Comments
Transcript
Total System Performance Assessment • :.. •••••-
Alt U.S. Department of Energy Office of Civilian Radioactive Waste Management - wvvw.ocrwm.doe.gov Total System Performance Assessment Results • :.. •••••- Outline * Scenarios and. Modeling Cases * Overview of Total System Performance Assessment- License Application (TSPA-LA) results - Total Dose (summed over scenarios) - Important Scenarios and Radionuclides -What determines * Shape of expected dose history +Magnitude * of expected dose Uncertainty in expected dose Stability of total dose results * Results are from TSPA AMR (MDL-WIS-PA-000005) RevOO ADO1 Departmentof Energy -Office of Civilian Radioactive Waste Management LLYMIansenNRCTEI 04USUU.ppt wwuuv'crwm'doe'gov Future Scenarios for * Igneous Scenario • Intrusion Modeling Case * Eruption Modeling Case Yucca Mountain aNominal Scenario * Nominal Modeling Case • Early Failure Scenario * Waste Package Modeling Case " Drip Shield Modeling Case * Seismic • Ground Motion Modeling Case * Fault Displacement Modeling Case -A,- = water.ontaiwng waste Package D 1•4h WSI8XF.,.O2t.a LWPUI LI I ICI I L U1 F-l l:l9y - '..JIILV LLYMI-ansenNRCTE_040308.PPt Aii flduiudL-lvt VVdIZLt IVIOI Id3CI I ICI IL www.ctcrwrn~doegov 3 Total Mean Dose Contributions. By Modeling Case A_v5.005_ED_003000_001.gsm; LA_v5.005_EW_006000_001 .gsm LA_v5.005_IG_003000_001.gsmLAv5.005_SM_009000 001.gsm; LAv5.005_SF_010800_001.gsm; vEl.004_GS_9.60.100_1OKyrET[eventtime].gsm; LAv5.005 1OKyrTotalDose_MeanContdbutionsRevOO.JNB 3 I U• lo2 102 101 PD U) 100 U) 10-1 U, 0" 10-2 05 10-3 10-4 10-5 10-6 0 2000 4000 6000 8000 10000 Time (years) uepartment o0energy - u-rice LL.YMHansen NRCTEO040308.ppt o0 Llvuian ~atieWateMnaemn iactive WaSte Management ~VV t crvmde wvw.ocrw4m.doe.gov 4 Uncertainty in Total Expected Dose (Summed over Modeling Case s) LA-v5.005_ED_003000_001.gsm; LA_v5.005 EW 006000_001.gsm; LA._v5.005_IG_003000 001,gsm: LA_v5.005_SF_010800_001.gsm. LAv5.005 SM 009000_001.gsm: vEl1004 GS 9.60.100_1OKyrET[event time].gsm; Four questions: LA v5.005 10kyrTotalDoseCalcs Rev01.gsm; LAv5.005_10Kyr_TotalDose Rev01.JNB 103 1. What determines the shape of these curves? 102 'E E . - •-• 101 -5th I I . . I . I . I I *1 -Mean - . Median 95th Percentile Percentile -I I I 4000 6000 8000 __________________ __________________ ___________________ 100 .2. 3. What determines the magnitude of total mean dose? What determines the uncertainty in total expected dose? Qi6Q10.2 C 10-2 C CL ,104 x LLI 10-6 4. Are these results 0 stable? Department of Energy - Office of Civilian Radioactive Waste Management LLYMHansenNRCTE_040308.ppt 2000 10000 Time (years) ww w.ocrwm.doe.gov 5 S hape of Total Expected Dose vE 1004_GS_9.60.100_20kyr ETlevent timelgsm rEl.004 GS 9.60.100 20kyr Dose Total Rev00.JB; 102 enile__ 103 102 Ma ineous rL io 10' C • 0 Median -I 10-2- 108 _ 1lW, 2000 4000 6000 8000 10000 0 2C)00 Time (years) LA vS.005_SM_009000 001.gsm; LAv5.000 SM 009000 001 Total Dose Rev00J8NB 6000 800D 10000 E 5ft Percentile 101 4000 LA_Y5.005_ED_003000_001 .gsm; LA_v5.005_EEW)006000 001 .gsm; LA v5,005_IG_003000_001.gsm; LA.v5.005_SF 010800_001.gsmr LAv5,005_SM 009000_001.gsm;vEl004 GS9.60.100 10KyET[event time],gsm; ,005_ 10kyrTotal Dose CaIcs RevOlgsm: LA v5.O05 lOryr Total Dose_Rev0l.NB U) 0D 0. Median 95th Percentile 05thPercentile "a 10-3 - ..... 0 - 100 0 10, Mean. 102 ______pe_ 95hPecrd 0D LA V5.005 IG 003000_01 100t 0 0 co 10-•- - CL -D 1020- 10-6 , 0 2000 4000 ,--- T 6000 , . 8000 100 30 Time-(years) 0 2000 4000 6000 8000 10000 Time (years) a' Department of Energy. Office of Civilian Radioactive Waste Management LL YMHansen NRCTE04030B.ppt -I,; ww Wiocruvm doe goy 6 Uncertainty in Total Expected Dose LAv5.005_EQ_003000._0DI.gsm; LA_v5.005_EW_006000_001,gsm; LAv5.005_IG_003000_001.gsm: LAv5.005_SF_010800_i001.gsm; LA-v5.005_SM_009000_00l.gsm: vEl.004_GS_9.60.lOOlOKslyrE[event time].gsrn: LA v5.005 10ksr Total Dose Cadcs Rev01.asm; LA v5.005 10lw Total Dose RevOl .JlB 103 102 I -Medan 5th E i ~Percentile a) 100 00 10 IJJ - 0 0 10-2- 0, l~r3 n C *0 10410-5 10-6 0 2000 4000 6000 " 8000 10000 0 2000 6000 4000 Time (years) 8000 10000 Time (years) LA v5.005 ED_003000_001_TotolDoseReoO0.JNB. LAY5 .OOSW 006000_001. Totffl Doe_Re00.JNIE LA oS.005_iG 003000 001 Total_DOse RoV00.JNB; LAV,_5.005SF010_000001_Total-DOse RevOO.JE RFV00.JNI ot LA v5005_SM_0090000 001 Tota- Dose RevOO..JNB;vE1.004 GS 0.60.100_SE_sca IMyr_Dose ResOc ite rplTotal 00_31EXPDO (0_M_0 EXP0oSE.o VS.005_20K LAyV5,305eoLA yS.0025_ 050_300 LA E)POO ts: LA _vS.GG5,20Kyr .-. ~ 101 SCCTHRP - stress threshold for SCC initiation (90 to 105, % of yield strength) IGRATE - frequency of igneous events SZGWSPDM - logarithm of uncertainty factor in N 100 8) U) groundwater specific discharge SZFIPOVO -flowing interval porosity in volcanic units 1W INFIL - infiltration case MICC14 - biosphere dose conversion factor for C14 103 (0 (T P 88 90 92 R D 94 96 i 98 .100 ba 102 104 106 SSCCTHRP d U •Department of Energy- Office of Civilian Radioactive Waste Management LLYMHansenNRCTE_040308.ppt •M . ;EOW -W IAI ocrwvm doe gov Radionuclides Contributing to Total Mean Dose at 103,000 Years .0 LA v5.005 ED 003000_001.gsm;LA V5.005_EW_006000_001.gsm; LAv5.005 IG_003000_001.gsm, LA v5.005_SM_009000_001 .gsm; LAv5.005_SF_010800_001.gsm;vEl.004_GS_9.60.1002OkyrET[eventtime].gsm, LA v5.005_ 0KyrMajor RNs Dos e Rev00.JNB 0 0) U) 0 0 a) 0 2000 4000 6000 Time (years) artment of Energy - Office of Civilian Radioactive Waste Management LL YMHansenNRCTE_040308.ppt 8000 10000 fA! v•%tv, 8 Stability of Total Dose LA v5.000 10kyr Total Dose Calcs RevOO.gsm; LAv5.000_10kyr Total DoseCalcs_RS2_RevOO.gsm: LA v5.000_10kyr_Total Dose_Calcs_RS3_RevOO.gsm. . LAvS.0000kyr" TotaLDoseCalcsRev0O.gsm: LAyv5.0001 Okyr._Total Dose_Caics_RS2_RevOO.gsm; LAv5.000 10'yr _TotalDose_Calcs_RS3_RevOO.gsm; LA v5000 10kw Total Dose 3ReoComo RevOO.JNB LA v5.000 10kvr Cl Total Dose Rev'00.JNJB Overall Mean .. . 102 -UppeBound f) 101 - 0) 0) U) 0 100* U) I Lower Bound Mean-I . . Mean-2 Ma- -- .. ______ 0 1002 C: C 4) -_ _ _ _ __ _ _ _ _ _ 10-2 C CL 104s a) -(SA-AN RFig-7-3-.45b 1V. 10-6 0 2000 4000 6000 8000 10000 Time (years) ILIanI. I11V I VI CL "EIf=[03y - 0II.Ip LLYMHansen..NRCTE_.040308.ppt UI' 5000 10000 15000 20000 Time (years) Replicated sampling demonstrates that sample size is sufficient LLYC 0 ICSI-LIVtI= VVO•Lt• IVIOd)lgdr~i I I Cl It. Confidence interval illustrates precision of estimate of total mean dose ,wvuu.OCrwm.doegov 9 Summary of 10,000 Year Results * Total mean dose determined by contribution from seismic scenario class Probability of damage to co-disposed waste packages within 10,000 yr < 0.2 * Largest contribution'to mean dose from * Magnitude of mean dose determinedý by - 99Tc Probability of events (seismic, igneous) Diffusion of radionuclides through cracks in waste package outer barrier Departmentof Energy. Office of Civilian Radioactive Waste Management . ýLL ; ... IvflnansenIi ...... IKU.L I rz-U'IU~O.JL w w.ocrwm.doe.gov 10 Uncertainty in Total Expected Dose (post-I 0,000-year period) LAv5.005 ED 003000_O00.gsm; LAv5.005_EW_006000_000.gsm: LAv5.005 IG 003000_000.gsm;LAv5.005 SF 010800_000.gsm: LAv5.005 SM 009000_003.gsm;vEl.004_GS 9.60.100_lMyrET[eventtime].gsm; LA_v5.005_IMyr TotalDoseCalcsRev00.gsm; LA_v5.005_1MyrTotalDose_Rev0O.JNB 103 102 E 101 100 0 Cu 10-1 10-2 10-3 a) a) 10-4 Lb 10-5 10-6 0 200000 400000 600000 800000 1000000 Time (years) U Delpartment of Energy . Office of Civilian Radioactive Waste Management LLYMHansenNRCTE_040308.ppt vvwvv.ocrwm.doe.gov Total Mean Dose Contrilt)ution By Modeling Cas .= LA v5.005 ED 003000_000.gsm: LA_v5.005_EW_006000_000.gsm LA_v5.005 IG 003000_000.gsm: LAv5.005_SM_009000_003.gsm: LAv5.005_SF_010800_000.gsm; vE1.004_GS_9.60.100_lMyrET[event time].gsm; LA_v5.005_1 Myr TotalDoseMeanContributionsRevO0.JNB 103 102 101 100 0 10-1 10-2 1O-3 10-4 10-5 10-6 0 200000 400000 600000 800000 1000000 Time (years) Department of Energy - Office of Civilian Radioactive Waste Management LLYMHansenNRCTE_040308.ppt Awwr~w.oCrwm.doe.gov 12 Construction of Total Dose vE1.004_GS._9.60,100_tMWr E'Tjevent time].gsm vEl,004 GS_9.60, 100 IMytr Dose _TotalRev00.,ONB 103 LAkvS 005 IG.003000.000. sm LA vS .005 IG 003000. 000T otal Dose RevOOJNB 102 102 af 101 E E 10i 100 0 0 o 1011 1011 -I d3 0) C) 0o 6 10-1 1O'S - - e-an S th Percentile y10 6 10 0 200000 400000 800000 600000 0 1030060 200000 10°3 IJE'eimiic-- 0 €- C-) 0) 600000 800000 1000000 LA.v5.005_ED 003000O.OO.gsm: LA v5.005_EW_006000_000.gsm: LAyv5.005 IG_003000 000.gsm; LAV5.005_SF_0100080000,gsm: LAv5.005_SM_009000_003.gsm; vEl.004 -GS_9.60.100_1MyrET(event timeljgsm; LA v5.005_IMyrTotal Dose CalcsRevO0.gsm: LA v5.005_Myr Total Dose Rev00.JNJ LA.V5.005 SM 009000_003.gsm; LA vS005_SM_009000 003 Total Dose RevOO.JNB - -.- - .lii li 100 w 10-' 0 0 02hta. _____ 7 E 0 400000 Time (vears) Time.(years) i - 10- 0) 10-2 CC 4) 10-3 0) 10-3 0) 10-4 10510-s10-6s 10-6 0 200000 400000 600000 800000 1000 000 a Time (years) LLYMHansenNRCTEO040308.ppt 400000 600000 800000 1000000 Time (years) I 'Depa rtment of Energy - Office of Civilian Radioactive Waste Management 200000 I I 1JvC"N' r' r. •. c 13ov 13 Composition of Dose from Seismic GM LA v5.005_SM_009000_003.gsm LAv5.005_SM_009000_003_TotalDose_RevO0.JNB (TSPA AMR AniOFin 82-11lbrab E 0 0 0 200000 400000 600000 800000 0 1000000 400000 200000 600000 800000 1000000 Time (years) Time (y 103 102 - From Seismic Damage to CDSP WP - From SCC failure of CSNF WP - From GC failure of both WPs (advection) 101 E a) U) 0 0 100 10-1 10-2 a) - 10-4 - - 2< w I ___ 10r5 I jor6 I 0 200000 400000 600000 800000 I 1000000 Time (years) Department of Energy - Office of Civilian Radioactive Waste Management LL YMHansen NRCTEO040308.ppt wvvvw, ocrvrn, doe. gov 14 Radionuclides Important to Mean Dose Early (E) and Late (L)_ -Total 10, 14C . LAv5.005_ED_003000_000.gsm: LA_v5.005_EW_006000_000 .gsm LAv5.005 IG 003000_000.gsm; LA_v5.005_SM_009000_003 3.gsm,-LAv5.005_SF_010800_000.gsm;vE1.004_GS_9.60.100_1MyrET[event time] .gsm; LAv5.005_ Myr MajorRNs_DoseRevO0 ).JNB; - 102 36 C1 79Se 9Tc -- 126 _..._. 1291 _ Sn 135Cs 101 _ -,,, _ _ 2 26 Ra .....227.Ac 1OP =_ 0 101 0t-L. -- '_ ...... 22 9 ..- 23 1 ...... 10-2 Th 230 Th Pa 233u 23 4 - - -'p -O -0 u 2.35u 103 --- 236 .....237 W) ...... 10-U 238u 239 ...... - 10r6 0 200000 400000 600000 800000 Np Pu 241pu 242pu -O -I, -O 1000000 Time (years) 'Department of Energy - Office of Civilian Radioactive Waste Management LL)YMHansenJNRCTEO0403d8.ppt ,v , ovw.Ocrwm. doe. gov 15 Uncertainty in Total Expected Dose LAv5.005_ED_003000_ 00.gsm; LAv5.005_EW_006000.000.gsm; LAv5.005 IG 003000 000.gsm;LAv5.005_SF_010800_000.gsm; LA._v5.005 SM 009000 003.gsm; vEl,004 GS 9.60.100lMyrETU[enttimaj]gsm; LA v5,005_lMyr_Total_DosejCatcRevOO.gsm: LA vS.OOS iMyrTotal DOSS RevOOJ'NB 103 (T.qPA 102 MP D Fri A -2[all- E Lii U) Co 0 a3. x C" - n- Lb - 0 200000 400000 600000 800000 1000000. 0 200000 400000 Time, 600000 800000 SCCTHRP IGRATE WDGCA22 SZGWSPDM SZFIPOVO EP1LOWPU 1000000 Time (years) LAe 10' .2 ,,n w'---r LAOS -,--,-,-5r1 05, SM00L300 -0_3,-~•OSErrr.-r-r~ DU'230 cate050 - R-Vr0.JNo REVOGO.O 10' SCCTHRP - stress threshold for SCC L 0200TooaLDoasRevOOJ2B: TseR5 eJSF_01080 J-8: LAYTotaLDoR vOTo0o1eI_0m0 vG030 oAseAM: 00 Lv F: 010W00_000ToiDose ReOO .00JN LA_ . __005050 W3 Dose GS RMsO.MJNB 44_GS 900 ..60.100Mtr D .osOR.00: LA-O.5 S.5p vLAoS.005tMvO0300_ SEA ... LA... 005 My0..300.E)P10S.E..-e. 10' r: * T frfl ... rr... LA ,... v5.005 r _M rl... 000 00 EXPOOSEA rr... 05ate r-... REVG00.J3JB -r.... .L M0 L S5-00.S3Lffl0-T2CLD-0.o.R JN LA L A 55. 0G5 EDO003000•0TMetes Rs00. LAo 5 W0 0_5. REL00.LNB:A R.00 _0000003 R 02. AEl.004-GS_9.0.200IMyrD Toke-_GS oe ?Rft: 1 i • f 10' initiation 0 o1 IGRATE - frequency of igneous events 0w WDGCA22 - Temperature dependence in A22 corrosion rate 10 z A PA!A! IR AD(1 Fig 8.2-2b[ (T S lO-" lo.,' 10e 10. IGRATE 0 'Department of Energy - Office of Civilian Radioactive Waste Management LL.YMHansenNRCTE_040308.ppt lo" 0 0 10' 11) 10• S102 0 1000 2000 3000 4000 5000 6000 7000 8000 WDGC A22 ,. c rwvm. do. go 16 Stability of Total Dose LA v5.000_lMyrTotalDoseCalcs.gsm: LA_vS.000_ 1MyrTotalDose_CalcsRS2_RevOO.gsm; LA~v5.000_1Myr TotalDote CelcsRS3.gsm; LA v5.000 1Mvr Total Dose 3ReDComb RevOO.JNB 103 E) (SA iR .,. LA_v5.O00lMyrTotel_Dose_Calcs.gsm;LAv5.000_IM _TotalDose_Caics_RS2_RevOO.gsm; LA_v5.OOOiMyrTotalDoseCaicsRS3.gsm;LAv5,000_iMyr_.C _Total DoseRevOO.JNB 4rt'• . . . (TSPA AMR, Fig T3.1-46by) 101 102- ____ _ 101` 0) d) (1) 0 102._____ 10.2- I10. 