most appropriate
protective action. Population densities are typically low within 5 miles of most nuclear
power plants, and emergency response planning areas seldom conveniently end at the
precise 2 or 5 mile boundaries. Some sites have emergency response planning areas
that extend from within the 1 to 2 mile area out to 3 or 4 miles. This full distance would
be evacuated along with the 0 to 2 mile evacuation. An in-depth understanding of the
EPZ characteristics must be factored into the development of site-specific protective
action strategies for rapidly progressing nuclear power plant accidents.
18
6 REFERENCES
Environmental Protection Agency (EPA). EPA-400-R-92-001, "Manual of Protective
Action Guides and Protective Actions for Nuclear Incidents." Washington D.C.: EPA.
May 1992. (EPA, 1992).
Environmental Protection Agency (EPA). EPA-402-R-99-001, "Cancer Risk Coefficients
for Environmental Exposure to Radionuclides." Federal Guidance Report No. 13.
Washington D.C.: EPA. September 1999. (EPA, 1999).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG/CR-6953, Vol. 2. SAND20075448P. "Review of NUREG-0654, Supplement 3, "Criteria for Protective Action
Recommendations for Severe Accidents, Focus Groups and Telephone Survey."
Washington D.C.: NRC. October 2008. (NRC, 2008).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG/CR-6953, Vol. 1. SAND20075448P. "Review of NUREG-0654, Supplement 3, "Criteria for Protective Action
Recommendations for Severe Accidents." Washington D.C.: NRC. December 2007.
(NRC, 2007).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG/CR-6863, SAND2004-5900.
"Development of Evacuation Time Estimate Studies for Nuclear Power Plants."
Washington D.C.: NRC. January 2005. (NRC, 2005).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG/CR-6613, SAND97-0594. "Code
Manual for MACCS2." Volumes 1 and 2. Washington D.C.: NRC. 1998. (NRC, 1998).
Nuclear Regulatory Commission (U.S.) (NRC). Supplement 3 to NUREG-0654/FEMAREP-1, Rev. 1, "Criteria for Protective Action Recommendations for Severe Accidents."
Washington D.C.: NRC. 1996. (NRC, 1996).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG-1 150, "Severe Accident Risks:
An Assessment for Five U.S. Nuclear Power Plants, Final Summary Report."
Washington DC.: NRC. 1990. (NRC, 1990).
Nuclear Regulatory Commission (U.S.) (NRC). NUREG 0396/EPA 520/1-78-016,
"Planning Basis for the Development of State and Local Government Radiological
Emergency Response Plans in Support of Light Water Nuclear Power Plants."
Washington D.C.: NRC. 1978. (NRC, 1978).
Wolshon, Brian, J. Jones, and F. Walton. "The Evacuation Tail and Its Effect on
Evacuation Decision Making." Journal of Emergency Management. January/February
2010, Volume 8, Number 1. (Wolshon, 2010).
19
Appendix A
Normalized Results
r 1i
[SITE
[Early Consequences
-6_
A
-
_.SourceTermA
5-10 Mile.-
2-5 Miles
0-2 Miles
DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART
8.5
8.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
8.5
8.0
0.5
1.0
0.5
0.5
0.5
0.0
0.5
8.5
8.0
0.5
1.5
1.0
0.5
0.5
0.0
0.5
8.5
8.0
0.5
2.0
1.5
0.5
0.5
0.0
0.5
Scenario
.....
-
1 mph
_ _
2.5
3.0
3.5
4.0
5.0
5.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
0.13
0.13
0.13
0.13
0.13
0.13
0.22
0.12
0.03 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
I
5.0
4.0
0.0
0.0
5.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
0.13
0.13
0.8
0.47
0.00
0.04
0.04
0.04
0.00
0.00
0.00
0.00
02m:SETR
0.5
0.5
2.0
1.0
2.5
1.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
"8.i5
8.5
0.05
0.06
0.04
0.04
0.00
0.00
II1.0 0.79
0.5
-R
0.5
0.5
0.5
45
1.5
4.0
3.0
2.0
4.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
.. S.ELTER
2-m:VC0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.01
0.01
0.01
1 0.00
1 10.00
0.011
2.0
2.5
2.5
3.0
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
2-5
0.5
0.5
0.5
0.5
3.0
0.0
4.0
0.0
4.5
3.5
045
4.5
5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
...
0.5
0.0
0.5
0.5
0.0
0.5
0.5
-2
-5- m--
5-10..........
I
I
II
0,27
0.07
0.00
0.00
0.00
0.00
I0.01
0.02
0.017
0.00
0.00
0.00
0.00
0.00
0.00
0.31
0.1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.5
0.5
0.5
i
0.00
0.00
0.00
0.00
,0
0.5
0.5
1.5
1.0
F0.5
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.0
0.0
105
10.5
I
0.00
0.00
0.00
0.07
0,00
0.00
0.5
0.5
1
I
1
I
1
0.5
2
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.5
0.5
0.5
0.5
0.5
0.10
0.07
0.07
0.02
0.00
0.02
0.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.5
0.5
I 0.00
030.
I 0.00
II 0.00
0.00
I 0.00
I 0.00
0.01
0.01
0.01
0.15
0.0
0.5
0.0
0.0
0.0
0.0
5-10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.5
0.5
0.5
0.5
0.5
2-5
0.00
0.00
0.01
0.05
0.76
0.79SHLE
0.52
0.25
0.00
0,00
0-2
5-10
0.0071 0.01
0.00 I 0.01
0.00 1 0.01
0.00 I 0.01
2.0
2.5
3.0
3.5
4.5
4.0
0-2 mi: EVAC
2-5 mi: SHELTER
5-10 mi; SHELTER
i3mph
5-10!
0.00
0.00 I
0.00
0.00 r
2-5
0.04
0.10
0.20
0.23
0.04
0.00
0.05
0.01
0.04
0.04
0.04
0.04
0.00
0.00
0.00
0.00
8.5
8.5
8.5
8.5
0.01
0.13
0.01
0.13
0.04
0.04
0.04
0.04
0.00
0.00
0.00
0.00
I
I
0.02
0.00
0.01
0.01
8.0
8.5
0.13
0.04
0.00
I
8.5
8.5
0.13
0.13
0.04
0.04
_
_
2-5
0.00
0,01
0.23
0,49
0-2
0.13
0.13
0.13
0.13
-
1
1-
-
1I 2mph
m
0-2
0.00
0.00
0.00
0.00
0.00
0.00
1
T
I
0.00
0.00
000
0.00
0.00
0.00
0.00
0
1
0
0.00
0.02
0.00
0.01
0
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0,00
0.00
I
0.00
0.00
0.00
0.00 I
0.00 T
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0,00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.1
0.01
00
0.00
.0
0.00
I00
0.00
.0
0.00
00
0.00
[
0,00
0OM
0.00
0.00
0.06
0.01
0
I
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.0
8.0
8.0
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.13
0.1:3
0.04
0.04
0.00
0.00
0.5
0.0
.5 0.
2-m1EVC 05
0.5
.5
0.0
0.
0.5
.5
0.5
0.
8.0
80
8.5
.5
0.13
0.3
0.04
.0
0.00
00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.13
0.04
0.00
I
0.01
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.13
0.04
0.00
I 0.01
0,00
0.00
I
0.00
0.00
0.00
0.5
0.5
0.0
0.0
0.5__
0.5
0.5
l
0-VC0.5
0.0
0.5
0.5
A-1
I
I
0.00
0.00
I_
II
ESalTE 1
sEarl!y...on•sepquerices...
-.
SourceTerm A
5-10 Mile,
DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART
2-5 Miles
0-2 Miles
Scenario
0.5
0..
0.5
0.5
D
r
...
2mp
.. h..
....mph -
3mph
0-2
2-5
5-10
0-2
2-5
5-10 10-2
2-5
5-10
0.01
0.00
0.00
I
0.00
0.00
0.00
I
0.01
0.07
0.00
0.01
0.00
0.00
0.0
0.5
0.5
1.0
0.5
.
1.0
1.5
0.5
0.0
0.5
0.5
0.0
0.5
0.13
0.04
0.00
0.5
0.5
0.5
1.0
1.0
1.5
0.5
0.5
0.0
0.0
0.5
0.5
0.47
0.68
0.10
0.20
0.00
0.00
I
0.15
0.79
0.01
0.23
0.00
0.00
0.5
1.5
2.0
0.5
1.5
2.0
0.5
0.0
0.5
0.35
0.23
0.00
T
1.00
0.49
0.00
0.27
0.05
0.00
0-2 ml: SHELTER
0.5
2.0
2.5
0.5
2.0
2.5
0.5
0.0
0.5
0.05
0.22
0.00
I
0.65
0.76
0.00
I
0.39
0.10
0.00
2-5 mi: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
0.0
0.5
0.01
0.12
0.00
I
0.11
0.79
0.00
I
0.17
0.07
0.00
5-10 mi: EVAC
0.5
3.0
3.5
0.5
3.0
3.5
0.5
0.0
0.5
0.01
0.03
0.00
1
0.02
0.52
0.00
0.06
0.07
0.00
0.5
3.5
4.0
0.5
3.5
4.0
0.5
0.0
0.5
0.01
0.00
0.00
r
0.00
0.25
0.00
T
0.02
0.02
0.00
0.5
4.0
4.5
0.5
4.0
4.5
0.5
0.0
0.5
0.01
0.00
I
0.00
0.02
0.00
5.0
0.5
0.5
0.5
0.5
0.5
4.5
0.0
5.0
5.0
0.5
5.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.01
0.01
0.01
0.00
0.04
0.00
I
1
1
0.00
0.01
0.01
0.00
5
0.00
0.O
0.00
0.01
4.5
0.0
050
0.02
40.00
0.00
0.00
I
0.5
0.5
0.5
0.00
0.5
0.00
0.00
0.00
I
I
1
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0
0.0
0.00
II
0.015
0.00
0.00
0.00
0.00
0.00
0.5
1.0
1.5
0.5
1.0
1.5
0.5
1.0
1.5
0.68
0.20
0.00
1
0.79
0.23
0.00
I
0.07
0.01
0.00
O0.5
1.5
2.0
0.5
1.5
2.0
e0.5
1.5
2.0
0.35
0.23
0.00
1
1.00O
0.49
0.00
1
0.27
0.05
0.00
-0-2 mi: SHELTER--
0.5
2.0
2.5
0.5
2.0
2.5
0.5
2.0
2.5
0.0s
0.22
0.00 1 0.65
0.76
0.00
0.39
0.10
0.00
2-SmI: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
2.5
3.0
0.01
0.12
0.02
1
0.11
0.79
0.01
0.17
0.07
0.00
5-10 mi: SHELTER
0.5
0.5
0.5
3.0
3.5
4.0
3.5
4.0
4.5
0.5
0.5
0.5
3.0
3.5
4.0
3.5
4.0
4.5
0.5
0.5
0.5
3.0
3.5
3.54.0
0.01
0.01
0.03
0.00
0.02
0.01
1
II
0.02
O.00
0.52
0.25
0.03
0.01
0.06
0.02
0.07
0.02
0.00
0.00
4.0
4.5
0.01
0.00
0.00
0.00
0.02
0.02
0.5
4.5
5.0
0.5
4.5
5.0
0.5
4.5
5.0
0.01
0.00
0.00
0.00
0.00
0.03
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.01
0.13
0.00
0.04
0.00
F
0.00
0.00
00.01
0.00
0.00
0.02
0
0.00
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.13
0.04
0.00
0.01
0.00
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.13
0.04
0.00
0.01
0.00
0.5
0.050
4.5
0.5
50
0.5
55
0.0
4555.0
0.5
0.13
0.13
0.04
0.00
0.00
0.00
I0.01
I
0.00
0.