610 M Mean-2 Medan-1 Median-2 S9t-1 i0.7 - 5h-1 0 Mean-3 104 - .Median-3 95th-2 . 5th-2 ..... 5th-3 95th-3 105- 10G6 . . . 1ia- a - 200000 400000 600000 Time (years) 800000 1000000 . . . 200000 . . . 400000 600000 800000 1000000 Time (years) Replicated sampling demonstrates that sample -size is sufficient uepartment or tnergy * u-rice or LlVillan Kaioactive LLYMHansen.NRCTE.040308.ppt 0 . . Overall Mean ..... Mear-i Mean-2 Upper Bound ---Lower Bound . Mean-3 aste Management Confidence interval illustrates precision of estimate of total mean dose ,Nvvvvv.ocwm .doe.!gov 17 Summary of I Million Year Results • Total mean dose determined by occurrence of igneous events, seismic damageland general corrosion * Major contributors to dose are technetium, iodine, plutonium, neptunium, radium w Waste package outer barrier governs releases of technetium and iodine * Chemistry governs release of plutonium from waste package -Department of Energy Office of Civilian Radio-active Waste Management LL.YM~ansenNIK I ýU4U30.ppt 'U.S. Department of Energy Office of Civilian Radioactive Waste Management Repository Barrier :Capabil www..ocrwm.aoe.gov Presentation Outline • Introduction * Multiple barrier repository system • Quantification of barrier capability - Upper Natural Barrier (UNB) - Engineered Barrier System (EBS) - Lower Natural Barrier (LNB) • Summary * Supporting documentation wepartment oT tnergy * unice of'.IvIiiin iiacioactivewvasie mdflgernenE LLYMMacKinnonBarrierý_NRCTE..040308.ppt W.GC! 2 Introduction • The repository system is composed of natural and engineered features that function together as two natural barriers and an engineered barrier system • A barrier is defined in 10 CFR 63.2 as any material, structure, or feature that, for a period to be determined by the NRC, prevents or substantially reduces the rate of movement of water or radionuclides from the Yucca Mountain Reposqitory to the accessible environment, or prevents the release or substantially reduces the release rate of radionuclides from the waste * As defined by 10 CFR 63.2, important to waste isolation (ITWI), with reference to design of the EBS and characterization of natural barriers, means those engineered and natural barriers whose function is to provide a reasonable expectation that HLW can be disposed of without exceeding the requirements of 63.113(b) & (c) Department of Energy • Office of Civilian Radioactive Waste Management Lý-I ac nnon- arr er- - -PP II VI~i.~. O...J. LrI'T flfl'IO . vN~NW.ocnAvm~doe.gov U_ I~hIOIflIIIIIIUIIII _lfl II~U~iOUO~J3 3 Schematic of the Multiple Barrier Repository SvsteTm " _assessment ... capability of the three barriers are the same as the bases used for the compliance of the system with the postclosure performance assessment objectives and requirements ___ ... .l°... •repository Moou,, Table RApprxmateo r• ° Pr SouthBarrier Yon -.7 SE " dob a assessment as well as an evaluation of FEPs that have been excluded from .the performance Eassessment of Energy Office of Civilian Radioactive Waste Management De .Dpepartment LLI Mmayc~innun-i DnerIINI'IIU I rUqfu3uO.PPI capability is based the abstraction models of processes included in the -performance / -ý nd The technicalof'bases the for the www.ocrWm.doe.gov4 Quantification of Barrier Capability " Two modeling cases considered for demonstrating barrier capability Combined nominal/early failure modeling case * Drip shield and waste package early failure modeling cases and the, nominal modeling case are combined into one modeling case * Representation of repository futures in which disruptive events do not occur, * Provides a projection of a reference capability Seismic ground motion modeling case * Addresses barrier capability as a function of disruptive conditions * .Important to demonstration of compliance with the regulatory standards Department of Energy Office of Civilian Radioactive Waste Management LLYMMacKInnon BarrlerNRCTEO040308.ppt wvvw.ocrwm.doe.gov 5 Upper Natural Barrier TopogLaphy and Surficial Soils Unsaturated Zone Flow " Flow Focusing " Percolation " Dryout Zone Drift Surface " Capillary Barrier SDripping " Evaporation " Roughness I' *1 Intact Drift Degraded Drift Unsaturated Zone above Repository The Upper Natural Barrier (UNB), by I reducing the rate of movement of water into be itory, prevents or substantially reduces the rate of mov•,hent of radionuclides from the repository to the accessible environment I Department of Energy . Office of Civilian Radioactive Waste Management LL YMMacKinnonBarrierNRCTE 040308.ppt * Percolation * Capillarity * Flow Diversion around Emplacement Drifts wwvAW .ocrwm.doe.gov 6 Quantification of UNB Capability * Topography and surficial soils Run-on and runoff, evaporation, and transpiration combine to'divert water and permit only a small fraction of the precipitation at the site to, infiltrate into the unsaturated zone (Simulation of Net Infiltration ForPresent-DayAnd PotentialFuture Climates, SNL 2008) ° Unsaturated zone above the repository Damping of episodic pulses of precipitation and infiltration (UZ Flow Models and Submodels, SNL 2007) -. Capillary forces in rock adjacent to emplacement drifts limit seepage into drifts (Abstractionof Drift Seepage, SNL 2007) Elevated temperatures in the rock during thermal period limit seepage into the drifts (Abstractionof Drift Seepage, SNL 2007) S Department of Energy -Office of Civilian Radioactive Waste-Management LLYMMacKinnon-Barrler.NRCTE-040308.ppt I I ,.doe.gov .ocI Quantification of UNB Capability • * (continued) Characteristics and properties of the topography and surficial soils are not expected to change in. the 10,000, years after closure (YMlP •1993, Topical Report YMPI92-41-TPR, Section 3.4) Drift collapse caused by seismic ground motion may reduce effectiveness of capillary barrier Increase in seepage rates Increase in seepage fraction * Metrics: Net infiltration, drift seepage rate, seepage fraction 0 Departmentof Energy- Office of Civilian Radioactive WasteManagement LLfYMMacKinnon_BarrierNRCTE_040308.ppt www.ocruvm.doe gov 8 (a) v5.005 . PReCID Perc . RavOO.JNB Mean -- PreciDf• Infil -- Calca.xls:. L.A .. r 103 * ,. , J , , = , ) - , , = I , , , , , ...... ........ .. - ". ...... ............. ............. .. .... .. . ........ 7.-.. ... ..... 102 - 101 - . ......................... -------- - ----- Mean Net Infiltration (I) as % of Precipitation rate: . E - - - -- --- - 100 - ". --.. -- - - -. ;. . - - ----- 2 . . ........ Key Points: , Precipitation . Net Infiltration Post 10,000 Year Percolation . ....... ~ ........ .~~~ ~ ------- climate . ....... ... I 100 10,000 1,000 0,000 100,000 Time (years) Mean Drift Seepage (S) as % of ambient seepage flux (first 10K yrs) LA_v5.005_NC 000300 000.gsm;LA v5.005_SM_009000_003.gsm; Seepage Flix PercScaledDriftArea.xls; WeightedSeepage_Rate Calcs.gsm; LA vS.005_Wtd_SeepRate Calca Seismic.gsm; LA v5.005 SM 009000 003 NC 000300 000 AvgSeepReteRev00.JNB (b) ET accounts for 85 to 88% of reduction in net infiltration - 10-2 10-3- Ranges -5% during present-day climate to 7% during glacial-transition - . .... .... - S -2to 11% - Nominal & Seismic GM 10l ... ........ 101 ý0 tll*I- 1 00 CU Cu ................. .... .... ...... . .. ........... . Mean Drift Seepage as % of Post10K Percolation - -- - -............. .......... ...-------L-------------........................................ --- ........... 10-1- - ca 10-2- 0. - 10-3 almost identical ................................. ....... -I. *l 100 1,000 Net Infiltration Over Intact Drift Post 10,000 Year Percolation Over Intact Drift Seepage - Nominal See-page - Seismic Ground Motion 10,000 100,000 Time (years) IF Department of Energy e Office of Civilian Radioactive Waste Management LLYMMacKlnnonBarrierNRCTEO040308.ppt 0 1,000,000 Nominal, S - 11% Seismic GM, S -12 to 48% (drift-degradation reduces effectiveness of capillary barrier effect) (Ref: SNL 2008 MDL-WIS-PA-000005 REV 00 AD 01, Section 8.3.3.1 .1[a]) wvww.ocrwm.doe.gov 9 Nominal/Early Failure Modeling Case for Post-1 0,000-year Period Nominal/Early Failure Modeling Case for 10,000-year Period (Glacial-transition) Percolation Subregion Seepage Fraction for CSNF Waste Packages * Percolation Subregion Seepage Fraction for CSNF Waste Packages Subregion .Index Quantile Range 5th Percentile Mean 95th Percentile Subregion Index Quantile Range 5th Percentile Mean 95th Percentile 1 p < 0.05 0.0020 0.0887 0.2823 I p < 0.05 0.0082 0.1251 0.3121 2 0.05:< p < 0.30 0.0217 0.2308 0.5780 2 0.05:< p < 0.30 0.0617 0.3402 0.6555 0.30 • p < 0.70 0.0455 0.3294 -0.7439 3 0.30 < 0.70 0.0949 0.4369 0.7943 0.70 < p 0.95 0.0431 0.3848 0.7998 4 0.70 P < 0.95 0.0606 0.4364 0.8439 0.0870 0.4666 0.8386 5 p > 0.95 0.0934 0.4944 0.8802 0.0424 0.3134 0.6950 0.0784 0.3999 0.7449 4 5 p > 0.95 Repository Average Repository Average Seismic Ground Motion Modeling Case for Post-I 0,000-year Period Seepage Fractions* (SF) Percolation Subregion Key Points: " Nominal & Seismic GM SF identical for 10K yrs (on average 70% of WPs experience non-seep environments for 10K yrs) • Nominal & Seismic GM SF increase with' drift degradation for post-1 OK (*Defined as ratio WPs experiencing seepage to all WPs in repository) Department of Energy - Office of Civilian Radioactive Waste Management LLYMMacKinnonBarrierNRCTEO040308.ppt Seepage Fraction for CSNF Waste Packages Subregion Index Quantile Range 5th Percentile Mean 95th Percentile 1 p < 0.05 0.3231 0.4673 0.6923 2 0.05:< p < 0.30 0.3089 0.6491 0.9173 3 0.30 p 0.70 0.3114 0.7193 0.975 4 0.70 p < 0.95 0.226 0.7041 0.9803 5 p > 0.95 0.3107 0.7518 0.9869 0.2912 0.6870 0.9465 Repository Average www.ocrwm.doe.gov 10 Engineered Barrier System Engineered Barrier System \ ITWI Emplacement Drift: Provides a stable environment for other Engineered Barrier System features Pallet: NON-ITWI Supports the waste package and minimizeslextemal mechanical and Invert below NON-ITWI chemical.interactions the Waste Packages: Reduces transport of ;radionuclides out oflthe Engineered Barrier System The Engineered Barrier System (EBS) prevents or substantially reduces the rate of movement of water to the waste, prevents or substantially reduces the release rate of radionuclides from the waste, and prevents or substantially reduces the rate of movement of radionuclides from the repository to the accessible environment. U7 Department.of Energy• Office ofCivilian Radioactive Waste Management LL.YMMacKlnnon_BarrierNRCTE_40308.ppt Titanium Drip Shield ITWI above.the Waste Packages: Preventsor substantially reduces water from contacting the waste package Waste Package: ITWI Prevents or substantially reduces water from contacting the waste form vNvNw ocrwm.doe gov Quantification of EBS Capability: Drip Shield Nominal/Early Failure Seismic Ground Motion LA_v5.005 NC 000300_003.gsm; v5.005_StandAloneWAPDEGDSFailFracRevO0.JNB 1.0 .LA v5.005_SM 009000 003.gsm; (a) 1.0 Estimate T:Best (9000 Values) Average CDF (Over Epistemic Uncertainty) ............ i..... 0. - 0.8 LL ý0 .-C V a) 0.6 E . ... . ................. ................. ...... ............... 0.6 - ....... ........................ 0. 0.4 CO -0 00- 0.2 0 .2 .. . .. . .. . . .................. ................ ............ .................... ......... i.. . ..• 0 0.0 200.000 250,000 300,000 350,000 400,000 Time (years) 0 0 50.000 100,000 150,000 200,000 250,000 300,000 350,000 T: Time of Drip Shield Failure (years) Key Points: Key Points: 0 DS failure under nominal conditions by general corrosion (GC) of Titanium Grade 7 plate " DS failure under seismic conditions by rubble accumulation and plate thinning by GC * Failure times from about 270,000 to 340,000 yrs " Probability:of DS failure before 100,000 years is 0.0055 (Note: The TSPA model does not include spatial variability in drip shield failure) De partment.of Energy - Office of Civilian Radioactive Waste.Management LLtYMMacKlnnon.Barrier NRCTE 040308.ppt www.ocrwm.doe.gov 12 Quantification of EBS Capability: Waste Package CSNF WP Breach for Nominal Conditions LAkv.005_NCý_00030_003.g.M; v5.005 Stand~one WAPDEGCSNFFimt CrkBresotRev02.JNI3 (a) 100 (b) 95th Percentile Mean Median -5th Percentile 0)0 ... .P ......... CU .......... . . .. .... ......... .... = ......... o~* 1) Z 0) 2.Cl) 00 0)0 10-2.. ... .... . .. ....... - -. --- on . . U LL 10-3- 60) I n-4- 0 200,000 400,000 600,000 800,000 0 1,000,000 I 200,000 4 I 400;000 0 600,000 800,000 Time (years) Time (years) Stress Corrosion Cracking General Corrosion (of closure-lid welds) (of Alloy 22 outer barrier) Key Points: Key Points: • SCC breaches of CSNF WPS becomes more likely to occur after 170,000 yrs (based on 9 5 th percentile curve) * * By 106 yrs, mean fraction of CSNF WPs breached by SCC is - 54% " By 106 yrs, mean, fraction of WP penetrated Department of Energy . Office of Civilian Radioactive Waste Management LLYMMacKInnan.BarrierLNRCTE 040308.ppt 1,000.000 GC patch penetrations of CSNF WPs becomes more likely after 560,000 yrs (based on 9 5 th percentile curve) byGCis-9% wwwNocrwmmdoeegov 13 Lithophysal Rubble Accumulation 1.0 II II If a) I I IIII I I I LAv5.005 SM 009000_011.gsm; v5.005 StandAloneFracRubble Vol AccumLithRevOO.JNB IIIII II I II I i ¸¸ i i¸ II iI II I I I i¸ I I I ___Mean -. 0.8 - 0.6 - .. Median . -----------------------------------------. . .. . 95th percentile 5th percentile - L.L 0.4- I ------------........ I----------------------...................................... .. ....... . ................. 4- 0 . ... .. C 0 L6 CD 0.2 - - -- ------------------------------------ ......--------------------------- -- CD I-I ED N~ 0.0 100 I 1,000 10,000 100,000 0 0 1,000,000 Time (years) ODepartment of Energy • Office of Civilian Radioactive Waste Management LL YMMacKInnonBarrierNRCTE_040308.ppt IIr~ vwww.ocrwm.doe.gov 14 Quantification of EBS Capability: Waste Package Seismic Ground Motion Modeling Case (a) LA_v5,005SM_0000ool l.gsm; (c) 0) Co) a) of2 '00 (b) 0 200,000 - 400,000 600,000 Time (years) 800,000 CSNF (b).0 0 1,000,000 200,000 400,000 600,000 Time (years) 800,000 1,000,000 CDSP _01l.gsm; (d) vO1.JNB -0 '0) CU) CL) CV 15(0 a) *0 (L , . WV co, cc 0 200,000 400,000. 600,000 800,000 1,000,00( Time (years) "Department of Energy - Office of Civilian Radioactive Waste.Management LLYMMacKlnnonBarrierNRCTEO0403O8.ppt 0 200,000 400,000 600,000 800,000 1,000,000 Time (years) VwwaOcrwm.doe.gov 15 Mean Activity Released from the EBS LAkv5.05_NC _000300_000.qsm;LAkv5.005_ED_000300 O0O3.g001; ULv5.OO5_EW_00600 -00.9sni: LA_v5.000_RNAdM~yReieasedCalcsEFNarmýMyrRIz..Rev01ab.gsn,: L.A~v5 .OD5_RNtcvt_AdMlenessedCaIcsEFNomIMy,/rIzRev01c.gsm: v0.000.AvemgeEBSýRe.ese-IL-RNs~1s; LA v5.005 EF NomnMyr-EBS-AcRel Rev01JNB (b) "In 1 07......-............ 00 ~-- ... . ... i-.. CU a) Inventory ..---. 0-2 9 - ............ ....... .............------- Releases .... . ..... -~ 0- 00 1010 100 108 107 Total 09 I- .......... - .... . . ..... ... . Inventory Total EBS Releases 0 9 Sr 10)4 --.--- 103 C. 102 0p . ..... ------ ....... .......... 226 .......... ~.. . - ......... ..... ....... ..-. I 3 u !.. .. , ................... .... ............ 237 - - 1,000 10,000 100,000 1,000,000 ..... - 0 Np Z9lUT 2390U, 24 0pu'T 43 2 AMT w Time (years) Seismic Ground Motion Key Points: Key Points: * At 104 yrs, mean activity released from EBS is less than 4 x 10-5 % of the inventory 0 At * By 106 yrs, mean activity released from EBS is about 7% of total inventory *. By 106 yrs, mean activity released from EBS is about the same as Nominal/EF Department of Energy -Office of Civilian Radioactive Waste Management LL.YMMacKinnonBarrierNRCTEJ040308.ppt I 0028403C _LA 474a.ei Time (years) Combined Nominal/EF -. -... 10-6100 R, ----- 101 CD 100 Mo 10-1 10-2.. 10•-38 10-4- 39pUl ..... 520 l -. - ------ -Total 105 - 2 0-1 LAvO.005_SM_0090000003.9sm; NAMI•/R~eise-dCals Sels1Myr RIz Rev01.gsm; LA vS.005 SM 009000 003 LES Act ReMRev0IJNB 106 2 40 .... . ........ DSr 30 2 ........... .- LA_'S.005_R (b) yrs, meanactivity released from EBS is about a factor of 100 higher than Nominal/EF 104 vrwwvv ocrwm.doe.gov 16 Lower Natural Barrier The Lower Natural Barrier (LNB) prevents or.substantially Unsaturated Zone Wel ded Tuff Units (under northern half of repository block) * Dissolved radionuclides reduces the rate of movement of radionuclides from the port repository to the accessible environment. move through fracture trai Radionudides sorb onto Dtloids that move in fracture flow Unsaturated Zone Nonwelded Tuff Units (under southern half of repository block) , Yucca Mounta in Dissolved radionuclides move through matrix transport • Radionuclides sorbed onto colloids generally filtered by matrix -"Unsaturated Zone below the Repository . Low percolation water flow rates - Matrix diffusion North , - - Sorption of radionuclides onto rock Water Table -ýtKeposatory,, " Saturated Zone Approximate RMEI Location * Low groundwater flow rates * Matrix diffusion * Sorption of radionuclides onto rock * Filtration of colloids / . .' • one Fractured Volcanic Tuffs Diffusion and sorption slow transport of radionuclides Saturated Zt Utfpdl t.inl eU 0 c-iel~yly - Notto Scale • Lower Natural Barrier U~llme ot -liVllid LL.YMMacKinnonIBarrler-NRCTEIý-40308.ppt n Radioactive Waste Management -.• .. •" .- South 0026DC LA_0513C of ""Saturated Zone Alluvium ;"Sorption--" -slows transport of r--'adionuclides •Larger effective porosity in alluvium slows transport velocity V^VW.ocrvm.fdae.gOv 17 Mean Activity Released for the Seismic Ground Motion Modeling Case EBS to UZ SZ to Accessible Environment LAkV5.005_SM_009WO0 003.gsm; (b) .....-....... . .. .-..... ... i.*......... .... LA vL555 nsR . . ..... . 106 10~ 104 103 102 101 100 10-1.10-2- . ........ ................ - ........-... - ~ CS 234U U Total - Inventory Total SZ Releases -- a) - ...... . 102 -242pUT .... ... .. ...... .. ..... 10-2- 23 Np ...... 239pul .•°240JpuT .... 24opUT . . 10-4 Y- 10-5 t O52S40CL.A_1474..ai 100 OTh 241AmT 10-6 10-6. .--. 23 .. .. ..... ... .... .. .~~~~~ ........ ~....... .... ...... .... . 226Ra 7 - -------.------ - -- -...... -_---------. .... 100 10-1 242pflT Tc 234U - .~~ ~ ~..... .. -- -- .----- 10-3- 10-3- 9 137CS - 237Npr ... 24OpUl IJNB Iv-. . ............... !. 102 104 103 MRa PU' 51ReRO1 .... -..... .... 106 137 239 0m09sL3 SZ At ....... . 10: 106 107 Inventory Total EBS Releases 90 Sr Se'is MyrRlzRevO1.gsm; LAvS.005_RNActivityReleasedCalcs 1010 108 £2 LA_aSO5_SM_00o000 _0D3.gsr; (a) LAOv5.0OS_RNActivityReleaedCalca Sef1_lMyr .RlzRev01:gsm; ~~ ---~ ~~ ---.-----------1 1U i #'Mi M M -•II -• L- •1 1 1,000 0 10,000 . ... 242puT . 242PUl ... ..... ------. 100,000 1 - 243AmT I, 004 1,0040,000 Time (years) Key Points: " At 104 yrs, total mean activity released from SZ is about 50% of activity released from EBS * By 106 yrs, total mean activity released from SZ is about 5 % of total inventory (vs 7% from EBS) * L Mean activity releases from SZ dominated by 99 Tc uepartment or tnergy - umce or Livilan Hadioactive waste Management LLYMMacKInnonBarrierNRCTEO040308.ppt * 9°Sr * Reduction in activity released from LNB (104 yrs 239 Pu (99% and 90%), and 106 yrs): 24 Am !(100%), 24 2 23 7 2 34 & 1 37 Cs from EBS confined to LNB pu (99% and 66%), Np (78% and 23%), U (89% and 32%) . Mean activity releases of 2 3 0Th & 22 6Ra from SZ -determined by precursor 2 34 U release wvww.ocrwm.doe.gov 18 Summary o • The Yucca Mountain repository system is comprised of three barriers, the UNB, EBS, and LNB These barriers have the functions of (1) preventing or substantially reducing the rate of movement of water to the waste, (2) preventing or substantially reducing the release rate of radionuclides from the waste, and (3) preventing or substantially reducing the rate of movement of radionuclides from the repository to the accessible environment * Barriers include multiple features that have processes and events that may act on or within the features to affect the capability of the performance of the barrier * Rationale and basis for ITWI classification and qualitative demonstration of barrier capability is provided in Postclosure Nuclear Safety Design Bases (SNL 2008) ° A complete evaluation of all potential FEPs, including the technical basis for-their inclusion or exclusion in the performance assessment, is presented in Features,Events, and Processesfor the Total System PerformanceAssessment: Analyses (SNL 2008) Depaitmentof Energy Office of Civilian Radioactive Waste Management ac nnojlbaff el-K L_"V V PPI LL IIIIIIO~flh)IUI1__CIIIC www.ocrwm'.doe.gov _flfIJ ~UlV.JU. 1 1 JI19 Supporting Documentation * * Postclosure Nuclear Safety Design Bases (SNL 2008) provides - Rationale and basis for ITWI classification - Provides qualitative description of barrier capability Total System Performance Assessment ModelI Analysis for the License Application (SNL 2008, Section 8.3[a]) - * * Provides quantitative assessment of barrier capability Technical bases for barrier capability are contained in - Features,Events, and Processesfor the Total System Performance Assessment: Analyses (SNL 2008) - Performance Assessment analysis and modeling reports All barrier capability identified as important to waste isolation is included in the TSPA model Department of Energy• Office of Civilian Radioactive Waste Management LLYMMacKinnonBarier_NRCTEO040308.ppt www.ocrwm.doe.gov 20 Fracture vs. Matrix Releases Mean Travel Time (years) 1.0 0.8 0.6 0. 0.2 0* 0a 0 ('1 • ,•,• Easting (m) 0 r-•, . 100 . .. "-. 101 . .. -10- 10 .Time (years) 10 101 Source: MDL-N BS-HSO00020, REV 02 ADD 02 ePariment of Eerfgy O:office of civilian Radioactive Waste Management LL._YMMacKinnon_Barder _SupplementaLNRCTE 040308.ppt ,ww~vw.crwrm.doe.gov A- I Mass Breakthroug.h Curves at 18-km Distance Showing SensitiVity to Matrix Diffusion for a Nonsorbing Radionuclide -3.- ICI NOE 'Th no Iael Is ia-lua w.. h the ,•'•Je,•;•m• ',tl•r~ldi~. ••:i• W..rt mteI iie • •ralll•r re cae i . f mmaIxl wrs w :~ am mal d a.Ikren and -do nat MDL-NBS-HS-000021 REV 03 ADD 02, Figure 6-3 ergy .. Office of Civilian Radioactive Waste Management LLYMMaci~innonBarrierSupplementaLNRCTE._040308.ppt vu~wnw.acrvvm doe .qo~t A-2 Summary of Simulated Transport Times in the SZ Under Glacial-Transition Climatic Conditions Range of Median Transport Time (years) Median Transport Time Among All Realizations (years) 10-22190 230 1,000 - >1,000,000 >1,000,000 42,000 to >1,000,000 >1,00,000 3,000 to >1,000,000 95,000 Neptunium 100 to 455,300 3,700 Irreversible Colloids: Plutonium Americium 100 to 501,900 4,500 Radium 18,000 to >1,000,000 731,000 Strontium 9,000 to >1,000,000 286,000 200 -to 931,200 8,900 10 to 1,790 60 200 to >1,000,000 14,900 3,000 to >1,000,000 >1,000,000 Species Carbon Technetium Iodine Reversible Colloids: Americium Thorium Protactinium Reversible Colloids: Cesium Reversible Colloids: Plutonium Uranium Fast Fraction of Irreversible Colloids: Plutonium Americium Selenium Reversible Colloids: Tin MDL-NBS-HS-000021 REV 03 ADD 02, Table 6-10[a]. w artment ofEnergy• Office of Civilian RadioactiveWasteManagement ILLYMMac)CinnonBarrierSupplementaLNRCTE.040308.ppt mvtw ocrvwr.doe.qav A-3 ,U.S. Department of Energy Office of Civilian Radioactive Waste Management wvvw.ocrwm.doe.gov Total System Performance Assessment Model Support and -C Presentation Outline * .Regulatory drivers for TSPA model development * TSPA Model and Code Verification, Validation, and Confidence-Building - TSPA Model Information Flow and Data Transfer - During-Development Model Validation Activities * Verification of inputs and software * Model stability testing: statistical stability, temporal stability, spatial stability * Uncertainty characterization reviews * Surrogate waste form analyses for DOE-owned and naval SNF Post-Development Model Validation Activities * Corroboration of abstraction models with results of process-level models " Corroboration with auxiliary analyses Corroboration with natural analogue information Technical review Department of Energy . Office of Civilian Radioactive Waste Management LL Sevounian ModelSunnort NR.TE 040308 nnf www.ocrwm.doe.gov 2 Links to 10 CFR 63 and NUREG-1 804 Proposed 10 CFR 63.114. Requirements for Performance Assessment - 10 CFR 63.114(a)(7). "Provide the technical basis for the models used to represent the 10,000 years after disposal...such as comparisons made with outputs of detailed process-level models..." * NUREG-1804, Section 2.2.1.4.1.3 Acceptance Criterion 3: "The Total System Performance Assessment Code Provides a Credible Representation of Repository Performance" - (1) Assumptions made within the total system performance assessment code are consistent among different modules of the code. The use of assumptions and parameter values that differ among modules of the code is adequately documented (2) The total system performance assessment code is properly verified, such that there is confidence that the code is modeling the physical processes in the repository system in the manner that was intended. The transfer of data between modules of the code is conducted properly (3) The estimate of the uncertainty in the performance assessment results is consistent with the model and parameter uncertainty; and (4) The total system performance assessment sampling method ensures that sampled parameters have been sampled across their ranges of uncertainty uepariment 01, nergy - uriice or uvilian Kaaioacuve waste managemeni LLSevougian.ModelSupportNRCTE_040308.ppt vwwv.ocrwm.doe.gov 3 TSPA Model and Code Verification, Validation, and Confidence-Building, (including Proper Data Transfer) [Acceptance Criterion 3(2) of NUREG-1804, Section 2.2.1.4.1.3] Department of Energy Office of Civilian Radioactive Waste Management LL-Sevouglan-ModeJlupporflNIRCL I -4U.1U.ppt www.ocnrwm.doe.gov 4 Model Validation Approach * During-Development Confidence-Building Activities Verification of inputs, software, submodel implementation, and submodel coupling - Model stability testing: statistical stability, numerical accuracy, temporal stability, spatial stability - Uncertainty characterization reviews - - Surrogate waste form analyses for DOE-owned and naval SNF * Post-development Confidence-Building Activities - - Corroboration of abstraction model results with the results of process-level models Corroboration with auxiliary analyses * Deterministic single realization analyses * Comparison of TSPA Model results to Simplified TSPA Analysis Comparison of TSPA Model results to EPRI PA results C • Performance Margin Analysis.