.........................
......
0.5
0.5
0.5
•
0
.0
0.5
0.5
0.5
0
.0
-
0.5
0.5
.0
0.57
0.13
1
I
1
1
-o0.0
0.02
0.00
0.01
0.00
0.O00
1
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1
0.00
0.00
0.00
0.00
1
0.00
0.00
0.00
0.00
0.00
0.00
0.03
I
I
0.00
0.01
0.00
0.00
0.00
0.00
0.01
1 0.01
0.00
0.00
0.00
0.00
I
1
0.00
0.00
0.00
0.00
0.00
0.00
1
02m!:EAC-
0.5
0.5
0.0
4.0
0-2 mi: EVAC
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.13
0.13
0.04
0.04
0.00
0.00
0.5
0.0
0.5
0.5
0
0.5
0.5
0.0
0.5
0.13
0.04
0.00
1
0.01
0.00
0.00
1
0.00
0.00
0.00
0.5l0SETR
0.5
2.5
0.5
0.0
3.0
0.5
0.5
0.5
5
0.0
30
0.5
0.5
0.5
0.0
0.0
0
0.5
0.01
0.13
0.12
0.04
0.00
0.00
I
I
0.01
0.01
0.00
0.05
0.00
0.00
I
I
0.00
0.00
0.00
0.00
0.00
0.00
5-10.ml:.SHELTER
.0
0.5
0
A-2
0.5
T
SITE 1
ErvCnnse(A~nucnr
Scenario
F
5-10
4
1
t
2-5
5-10
3mph
0-2
2-5
5-10
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
2mph
0-2
0.5
1.0
1.5
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.04
0.04
0.04
0.01
0.02
0.05
0.00
0.00
0.00
1.5
2.0
0.5
8.0
8.5
0.04
0.07
0.00
j
0.00
0.05
0.00
2.0
20.
.5
2.5
3.5
0
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.04
0.04
0.04
0.06
0.06
0.02
0.00
0.00
0.00
I
0.00
0.00
0.00
0.08
0.08
0.03
0.00
0.00
0.00
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.5
10.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
3.5
0.5
0.0
0.5
0.5
5.0
0.5
0.0
0.5
0.5
0.5
0.5
105
0.5
0.5
0-2
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0-0 ml: SHELTER
R
ISnurr~nTerm B
lmph
0-2
2-5
0.0
0.5
_1.0
0.5
0.5
0.5
A
0-2 mi: EVAC
2 mi: EVAC
5
Fiji"'
5-10 Mile
0-2 Miles
2-5 Miles
DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART
'
__
8.0
8.5
0.5
8.0
8.5
0.04
0.00
0.00
0.00
0.07
0.00
0.00
0.01
0.00
5.5
0.5
8.0
8.5
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.5
4.0
0.5
8.0
8.5
0.04
0.00
0.00
i
0.00
0.00
0.00 7
0.00
0.00
0.00
0.5
0.0
0.5
0.5
8.0
8.5
0.21
0.01
0.00
I0.0
0.00
0.00
0.00
0.00
0.00
0.5
2.0
0.5
0.5
0.5
0.5
0.0
40
50
0.5
0.50
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.04
0.04
0.04
0.01
0.00
0.01
0.00
0.00
0.00
j
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0
0.5
1.0
1.5
0.5
1.0
1.5
2.0
0.5
0.5
0.5
0.5
00
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
0.04
0.21
0.04
0.02
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.10
0.02
0.10
0.38
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
j
0.00
0.00
0.01
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
2.0
2.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.01
0.00
0.00
0.00
0.00
I
0.01
0.00
0.00
[-
0.5
2.5
3.0
0.5
0.0
0.5
0.5
8.0
8.5
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.0
0.0
3.0
0.0
3.5
0.5
4.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
0.00
0.04
0.00
0.04
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
i
1
1
2-5C4
0.5
0.5
0.5
0.5
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.5
0.5
0.5
0.5
0.0
4.5
0.0
0.0
0.0
0.5
5.
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
0.04
0.00
0.04
0.04
0.04
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1
I
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.04
0.01
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.0
0.5
0.5
0.0
0.5
0.5
0.5
0.5
8.0
8.5
0.04
0.01
0.00
II0.00
0.00
0.00
II0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.04
0.01
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.04
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
B
0-2mi: EVAC
_
0.0
2-5i: EVA0.0 0.5
2-m:VC0.5
0.5
0.0
0.5
0.5
0.5
0.5
4.0
0.0
4.5
5.0
8.0
A-3
8.5
0.04
0.00
0.01
0.00
1
0.00
0
I
0.5
- TE
0.5
0.04
I
I
V
i
I
*
I
0.00
0.00
0.00
*
j
1
*
0.00
0.00
................................................... 1**
SITE 1
Early
...
Consequences
..
. . . ....
Scenario
D
5-10 Mile5 SourceTerm B
------Mmphempp
.
. . .0-2
.. Miles
DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART DLTSHL DLTEVA DEPART
0-2
2-5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.04
0.01
0.5
0.5
1.0
0.5
0.5
1.0
0.5
0.0
0.5
0.21
0.02
0.5
1.0
1.5
110.5
1.0
1.5
0.5
0.0
0.5
0.43
0.05
0.5
1.5
2.0
0.5
1.5
2.0
0.5
0.0
0.5
0.27
0.07
0-2 mi: SHELTER
0.5
2.0
2.5
2.0
2.5
0.5
0.0
0.5
2--10MI:
m: SHELTER
SHEVAC
0.5
0.5
2.5
3.0
3.0
3.5
0.5
0.5
2.5
3.0
3.0
3.5
0.5
0.5
0.0
0.0
0.5
3.5
0.5
4.0
4.0
0.5
3.5
4.0
0.5
4.5
0.5
4.0
4.5
0.5
0.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
0.5
0.0
.5.0
0.0
0.5
5.
0.5
0.5
0.5
0.5
0.0
.5.0
0.0
_
_
0.5
_______
0._._._.
..5-10
0.00
0.00
0.00
0.00
I
I
0.40
0.08
0.00
I1
0.11
0.01
0.00
I0.17
I 0.01
0.10
0.07
0.00
0.00
II0.100.05
0.01
0.01
0.00
0.00
0.00
0.03
0.00
I
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
T
I
0.00
0.00
0.00
0.00
0.00
0.00
T
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
T
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
00
00
T
1
0.02
0.00
0.00
*
0.04
0.00
0.00
1
0.11
0.10
0.01
0.01
0.00
0.00
0.00
I
0.5
0.5
0.01
0.00
0.02
0.00
0.00
0.00
0.0
0.5
0.00
0.00
0.00
I
0.0
0.5
0.00
0.00
0.00
0.5
0.5
0.0
0.0
0.5
0.5
0.00
0.00
0.00
0.00
0.00
0.00
0.5
5.
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
10.
1.5
0.04
0.00
0.04
0.00
0.000
0.01
5-1t0
0.00
0.00
0.0
0.00
0-2
I
0.00
t
0.00
t0.190.01
0.04
2-5
0.00
0.00
0.00
0.00
5-10
0.00
0.00
0.00
0.00
10
15
05
10
.
.3
00
0.0
0.5
1.5
2.0
0.5
1.5
2.0
0.5
1.5
2.0
0.27
0.07
0.00
0-2 mi: SHELTER
2-6 mi: SHELTER
0.5
0.5
2.0
2.5
2.5
3.0
0.5
0.5
2.0
2.5
2.5
3.0
0.5
0.5
2.0
2.5
2.5
3.0
0.09
0.01
0.06
0.02
0.00
0.00
0.06
0.04
0.00
0.00
0.00
0.00,
5-10 mi: SHELTER
0.5
3.0
3.5
0.5
3.0
3.5
0.5
3.0
3.5
0.00
0.00
0.00
0.00
1.0
4.5
0.5
1.0
4.5
0.5
1.0
4.5
0.00
0.00
1
,,
0.00-I
0.01
0.5
0.00
0.00
30.00
0.00
0.5
4.5
5.0
0.5
4.5
5.0
0.5
4.5
5.0
0.00
0.00
0.00
1
0.00
0.00
0.00
0.5
5.0
5.5
0.5
5.0
5.5
0.5
5.0
5.5
0.00
0.00
0.00
T
0.00
0.00
0.00
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0-
0.5
0.5
0.02
0.02
0.00
0.00
0.00
0.00
1
0.5
0.0
0.0
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
I
0.00
0.00
0.00
0.00
1
0.00
0.00
0.00
0.00
0.00
0.00
F0.5
0-2 mi: EVAC
12-5 mi: EVA C
50-10mi: EVAC
0.5
0.0
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
0.00
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
10.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
I1 0.00
1 0.00
0.5
0.00
0.00
0.0
0.00
0.00
00
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0. 5
0.5
0. 5
0.5
05
0.5
05
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
05
0.5
0.0
0.0
0.0
0.0
A-4
0.5
0.5
0.5
0.5
0.02
0.02
0.02
0.02
0.00
0.00
0.00
.
..
0.38
0.06
_
2I ....3mph
..
2-5
0.00
0.00
0.02
0.05
0.09 _I
_
..
0-2
0.00
0.02
0.00
0.00
0.00
I
I
0.00
0.00
0.00
0.00
0.00
0.00
1-.0 .1
,
1
1
I
1
0
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0_00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
!0.05
I
.0
0.00
0.00
!0.00
0.00
0.00
0.00
0.00
0.00
0.00
SITEI1
------
Latent Cnnseouences
SourceTerm A
0________t-2
Miles
Scenario
A
0-2 ml: EVAC
2-0 mi: SHELTER
5-5 mi. SHELTER
DLTSHL
0.5
DLTEVA
0.0
0.5
0.5
0.0
0.0
0.5
0.5
0.5
mS R
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
26Mlsý4
DEPART DLTSHL
0.5
0.5
e
rp
DLTEVA
0.0
DEPART
0.5
DLTSHL
0.5
DLTEVA
8.0
DEPART
8.5
0-2
0.08
0.5
0.5
1.0
1.5
1.5
1.0
0.5
0.5
8.0
8.0
8.5
8.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
2.0
2.5
2.0
3.5
2.5
3.0
3.5
3.0
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4.0
4.5
5.0
4.5
4.5
5.0
5.5
50
0.5
0.5
0.5
0..0
0.0
05
0.5
05
0.5
5.0
0.0
5.5
0.5
0.5
0.5
0.5
1.0
5-10R 0.5 3.0
0.5
1.5
1.0
135
3.1
2.0
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
2.0
2.5
0.5
0.0
05
4.