(PMA): remove key conservatisms I - Corroboration with natural analogue information - Technical review Department of Energy - Office of Civilian Radioactive Waste Management LL_SevouglanModelSupportNRCTEO040308.ppt v ocrwnim.doe.gov 5 During-Development Model Validation Activities Department of Energy . Office of Civilian Radioactive Waste Management LLSevougian ModeSuppoarNRCTE_ 040308.ppt rww.ocrwm.doe.gov 6 During-Development Model Validation Activities * Computer code and input verification Verify GoldSim & EXDOCLA software and Dynamically Linked Libraries (DLLs) * Qualification of Software, IM-PRO-004 * Supplemental verification tests are performed on the DLLs within the TSPA model framework -Verify input parameters * Input parameter values in the TSPA Input Parameter Database are verified against the source information in a DTN or AMR submodels, model components and coupling among submodels and model components -Verify * When applied in the TSPA model, specified inputs produce expected results ,FýDepartment of Energy Office of Civilian Radioactive Waste Management LL Sevouglan ModelSupportNRCTE_040308.ppt wvw;ocrwm.doe.gov TSPA Principal Model Corm onents & Submodels h .[ ................... Legend Total System Performance Assessment Waste Form Degradation and Mobilization Unsaturated Zone Flow Engineered Barrier System Flow and Transport Engineered Barrier System Environment Unsaturated Zone Transport Waste Package and Drip Shield Degradation Saturated Zone Flow and Transport -Q SBiosphere SEvents LL Sevouglan ModelSupport NRCTEo040308.ppt 00817DC_0002a.ai Principal TSPA-LA Model Components Indicates general flow of Information among principal model components and submodels. Department of Energy • Office of Civilian Radioactive Waste Management l TSPA AMR (MDL-WIS-PA-000005) Figure 1-23 www.ocrwm.doe.gov 8 TSPA Information Flow • Nominal scenario class • Shows primary types of information passed from process models to TSPA abstractions, and among TSPA abstractions and submodels P60 • Other diagrams are applicable to early failure, seismic, and igneous scenario classes * TSPA AMR Sections 6.1.4 and 6.3.X LJUeCIdIti1i121 UI* ~r-I~!YY - JI I I(e UI L.IVIIldfl ridUI~cILLIVt LL-Sevougian-ModeISupport-NRCTE040308.ppt Legend a5eWIvIcnagement www~ocrwm.doe.gov 9 Examples of Verification V4.042_GS_9.6D.100 VRFY010.gsmr; v4,042 GS_9.60, oO.VRFY_010 SZ3D 237Np REV0O.JN6 1.0 DLL.Verification: Comparison of the 237 Np breakthrough curve generated by the SZConvolute DLL in the TSPA model with the DTN source data - . -- 0.8 X0.6 . . . .... I Verifcation . .i ....... ... ..... .............. .... ..... - - U z 0.4--.-.- 0. 0.4 0.0 , , r . ............ .-.... ---....... ............... ....... ._--. ... .. . . . . 10 100 1,000, 10,000 Time (years) o4.042_GS9g.60 100_.Rev06..VRFY.,_0e19aogm v4.042-GS0.60.I0Q0.VRFY.019a..RTACo ' lofds.w-.Adv4ecJu REt/V0.JNB 0, * Verification of the EBS Transport Submodel: Comparison of 2 3 concentrations _- .... co c nrain generated by the ..... ............. ........... .. ........ .......... ... ....... ....... .. .............. ... by an Excel spreadsheet (as RTA in OfEBS L-WIS-PA-000001,Pr~vided AppendixtheB providedý inAN Appendix B of C80-0,, •: . . . . . . . . . . : -.................... .. .... •.... .•:..; •:" •.... 0-7 . ....... =i. . . . . -. 4. .... . . . . . . . . . . . . . . . . . .......... .................... ...................... ........ ..... . .- .. -----.-. . _ Illustrative figures from TSPA AMR Cpuolloids eOCorrosioPrducs Corln Produ ooo,,o • V`,10 •-4- model report)_ -- . o Groundwater Coil0ids an TSPA model with those generated ANL-WIS-PA-000001, the m orde)lrepo . EBS RTA _.. FeO orlosioPrducs C------Waste Form Colloids ... ............ .., __. 0 500 1,000 __ _ 1,500) _ 2,000 Time (years) (MDL-WIS-PA-000005) Figures 7.2-12 and 7.2-9 Department of Energy - Office of Civilian Radioactive Waste Management II Rmvnrrnian MnrrrIInnnrt NRCTF 0403'08 nn www.ocllll.doe.gov .10 During-Development Model Validation Activities * Model stability testing Statistical stability Numerical accuracy - Temporal stability - Spatial stability uepdr[menit or tnergy • unice or LIViI!dn rnaUIoacLIve WadSe vivdrnagemenh LL.Sevougian ModelSupport NRCTEO040308.ppt vvww.ocrwm.doe.gov 11 Statistical Stability for the Epistemic Uncertainty: 1,000,000-Year Total Dose (over all modeling cases) e 95% Confidence Intervals * Replicate testing - for Mean 3 different random seeds - - Visual test Assume t-distribution - Use the 3 replicates LAkvS.000 .lMyrTotal Dose Calcs.gsm; LA v5.00 lMyr Total Dose CalcsRS2_RevOO.gsm; LA_v5.000_1Myr_TotalDoseCaicsRS3.gsm; LAv5.000_1 MyrTotal Dose 3RepCompRevO0.JNB (a) (b) LA-v5.000l MyrCl Total Dose Rev00.JNB 103 E E a, LAyv5.000 iMyr Total Dose Calcs.gsm; LAv5.000 1Myr_Total Dose Galcs RS2_Rev0O.gsm; LA v5.0001 MyrTotalDoseCalcsRS3.gsm; 102 10o~ .-- --...--.............-. .. E Cl) a) 0 0 2 10-1. r- 10-2- t- 10-1 CD 1 0 - 10 . . .Median-i - -.-.------.-.-.-...-....... 95th-i ........................ 5th- w 10-7r -' , , ' ' i'-1 -. Median-2...... Median-3 95th-2 .. .... 95th-3 .... 5th-2 5th-3 5i .. ... 5th-3 a, --- - ----------------- ------ ....... ---------------------.............. ýRffl -1- 100. 0 C., .......... ............. ................................ ----------............... 101 10-.1 ...... ............ .......... ... ............... ... . .... .. . .. .. --------............. 10-3 10-4. ............................ ................ .......... . 10-5-.----.--. .9 O verall Mean Upper Bound Lower Bound ....... ..... ..... --- . Mean-2 - Mean-3 ... IV 0 200,000 400,000 600,000 800,000 1,000,000 Time (years) 0 200,000 400,000 600,000 800,000 1,000,000 Time (years) Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.1-16 (a and b) N ad ____ Department of 'Energy - Office of Civilian Radioactive Waste Management LL Sevougian ModelSupportNRCTE_040308.ppt lid ww uv.ocrwm.doe.gov 12 Statistical Stability for the Epistemic Uncertainty: 1,000,000-Year Total Dose " Bootstrap simulation (re-sampling) * Gives sampling distribution and confidence intervals of mean for a single L.H.S. sample (b) LA_S.000 ED_003000B00.iism; LA vS.000_EW_006000 012.gsm; LAkvS.000 IG_003000.017.gsm; LA v5.000_SM_009000.000.gsm; LA 0v.000_SF_010800 000.gsm; vEl.004_GS_9.60.100-lMyr._ETievent time].gsm; LAvS.o00DIMyr Tota Dose_Rev00.JNB; LA-v5.O0O IMyrTotaI Dose._8BSv2_1kRS2211.gsm; LAv5.000..Myr TotalDoseMeanCBRev00JNB (a) ----------- ---- E a) E 1• E 0 M 0 a) M - 105 cj Upper Confidence Interval MeanLower Confidence Interval 10-t 0 200,000 400,000 600,000 Time (years) Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.1-48[a] (a and b) Department of Energy . Office of Civilian Radioactive Waste Management LL Sevouglan ModelSupport NRCTEO040308.ppt vjvvvW oorwn.doe gnu 13 Numerical Accuracy 1,000,000-Year Nominal Modeling Case * Effect of number of'realizations LAv5.000_NC_000300._000.gsm; LA v5.000 NC 001000._000.gsm; LA v5.000 NC Num RIz DoseCompare Rev00.JNB .4 " I I t ; LHS 300 102 - 101 - 1-1 - 100 LHS 1,000 --------------- Mean Medi an 95th 5th - --- Median 9 5th 5th ........ ........ ......... ......... ...... - --------- ------------------- ---------------- ------------------------------......... ..... ----. .-----...---------------- - -------- -- Mean --J ---------..... - -------I... ------------- Cn 0 10-1 - 10-2- ----------------------------------------------- -l .... I. ......... -- - ......m I......... -- 10-3_ _0 ;;;;;;ý - ------------- .~i ..... ----------------------------------------------------------- ------------------- ---- - --- 10-4_ -------------- --- -----I 10-5_ I ................. -----------------...........----- -------- -- ................. ... .... -------- ----------- ------ -- -------- -------------- ---- ------ -- -------- -- ----------- ............ . ............... ........ -------------------------0 10-61 i 0 200,000 400,000 600,000 ii JI I I 800 ,000 i I I W I 1,000,000 Time (years) Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.2-2 V t::POI LI I Ir.I 1. U Siffr 1 t:19Yy - VIIIJiL~UUI IiVIIIdl LL-Sevougian-ModeSupport_NRCTE_0403O8.ppt rIIn IdLLIVe VVdbLe IVidFidYt2.IIeIIL -~ www~ocrwm.doe.gov 14 Numerical Accuracy of the Aleatory Integration: 10,000-Year Seismic Ground Motion Modeling Case e Expanded set of aleatory futures - Base case: 6 event times,, 5 damage fractions - Expanded case: 12 event times, 8 damage fractions LAkv5.000 SM_00900900.5.gsm; LAvS.000 SM 009D00.010.gsm; eO.N _pl Da-.rnagee6 I-OO MO 09G000Ep1 LA•50OO gele-6 Rev0.JNB _____S000SM 103 1LA , , v5.000 LA v5.000_SM_009000_..10.gsm; ' " ' RevO0.JNB SM_0091O000Epl-Ev100 Damage Fraction 102 E 0•.... • o0 ..... ........... ..... . ........ .. - . .. .. .. . . .. ..--.- .---- • 10 1 lo, ....... 10'U• ,.....'U .............. ........... . .'............. 0.0i0 ...... --- II I ' " ........... " l e -4 • 20,000 15,000 10,000 -- ................ ..... 0 5,000 10,000 15,000 20,000 Expanded - . . . . 3,000 yrs 6,000yrs -12,000 yrs 18,000yrs " - Time (years) Time (years) Base 200 yrs .......... 1,000 yrs le-9 •jj 5,000 0 l e -8 .................... ... ................. "J I6L 0.0001 .. -- e-6 le-7 ...... ............ ............ . ........ ...... .".. I- II o~~~~~ool~~~~.. i ...... ! ...... ' -.... ..I• - " 1 5e-31le-3 le-5 1/.•/ I U' .0 .. ----........ -.. . .......... ... * 100 yrs 1,600 yrs 3,200 yrs 4,800 yrs 6,400 yrs 8,000 yrs -- .......... - 9,600 yrs 11,200 yrs 12,800 yrs 14,400 yrs 16,000 yrs 19,200 yrs - Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.3.2-8 and 7.3.2-9 Department of Energy. Office of Civilian Radioactive Waste Management LL Sevouglan ModelSupport NRCTE_040308.ppt vwvWv.ocrwvm.doe.gov 15 Numerical Accuracy of the Aleatory Integration: 10,000-Year Seismic Ground Motion Modeling Case • Expected dose for five different epistemic realizations: base case vs. expanded case LAv5.000_SM 009000 005.gsm; LA_v5.000_SM_009000 010.gsm; SM 009000 10k Dose CompareRev00.JNB .4,.,.oLA_v5.000 I E E I I Base -#1 -#2 102 | I I I -#3 -#-- #4 -#5 !I I 1I I - Expanded Event Times and Damage -#1 -- #2 101 cI-, .0 10o 0 7Fu I --............................ ............ #4 -- -#5 -----------------.f .......... ........................................... ....................................-----------.......................... ----------- 10-1 10-2 ----------------------------- -D a)- -------.-.-------------------------............. ............................. - - ...... . . . .'........................ ------------------ ------ 10-3 w --------------- 10-4 ------ •----- 4 ------- ------- - --------------- ------------ ----------- -------------- ----co 10-5 0 5,000 10,000 15,000 20,000 Time (years) Ill ustrative ire,from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.2-11 Department of Energy . Office of Civilian Radiioactive Waste Management LL SevouglanModelSupporNRCTEO040308.ppt v•vwv.oarwm.doe.gov 16 Temporal Stability: 10,000-Year Seismic-Ground Motion Modeling Case * Two different timestep schemes for a given repository future LA_v5.000_SM_009000-005.gsm; LA_v5.000_SM_009000_013.gsm; 4.asm: LA v5.000 SM 10k TimeSteD Dose Comoare 1 Rev01.JNB 100 E E (I) 0 0 10-1 10-2 0 5,000 10,000 15,000 20,000 Time (years) Illustrative figure from TSPA AMR (MDL-WIS-PA-000005) Figure 7.3.3-8 ).epartment of Energy - Office of Civilian Radioactive Waste Management LL-Sevougian-ModelSupportNRCTE040308.ppt A I rww.ocrwm.doe.gov 17 Spatial Stability: 10,000-Year Drip Shield Early Failure Modeling Case * Comparison of the Effect on EBS Release of the :Representative versus the Comprehensive ThermalHydrologic Data Sets for 99Tc, 1291, and 239 Pu LA_v5.000_ED 000300 002.gsm; LAv5.000_ED_000300007.gsm: LA v5.000 ED 000300 002 and 007 RNsCompareRevO0.JNB (a) Uu Representative .M 107 9 9T c 1291 1291 2 39 (C 106 104 Comprehensive 9 9Tc 2 39 Pu -----------------------i.....................--- ......................--- pu -- - _---.......................- ----------------------- -------- 105 - -- LU 7 Co E L------------- -. -- -----.- ...... .. . -- . .............. ------ ------ .... .. . . . .......... .. .. .. .. .. ..... ...-. ........1 ° -.... --..... -- ------------ ...... ....... o102 .. . . . . . 10th Percentile Infiltration Scenario, Low Host-Rock Thermal Conductivity, Percolation Subregion 1 .............---- --------------....... .............. . ----........ ....... . .... ------.. .............. ....... ....... ......... ..... .---...... .........---..... co 101 w 100 10 1 100 1,000 10,000 100,000 1,000,000 Time (years) Illustrative figure from TSPA AMR (MDL-WIS-PA-000005).Figure 7.3.4-1 (a) uepartment OTtner gy • Office of Civilian Radioactive Waste Management Kl~r-' LLSevouglan_1VodelSu V1301ý_ - WE vo.w.oc-wvm.doe.gov nA18 During-Development Model Validation Activities ratSAData inpýut Packae "I-,, upportingAnyss Unceritainty characterization reviews TSPA Stoc asti, Parameter -,Confirm .reflect ... Expertj an - =t N6A°m parameter representations the major sources of uncertainty and/or variability Verify that probability distributions were derived using sound statistical methods and interpretations - Ensure parameter representations are reasonable and defensible - Uncertainty and sensitivity analyses LEGEND PASIT Performance Assessment Systems Integration Teem TSPA AMR (MDL-WIS-PA-000005) Figure 7.4-1 Vt:Y! "I "=I~t-iUS rl 1,11 y - 'USI ce US ý.JVIIld ii LL-Sevougian-ModelSupport-NRCTE_040308. Kai-toacEive vvastre'vianagemeni VWVW.oCrWM.d1Oe.9'OeV 19 During-Development Model Validation Activities * Surrogate waste form validation - N-Reactor fuel as a surrogate for DOE SNF (excluding naval SNF) - CSNF as a surrogate for naval SNF LAv5.005_1G_000300_002.gsm: LA._v.005_IG_000300 003.gsm; LA_v5.005.IG_000300_002_and_003 Dose Compare RevOG.JNB -Av5.000_ed_003300 002.gsm; LAv.5,000.ed 000300_018.gsm; LAkv5.000_ed_000300_017.gsm; LP EDDSNFWeighted-Sum RevO.JNB 100 103 ............................... . .... 10-1 .......... ..... -.- a) .. 10-2 DSNF Surrogate W eighted Sum 102 DSNF Surrogate Rev.1 101 -----------...... . ................. ..i . .... . ...... .......÷. .... .............. ---------. ......... E • - i-• _ - CSNF Waste Package S----- Naval Waste Package C: ......................... ......................... 1 . ....--... ....-........... ...--...... .. ...._ r. . . . . . . ur . ... ga....t....Di.._SN.-. W steFo m .... Surro!ate DOE SNF, Waste Form ,1()-6 (Drip Shield Early Failure Cdse) 0 200,000 0 -I -* 600,000 '-I 400,000 -- . 800,000 0 . . i i I i ...... ...... .................... 100 0) .......................... 10-1Ca) 0 10-2- . 1,000,000 Time (years) . ........... -........ ... - -. -- - - .. .. .. .. .. .. .. .... ........... .~...... ............ . ......... - 10-3- 1o-5 a) J - ...... 10 -4 -I -- -----' ,--- E) E 0) C/) I .i,]Naval- 10-4- iU a (1gm eous Intruskin) 10-s-,4 £•1 -- I•, SNFSurroga.. I 0 • I . . 2,000 . . . 4,000 . . I I i 6,000 i 0 I 8,000 i fi 10,000 Time (years) Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.5-20 and 7.5-5[a] Dep artment of Energy Office of Civilian Radioactive Waste Management LLQV UI UJ~ f .JLpJJ LfllC. _ýevougan_ o e uppm__ L.CflU.3 - .20 -PP vvwwwocrwm.doe.gov Post-Development Model Validation Activiti els Department ofEnergy Office of Civilian Radioactive Waste Management LL Sevou in r#, MR,CE FMAodelo Fl. - n 040-40 ,*pflfI F Avvvw.ocrwm.doe.gov 21 Post-Development Model Validation Activities * Corroboration of direct input abstraction results with validated process models TSPA model is an integration of abstractions and 'process models Abstractions provided to the TSPA code are corroborated with their underlying process models during their individual development and post.development validation phases 0 PDepartment of Energy • Office of Civilian Radioactive Waste Management LL Sevougian ModelSupport NRCTE_040308.ppt ww~AIocrwm.doe.qov 22 Post-Development Model Validation Activities * Corroboration of results with auxiliary analyses - Single realization analysis - Comparison to independently developed Simplified TSPA analysis - Comparison to EPRI IMARC analysis - Performance Margin Analysis (PMA)-effect of key conservatisms 5 LVeMIIvidId9IVF I!I I L.'ePdl IIIICI IL Ul IEItiiy - %JI IILI: 01 %-IVI IIdF I Mlc LLSevougian-ModeISupportNRCTEO_40308.ppI 23 Single Realization Analysis * Provide insight into submodel coupling * Investigates the interactions and cause-effect relationships between model components * Comprehensive understanding of the performance of the system * Error-checking and model verification :'Department of Energy Office of Civilian Radioactive Waste Management LLSevougIan ModeISupportNRCTE 040308.ppt www.ocrwfm.doe.gov 24 Single Realization Analysis: 1,000,000-Year Seismic Ground Motion Modeling Case LAV 05005 MQ0900000003.ooe: LAAv.05_OSMqD9oOOOO3TataDosaew RlzliOAveatztGsttzo4O41-eVOO.JNO .A 005..SM_000_0.03.gsm;~ y5" NB LA 5ý0.0D5. SMO9OO ý0_003._TotaýDoseý-.wRlz155_Re0O0J - c realHiat'ilon' Representative ..... ... ...e stm 103 111 10 2 101 C 103 - 1.I.1 realization ....................7............ aleator Repqrsentative ...................................................... 102 101 100 E e 100 E I ...... ..- .~- . .. . . 101 . 0 1010-2- o < ....................... ... ................ ........ . i................ . ........ ... .... ...- . .............. .. .. ... ......... 10-3 Tj " o10-4- Mean Median 95th Percentile 5th Percentile . INijý U ,< 10-4- Episten Vector 155 (Expectation Over 30 Aleatory Samples) Aleatory Vector 21 (Equivalent to GoldSim Realization 4•41) 10-5-_ 15 Epstemic Vector 155 1 10- 0 200.000 400,000 600.000 800,000 1 6. 1.000.000 . 1 - 200,000 Time (years) - - . .1.. .. . . . . 600,000 400,000 . . . . 1 . ' . I 800,000 . . 1,00 0,000 Time (years) LA oSOO6SKSM0090W00005ev: LA v5.00S_SM_000D 005 DSFaU RubbieVoLROACOJN9 500 4 400 WL .o (3 ...... . .. ... . E 0.6- a) 0.8. A2 300 C) 0. 0 00 2 -. 200 E L Drip shield faliures & rubble,"accumulation I LI.. ha z c0I 100 c - 0.2- E - C,, Drip Shield Frame Failure Fraction Drip Shield Plate Failure Fraction Accumulated Rubble Volume Fraction 0 0 200,000 400,000 600,000 800,000 1,000,000 200,000 Time (years) 400,000 Illustrative figures from TSPA AMR (MDL-WIS-PA-000005), Figures 7.7.1-52[a], 53[a], 55[a], and 56[a] -- Department of Energy . Office of Civilian Radioactive Waste Management LLSevouglan__ModelSupportNRCTE_040308.ppt 600,000 800,000 1,000,000 Time (years) •m m•ii ~III-~ www.ocrwm.doe.gov 25 Single Realization Analysis: 1,000,000-Year Seismic Ground Motion Modeling Case LA.5.0M5 100 Total -- kOpening OpeningArea Area - C 'i----.Patch Opening Area E 10.1- N zV) CSNF i •F WP-Op'en ng-,.Are-a i... .... ........... .......................... a-. aL)M ... 102-2 0 C .... .~ .. ....... MO (0 0 2 ot 4D 10-4 0 0 I i n -5 I 0 200.000 400,000 600,000 800,000 1,000,000 0 . I . i I 200,000 Time (years) I I I I . . . . . 400,000 600,000 Time (years) . I . 800,000 I . I I a 1,000,000 10s C 0 0 -J a) a)E 23 S C 0 100 L) 21 -•00 2 LCL C 0) U C .0 (D 0) 19 CU Co UG (0 17 a. P. 104 S N 15 1 fl3 0 200,000 400,000 6 00,000 Time (yearrs) 800,000 100,0000 os0ca000, 0 200,000 400,000 600.000 Time (years) 800,000 1,000,000 OO817OCM4-, Illustrative figures from TSPA AMR (MDL-WIS-PA-000005), Figures 7.7.1-59[a], 60[a], 61f[a], and 65[a] Department of Energy , Office of Civilian Radioactive Waste Management LLSevougian-ModelSupportNRCTEO040308.ppt vvww.ocrwm doe. gov 26 Single Realization Analysis: 1,000,000-Year Seismic Ground Motion Modeling Case EBS Releases Lower Natural Barrier Releases LA_v5.005_SM_009000_004.gsm: 3004_SZRelTc99_Pu242_RevOO.JNB 0) 0Y) V) 0, ca, A) "0 0, 0) -i U) 400,000 600,000 1,000 Time (years) 0 200,000 400,000 600,000 800,000 1,000,000 Time (years) - 9Tc -Dissolved (CDSP) - 99Tc - Dissolved (CSNF) 242 pu - Aqueous (CDSP) 242 242 242 242 pu - Aqueous (CSNF) pu -Irreversible Waste Form.Colloids (CDSP) Pu - Irreversible Iron Oxyhydroxide Colloids (CDSP) pu - Irreversible Iron Oxyhydroxide Colloids (CSNF) Illustrative figures from TSPA AMR (MDL-WIS-PA-000005) Figures 7.7.1-69[a] and 7.7.1-73[a] Department of Energy, Office of Civilian Radioactive Waste Management LLSevougian ModelSupport NRCTEO040308.ppt vvwYw.ocrwvm.doe.gov 27 Simplified TSPA Analysis * Simplified representations of mathematical equations that describe many degradation, release, and transport processes Stand-alone FORTRAN 90 computer program * * Higher level abstraction of the same TSPA FEPs; reduction in spatial and temporal variability * Simplified UZ and SZ transport models :!bDepartment of Energy Office of Civilian Radioactive Waste Management LL Sevouglan ModelSupportjNRCTEO040308.ppt I I vwi.ocrwrmndoe.gov 28 Simplified TSPA Analysis DTM;MO0708SIMPLFI.000- Nominal Dose Total.xis; gs; .. Early.F.1ai Dose Towl.sl, DTN: MOO70SIMPLFI.FLOO. v5.005 N(_=C LA ,5.00_k-W_00Q00000.mm;LA TOP SWna~o. ar.I~y Rofl~lJN 1 02 a_l .Myr_R.v00[alJNB io TSPA STrMT'.b-m.m I O00 TSPA STMO"mSItse..Bass.1Myr ROvOIaI.JNB 102 101 . 100 . EF TSPA Analysis Simplified TSPA-LA Modl 101 SimplifiedTSPAAnalysis 1= ... --.- -. °--- .......... TSPA-LA Model " ---- ....... E, -01. ..... 0) 10-2 -E 4) -------- i Ca --- E 200,000 400,000 600,000 800,000 200;000 1,000,000 400,000. Time Slice (years) U0 0 102 OTH:MOOTOESNPUFIM6 0W. SelnIc GM Dove Totat.xo LA_0s.005_SM_009000_003,.0,; TSPA•rMTlmeSkeBaM tMyr_RosMacHB ___ ___ 600,000 8001000 1,000,000 Time Slice (years) ___ , t. DTN:MOO70SIMPLIFi.000Ig,,eousIntflsis,, DoseTobLa~xs; LAv5.OOSJG,003000..O00.qso: 102 u Ignou Intr - E, 02 cc 200,000 400,000 600,000 600,000 1,000,000 200,000 400,000 Time Slice (years) 600,000 800,000 1,000,000 Time Slice (years) Illustrative figures from TSPA AMR (MDL-WIS-PA-000005), Fiaurea LLI00d1Ilt1J[L ul cietyly - uume ot --tviiiaf LLSevougian-ModelSupport-NRCTEO04O3OB.ppt tidUlodLIIVe Vvds1e 7-.72-3ral.u6ral naYernemLn rlas and .12al A %n%%w.ocrwm.doe.gov 29 EPRI Analysis * Independent third-party assessment of key technical and scientific issues * Logic-tree vs. Monte Carlo sampl-ing-based * Same model components and FEPs * Differences in the results can be explained by differences between the two models, (DOE TSPA uses the most recent submodel updates) www.ocrpm.doe.g ,DepartmentofEnergy Office of Civilian Radioactive Waste Management LL_ LL-,ýievougianmuuriz)uppoti,_tmmi, I r--V4VJuo.PP, UU9anMU~I~ppU1P4N. I~u~U~UOppt30 30 Comparison to EPRI Analysis LAy5.005_NC_000300_00D.gsm; LA v5.005_EW 006000000.gsm; NV+NCMajor RNs RevOO.JNB Total 14 C 36Cl Dose .. 4, -- 79 1291 237 99 Np 233Uj 23 -.- --- 8 U pu 236U Total Sn 1291 135 D I) Cs Ra 226 227 234U 240 Tc 126 - 229Th 239 pU 235U Se - i 229 - Ac Th . 100, . 0- 1,000,00 23 1 - ...... Pa 233U 0l . ....... S235U S236U 237 ...... - 100 1,000 10,000 100,000 1,000,000 - 23 Np 8U 239pu ...... 24Opu -- 242ptU Time (years) e Nominal Plus Early Failure Waste Packages * At 1,000,000-yrs dose results are comparable * 129z and 99Tc are significant dose contributors in both PAs Illustrative figure on the right from TSPA AMR (MDL-WIS-PA-000005), Figures 7.7.3-3[a] wwwo"wm.oego Office of Civilian Radioactive Waste Management Department of Energy• LLSevougian _ModelSupportNRCTE _040308.ppt www.orrwm.dae.qov 31 Performance Margin Analysis * IncIlude less conservative alternative conceptual models • Narrower parameter uncertainty distributions in cases where conservative bounding: values were assumed Includes additional coupli ng among different • physical and chemical processes'. L'epdIrtuneI1vi r[Iefyy * uf1i~ t~ Iv~indfl fdUI~dCLIveVVd5tlMAdnaqement ILSevouglan-ModeJSupportNRCTEo04O3Oa.ppt vvvvw.ocrwm.doe.gov 32 Performance Margin Analysis (a). LA~vS.OOSJkyroctal_DoseRevOO.JNB;LA~y5.000...0kywTta!Eýose..ResOO.JNB; LA olO1.G61OifyrstaLDsseLRov0O.JNB: LAJTSPAPMACoipare...lOK TotoIDoseRevO2.JNB * . j ' r -" 011A 102 E. * Submodel conservatisms propagated through the total system do not underestimate the totall mean annual dose U) U) ci, 0 0 TSPA-LA V5.000 Total Dose .................. t....................... -PMA Total Dose -- ...................... .. i TSPA-LA V5.005 Total Dose ............. 