50
3.5
3.5
0.5
0.5
0.5
4.0
4.5
0.5
mhI3
0.08
0.08
2-6
0.58
0.62
0.62
5-10
0.41
0.41
0.41
0-2
I 0.06
10.06
0.06
2-5
0.35
0.5
0.53
5-10
0.29
0.29
0.29
8.5
8.5
8.5
8.5
0.08
0.08
0.08
0.08
0.46
0.37
0.32
0.32
0.41
0.41
0.41
0.41
I
I
0.06
0.06
0.06
0.06
0.45
0.53
0.29
0.23
0.29
0.29
0.29
0.29
0.06
0.23'
8.0
8.0
8.0
8.5
8.5
8.5
0.08
0.08
0.08
0.27
0.27
0.27
0.41
0.41
0.41
I
I
1
0.06
0.06
0.06
0.21
0.20
0.20
0.5
0.5
8.0
8.0
8.5
8.5
0.08
0.08
0.27
0.58
0.41
0.41
1
0.06
0.08
0.20
0.35
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
0.09
0.08
0.05
0.05
0.58
0.58
0.58
0.58
0.41
0.41
0.41
0.41
0.08
0.08
0.04
0.04
0.35
0.35
0.35
0.35
0.5
0.5
8.0
8.5
0.05
0.58
0.41
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
85
05
08
01
0.0
0.5
08
B
2-ml:
5
0
ml:
E
R
EVAC
0.5
0.5
2.0
3.0
.5
0.
8.5
8.5
0.05
0.05
0.58
0.58
0.41
0.41
I
I
I
1
I
I
m
0-2
0.04
0.04
0.04
2-5
0.13
0.23
0.43
5-10
0.25
0.25
0.25
0.04
0.04
0.04
0.04
0.43
0.37
0.32
0.37
0.25
0.25
0.25
0.25
0.29
0.04
0.32
0.25
0.29
0.29
.2
0.29
1
0.04
0.04
0.04
0.0
0.23
0.21
0.21
0.3
0.25
0.25
0.25
02
0.29
0.29
1
1
0.04
0.07
0.19
0.13
0.25
0.25
0.29
0.29
0.29
0.29
I 0.06
I 0.07
I0.0
0.07
0.13
0.13
0.13
0.13
0.25
0.25
0.25
0.25
0.25
I
1
II
1
I
0.04
0.35
0.29
0.13
05
0.29
1
0.05
04
0.0
03
0.04
0.35
0.29
1
0.04
0.13
0.25
0.04
0.04
0.04
0.06
0.06
0.06
0.06
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.29
0.29
0.29
0.29
0.29
0.29
0.29
I 0.04
I00
10.04
I 0.04
0.04
T 0.04
I 0.04
I 0.04
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.04
0.04
0.35
0.35
0.29
0.29
I
I
0.04
0.04
0.13
0.13
.
0.25
0.25
0.5
8.0
8.5
0.05
0.58
0.41
4.5
5.0
0.5
0.0
0.5
3.5
4.0
0.5
0.0
0.5
5.0
5.5
0.5
0.0
0.5
0.5-0.0--.5-0.5--.0-0.---.5-----8---0.-----5----41-1--.06---------------------3
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
0.05
0.05
0.05
0.08
0.08
0.08
0.08
0.58
0.58
0.58
0.58
0.58
0.58
0.58
0.41
0.41
0.41
0.41
0.41
0.41
0.41
I0-2 ml: EVAC
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
0.06
0.35
0.29
0.04
0.13
0.25
2-5 ml: EVAC
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
r
0.06
0.35
0.29
=
0.04
0.13
0.25
5-10 ml: SHELTER
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
I
0.06
0.35
0.29
I
0.04
0.13
0.25
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
I
0.06
0.35
0.29
I
0.04
0.13
0.25
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
0.06
0.35
0.29
0.04
0.13
0.25
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
0.06
0.35
0.29
T
0.04
0.13
0.25
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.08
0.58
0.41
0.06
0.35
0.29
I
0.04
0.13
0.25
i
50.5
0.5
0.5
A-5
I
I
I
I
I
I
ISlTE I
1
1
.......Conseque-nces
[-Latent
Scenario
D
0-2 ml: SHELTER
2-5 m• : SHELTER
F5-10 ml: EVAC
E
DLTSHL
0.5
1
.....
0-2 Miles
_
DLTEVA
0.0
DEPART
0.5
DLTSHL
0.5
DLTEVA
0.0
2mph
2--_--Ph--I!I3mph
AI
lmph
iSourceTerm
5-10 Miles
2-5
.M.os
DEPART
0.5
DLTSHL
0.5
DLTEVA
0.0
DEPART
0.5
0-2
2-6
5-10
I
0-2
2-6
6-10
0.08
0.58
0.86
1
0.06
0.35
0.28
0.0
0.0
0.5
0.5
0.09
0.08
0.62
0.62
6
0.86
0.86
0.08
0.08
0.46
0.53
0.28
0.28
0-2
2-5
6-10
I
0.04
0.13
0.06
J
0.06
0.07
0.23
0.36
0.06
0.06
0.07
0.44
0.06
0.05
0.43
0.06
0.05
0.37
0.06
0.5
0.5
0.5
1.0
1.0
1.5
0.5
0.5
0.5
1.0
1.0
1.5
0.5
0.5
0.5
1.5
2.0
0.5
1.5
2.0
0.5
0.0
0.5
0.06
0.56
0.86
0.06
0.53
0.28
0.5
2.0
2.5
0.5
2.0
2.5
0.5
0.0
0.5
0.05
0.46
0.86
I
0.04
0.45
0.28
0.5
2.5
3.0
0.5
2.5
3.0
0.5
0.0
0.5
0.05
0.37
0.86
I
0.04
0.36
0.28
0.5
0.5
0.5
3.0
3.5
4.0
3.5
4.0
4.5
0.5
0.5
0.5
3.0
3.5
4.0
3.5
4.0
4.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.05
0.05
0.05
0.32
0.28
0.27
0.86
0.86
0.86
0.29
0.23
0.21
0.28
0.28
0.28
T
1
0.04
0.04
0.04
0.04
_ 0.04
1
0.04
0.32
0.27
0.23
0.06
0.06
0.06
0.5
0.5
4.5
.50
540
5.5
0.5
0.5
4.5
5.0
540
5.5
0.5
0.5
0.0
0.0
0.5
0.5
0.05
0.05
0.27
0.27
0.86
0.86
I
0.04
0.04
0.20
0.20
0.28
0.28
I
0.04
0.04
0.21
0.19
0.06
0.06
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.58
0.86
I
0.06
0.35
0.28
I
0.04
0.13
0,06
0.5
0.5
1.0
0.5
0.5
1.0
0.5
0.5
1.0
0.09
0.62
0.93
I
0.08
0.46
0.41
I
0.06
0.23
0.14
0.5
1.0
1.5
0.5
1.0
1.5
0.5
1.0
1.5
0.08
0.62
0.98
I
0.08
0.53
0.54
I
0.07
0.36
0.27
0.5
0.5
1.5
2.0
2.0
2.5
0.5
0.5
1.5
2.0
2.0
2.5
0.06
0.05
0.56
0.46
1.00
0.96
U0.06
0.04
0.53
0.45
0.66
0.71
I
r
0.07
0.05
0.44
0.43
0.41
0.50
I
0-2 mi: SHELTER
0.5
0.5
1.5
2.0
2.0
2.5
12-5 ml: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
2.5
3.0
0.05
0.37
0.87
I
0.04
0.36
0.69
I
0.05
0.37
0.52
0.5
3.0
3.5
0.5
3.0
3.5
0.5
3.0
3.5
0.05
0.32
0.78
I
0.04
0.29
0.66
I
0.04
0.32
0.52
0.5
3.5
4.0
0.5
3.5
4.0
0.5
3.5
4.0
0.05
0.28
0.69
0.04
0.23
0.60
0.04
0.27
0.51
0.5
4.0
4.5
0.5
4.0
4.5
0.5
4.0
4.5
0.05
0.27
0.60
r
0.04
0.21
0.52
r
0.04
0.23
0.48
0.5
4.5
5.0
0.5
4.5
5.0
0.5
4.5
5.0
0.05
0.27
0.53
0.04
0.20
0.46
0.21
0.43
5.0
0.0
0.0
5.5
0.5
0.5
0.5
0.5
0.5
5.0
0.0
0.0
5.5
0.5
0.5
0.5
0.5
0.5
5.0
0.0
0,0
5.5
0.5
0.5
0.05
0.08
0.08
0.27
0.58
0.58
0.47
0.86
0.86
0.04
0.06
0.06
0.20
0.35
0.35
0.39
0.28
0.28
II.
1
0.04
0.5
0.5
0.5
II
I
0.04
0.04
0.04
0.19
0.13
0.13
0.38
0.06
0.06
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.58
0.86
0.06
0.35
0.28
0.04
0.13
0.06
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5.
0.08
0.58
0.86
0.06
0.35
0.28
1
0.04
0.13
0.06
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.58
0.86
1
0.06
0.35
0.28
I
0.04
0.13
0.06
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.58
0.86
1
0.06
0.35
0.28
I
0.04
0.13
0.06
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.86
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.08
0.86
I
1
0.06
0.06
0.35
0.35
0.28
0.28
I
0.5
0.58
0.58
0.04
0.04
0.13
0.13
0.06
0.06
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.08
0.08
0.58
0.86
r
0.06
0.35
0.28
0.04
0.13
0.06
0.5
0.0
0.0
0.58
0.86
I
0.06
0.35
0.28
0.04
0.3
0.13
00
0.06
5-10 mi: SHELTER
F
C0.5
2 mi: EVAC
5-0mi:_EVAC
50.5
A-6
I
SITE i_
Latent Consequences
1
Scenario
A
0-2mi:EVAC
2-5 mi: SHELTER
5-10 mi: SHELTER
0-1 mi: SHELTER
2 ml: ELTE
5mi:ELTE
C
C
51
S
O-2m--
:0.5
E
iSourceTerm BII
DEPART
0.5
DLTSHL
0.5
DLTEVA
8.0
65-10 MIle
DEPART
8.5
I mph
0-2
0.05
0.05
1.0
1.5
2.0
2.0
2.5
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.5
0.5
5458
0.5
0.5
2.5
3.0
3.0
4.5
3.0
3.5
4.5
4.0
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
0.5
0.5
0.5
0.5
1.0
0.5
0.5
0.5
0.5
0.5
4.0
0.0
5.0
0.0
5.5
0.5
5.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.0
0.5
2.5
2-5 EVC0.5
1.0
0.5
1.5
3.0
2.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
2.5
4.0
0.5
0.0
0.5
0.5
4.0
3.0
0.5
0.0
0.5
0.5
5.0
2-5 Miles
0-2 Miles
DLTSHL
0.5
0.5
DLTEVA
0.0
0.0
DEPART
0.5
0.5
DLTSHL
0.5
0.5
DLTEVA
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.50 0.0
0.5
0.5
0.5
B-0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
5
_
__
__
2.5
3.0
5.5
3.5
0.5
0.5
0.0
0.0
0.5
0.5
I
5-10
0.15
0.15
0.02
0.02
0.02
0.18
0.23
0.26
0.15
0.15
0.15
1
I
0.02
0.02
0.02
0.02
0.02
0.24
0.21
0.14
0.18
0.15
0.15
0.15
0.15
0.15
0.15
.