101 ............................. . ... .. ................... !........ ... .... ........i. .... .... . ...... ............ .... . ... .... ... °T ........... 10.... 101 . .. ia . .. ...... ................ ... ..... T............ .............. .i ..... • .. . .. 10- 1 ........... 2 .................. - C C (U U) ...... .... . ..... . . .. ............ . ....... . . ...... .. i.. ...... ...... ---... .... -------. . ...... ...... -------- -----------. ... 10- 1 0 -4 - 10-4- * PMA dose is more than a factor of 10 lower at 10,000 years and a factor of 2 lower at 1,000,000 years 10, 000 8,000 6,000 Time (years) (b) ~ i j02 0to LAv5.005l Myr_Totaf_DoseRevO0.JNS;LA vS.0G0- Myr_TGtaI_Dose_e•O.JNB; PMA Cmomee1MotaLDoseReO2.JNB Rev500Na:TSPA LA v0081MyrTotaiOase . . . . ..... . ........... i00 U) 0I 0 10-1 ........ C 10-3 . . .. ..... . .... ... ........ . ..... .... ........... . ..... ...... . ... + . (D. 10 -1 * The evaluated conservatisms do not introduce any risk dilution in TSPA results 4,000 2,000 0 ..... . ................... ... . 1 0 10...... ....... ... ....... A- LA - .00 T . .. ... ......... ...... . ....... - .... ....... ....... ......... .... ............. Dose . PMA Total Dose SPA-LA VS5.005 Total Do)see .- ....... ..... ........... ........ ......... ....----........ .... ......... .... ..... ... .... ' .. . ... .... 10-5 ..... 0 200,000 400,000 600,000 800,000 1,000.000 Time (years) lustrative pe from TSPA AMR (MDL-WIS-PA-00000 5) Figure 7.7.4-7[al](a and b) ,ULpLSug IanMoIILdI ruL pp t' - VI R& E UI In LL Sevouglan ModelSupport NRCTE -040308.ppt IIIdyeIIIeIII. Fv.OCr 33VIIIOl 33 Natural Analogues • Compare repository conditions and materials to observed conditions and materials for time periods relevant to the lifetime of the repository • Provide-insights and build confidence in the conceptual and numerical models used to represent processes and events * TSPA analogues 1995 volcanic eruption at Cerro Negro, Nicaragua Radionuclide transport at the Nopal I uranium deposit in the Sierra Peria Blanca .in Chihuahua, Mexico ueparimenror tnergy •urrice Oy Livitan Kaaioactive wase managemenr LLSevougianModelSupportNRCTE_040308.ppt wvww.ocrwm~doe.gov 34 Natural Analogues • • Confirm ASHPLUME software code is capable of calculating ash deposition from an eruption that could occur at Yucca Mountain - Cerro Negro - Measured Data Ashplume vl.4 Ashplume v2.0 ASHPLUME calculation for ash deposition around Cerro Negro compares well with observed data TSPAAMR (MDL-WIS-PA-000005) Figure 7.8-1 Department of Energy. Office of Civilian Radioactive Waste Management LLSevouglan ModelSupport NRCTEO040308.ppt vvww.ocnwm.doe.gov 35 Natural Analogues - Pena Blanca • Analogue for the evolution, fate, dissolution and transport of SNF placed in the repository * Uranium deposit is geologically, climatically, geochemically, and hydrologically analogous to Yucca Mountain • Hydrogeologic and geochemical investigations at Nopal 1 indicate that there has been relatively little transport, of the radionuclides from the ore deposit and that few radionuclides have traveled very far from their sources De.Depaftment of Energy- Office of Civilian Radioactive Waste Management LL Sevougian ModelSupportNRCTE_040308.ppt VUwW.ocrwAm~doe.gov 36 Independent Technical Review * Successive iterations of the TSPA model have been subject to independent reviews by technical staff and various external organizations * Duringq the development of subsequent iterations of the TSPA model, recommendations from the technical review of the preceding iterations are considered * In add.ition to routine NWTRB reviews, three recent technical reviews include TSPA-VA model peer review conducted in 1999 - TSPA-SR model review by an international review team in 2002 TSPA-LA draft model review by an independent validation review team completed in 2006 91Depiartmrent of Energy -Office of Civilian Radioactive Waste Management r SLLevouglanMode)Support.NRCTE_040308.ppt wWv.ocflWnl.doe.gov 37 References * SNL 2008. Total System PerformanceAssessment Model/Analysis for the License Application, MDL-WISPA-000005 REV 00 AD 01. ,uepariment CT -nergy * uTrIce OT t'vIVuan maoioactive waste management LL Sevougian ModelSupportNRCTE_040308.ppt - wuw.ocruTm.doe.gov 38 Computational Strategy for 10,000-year Seismic Ground Motion Modeling Case Calculate Exmectation over Aleatorv Uncertainty Annual Dose Integrat!d over DamagewArea, (P event times) Interpolated Seismic Futures, (multiple event times) tO I ItO 10 STO tOO19W 4'V% TW 2 Annual Dose for Possible Seismic Futures, (6 event times, 5 damage areas) Ot W!ý9 V Expected annual dose curve, given e BID KI IJ t 0 10 ID' Sto. 10 lb. b; ....................................... LMZD 11T0Y0 100 101 RItO I 0 300 expected Annual Summary metrics or Dose Curves 3 uncertainty in expected 591a0 LLfieVoUgian-Modelsupport NRGTEOG40308.ppt 5 annual dose curves of ~A1MW co, *dO1~1(l'40 wvvw.ocrwm..doe.gov !U"S. Department of Energy Office of Civilian Radioactive Waste Management Nominal Scenario: Mode 1-Abstractions of Waste Pack E Outline * Waste Package Corrosion Mechanisms - General Corrosion (GC) (ANL-EBS-MD-000003) - Microbially Influenced Corrosion (ANL-EBS-000003) Localized Corrosion (LC) (ANL-EBS-000003) - Stress Corrosion Cracking (ANL-EBS-000005) - - Waste Package Crack and Patch Failures vs. Time * Drip Shield Corrosion Mechanisms - General Corrosion (ANL-EBS-MD-000004) - * Drip Shield Failures vs. Time Nominal Scenario Dose Curves Depafrtient of Energy. Office of Civilian Radioactive Waste Management. LLYMBROWNNRCTE_040408.ppt www.orvwm.doe.gov 2 Objectives of Waste Package and Drip Shield Degradation Abstraction * Provide the Engineered Barrier System (EBS) flow and transport model and waste form degradation and mobilization model: Number of patch and crack breaches per failed waste package (WP) -Number of failed drip shields (DS) - Waste package and drip shield thinning for seismic consequences - - ANL-EBS-PA-000001 Li/FjludlI LiI ui FL C9 UI JII I,-: LIYMBROWNNRCTE_040408.ppt MIM~liI nCJu IUOLI•I.tL :M: IVICII!qgt:l I ICIIL •VOcr 3 Waste Package.General Corrosion . 1.00 1 -- * a. 200 -] - -- - (b) >0.75 o_ ainty -Low Uncerlity -Medium Urin certainty -- High Unce,rtainty S Measured Data 150 CD L 0 CU. 50 100 CU CU C. 10. 0.25 150 E CU 0.00 10, 10 . 10 Time (years) ANL-EBS-MD-000049 fig 6.3-76[a] 10, Spatial variability (WP-to-WP) 0 Co, pre-exponent corrosion 60 0 C, rate at based on Weibull distribution fit to weight-loss data [tIIiei U1 II1teyy - LI U ILUU UlLiVIdI I rMdUjUdLLIVe 20 25 30 0 ANL-EBS-MD-000003 fig 6-23 . C,, temperature dependence, based on normal distribution from polarization data - Uncertainty SfIC, Microbially Influenced Corrosion multiplier Spatial variability (patch to patch) Spatial variability (patch-to-patch) LLYMBROWNNRCTEO04O4O8.ppt ' T) Rate-= fmcexp CO Temperature profik UCPCJdI 15 General Corrosion Rate (nm/yr) MI~xpC - 10 0 10ý Stewnanayement vwww.ocrwm.doe.gov 4 General Corrosion of the Waste Package * 5-yr crevice geometry specimen weight-loss * Activation energy from polarization resistance 1.00 25 0C 0.80 1.00 -25*C - 600C ------- ------ ---------------------------------------------0.90-100-C ------------------------------------------------------0..080 .. _16O.C ---------- 0.70 - 0.90 2000 C 200-C -------------------- ------J-----------------------I ----------0.70- --------m --------------------------------- ----- ---------0.60 ----------0.50 ----------------------------------------------------------------------- 0.40 ---------- ---------------- --------------------------------------------- -----------------~ ~ ~ IL 060 .0 ~ -----~ I~-- _~ _- Lo---------High--2----- -------------- ------------ -------- O0,5 -. --- - IMed-u-----AHg.Lw5 0.40; ------------------------------------------------------------------A ----- -------------------------------ý- ------------0.20 ----------0.30 E - 0•.o..2 0.10 ------ 0.00, 0.i 01 -,i--: ----7-- 0.1 1 F7 ----- ----- i0 100i --- 17----------f- 1000 o 0 Low-Hlow25' C -Medium-Madi um 25TC -------- 10000 .. 100000 1000000 Corrosion Rate (nmlyr) Corrosion Rate Range for Median. Activation. Energy -High-High 20,01C .A A. o0o1 0.1 1 10 100 1000 10o00 100000. 1000000 Corrosion ýRate (nmlyr) Corrosion Rate Range for 25°C and 200'C ANL-EBS-MD-000003 fig 6-27 ANL-EBS-MD-000003 fig 6-26 ueparimenm or Lnergy • uriTce or Llviiian Kaaloactlve waste Managemem LLYMBROWNNRC'rE_040408.ppt vwww.ocrwm.doe.gov 5 Microbially Influenced Corrosion = .Alloy 22 incubated with sterile or nonsterilized YM rock - FMIc 1-2x multiplier on GC rate, no localized corrosion effect - Concentrated (10x) groundwater with 0.1% glucose - Applied at a relative humidity threshold of 75-90% (uniform) Nonreacted 43 months sterile microcosm 5 years 57 months non-sterile microcosm ANL-EBS-MD-000003 fig. 6-55 / 'Department Of Energy. Office of Civilian Radioactive Waste Management LL_YMBROWNNRCTE_040408.ppt wwwiocrCwm.doe.gov 6 Waste Package Localized Corrosion * * Waste package areas contacted by seepage may be subject to LC w' If seepage occurs at relative humidity (RH) <.~70% model initiates LC - salt separation: 70% *If seepage occurs at RH > ~70% .--+ ° 40., - _-__ .40 -- 1 L Vatca L(MV•?,• SSC) Model vs Data Ercre IE.... Compare _ long-term corrosion potential, to * Ercrev, crevice repassivation potential * Ecorr, cow _Ercrev model initiates LC Ecorr and Ercrev functions of T, pH, [Cl o0I -], + + 1..- • If Ecorr V Dat [NO 3-] I I \ L ........ o Model vs Data EcC 00 500 6rr ANL-EBS-MD-000003 (fig 6-34,41) >> Uncertainty in fitting parameters >> Spatial variability from thermal and chemical variations * LC corrosion rates result in rapid penetration of WP b6De artmnentbof Energy . Office of Civilian Radioactive Waste Management LLYMBROWNNRCTE_040408.ppt vvw~oorwmn.doe.gov Waste Package Stress Corrosion Cracking • Only inclosure weld regions (in absence of seismicity) Weld region is plasticity burnished Initiates at incipient defects or Weld weld flaws *Growth by Slip Dissolution Model Stress Corrosion Cracking (SCC) Initiation Criterion of Area for Stress Corrosion Cracking: , Joining Outer Lid to Waste PckageOue Shell Outer Shell Pac 90-105% of yield stress - (25mm Alo (50 mm Stainless Steel) 2) Waste Package Rate of crack Waste Package growth a function of (5mm Alloy " Waste Package ,Inner Shell - Inner Closure Lid (50 mm Stainless Steel) Stress intensity factor > Uncertainty " Repassivation rate > E: Uncertainty "'Departmentof Energy• Office of Civilian Radioactive Waste Management LLYMBROWNNRCTE_040408.ppt www r;ocrwm.doe.goV 8 Nominal Scenario Waste Package ,Breaches (a) LAv5.005 NC_000300_003.g3r; 100 g Cu V Crack Breaches (diffusive release) 10-1 'd -,Z Stress Corrosion Cracking 00 r-. U- 10-4 200,000 400,000 600,000 800,000 1,000,000" Time (years) (b) U) 100 Patch Breaches (diffusive release if drip shield intact, advective release if drip shield failed) 0)0 -c .2 CU 10-2 CO- 000 General Corrosion 10-3 LL 00 Localized Corrosion 0 200,000 400,000 600,000 800,000 1.000,000 Time (years) MDL-WIS-PA-000005.fig. 8.3-6[a] Department of Energy . Office of Civilian Radioactive Waste Management LLYMBROWNNRCTE_040408.ppt vvww ocrwm.doe. gov 9 Drip Shield General Corrosion * Titanium grade 7 drip shield plates - Benign conditions on DS inner surface, aggressive conditions on outer surface Uncertainty only No temperature dependence 1.0~ 0.8--- "LI 0. "T - ---- Benign-----------.,--Condition . . /I'/ I..... "•%. .4intermediate, 1 E Condition 1......Condition C M)I 0 ----------- L----- 10 , Aggressive d, 20 30 40 50 60 Corrosion Rate (nm/yr) ANL-EBS-MD-000004 fig. 6-8[a] Luepartment-ot Inergy * utrice or uvilian Kadloactive waste,Management LL YMBROWN NRCTE_040408.ppt oil www.ocrwm.doe.gov ýf 10 Drip Shield Structural General Corrosion Titanium Grade 29 Structural Material Grade 7 aggressive condition rate is used multiplied by Grade 29/Grade 7 ratio Ratio based upon CDF of corrosion rate ratios for several different conditions 1.000 0.900 0.800 .) (D EL 0.700 0.600 --- 0.500 0.400 ANL-EBS-MD-000004 fig. 6-20[a] E 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 1' Grade 29/Ti Grade 7 Corrosion Rate Ratio p 'Department of Energy . Office of Civilian Radioactive Waste Management LLYMBROWNNRCTE_040408.ppt ww.ocrwm.doe.gov 11 Drip Shield Failures LAv5.000 NC 000300_000 .gsm; LA-v5000_SM_009000_000.gsm; v5.000_DS FailureTimeHistogram Rev0O.jnb 0.5 i (0 I I I --- - ------ ------------------- - L 0.3- (D .,i ------------- - - - - - --- - - -- - - - - - - -- - - - - - - - - - - - - 4- ----------r------- ------ 0 I I Nominal Seismic Ground Motion ------------ 0.4- N I ------ ------ : ------ 0.2- t n I-I Il M t C-, L.. LL 0.1 0.0 - ------------- IM I 100 120 I II II 140 160 180 I 200 220 C) LLi4, 240 260 I 280 )0 320 CD 340 Drip Shield Failure Time (x 1,000 yrs) MDL-WISPA-000005 fig 8.1-4 [a] Department.of Energy - Office of Civilian Radioactive Waste Management LLYMBROWNNRCTE_040408.ppt www.ocrwm.doe.gov 12 Dose Results Nominal Scenario LAv5.005_NC_000300_000.gsm; LA_v5.005_NC_000300_000_Total_DoseRevOl.JNB 14 'U., -------------- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - 102 101 C/) 0 100 10-1 10-2 0~ 10-3 x LU 10-4 10-5 10-6 0 200,000 400,000 600,000 800,000 1,000,000 Time (years) MDL-WIS-PA-000005 fig.8.2-1 [a].O Department of Energy - Office of Civilian Radioactive Waste Management LLYMBROWNNRCTEO04O408.ppt wwwIocrwm.doe.gov 13 Summary • Waste Package General Corrosion, Microbially Influenced Corrosion and Localized Corros ion: Result in advective releases if drip shield has failed Result in diffusive releases if drip shield is intact * Waste Package Stress Corrosion Cracking: - * Results in diffusive releases General corrosion results in waste package and drip shield thinning which feeds seismic consequence abstractions Luepartment 01 energy - unice o0 LLYMBROWN_NRCTE_040408.ppt ,liian haoioacuve vvaste ivianagement wvvw.ocrwm.doe.gov 14 )ffice ofUCivilianwRadioactive Waste Management Engineered Barrier. System (EBS) Transport.Model Abstractions Presentation Outline * EBS flow and transport model:conceptualization * model transport flow and Discretization •for U i s rption) n lu -,•"•' •.'EBS •:• Col loid facilitated transport (inc ld.in sorption) * Sorptiton model in the corrosion, prducts domain * EBS-unsatu;ratedzone (UZ) interface - treatment of co0!loids • EBS performance * Summary *grit~r~mg LL YMMacKinnoan_EBS TransportNRCTE, 4o4.ppt f =y mw2 M Objective of EBS Transport Abstraction Computes p the advective and diffusive radionuclide massflux through various compo,,nents- of-the .EBS once the-waste package is b~rea•ched •,;andi wastefo~rm starts to degrade • Provides *-Provide -time-dependent radionuclide mass flux from EBS to the fracture and matrix nodes of the UZ transport model I I VfIAR n.n dAV. a.[ nnVoI~LII I g r nsp ftA.IP AflfO 4 pp Inputs, Outputs, Basis for. Miodel Co0:nftidaen-ce -1'c~~ I •waste; Managemeint LL-YMMaCKiflfOf~l..U i ranspontjNtui tUq4u4U.ppI -X wwwocvn b 4m Model, Assumptions • No diffusive or advective transport in the EBS when temperatures are above 10°C-source term can still degrade * When T< 100°C but RH<95%, no-diffusive transport in packages that.!havei no seepage Waste form5degrades, but water is consumed in the chemical t (H95,%corresponds to about 10 monolayers of adsorbed water) * Presence of continuous thin films on the interalsof the WP and waste formn (when above twwoconditions are not appliicable) * WP is assumed, to be in contactwith the invert Continuous thin water film assumed between WP and invert for diffusive transport * All d.rif-seepage falls onto drip shield (DS), and all flux throug~h the DS falls onto: the WP IDI pARAtmen 6f.C of~ergy.obfl SPO - 0vI 6inruiociv Waste* - WE M OngMetW1.flnJOiU 5 EBS Flow Conceptual Model ° EBS :flow modiel describes: the 'mass balance, of -waterwithin various EBS components SeepageFlux into the Drift and Condensagtori-f!ux:.fromDriftWalI ¶ Diversion around Drip Shield • Continu~ity of flow assumed * Evaporation• is not modeled (conservative assumption) -4-- Flux Into the Invert 7 Flow out of the Invert to UZ Unsaturated: Zone 00731OCO012JI Modified from ANL-WIS-PA-000001 REV 02 ,wlt#.crwrn" O "6 EBS * I sort Conceptual Model After the waste form. starts degrading:, mass&can be mobilized`and released through the breacfhed WP: into the invert and to the UZ - Drip Shield Crown Seepage I and 2D advective and' 1D diffusive transporft including WNste ackage radioactive, decay andP (equilibrium and-kinetic) sorption Species dependent free-water diffuSion coefficient used Wk InIvert WickingZ7, -. • Waste Package Leakage * Both dissolved: and colloidfacilitated! transport considered * Effect of continued degradation ofWP internals included. (metal corrosion products) * AMR_EBSPCUE_11 . i EBS Radionuclide Release Chemical conditions inside the WP and invert determined separately •(for solubifity •andlcolloid stabiity calculations). EMeig y W Ii j*ý LLYMMacKinnon_EBS Transport.NRCTE..040408.ppt • ý pi ON mama .ie: -7 11100- '0 ,i7 10,0 , 70 1adirOjo111vawa 1 7 Spaial Dicreiz-atio fr EBS Transpor Four T-"tiaspr Doma ns: V Waste Form Domain Waste Form : .z r * Corrosion Products Domain Domain (Inside TAD Canister) * Invert Domain * EBS-UZ -nterface Doma'in. Corrosion Products Domain (Includes.TAD Canister, Plus Area Outside TAD Canister) Note: For CodisposalWP the: Waste Form Domain is furtherdivided.into HL W and DSNF waste form subdomains CSNF WP Configuration LL..YMMacKinnonEBS Transport'.NRCTEO 4O4OB.ppt WF Domain--Im; plemeentation v¾ Commercial spent nuclear fuel (CSNF)-singls e waste form domai n" -represents, f•el rod's and steel inside theTAD canister °Co-dlisposal-two WF subdomains HLW (glass logs) and: DSNF with canister steel and steel support tubes_ WF colfloids are generated Pore volume is time-dependent and grows as both waste frm and steel degrades (noý cladding credit taken) L Saturation is computed from water vapor adsorption isotherms when there is no advection after the breach; flUl saturation assumed in cases whereltherelis advection RP F Rod A. un-M.j .",Tz, P'' .W: 2- IP_)0z /0" '1l , 20 o 0n 0 , 0 ,1 (13 a 0.4 ",5 0 ,6 Relaive Humnidity Deputmsn Wuteosngme9 of ns~!y * ffkeof MI~ut~edo~etv~ L%- ac nnon- Sp It-NIKUlt:_U-tVýUG.PpL o .7 0 8 0 '9 1,0 WF Domain---Implementation (continued) Waste Form Domain Waste form domain is conceptualizedas, a homogenous u mixture of fuel and steel componenits -a Volume expansion associated with fuel alterationand.corrosion products formation is.expected to fll th~e and iside TADsvessel canister for,upl CSNiF. theofinner for CSNF Fuel Pallet Degradation and Radlonucllde Mobilization (mllllrneter-scale) ............. Acforation >- * * Unaltered Inner Vessel U02 matrix anhsler ffuslon Areas of the 1l1 Centered Nodes CDSP WPs * Alteration of U0 2 causing splitting of cladding and of rind / Diffusive length and area is based on the-geometry (as shown) Corrosion Products Domain - Cell Centered Nodes Diffusion coefficient (assumes porous medium, Archie's law): DwF= 3S 2D0 Outer Barrier Diffusion coefficient corrected for temperature ate Form Domain 005170c_084-1l (CSNF configuration 10 LL YMM~acKnnon P-t:1 nanspor_..NKL; I _U4u4UtS.ppt Corrosion Product Domain--Implementation Waste Form Domain Corrosion Products Domain * Represents steel corrosion .... products (iron oxyhydroxides) •U-P.aq from degradation of steel-that is outside the fuel basket or Fo •..... 1Puc fuel canisters " Equilibrium and kinetic sorption modeled on the stationary corrosion products , 8-.0. 7. and on the iron c oxyhydroxide oll ids 7.0 .5 co lloids ......... .. .. -------- -.- -- * Saturation is computed, from ds rAi water vapor adsorption -.. * .e ..... .. •' -. 4.0 : . ........... . : ....... -% .......... ". ........... . .. ,,"FeOOH ........................ o-- e0 F.0 eO FOH ,° 1/ 13• FeOOH 2.0 ... .. --- ------- up A o Cr2,O . Cr 2 3 - McCafferty & Zettlemoyer 1970 - Morimoto et al. 1969 Kuwabara et al. 1987 -Micale et a?19g85 - -,,. 1964 rn et1 ot. 41985 --JMIcale - JnKoc&Mie 19 87 Ishikowa 1983 199,1 - Kandori Kittaka et&al. - Nagaoetal.u1995 r - Haruuet at. 2005 - Kittakta. 1984 CrOx Gel- Carruthers at at. 1971 * . 15 1980 .0 where thr rva FeOOH -- Hofmann oet al. 2004 HFO 3 -- --. --- ----. ---------..... ....... ........ 2..0 ------2-------- ction a er the breach; sadveationb ach; fl satura-hr aftuern asum i the detion dincae Fe 2 03 F0203 3.* 2.50 eDeviations Fe 20 3 Fe 2 3 5-9 ................... --- - .. . .. . 0 ~~~~~~~~ .... - --.......... ~~~4.5 -ur-------- /;. ......... .. .............. isotherms whenl there is no 95% Prediction Interval 3 Standard Deviations Interval --- .----. 6.0 • FHH M odel Fit ............................................................... -:-......... ,Standardard 6.5 P o re volum e .is men en * or vlu e s im -dpedet ow steel degrades and growsns ras od --------------- --------------------------- -- -I......... *: NI(OH)2 - 0.1 Micale et al. 1976 035DC em "sdecir 0 - 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 015.ai 1 Relative Humidity Vfoe 11 Corrosion Product Domain-Implementation (continued) This domaiin is divided :into two -cells: Inner Vessel * * - Corrosion Products cell - Outer Barrier cell rs Z. Diffusive length and areas are based: onthe geometry, however,.outer the barrier diffUSive a~reafoirthe cell is, the breach area.that varies by the scenarioclass being modeled Diffusion coefficient (assumes porous medium, Archie's law) Dcp= 0cp 3S w2D0 FCell Centered Nodes Vj/I Corrosion Products Domain Cell Centered Nodes Outer Barrer Waste Form Domain 00817DC_0084a.al * Diffusion coefficient also corrected, fortemperature Ii:Mv LL 'YMMacKinnon -EE Lansport_NRCTE_040408.ppt (CSNF configuration) 12 Invert Dlomla!n" Iple etat ion * Assumes rectangullar geometry (fixed diffusive length and area) SReversible so~rption, on the crushed tuff!modeled (same as that for devitrified rock unit in the UZ transport model) * Stability checked for all colloids moving from Wp to invert (groundwater c lOiids, can occur in the invert if there is drift-seepage) * Water volume of invert is R.2 based on computing the bulk 0.. water contentfrm d.ual continuum reres, nation of -o.5 invert: intergrlarandu. intragranular iontinuum,. * Diffusion Coefficient: Ism ais .. - .... - -.- 0 (based;on experimental data) D = D 0q 1.863Sl. 863 1 0 ND(,u=0.033,cr=0.218) (ND = Normal Distribution) -4.0 -20- - -1.0 -0.5 0.0 l0glot -2 ,WageMngt1n Kift W1 w~cwf.o.~v1 13 EBS-UZ Interface Mode l Domain-Imple mentation. • 2-D dual continuum: UZ domain (fracture and matrix, continua) * Reversible sorption in the UZ matrix contiinuum ° Hydrologic properties and I percolation flux are. consistent with the 3-D UZ model • Mass. flux (glyr). going from Near Field UZ Domain invert to UZ domain: is intercepted and passed to: UZ transport model (FErHM) at each time step for each radiionuclide * Mass flux introduced into fracture and matrixk nodes of the UZ transport model (FEHM)is based on the advective and L diffusive mass flux going into . the fracture and matrix cells of the EBS-UZ domain I L_0acri'nn on6EBSi TrOficesorNC' v 0A4t RadlOT0V4 LLYMVIVacKInnon-EBS TransportNISRCTE_040408.ppt M8panagement UZ Fracture Left UZ Matrix Left UZ Fracture Mid UZ Matrix Mid UZ Fracture Right. UZ Matrix Right W~AIUocrm.004aV14 Colloid Facilitated Transport in EBS Three classes. of collolids modeled. Complex mineralogies a..are:s-impl ified for purposes of mode:liiing:. form colloids -Waste Qlvýll w SSmectite miineralogy (HLW degradation) Uiranophane• mineralogy (from CSNF and DSNF), * Pu-Zr oxide mineratogy (from CSNF degradation) oxyhydroxide (corrosion product) coilloids • -Iron * Ferrilhydrite and goethite mineralogy for sorption, (Hematite mineralogy for stability calculation) Ground t (seepage water). colloids - * Smectite m:ineralogy ndwater id w~wa~lAfl. i aclinnon-EBS TransportNRCTE_040408.ppt 4Mo Sorption .of Radionuclides on Colloids * Type of Sorptvionon Colloids: 'Wastel-form colloids > HLW glass degradation colloids - reversible and irreversible > SNF uranium mineral colloids - reversible >) CSNF degradation rind colloids - irreversible SI.ron oxyhyd roxide colloids - reversiible and ilrreversible *. Groundwater colloidsf -'reversible * Reversible sorption, on waste form and groundwater colIoids, modeled for9 elements!: U Np, Pu,Am, Cs, Pa, Th, Sn, and Ra(in all domains) * Sorption on., itron oxyhydroxide co.lloids is based on surface compliexation based.ompetitive sorption model for 5 e!lements: U, Np, Am nodu TPu,. dtomain) Irrevers.ible sorpti tnpmodeled for onily two elements: Pu and Am as a kinetiic process (only In the waste fodrm and corroson products domain) Reversiible s.orption on waste form.and groundwater col:loids is based on sarmpledi"ne1ar adsorption isotherm(Kd) * * * Initially. sampled Kd may be further adjusted to limit sorption from exceed~ing the sorption capacity.. Sorption sitesare pa:hitioned linearly dissolved amongst:he- rad inuclides- based ontheir sampled Kdd concent-ration'in ~solution, "Qepai~~~~~~~~nont111 seMngm Ei.uvgy .LL YMMaclinnonEBI .LLM~acinnnEB ranspo•._NRCTE 040403.ppt 11. ansprtNGTEOU4I~~p6 -Ff~~CI~n~doa~Y Sorption Model in Corrosion Products Domain A surface comipilexati.on based competitive sorption model is deeevelopedi for radionuclide sorption on stationar corrosion products: and itron oxyhydroxide colloids. The: elements considered: for competitive sorption are U, Np, Pu, Am, Th, andrNit along with: carbonate ions and Mo are much. lower in concentration and thus not • * -(Cr modeled; Ca 2 ., Mg2 *, and SO42 - have small biindii-ng, constants and thus have negligible effect; not modeled in final calcs.) * Also used to compute the pH in the corrosion product domain Sorption oly.applied to steel degradation products inthe corrositon, p.roducits domai.n Sorption onrcorrosion: products: in the Waste Form domain is ignored Sorption only ,modeled• on iron oxides (ferrihydrite and goethite) from degradation of steel *. - Sorption on: NiO and Cr20 3 is conservatively ignored II- U~~dIIiJUIL -. I nr17AiIID ... . •. °•:U.. nno -EEDS a anspoi I.