0.02
0.02
0.03
0.02
0.03
0.13
0.12
0.06
0.06
0.06
0.15
0.15
0.15
0.15
0.15
1
0.04
0.03
0.04
0.06
0.06
0.06
0.15
0.15
0.15
0.18
T
0.04
0.06
0.15
0.18
I
0.03
0.06
0.15
0.02
0.06
0.15
0.02
0.02
0.06
0.06
0.06
0.15
0
0.15
0.02
0.06
0.15
'.002
0.06
0.15
0.02
0.06
0.15
0.02
0.06
0.15
I
0.02
0.02
0.06
0.06
0.15
0.15
0.18
0.18
0.18
0.04
0.04
0.04
0.04
0.04
0.27
0.22
0.17
0.17
0.14
0.18
0.18
0_.18
0.18
0.18
0.19
0.19
0.30.36
0.36
0.04
0.27
0.04
0.27
0.27-0.05
0.27 £0.0
0.27 . 0.04
0.13
0.13
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.05
0.03
0.03
0.36
0.36
0.36
0.27
0.27
0.27
I
0.05
0.03
0.04
0.18
0.18
0.18
0.18
0.18
0.18
I
8.5
0.03
0.36
0.27
0.03
0.18
8.5
0.03
0.02
0.18
0.27
0.27
0.27
8.5
8.5
8.5
8.5
0.05
0.05
0.
0.05
0.05
0.27
0.23
0.20
0.19
0.27
0.27
0.27
0.27
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
0.05
0.05
0.05
_0.05
0.05
8.0
8.0
8.0
8.5
8.5
8.5
0.5
8.0
0.5
8.0
8.0
2-5
0.06
0.11
0.30
0.33
0.31
0.39
0.37
0.33
0.5
0-2
0.02
0.02
0.04
0.04
0.04
0.05
0.05
0.05
a.0
i 3mph
5-10
0.18
0.18
6-10
0.27
0.27
0.5
I 2mph
I
0-2
I 0.04
0.04
2-6
0.18
0.25
2-5
0.36
0.38
8.5
8.5
0.03
0.03
0
0.36
0.36
0.36
0.27
I
I
1
I
I
I
0.02
0.27
0.27
0.'18
I
I
I
I
0.18
I
0
0.02
0 0.0
0.02
0.18
0.18
I
0.5
3.5
4.0
0.5
0.0
0.5
0.5
8.0
8.5
0.03
0.36
0.27
0.18
0.18
0.5
4.0
4.5
0.5
0.0
0.5
0.5
8.0
8.5
0.03
0.36
0.27
1
0.02
0.18
0.18
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
1
0.04
0.18
018
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
I
0.04
0.18
0.18
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
0.04
0.18
0.18
0.5
0.5
0.0
0.0
0.5
0.5 -----
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.05
- 0.05
0.36
0.36
--
0.27
0.27
I
0.04
0.04
0.18
0.18
0.18
0.18
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
I0.040.04
0.18
0.18
0.18
I
0.02
0.06
0.15
0.5
T
5 : 0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.05
0.05
0.36
0.36
0.27
0.27
I1
0.04
0.04
0.18
0.18
0.18
0.18
IT
0.02
0.02
0.06
0.06
0.15
0.15
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
0.04
0.18
0.16
I
0.02
0.06
0.15
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.05
0.36
0.27
0.04
0.18
0.18
I
0.02
0.06
0.15
0-m:VC0.5
0.5
A-7
I
1
I
SITE1
Latent Consequences
6-10 Miles
2-5 Miles
0-2 Miles
DLTSHL I DLTEVA I DEPART I DLTSHL I OLTEVA I DEPART I DLTSHL I DLTEVA I DEPART
DLTL
DIE
0.5
0.0
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
10.5
0.5
1.0
0.5
0.5
1.0
0.5
0.0
Scenario
Scenario
!D
0.5
1.0
1.5
0.5
1.0
1.5
0.5
0.0
SourceTerm B
1 mph
0-2
0.05
0.5
0.05
0.05
2-5
0.36
0.38
0.39
3mph
2mph
I
6-10
0.48
0.48
0.48
&
I
1
i
0-2
2-5
5-10
!
0-2
2-5
6-10
0.04
0.18
0.14
I
0.02
0.03
1
0.03
0.04
0.06
0.05
0.05
0.25
0.30
0.14
0.14
0.11
0.18
0.03
0.03
0.5
1.5
2.0
0.5
1.5
2.0
0.5
0.0
0.5
0.04
0.37
0.48
0.04
0.33
0.14
1
0.04
0.23
0.03
0-2 mi. SHELTER
0.5
2.0
2.5
0.5
2.0
2.5
0.5
0.0
0.5
0.03
0.33
0.48
1
0.03
0.31
0.14
1
0.04
0.26
0.03
12-5 mi: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
0.0
0.5
0.03
0.27
0.48
1
0.03
0.27
0.14
1
0.03
0.24
0.03
0.5
0.5
3.0
3.5
3.5
4.0
0.5
0.5
3.0
3.5
3.5
4.0
0.5
0.5
0.0
0.0
0.5
0.5
0.03
0.03
0.23
0.20
0.48
0.48
I
0.02
0.02
0.22
0.17
0.14
0.14
I
1
0.03
0.02
0.21
0.18
0.03
0.03
0.5
0.5
0.5
.5
4.0
4.5
5..
4.0
0.
4
0.5
4.5
5.0
5..
4.5
5.5
0.5
0.5
0.5
0.5
.0
4.0
4.5
5
4.0
0.545
4.5
5.0
5
4.5
0
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.03
0.03
0.03
0.03
0.19
0.19
0.19
0.19
0.48 1
0.48
0.48
0.48I
0.02
0.02
0.02
0.02
0.24
0.13
0.14
0.13
0.14
0.14
0.14
0.14,
1
1
0.02
0.02
0.02
0.02
0.15
0.13
0.15
0.13
0.03
0.03
0.03
0.03
0.5
0.5
1.0
0.5
0.5
1.0
0.5
0.5
1.0
0.05
0.38
1
0.52
0.05
0.25
0.20
1
0.03
0.11
0.07
0.5
1.0
1.5
0.5
1.0
1.5
0.5
1.0
1.5
0.05
0.39
0.56 I
0.5
1.5
2.0
0.5
1.5
2.0
0.5
1.5
2.0
0.04
0.37
0.59
0.03
0.03
0.33
0.27
0-2 mi: ELVATEC
...........
.
.
E
0.27
0.04
0.18
0.13
0.33
0.35
0.04
0.23
0.20
0.58
0.55
I
0.03
0.03
0.31
0.27
0.39I
00-2
0.41 I
0.04
0.03
0.26
0.24
0.25
0.29
2.5
3.0
0.5
0.5
2.0
2.5
2.5
3.0
0.5
0.5
2.0
2.5
3.0
3.5
0.5
3.0
3.5
0.5
3.0
3.5
0.03
0.23
0.50
1
0.02
0.22
0.40
0.03
0.21
0.30
3.5
4.0
0.5
3.5
4.0
0.5
3.5
4.0
0.03
0.20
0.45
II
0.02
0.17
0.38
0.02
0.18
0.30
0.5
4.0
4.5
0.5
4.0
4.5
0.5
4.0
4.5
0.03
0.19
0.39
0.02
0.14
0.34
*
0.02
0.15
0.28
10.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
4.5
5.0
5.0
5.5
0.03
0.03
0.19
0.19
0.35
0.31
I
1
0.02
0.02
0.13
0.13
0.29
0.26
i
0.02
0.02
0.13
0.12
0.26
0.23
0.5
0.5
0.5
0.5
0.0
0.0
.0
0.0
0.5
0.5
0
0.5
0.5
0.5
05
0.5
0.0
0.0
.
0.0
0.5
0.5
00
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
.0.05
0.05
0.05
0.36
0.36
0.36
0.48
0.48
0.48
I
0.04
0.04
0.04
0.18
0.18
0.18
0.14
0.14 4 r
0.14 *
0.02
0.02
6.0
0.02
0.06
0.06
0.06
0.03
0.03
0.03
I
0.04
0.18
0.14
1
0.02
0.06
0.03
0.18
0.18
0.14
0.14
j
0.02
0.02
0.06
0.06
0.03
0.03
0.02
0.06
0.03
0.5
0.5
2.0
2.5
10mSiELER ...
0.5
0.5
F
0.30
0.04
2.5
3.0
mi: SHELTER
S-ELT•ER
S2-5Hmi:
I
0.05
I
0-
C0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.05
0.36
0.48
I0.04
0.18
0.14
0.02
0.06
0.03
mi:EVAC
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.05
0.36
0.48
02-mi:EVAC
5-1:EVAC
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.05
0.05
0.36
0.36
0.48
0.48
1
0.04
0.04
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.05
0.36
0.48
I
0.04
0.18
0.14
0.14
I
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.05
0.36
0.48
I
0.04
0.18
0.14
I
0.02
0.06
0.03
0.5
0.5
0.0
0.5
0.05
0.36
0.48
I
0.04
0.18
0.14
I
0.02
0.06
0.03
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.0
0.5
A-8
0.05
0.36
0.48
0.04
0.18
T
0.02
0.06
0.03
2
SITE
EarlyConsequencesI
Scenario
7A
2-6
0.00
6-10
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
DEPART
0.5
DLTSHL
0.5
DLTEVA
8.0
DEPART
8.5
0-2
0.06
2-6
0.04
6-10
0.00
0-2
0.00
2-6
0.00
6-10
0.00
0.5
0.0
0.5
0.5
0.5
1.0
0.5
8.0
8.5
0.06
0.05
0.00
0.00
0.00
0.00
0.00
EVAER
.
-
0-2
0.00
DLTEVA
0.0
0
1
0.00
0.5
0.0
0.5
0.5
1.0
1.5
0.5
8.0
8.5
0.06
0.07
0.5
0.0
0.5
0.5
1.5
2.0
0.5
8.0
8.5
0.06
0.11
0.00
0.5
0.0
0.5
0.5
2.0
2.5
0.5
8.0
8.5
0.06
0.17
0.00
I
0.00
0.06
0.00
I
0.00
0.01
0.00
0.5
0.0
0.5
0.5
2.5
3.0
0.5
8.0
8.5
0.06
0.20
0.00
I
0.00
0.07
0.00
I
0.00
0.02
0.00
3.0
3.5
4.0
3.5
8.0
0.18
0.07
0.00
0.00
0.01
0.00
0.06
0.06
0.13
0.03
0.00
0.00
0.00
0.00
8.0
8.0
8.5
8.5
8.5
0.06
4.0
4.5
0.5
0.5
0.5
I
0.00
0.0
0.08
0.06
0.00
0.00
TI
0.00
0.00
0.01
0.01
0.00
000
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0
i
0.00
0.00
0.00
1
0.04
0.00
0.00
0.00
0.00
0.00
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
4,5
5.0
0.5
8.0
8.5
0.06
0.00
0.00
I
0.00
0.06
0.00
0.5
0.5
0.0
0.5
0.5
1.0
0.5
0.5
4.0
0.0
5.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.06
0.10
0.00
0.04
0.00
0.00
T
I
0.00
0.02
0.05
0.00
0.00
0.00
0.5
5.0
0.5
0.5
8.0
8.5
0.10
0.04
0.00
1
0.00
0.00
0.00
0.10
0.06
0.04
0.04
0.00
0.00
0.09
0.00
0.00
0.00
0.00
0.00
5.0
.
I
t
2.
2.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
2.5
1.0
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.04
0.00
I
0.07
0.00
0.00
I
0.00
0.00
0.00
3.0
3.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.04
0.00
1
0.04
0.00
0.00
1
0.02
0.00
0.00
8.0
8.5
0.01
0.04
0.00
I
0.06
0.00
0.00
I
0.01
0.00
0.00
0.5
t
0.0
0.5
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.01
0.04
0.00
1
0.01
0.00
0.00
0.01
0.00
0.00
0.5
0.0
0.5
0.5
8.0
8.5
0.01
0.04
0.00
1
0.07
0.00
0.00
1
0.05
0.00
0.00
.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.04
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.06
0.04
0.00
o.oo
o.oo
0.00
o.oo
0.00
0,00
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.06
0.04
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0 05 45 50
0.5
05
0.0
00
0.5
0.5
0.5
0.5
8.0
80
8.5
8.5
0.06
0.01
0.04
0.04
0.00
0.00
11
0.00
0.01
0.00
0.00
0.00
0.00
11
0.00
0.01
0.00
0.00
0.00
0.00
0.06
0.04
0.00
1
0.00
0.00
0.00
1
0.00
0.00
0.00
I
0.00
I0.00=I.0
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
00
0.00
0.00
0.00
1.5
0.5
4.5
2.0
2.0
5.5
250
3.0
0.5
4.0
0.5
0.5
E0.5
0.5
0.5
0.5
8.5
8.5
0-.
0.5
0.5
1.5
0.0
1.5
0.0
.0.SL
0.5
0.5
0.0
0.5
0.5
0.5
4.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.5
8.0
8.0
8.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
8.0
8.0
8.0
8.0
8.5
8.5
8.5
8.5
8.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.00
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
A-9
0.01
8.5
0.0
5
-
4•
3mph
r
DLTSHL
0.5
0.5
____
m
A
DEPART
0.5
0.5
0-2-1mi: SELTER
mph2o
DLTEVA
.00
15-10 mi: SHELTER
mi.
Milo,.
0Ml2-8
0.10
DLTSHL
0.5
2-5 mi: SHELTER
5-0 mi: SHELTER
rm
S
souceTe
i
__I
iu
0.04
0.00
if
0.01
0.00
0.01
0.00
0.00
0.06
0.06
0.06
0.06
0.06
0.04
0.04
0.04
0.04
0.04
0.00
0.00
0.00
0.00
0.00
0.00
I
1
0.00
I0.00
l
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0O
0.00
0.00
0.00
8.5
0.06
0.04
0.00
0.00
0.00
0.00
]
0.00
0.00
0.00
8.5
0.06
0.04
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
'
I
SITE 2 1
Early Consequences
Ea
SIT 2
--
-
0-2
Miles
Miles
2-5-5 MUGS______
Miles1
_
5-10
SoeITe
Mile Sauci
1
1,
I 1
.A....
em
A
0-2
2-5
5-10
il
0-2
2-5
5-10
0.00
0.00
0.00
0.00
0.00
0.00
I
0.02
0.00
0.00
I
I
I
0.00
0.00
0.00
0.00
1
0.05
0.01
0.00
1
0.01
0.00
0.00
0.11
.1
0.17
0.00
0.00
000
0.00
1
0.09
0.00
.4
0.07
0.03
0007
0.06
0.00
0
. 1
ý0.2
0.00
+I
0.04
0.05
0.00
001
0.01
0.00
.0
0.00
0.02
0.20
0.00
0.07
0.07
0.00
0.03
0.02
0.00
0.01
0.18
0.00
1
0.04
0.07
0.00
0.02
0.01
0.00
.5
0.01
0.13
0.00
T
0.02
0.08
0.00
0.01
0.01
0.00
0.0
0.5
0.01
0.00
3
0.01
0.06
0.00
0.01
0.00
0.5
.0
0.5
0.01
0.0
0.01
0.05
0.02
0.0
0.00
0.00
0.01
00
0.002
0.00
00
0.00
0.00
0.00 0.00 0.00
00
0.00
0.00
I
0.01
.0
0.00
0.0
0.00
0.02
I
10 I
I
0.00
0.03
0.00
7
0.00
1
I
0.00
0.01
0.0
15
0.0
0.03
0.5 4.5
0.00
011
0.00
0.00
0.00
0.00
I
0.06
0.01
0.00
I
0.01
0.00
0.00
r
0.09
0.07
0.03
0.06
0.00
0.00
T
0.04
0.05
0.00
0.01
0.00
0.00
2-5
5-10
DLTSHL
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
0-2
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.06
0.5
0.5
1.0
0.5
05
1.0
0.5
0.0
0.5
-
0.5
1.5
1.5
0.5
10
15
05
00
5-0m:EAC0.5
0-2 mE: SHELTER
0.5
005.
0.5
1.5
3.0
2.0
2.0
3.5
2.5
0.5
0.5
0.5
1.5
3.0
2.0
2.0
3.5
2.5
0.5
0.5
0.5
2-Smi: SHELTER
0.5
2.5
3.0
0.5
25
0
5-10 ml: EVAC
0.5
3.0
3.5
0.5
3.0
3.5
0.5
3.5
4.0
0.5
35
0.5
4.0
4.5
0.5
4.0
0.5
4.5
5.0
0.5
5.5
0.5
5.0
0i5_.0_.----------------------------0.0
0.5
0.5
1.0
0.5
0.5
0.5
0.5 1.5.5
5.0
0.5
0.5
0.0
0.5
0.5
1.0
0.5
0.5
0.0
0.5
1.0
0.5
1.0
1.5
0.5
1.0
1.5
0.10
0.07
0.02
2.0
2.5
0.10
0.05
0.11
0.17
0.04
0
0.0
Scenario
D
E
0.5
20
0.00
0.10
0.04
0.5 0
0.05
0.00
0.5
0.10
0.07
0.0
0.0
0.0
0.5
0.
0.5
0.10
001
0.05
015
000
0.5
05
.0
0.5
40
05
0 0
4.5
05
50
2.
.5
5.5
0.5
05
0.5
0.00
0.00
0.4
0.00
0.04
0.05
0.00
0.00
-
1.5
0.5
1.0
0.06
0.10
I
I
1-
I
1i
I
1
022 ml:SELTE
0.5
0.5
1.5
2.0
2.0
2.5
0.5
0.5
1.5
2.0
2.0
2.5
0.5
0.5
1.5
2.0
2-5 ml: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
2.5
3.0
0.02
0.20
0.02
I
0.07
0.07
0.00
I
0.03
0.02
0.00
5-10 ml: SHELTER
0.5
3.0
3.5
0.5
3.0
3.5
0.5
3.0
3.5
0.01
0.16
0.02
I
0.04
0.07
0.00
I
0.02
0.01
0.00
0.5
0.5
0.5
3.5
4.0
4.5
4.
4.5
5.0
0.5.
0.5
0.5
0 0.
4.0
4.5
5 0
4.5
5.0
0.5
0.5
0.5
3.5
4.0
4.5
4.0
4.5
5.0
0.01
0.01
0.01
0.13
0.03
0.00
0.02
0.03
0.03
I
0.02
001
0.01
0.06
0.06
0.05
0.00
0.00
0.00
I
0.01
001
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.5
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.01
0.06
0.00
0.04
0.01
0.00
I
0.00
0.00
0.02
0.00
0.00
0.00
I
I
0.00
0.00
0.00
0.00
0.00
0.00
0.0
05 05
00
0.5
05
0.5
00
0.0
05
0.5
05
0.5
0.0
00
0.5
05
0.06
00
0.04
.4
0.00
00
T
0.5
0.00
.0
0.00
00
0.00
.0
0.00
T
I00
0.00
.0
0.00
00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.06
0.04
0.00
I0.00
0.00
0.00
I0.00
0.00
0.00
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.06
0.06
0.04
0.04
0.00
0.00
T
0.00
0.00
0.00
0.00
0.00
0.00
T
0.00
.0
0.00
0.0
0.00
00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.06
0.04
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.06
0.04
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
05 05
00
0.5
05
0.0
00
0.5
05
0.5
05
0.0
0.0
0.5
0.5
0.06
0.06
0.04
0.04
0.00
0.00
T
0.00
0.00
0.00
0.00
0.00
0.00
T
0.00
0.00
0.00
0.00
0.00
0.00
0.0_
0.5
0.5
0.06
0.04
_J
_
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
F0.5
0-2 ml: EVAC
2-5 ml: EVAC
5-0ml: EVAC
_________~
0.
05
00
0
0.5 _
_
_
0.5_
_
0.5 _
_
__
0.0 _
A-10
__0__
t
1-
SITE 2
I:
Plarl
1f
rh
ly I'
n
•r
.
...."
I1
_l
uece
_____
.
±
I-
0-2 Miles
,2-5Miles
.o
I
I
I
Miles~er
ISourceTerm B
....
5.10
0-2
2-5
6-10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.04
0.00
11 0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.08
0.00
0.00
0.03
0.00
8.5
8.5
0.08
0.05
0.00
0.00
0.00
0.00
I
0.00
0.05
8.0
8.5
0.02
0.00
0.00
I
0.5
8.0
8.5
0.00
0.00
0.00
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.5
8.0
8.5
0.00
0.00
0.00
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.02
0.00
0.00
0.00
0.00
00
0.0
0.0
0.0
.
0.5
0.5
0.5
05
0.5
.0
8.0
8.
8.5
002
0.02
0.0
0.00
0.00
0
0.5
0.5
8.0
8.0
8.5
8.5
0.02
0.02
0.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.00
0.00
0.00
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.00
0.00
0.00
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.02
0.02
0.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.00
0.00
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
0-2
2-5
5-10
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.02
0.00
0.00
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.0
1.0
2.0
2.5
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.02
0.02
0.02
0.00
0.02
0.01
0.00
0.00
0.00
0.5
0.0
0.5
0.5
2.5
2.0
0.5
8.0
0.0
0.0
0.5
0.5
0.5
.0.5
2.5
2.5
2.0
3.0
0.5
0.5
8.0
8.0
8.5
8.5
8.5
8.5
0.02
0.0
0.02
0.02
0.02
0.04
0.04
0.05
0.00
0.5
0.5
__
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
4.0
4.0
4.5
3.5
0.5
0.5
8.0
8.0
8.5
8.5
0.02
0.02
.
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
3.5
0.0
5.0
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.02
0.02
0.5
0.0
0.5
0.5
4.0
0.5
0.5
8.0
8.5
0.5
.0.
1.5
0.5
0.0
0.5
0.5
8.0
8.5
0.5
i:2R 0.5
1.0
2.0
0.5
2.5
0.5
0.5
.5
0.0
05
0.5
0.5
0.5
8.0
8.0
2-5 mi: EVATER
0.5
2.0
0.5
0.5
0.0
0.5
0.5
2-10 mi: SELTER
0,
2.5
0.5
0.0
0.5
0.5
0.5
3.5
4.0
4.0
4.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
4.5
5.0
0.5
0.0
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0. 00
0.5
0.5
0.5
0...
0.5
0.0
0.5
0.5
0.0
0.5
0.5
A
2 mi:SE
R
6- 1T03
..
. . ...
2mi:ELTE
-5- ml: SHELTER
3.03.
0.
0-2 ml:
E
... . .
V . ...
2-5 mi: EVAC
R
.
5-10 mi: SHELTER
+
2mph
DLTSHL
Scenario
I
I
B___
.5
A-11
0.00
0.00
.0
0-2
2-5
5-10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.0.
0.00
0.00
0.00
_.__
0.00
0.00
0.00
I
I
I
I
0.00
0.00
0.00
0.00
0.00
0.00
1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
1
0.03
0.00
0.00
1
0.01
0.00
0.00
1
0.01
0.
000
0.00
0.00
0.00
0.00*
0.01
000
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1
0.00
I
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
4
I
I
I
I
T
I
II
I
I
I
I
0.00
0.00
0.00
2____
Ea
2
_SITE
quences
Er
1
t
i
iSourceTerm
....
5-10 MileI
mph
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
0-2
2-6
6-10
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
0.5
0.5
0.5
1.0
1.0
1.5
0.5
0.5
0.5
1.0
1.0
1.5
0.5
0.5
0.0
0.0
0.5
0.5
0.07
0.08
0.00
0.01
0.00
0.00
0-2 mi: SHELTER
2-5 mi: SHELTER
0.5
0.5
0.5
1.5
2.0
2.5
2.0
2.5
320
0.5
0.5
0.5
1.5
2.0
2.5
2.0
2.5
3.0
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.08
0.05
0.02
0.02
0,04
0.05
0.00
0.00
0.00
5-10 mi: EVA C
0.5
3.0
3.5
0.5
3.0
3.5
0.5
0.0
0.5
0.00
0.04
0.00
0.5
3.5
4.0
0.5
3.5
4.0
0.5
0.0
0.5
0.00
0.02
0.00
I
0.5
4.0
4.5
0.5
4.0
4.5
0.5
0.0
0.5
0.00
0.01
0.00
0.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
4.5
5.0
5.0
5.5
0.5
0.5
0.0
0.0
0.5
0.5
0.00
0.00
0.00
0.00
0.00
0.00
,D
0-2 Miles
2-5 Miles
1
2mph
I
0-2
2-5
6-10
...
0.00
0.00
0.00
T
0.01
0.03
0.00
0.00
0.00
0.00
I
0.05
0 .05
0.04
0.00
0.01
0.01
0.00
0.00
0.00
0.03
0.01
0.00
0.01
0.01
0.00
1
0.00
0.01
1
0.00
0.00
0.01
0.00
I
I
1
I
3mph
0-2
2-6
6-10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
I003
I 0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
7f0.03
0.00
0.00
+
0-2 mi: SHELTER
..
,
DLTSHL
Scenario
. . . _______..
-
B
I
I
I
0.5
0.5
5.0
0.5
0.5
5.0
0.5
0.0
0.5
0.00
0.00
0.00
I
0.00
0.00
0.00
I
I
0.5
0.5
1.0
1.5
1.5
2.0
0.5
0.5
1.0
1.5
1.5
2.0
0.5
0.5
1.0
1.5
1.5
260
0.08
0.08
0.01
0.02
0.00
0.00
T
1
0.03
0.05
0.00
0.00
0.00
0.00
1
1
2.0
2.5
0.5
2.0
2.5
0.5
2.0
2.5
0.05
0.04
0.00
0.05
0.01
0.00
2.5
3.0
0.5
2.5
3.0
0.5
2.5
3.0
0.02
0.05
0.00
I
0.04
0.01
0000
1
0.02
0.00
0.00
0.5
0.5
5-10
mi: SHELTER
..
0.5
0.5
3.0
3.5
3.5
4.0
0.5
0.5
3.0
3.5
3.5
4.0
0.5
0.5
3.0
3.5
3.5
4.0
0.00
0.00
0.04
0.02
0600
0.0
I0.030.01
0.01
0.01
0.00
0.00
1
0.01
0.01
0.00
0.00
0.00
0.00
050.5
4.0
4
0.5
05
4
4.5
10
0.5
4.0
4.05
0.00
0.01
0.00
I
0.00
0.01
0.00
I
0.00
0.00
0.00
0.5
0.5
0.5
4.5
1.0
0.0
5.0
1.5
0.5
0.5
0.5
0.5
4.5
1.0
0.0
5.0
1.5
0.5
0.5
0.5
0.5
4.5
1.0
0.0
5.0
1.5
0.5
0.00
0.08
0.02
0.00
5
0.00
I
0.00
0.00
0.000
0.01
0.00
0.00
0.00
II
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.02
0.02
0.00
0.00
0.00
0.00
I
0.00
0.00
0.00
0.00
0.00
0.00
1
r
0.00
0.00
0.00
0.00
0.00
0.00
0-2 mi: EVAC
0,5
0.0
0.5
0.5
0.0
065
0.5
0.0
0.5
0.02
0,00
0.0-0 --1
0.00
0.00
0.00
0.00
0.00
0.00
5-10 mi. EVA C
0.5
m.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.02
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
1
I
I
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
I
I
0.00
0.00
0.00
0.00
0.00
0.00
10.00
0.00
0.00
0.5
0.0
0.5
05
.
0.5
0.5
0.0
0.5
0.02
0.00
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.02
0.00
0.00
I
0.00
0.00
0.00
I
0.00
0.00
0.00
0-2 ml: SHETER ..
.
1
1
-2-5-mi: SH-ELTER...
A-12
0.00 5.0
0.5
0.00
0.00
I
0.00
SSITE 2
-F-
Latent Conseauences
_________
Scenario
A
mi:
2 ml:
1
02 Mies
~2-5
DLTEVA
0.0
DEPART
0.5
DLTSHL
0.5
DLTEVA
0.0
DEPART
0.5
DLTSHL
0.5
DLTEVA
8.0
DEPART
8.5
0-2
0.00
2-6
0.05
5.10
0.08
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.0
1.0
2.05
2.5
0.5
0.5
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.00
0.00
0.00
0.06
0.05
0.06
0.08
0.08
0.08
0.5
ml: 00.5
0.5
8.0
8.5
0.00
0.04
0.08
2.0
4.5
8.0
8.0
8.5
8.5
0.00
0.00
0.04
0.03
0.08
0.08
3.0
0.5
8.0
8.5
0.00
0.03
0.08
0.00
0.03
0.08
0.08
000.08
0-.
0.5
0.0
0.5
0.5
2.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
2.5
4.0
0.5
0.0
0.5
0.5
2.5
6-10
0.05
0.00
000
0.00
0.02
0.03
0.03
0.05
0.05
0.05
0.00
0.03
0.05
0.00
0.00
0.03
0.02
0.05
0.05
0.06
0.00
0.02
0.05
0.06
0.00
0.02
0.05
0.00
0.02
0.05
I
0.00
0.00
0.02
0.01
0.05
0.05
0.00
0.00
0.00
0.04
0.04
0.04
0.06
0.06
0.06
0.00
0.04
0.06
0.00
0.00
0.03
0.02
0.06
0.06
0.00
0.03
0.00
0.02
0.00
0.03
0.06
0.00
0.00
0.02
0.03
0.06 .
0.06
I
I
I
I
I
0.5
0.5
3.0
3.5
0.5
8.0
0.0
0.5
0.5
3.5
4.0
0.5
8.0
8.5
0.00
0.03
0.5
0.5
0.0
1.0
0.5
0.5
0.5
0.5
4.0
4.0
4.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.03
0.05
0.5
0.5
0.0
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.05
0.08
0.00
0.03
0.06
I
0.00
0.01
0.05
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.05
0.05
0.08
0.08
0.03
0.03
0.06
0.06
T
I
0.00
0.00
0.00
0.00
0.01
0.01
0.05
0.05
0.5
8.0
8.5
0.00
0.05
0.08
I
0.00
0.03
0.06
I
0.00
0.01
0.05
8.5
0.00
0.05
0.08
0.00
0.03
0.06
/
0.00
0.01
0.05
0.08
0.08
0.00
0.00
0.03
0.03
0.06
0.06
T
0.00
0.00
0.01
0.01
0.05
0.05
0.00
0.03
0.06
I
0.00
0.01
0.05
0.00
0.03
0.06
0.00.
0.01
0.05
0.00
0.01
0.05
0.06
I
I
0.00
0.03
0.06
0.00
0.03
0.00
0.03
0.06
1
0.00
0.01
0.05
0.00
0.03
0.06
1
0.00
0.01
0.05
0.00
I '0.00
0.03
0.03
0.06
0.06
I
I
0.00
0.00
0.01
0.01
0.05
0.05
0.0
4.5
0.5
5.0
0.5
0.5
0.0
0.0
0.5
0.5
5.5
0.5
0.0
0.5
0.08
1.5
2.0
0.5
0.0
0.5
0.5
8.0
0.5
0.5
2.0
0.0
2.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.05
0.05
0.5
2.0
3.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.05
0.00
.05
0.00
0.05
0.08
0.0
0.5
0.5
0.5
0.5
3.0
0.0
0.0
0.0
5.
3.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.0
0.0
0.5
0.5
8.0
8.5
8.5
0.00
8.0
8.5
0.00
0.05
0.08
0.00
0.05
0.08
1
0.05
0.05
0.08
0.08
I
0.0
0.5
I
0.08
0.0
0.0
0.5
0.08
.
I
8.5
0.0
0.5
0.5
0.5
0.5
0.5
8.0
0.5
0.5
8.0
8.5
8.0
8.0
8.5
8.5
0.00
0.00
0.05
0.08
I
I
0.5
0.5
0.0
5.0
0.5
5.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
05
8.0
8.5
0.00
0.05
0.08
!
0.00
0.03
0.06
8.5
0.00
0.05
0.08
I
0.00
0.03
0.06
0.00
0.05
0.08
0.0
0.3
00
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0. .
0.5
____-
2-6
0.01
5-10
0.06
0.0
00.5
0-m:VC
2-m:VC
I
0-2
2-6
0.03
0.5
0.5
5-10mi: SHELTER
II
I
0.00
0-2
0.00
0.5
10.5
.0
LTE
2.0
_-10
.
I
I
I
8.5
0.5
0.5
5-10ml: E
cR
-
DLTSHL
0.5
EVAC
0-2 ml: SHELTER
~1~
F-
I
ISoureeTerm A
1mph2mhtmh
Mile
Mies6-10
EVTC
2
-
F-
I
~-
0.5
0.0
0.0
0.5
0.5
0.5
0.5
.
.
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
.
.
.
.
.
.0
0.0
0.5
0.5
8.0
8.5
0.00
0.0
0.5
0.5
.8.5
8.0
A-13
8.5
0.00
1
0.00
I
1_
0.01
0.00.
0.01
.0
.1
1
0.05
0.05
00
0.01
'0.05
0.00
0.01
0.05
0.00
0.01
03.05
.8
I
0.00
0.03
0.06
I0.00
0.05
0.08
II
0.00
0.03
0.06
I
0.05
0.08
0.00
0.03
0.06
00
0.05
0.01
0.00
j
SIT E2
---*1-
I
LateConseq uences_
0-2 Miles
DLTSHL
I DLTEVA I
DEPART
2-5
6-10
!
0-2
2-6
5-10
!
0-2
2-5
5-10
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.05
0.16
0.00
0.03
0.05
0.01
0.02
0.5
1.0
0.5
0.5
1.0
0.5
0.0
0.5
0.00
0.06
0.16
0.04
0.05
I
1
0.00
0.5
I
-I
1
0.00
0.02
0.02
0.5
1.0
1.5
0.5
1.0
1.5
0.5
0.0
0.5
0.00
0.06
0.16
t
0.00
0.04
0.05
0.00
0.03
0.02
0.5
1.5
2.0
0.5
1.5
2.0
0.5
0.0
0.5
0.00
0.05
0.16
1
0.00
0.04
0.05
0.00
0.03
0.02
0.5
2.0
2.5
0.5
2.0
2.5
0.5
0.0
0.5
0.00
0.04
0.16
I
0.00
0.04
0.05
0.00
0.03
0.5
2.5
3.0
0.5
2.5
3.0
0.5
0.0
0.5
0.00
0.04
0.16
I
0.00
0.03
0.05
0.5
0.5
0.5
0.5
3.0
3.5
4.5
4.0
3.5
4.0
5.0
5.5
0.5
0.5
0.5
0.5
3.0
3.5
4.5
4.0
3.5
4,0
.0
5.5
0.5
0,5
0.5
0.5
0.0
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.00
0.00
0.00
0.00
0.03
0.03
0.03
0.03
0.16
0.16
0.16
0.16
1
I
I
0.00
0.00
0.00
0.00
0.03
0.03
0.02
0.02
0.05
0,05
0.05
0.05
I
0.00
0.00
0.00
0.00
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.5
5.0
50.5
0.5
5.0
50.5
0.5
0.0
0.5
0.00
0.03
0.16
i000
0.02
005
i000
0.02
0.02
0.5
0.5
0.5
0
05
1.0
1.0
1.0
1.5
0.5
0.5
0.5
05
00
05
1.0
1.0
1.5
0.5
0.5
0.5
05
00
05
1.0
5
1.0
1.5
0.00
0.00
0.00
0.0
0.06
0.06
0.1
0.17
0.17
II
000
0.00
0.00
003
0.04
0.05
0.07 1I
0.10
I
0.00
0.00
0.00
0.01
0.02
0.03
0.02
0.03
0.05
0.5
1.5
2.0
0.5
1.5
2.0
0.5
1.5
2.0
0.00
0.05
0.18
0-2 mi: SHELTER
0.5
2.0
2.5
0.5
2.0
2.5
0.5
2.0
2.5
0.00
0.04
0.17
2-5 mi: SHELTER
0.5
2.5
3.0
0.5
2.5
3.0
0.5
2.5
3.0
0.00
0.04
5-10 mi: SHELTER
0.5
3.0
3.5
0.5
3.0
3.5
0.5
3.0
3.5
0.00
0.03
0.5
3.5
4.0
0.5
3.5
4.0
0.5
3.5
4.0
0.00
0.5
4.0
4.5
0.5
4.0
4.5
0.5
4.0
4.5
0.5
0
0.5
0.5
0.5
4.5
5.0
0.5
4.5
5.0
0.5
4.5
5.0
0.0
0.0
5.5
0.5
0.5
0.5
0.5
0.5
5.0
0.0
0.0
5.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
.
5
0.5
0.0
0 .0
0.0
0.5
0 .5
0.5
0.5
0 .5
0.5
0.0
0 .0
0.0
0.5
0
0.5
0-2 mi: SHELTER
2mi:SHELTER
5-0 ml: EVAC
.
........
.......
2 -5 . . . . . . . . .. . .
0-1 mi: EVAC
0-2 ml: EVAC
DLTSHL
I
DLTEVA
I
_____
2mph
0.5
DEPART
I
SourceTerm A
tmph
0.0
DLTSHL I DLTEVA
I
-.
5-i0 Miles!
0.5
Scenario
1D
I
2-5 Miles
DEPART 1
0-2
1
,-
0.00
.
.0.04
I
1-
0.00
.0.03
0.02
0.02
0.00
0.04
0.11
0.00
0.03
0.07
T
0.00
0.04
0.12
0.00
0.03
0.08
0.16
I
0.00
0.03
0.12
I
0.00
0.03
0.09
0.14
I
0.00
0.0
0.03
00
0.11
.1
I
0.00
00
0.033
0.09
00
0.03
0.13
I
0.00
0.03
0.10
0.00
0.02
0.08
0.00
0.03
0.11
1
0.00
0.02
0.09
0.00
0.02
0.08
5.0
0.00
0.03
5.0
0.0
0.0
5.5
0.5
0.5
0.00
0.00
0.00
0.03
0.05
0.05
0.10
0.10
0.10
0.16
0.16
I
I
I
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.02
0.03
0.03
0.08
0.08
0.05
0.05
0.05
I
1
I
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.02
0.01
0.01
0.07
0.07
0.07
0.02
0.02
0.5
0.0
0.5
0.00
0.05
0.16
1
0.00
0.03
0.05
1
0.00
0.01
0.02
0.5
0
0.5
0.0
0.5
0.00
0.05
0.16
I
0.00
0.03
0.05
I
0.00
0.01
0.02
0.0
0.5
0.00
0.05
0.16
0.03
0.05
0.00
0.01
0.02
I
0.00
0I
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.05
0.16
1
0.00
0.03
0.05
1
0.00
0.01
0.02
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.00
0.00
0.05
0.05
0.16
0.16
1
0.00
0.00
0.03
0.03
0.05
0.05
1
0.00
0.00
0.01
0.01
0.02
_ 0.02
0.5
0.0
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.05
0.16
I
0.00
0.03
0.05
0.05
I
0.00
0.01
0.02
A-14
SITE 2
Scenario
JA
E
0-2 mi:SEVA
2-5 mi: SHELTER
5-10 mi: SHELTER
B
0-2 mi: SHELTER
5-10mi:ELE
I-
1
: E
LTE
DLTSHL
DLTEVA
05
0.0
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
DEPART
0.5
DLTSHL
-0.5
0.5
0.5
.
[~~~~~~0
0.5
0.5
DLTEVA
0.0
DEPART
DLTSHL
8.0
0.00
0-2
0.03
2-5
5-10
0.05
8.5
8.5
8.5
0.00
0.00
0.00
0.03
0.04
0.03
0.05
0.05
0.05
1
0-2
.01
02-5
5-10
0.04
fI
0-2
0.00
2-5
0.01
6-10
0.03
0.00
0.00
0.00
0.02
0.02
0.03
0.04
0.04
0.04
1
I
I
1
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.02
0.02
0.02
.2
0.03
0.03
0.03
0.03
0.03
00
,
000
0.02
0.03
0.0
0.0
0.5
0.5
0.5
0.5
2.0
2.5
2.5
3.0
3.5
0.5
0.5
0.5
8.0
8.0
8.1.
8.5
8.5
0.00
0.00
,0
0.03
0.02
00
0.05 1 0.00
0.05
.5I..0 I0.00
0.03
002
00
0.04
0.04
.4I00
0.5
0.0
0.5
0.5
3.5
4.0
0.5
8.0
8.5
0.00
0.0
0.05
0.00
0.02
0.04
0.5
0.5
0.0
0.0
0.5
0.5
4.0
4.5
4.5
5.0
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.02
0.02
0.05
0.05
0.00
0.00
0.02
0.02
0.04
0.04
1 0.00
I-t 0.00
0.01
0.01
0.03
0.03
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.02
0.03
.
0.05
0.05
0.00
0.00
0.01
0.01
0.01
0.04
0.04
0.04
0.00
0.00
0.00
0.01
0.01
0.01
0.03
0.03
0.03
0.5
0.5
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
0.05
0.00
0.01
0.04
I
0.00
0.01
0.03
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
0.05
0.00
0.01
0.04
1
0.00
0.01
1.0
2.0
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
I 0.00
T 0.00
0.01
0.01
0.04
0.04
0.01
0.01
0.03
0.5
0.5
1.0
2.0
2.5
2.5
0.03
0.03
0.5
2.5
3.0
0.5
0.0
0.5
0.5
8.0
0.00
0.01
0.04
0.03
0.5
3.5
3.0
0.5
0.0
0.5
0.5
8.0
0.00
0.01
0.04
4.0
0.5
0.0
0.5
0.5
8.0
0.00
0.01
0.00
0.01
0.01
0.01
0.5
0.0
0.5
0.5
.. . . .0.5. .. .I 0.5
1.5
3.0
_
__
_
_
_
0.00
0.00
0.03
0.03
0.05
0.05
8.5
0.00
0.03
0.05
8.5
0.00
0.03
0.05
8.5
0.00
0.03
0.05
I
I
I
0.00
0.5
_._
8.0__
8.0
8.0
T
8 .5
0.5
_
0.5
0.5
0.5
DEPAR
0.5
_
1.0
1.5
__
1.0
1.5
2.0
DLTEVA
0.5
0.5
I
I
I
I
0.00
0.01
I
0.00
0.01
0.03
0.04
'
0.00
0.01
0.03
0.04
I
0.00
0.01
0.03
0.04
0.04
0.00
1 0.00
0.01
0.01
0.03
0.03
0.5
3.5
0.5
0.5
0.5
4.0
.5.
3.0
3.5
5.0
4.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
8.0
8.0
8.5
8.5
0.00
0.00
0.03
0.03
0.05
0.05
0.00
1 0.00
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
0.05
T 0.00
0.01
0.04
0.00
0.01
0.03
0.5
0.5
0.5
8.0
8.5
0.00
0.03
0.05
0.00
0.01
0.04
0.00
0.01
0.03
0.05
0.00
0.01
0.04
0.00
0.01
0.03
0.00
0.01
0.03
0.00
0.01
0.03
0.00
0.01
0.03
1 0.00
0.00
r 0.00
0.01
0.01
0.01
0.03
0.03
0.03
0.5
0.5
8.0
8.5
0.00
0.03
0.05
I
0.5
0.0
0.5
0.5
0.0
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
12 mi: EVAC
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8.5
0.00
0.03
0.05
1 0.00
0.04
0.5
0.01
15-10 mi: SHELTER
0.5
0.0
0.5
0.5
0.0
0.5
0.5
8.0
8,5
0.00
0.03
0.05
1
0.00
0.01
0.04
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.5
05
0.5
8.0
8.0
8.0
8.5
8.5
8.5
0.00
0.00
0.00
0.03
0.03
0.03
0.05
0.05
0.05
0.00
1' 0.00
T 0.00
0.01
0.01
0.01
0.04
0.04
0.04
t......... ..
......
I 0.00
T 0.00
8.0
A-15
8.5
0.00
0.03
I
0.00
0.05
0.05
0.00
I
0.01
0.01
0.04
0.04
I
1
I
I
1
0.00
0.01
0.03
S
ITE 2 Consequences
1
t
Latent
1_....
Scenario
ID
M-B
I
I
Miles
0-2 Miles
1
IesSourceTerm
.... ...
B
1Miles
mph
__2-6
2mph
0-2
2-5
5-10
I
0.00
0.01
0.03
0.00
0.02
2-5
6-10
0.01
0.01
0.03
0.00
0.01
0.01
0.02
0.03
0.00
0.01
0.01
0
0.00
0.00
0.00
0.03
0.03
0.02
0.03
0.03
0.03
0.00
0.00
0.00
0.02
0.02
0.02
0.01
0.01
0.01
1
0.00
0.02
0.01
1
0.00
0.00
0.00
0.01
0.1
0.01
o
0.01
00
0.01
oo0
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
DLTSHL
DLTEVA
DEPART
0-2
2-6
5-10
0.5
005
0.0
0.5
0.5
1.0
0.5
0.5
0.0
0.5
0.5
10
0.5
0.5
0.0
0.5
0.00
0.03
0.09
0.0
0.5
0.00
0.03
0.09
0.5
1.0
1.5
0.5
1'0
1.5
0.5
0.0
0.5
0.00
0.04
0.09
1
0.00
.5
2.0
2.5
2.0
2.5
3.0
0.5
0.5
0.5
1.5
2.0
2.5
2..5
2.5
3.0
0.5
0.5
0.0
0.0
0.0
0.5
0.5
0.5
0.00
0.00
0.00
0.03
0.03
0.03
0.09
0.09
0.09
I
I
1
. . . .
0.00
DLTSHL
1
... .... . .
3mph
I
.0-2
I
0-2 mi: SHELTER
0-5 mi: SHELTER
0.5
0.5
0.5
5-10 mi: EVA C
0.5
3.0
3.5
0.5
3.0
3.5
0.5
0.0
0.5
0.00
0.02
0.09
0.00
0.02
.03
0.5
3.5
4.0
0.5
3.5
4.0
0.5
0.0
0.5
0.00
0.02
0.09
0.00
0.02
0.03
0.5
4.0
4.5
0.0
0.5
0.00
0.02
0.09
0.00
5.0
0.5
0.0
0.0
0.5
0.00
0.02
0.09
0.00
0.02
0.02
0.02
0.03
4.0
0
4.0
50I
34.5
0.0
0.5
3.5
0.0
0.5
0.5 4.5
0.5
0.5
4.5
0.5
0.5oo
oE
0.5
E
4.0
4.5
0.5
4.0
4.5
0.5
0.0
0.5
0.00
0.03
0.09
0.00
0.02
0.03
II
0.00
0.01
0.01
0.00
0.00
0.02
0.0
0.05
3
0.06
1
0.00
0.00
0.01
0.02
0.03
0.04
0.5
0.5
_-
1.0
1.5
-
-
1.5
2.0
-
-
0.5
0.5
-
1.0
1.5
-
-
1.5
2.0
-
0.5
0.5
-
-
1.0
1.5
-
-
1.5
2.0
-
0.00
0.00
-
-
0.04
0.03
-
0.10
0.10
1
II
I
0.03
o
I
I
I0
. 1
i
-
-
0-2 mi: SHELTER
0.5
2.0
2.5
0.5
2.0
2.5
0.5
2.0
2.5
0.00
0.03
0.10
II0.00
0.03
0.06
1
0.00
0.02
0.04
2-5 mi: SHELTER
5-10 mi: SHELTER
0.5
0.5
0.5
2.5
3.0
3.5
3.0
3.5
4.0
0.5
0.5
0.5
2.5
3.0
3.5
3.0
3.5
4.0
0.5
0.5
0.5
2.5
3.0
3.5
3.0
3.5
4.0
0.00
0.00
0.00
0.03
0.02
0.02
0.10
0.09
0.08
I0.00
0.00
0.00
0.02
0.02
0.02
0.07
0.07
0.06
1
1
I
0.00
0.00
0.00
0.02
0.02
0.02
0,05
0.05
0.05
0.5
4.0
4.5
0.5
4.0
4.5
0.5
4.0
4.5
0.00
0.02
0.08
0.00
0.02
0.06
I
0.00
0.01
0.05
0.5
4.5
5.0
0.5
4.5
5.0
0.5
4.5
5.0
0.00
0.02
0.07
0.00
0.02
0.05
0.01
0.04
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.5
0.5
5.0
0.0
5.5
0.5
0.00
0.00
0.02
0.03
0.06
0.09
0.00
0.00
0.01
0.01
0.05
0.03
I
I
0.00
0.5
0.5
I
I
1
1
0.00
0.00
0.01
0.01
0.04
0.01
0.5
0.5
0.0
2
0.5
0.5
0.5
0.0
2.5
0.5
.00
0.5
0.5
0.0
0.0
0.5
0.5
0.00
0.00
0.03
0.03
0.09
0.09
I
0.00
0.00
0.01
0.01
0. 03--f
0.03
I
0.00
0.00
0.01
0.01
0.01
0.01
0.5
0.5
0.5
0.0
0.0
0.0
0.5
0..0
0.5
0.5
0.5
0.
0.5
0.0
45
0.0
0.0
0.5
.0
0.5
0.5
0.5
0.
0.5
0.5
0.0
0-2 mi: EVA C
2-5 mi: EVA C
45
0.0
0.0
0.5
0.0!
0.5
0.5
0.00
.0
0.00
0.00
0.03
00
0.03
0.03
1
0.00
0.09
.7I00
0.00
0.09
0.09
I0.00
0.01
.2
0.01
0.01
0.03
00
0.03
0.03
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.-01
0.04
0.01
0.01
5-10 mi: EVAC
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.03
0.09
0.00
0.01
0.03
0.00
0.01
0.01
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5
0.5
0.0
0.0
0.5
0.5
0.00
0.00
0.03
0.03
0.09
0.09
0.00
0.00
0.01
0.01
0.03
6
0.03
0.00
0.00
0.01
0.01
0.01
0.01
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.03
0.09
0.00
0.01
0.03
0.00
0.01
0.01
0.5
0.0
0.5
0.5
0.0
0.5
0.5
0.0
0.5
0.00
0.03
0.09
0.00
0.01
0.03
0.00
0.01
0.01
2F
0.5
45
10.5
A-16
_
I
1
I
1
11
I
U.S. NUCLEAR REGULATORY COMMISSION
RC FORM 335
.2004)
tCMD 3.7
1. REPORT NUMBER
(Assigned by NRC, Add Vol., Supp., Rev.,
and Addendum Numbers, If any.)
BIBLIOGRAPHIC DATA SHEET
NUREG/CR-6953,
Vol. 3
SAND2010-2806P
(See instructionson the reverse)
TITLE AND SUBTITLE
3. DATE REPORT PUBLISHED
Review of NUREG-0654, Supplement 3, "Criteria for Protective Action Recommendations for
Severe Accidents"
Technical Basis for Protective Action Stategies
MONTH
YEAR
8
2010
4. FIN OR GRANT NUMBER
R3144
AUTHOR(S)
6. TYPE OF REPORT
R. Sullivan, Nuclear Regulatory Commission
J. Jones, F. J. Schelling, N. Bixler, and F. Walton, Sandia National Laboratories
Technical
7. PERIOD COVERED (Inclusive Dates)
7/04-3/11
PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. NuclearRegulatory Commission, and mailing address; if contractor,
provide name and mailing address.)
Sandia National Laboratories, P.O.Box 5800 Albuquerque, NM 87185
SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor,provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission,
andmailing address.)
Division of Preparedness and Response
U.S. Nuclear Regulatory Commission
Office of Nuclear Security and Incident Response
Washington, DC 20555-0001
I. SUPPLEMENTARY NOTES
R. Sullivan, Technical Lead
1.ABSTRACT (200 words or less)
Volume 3 of NUREG/CR-6953, "Review of NUREG-0654, Supplement 3, Criteria for Protective Action Recommendations for
Severe Accidents," is the final volume of the Protective Action Recommendation (PAR) Study. This analysis provides a
technical basis for decision criteria that can be used by licensees and offsite response organizations to enhance protective
action strategy for nuclear power plant accidents that progress rapidly. The analysis integrated advances in the knowledge of
potential accident sequences, protective action strategies, and consequence modeling. The emergency preparedness planning
basis includes the potential for very unlikely but credible rapidly progressing accidents, and this analysis was performed to
specifically identify PAR strategies for rapidly progressing accidents to support the PAR logic diagram developed for an update
to Supplement 3 to NUREG-0654/FEMA-REP-1, Rev. 1, "Criteria for Protective Action Recommendations for Severe
Accidents." The updated PAR logic diagram will include a path for General Emergencies and another decision path for
accidents defined as rapidly progressing. The technical basis developed may assist licensees and offsite response
organizations in tailoring protective action strategies using site specific evacuation time information. It is expected that
application of the this technical basis may improve the efficacy of protective actions for a rapidly progressing accident. The
analyses performed herein are only applicable to the rapidly progressing accident.
.. KEY WORDS/DESCRIPTORS (List words or phrasesthat will assist researchersin locatingthe report.)
Protective Action Recommendations; ProtectiVe Actions; Nuclear Power; Emergency Preparedness;
Emergency Response; Public Health and Safety
13. AVAILABILITY STATEMENT
unlimited
14. SECURITY CLASSIFICATION
(This Page)
unclassified
(This Report)
unclassified
15. NUMBER OF PAGES
16. PRICE
RC FORM 335 (9-2004)
PRINTED ON RECYCLED PAPER
'AN
Fednrl Rocycllng Program
Recommendations for Severe Accidents"
UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, DC 20555-0001
OFFICIAL BUSINESS
Fly UP