-NrU. 1 C;-V4UqUO.ppL EBS Total LA v5.005_EF. NomIMyrEBS ActReL RevO1.JNB . Inventory Performance- Total EBS Releases .0 Sr - Combined Nomrainal and Early Failure Modeling Cases ... 9"Tc 137CS 226Ra 2 30 U Trh 234u 23 7 Np 239pu T _______________ 1 ____________240P T _______________239P 0) 20Pul * Prior to 170,000 years. releases are primarily from early WPfailure and early DS failure. Afterwards, prHmafilyrfrom WP failure due to nominal processes : - = 104 243AmT 10-61 1 00 1000 10000 100000 1000000 Time (years) 0.018 (smaller contributor) Radionuclides that are. modeled: as non-sorbing with no solubility limit are released rapidly following waste-form DSfailure times (from general. corrosion). range between 270,000 and 340,000 years * Increase in •release around :10,000years is due to contribution,' from early failure -iofCSNFWP.: Prior to that the reiease-is from early failure of CDSP WP " - Am PU N -4 Expected number of EF WP = 1.09 Expected number ofEF DS 1PMT .U- 10-3 (dominant contributor) - 24 99Tc, 1291) degradation (e.g., Solubility limits the dissolved concentration of actinides in waste form domain " U, Np, Pu, Am, and Th undergo reversible sorption on the stationary corrosion. prod ucts!(also separate!y on the crushedituff in invert). Superscript "I" represents mass associated'irreversibly with colloids. "T" denotes total mass. * Nominal releases are mostly from diffusion due to larger number of WPs failing by SCC. Patches are unlikely prior to 600,000 years Diffusion coefficient of colloids is significantly smaller than Note: No diffusive releasesfrom WP while RH < 95% and T < 100"C (under-noflow conditions inside.WP). About 69% of the WPs are in the non-seeping environmentl(31% in seeping environment). This affects the mass fraction going to UZ fractures vs. UZ matrix dissolved species ....L i% LL._YMMacKinnonE ranspor•_NRCTEo040408.ppt _ . _ "... .•:wi •:" I .v ocv•, rn , .¶3 .OV .d 18 EBS PerformanceSeismic Ground Motion Modeling Case Releases 99Tc "- 13 7 __________ C.5 234U . 23__ 9UT _ ______ Cs 5 2rRa 230 Th __ V Prior to 170,000 years releasesi are primarily from processes related to vibratory ground motion-inducedMWP failures. 239 pul 240puT . .. • -242puT 243 10-5 10. Seismically-induced SCC of the. CSNF WPs is -not likely prior to,61,000 years, whereas thatfor CDSP WPs may occur much earlier In the first 10,000 years CDSP.WPs are the predominant contributors tothe release * DS failure times, (from combined seismicallyinduced ruptures and general corrosion) range from about 409600 years and 300,000years * About 30% of the WPs are in the non-seeping environment.(70% in seeping environment) for the post-I0,000 year period due to ground motioninduced drift collapse. This affects the mass I.•action going to UZ fractures vs. UZ matrix - _-Total ___ S0.Sr t5 * Between 170,000 and 600,000 years contribution to releases are from both nominal ,andivibratory ground ,motioninduced DS and WP failures * Past. 600,000 years releases are primarily from failure-of WPs by nominalprocesses Total Inventory EBS - _ ___.__ 2pu , - 100 1000 10000 100000 1000000 Time (years) * Radionuclides that are modeled as non-sorbing with no solubility limit are released rapidly following waste-form degradation (e.g., 99Tc, 1291) * Solubility limits the dissolved concentration of actinides in Waste form domain * U, Np, Pu, Am, and Th undergo reversible sorption on the stationary corrosion products (also separately on the crushed tuff in invert). 226 Rarelease is derived from decay of the parent radionuclides (23ZTh and 234U) * Opening arearesultingfrom SCC from ground-motion damage is greater than that'from SCC from nominal processes leading to larger diffusive area - Patches are unlikely prior to 300,000r years ~V~L~u~f~ht.t~o~uv19 LL_YMMacKinnon_EIBS TransportNRCT I _40408.ppt EBS Release of 23 7Np- Nominal Modeling Case LAkv5.000_NC9000300000O.gsm; NO 1M00O-00_ESNP237_PRCC_-HT.JNB . -A Iu-- _ . 104 ( kV5.000 NC 000300000O.gsm; NO-IMDO_300* ESNP237C.mview;NOJIM0300-ESNP2-37PRCC-HT.JNB . . I ' . .. .. Release frorn first 50G sam :les (out of 300. amples)sho n - -•- Y) 0. 102- IQ. -! eVJ z0 CI) 0 "a) w 0 >0 _ -•__ _________ ---- • P•,- 0. E 10. , ¢ f- 200000 400000 600000 Time (years) 800000 10000C -200000 400000 600000 800000 1000000 Time (years) Epistemicallv Uncertain Variables with Larmest Partial Rank Correlation Coefficients (PRCC): WDGCA22: Temperature dependent slope term of Alloy 22 general corrosion rate (Kelvin) EPINPO2: Logarithm, of the, scale factor used to characterize uncertainty in NpO2 solubility at an ionic.strength' below l modal, PHCSNS: Pointer variable used to determine pH in CSNF Cell I under vapor influx conditions GOESITED: Density of sorptionw sites on goethite (siteslnm2 ) WDZOLID' ,Deviationfrom median yieldstrength range for outer lid .(dimensionless) CORRATSS: Stainless steel corrosion rate (pmlyr) ww .ocrw k '"'-v LL YMMacdinnon- fhtportLNRCTE-040408.ppt 20 Summary * EBS transport model. computes the advective and diffusive radionuc.lideo ýmass flux• throug'h various components ofthe-EBS once •the waste package- is breached and waste form starts to degrade * * * Provides: time-dependent radionuclide mass flux from EBS to the fracture and matrix nodes of the unsaturated zone (UZ): transport model SBoth dissolved and colloid-facilitated transport considered; three classes of colloids modeled A surface• complexationbased• competitive sorption model is implemeinted for radionuclide sorption- on stationary corrsion products and iron oxyhyd-roxide colloids Summarized key aspects of EBS performance that determine transport and reJlease of radionuclides in the combined nomiinallearlyfailturedemonstration modeling case and seismic ground motion modeling case D=rII. •.RQ of =lc n "ofCMI^,-, - . n."- nspo _ aAAIv,'= - -pPl tA,,gna nt OV.AJV21 •U.S. Department of Energy Office of Civilian Radioactive Waste Management Disruptive Scenario Classes: Seismic Consequence Ab tr- www.ocrwm.doe..gov Presentation Outline " Definition of seiSmic scenario class • Key characteristics and assumptions of seismic consequence models " EBS State I abstractions: initial configuration * EBS State 2 abstractions: after drip shield framework failure * EBS State 3 abstractions: after drip shield plate rupture * Seismic fault displacement abstraction * Other processes * Example results bdepartrmentofEnergy .Office of Civilian Radioactive Waste, Management LLYMSevouglanSeismIc NRCTE 040408.ppt www.ocrwm.doe.gov 2 Definition of Seismic Scenario Class * The seismic scenario class is defined.as the set of possible repository futures that contain one or more seismic events * The seismic scenario class includes all FEPs that are part of the nominal scenario class (all "expected" FEPs), plus FEPs associated with seismicity o Two TSPA modeling cases: Seismic ground motion modeling case Seismic fault displacement modeling case Department of Energy. Office of Civilian Radioactive Waste Management LL-YMSevouglan-Seismic-NRCTE-040408.ppt wwVwI.ocrwm.doe.gov Definition of Seismic Scenario Class (continued) * The annual exceedance frequency (k) of seismic events of varying magnitudes (PGV) is defined by the (mean) bounded seismic hazard curve * Not all, events can cause Engineered Barrier System (EBS) damage; small PGVs (iLe., more frequent, but small, events) are unlikely to have a consequence I- () a) a) a, L) .M * For most events of any magnitude, damage to the waste package (WP) is generally in the form of very small stress corrosion cracks (resulting from residual stresses caused by plastic deformation) Department of Energy Office of Civilian-Radioactive Waste Management LL YMSevougianSeismicNRCTE.040408.ppt 4 6 10 Horizontal PGV (m/s) MDL-WIS-PA-000005, Figure 6.6-6 W'.N crwm doe.9o' 4 Conceptual Model-Overview * Source term-Ground motion time history from a potentially damaging seismic event Altered -seepage Stresi, cracki SEBS consequence models: Potential damage to waste packages and • drip shields from spent nuclear fuel cladding from seismically nduced rockfall, ground motion, i andfault.displacement Rubble accumulation and c,. on loading in drift is intact: cracking or rupture - Water Table WP damage after DS has failed: cracking or puncture Nomial:,~an DS orroionTransport -Nominal.WP •, North Drip shield (DS) fragility (static and dynamic loading) WP damage when DS waste and DS corrosion, processes of radionuclides" through saturated zone DrawringNot To Scale 7DC_0100.ai 0081 * Changes to thermal hydrology, seepage, and transport ueparnment OT tnergy * urrmce OT ullvnan Kaoloacrive waste management LLYMSevouglanSeismic NRCTEO040408.ppt MDL-WIS-PA-000005, Figure 6.6-4 ,w.ocrwvm.doe.qov Characteristics of Seismic Consequence Models " Most of the following presentation describes the seismic ground motion abstractions. (rather than the fault displacement abstraction) " Seismic scenario class includes bothf nominal and seismic degradation processes in the EBS * Nominal and seismic WP degradation processes are strongly coupled through the thickness of the Alloy 22 outer barrier and the state (intact ordegraded) of the WP internal structures e General corrosion patch and stress, corrosion cracking (SCC) failures: in the WPs occur due to nominal corrosion processes * Seismic DS damage in the form of framework buckling and plate rupture is based on - The thickness of the DS components, which is determined by the titanium general corrosion rate dynamic loading on the DS from: rubble'and vibratory ground motion (i.e., as a function of the PGV level of the seismic event) -The Department of Energy' Office of Civilian Radioactive Waste Management LL-YmSevouglan-Seismie-NRCTE-040408.ppt vwvvw.ocrwm.doe.gov Characteristics of Seismic Consequence Models (continued) * Seismic damage to WPs depends on the presence of the DS: For intact DSs, SCC damage to the WP occurs through package-topallet impacts (most important) and package-to-package impacts (nearly negligible); there is a small chance of rupture damage For failed DSs (by general corrosion, ground motion, rubble loading), crack damage to the WP occurs from stresses induced by the surrounding rubble during strong ground motions; there is a small probability of puncture of the.WP by internal fragments * Effect of fault displacement failures (X < 2.5x1O-7 per yr) is expected to be small * Cladding credit not taken in TSPA Model - Cladding would be completely'damaged in long timeframes based on simple fragility models Department of Energy. Office of Civilian Radioactive Waste Management LL_YMSevouglanSeismic.NRCTE.040408.ppt wvvw.ocrwm.doe.gov 7 Model Assumptions * The initial mechanical condition (or strength) of EBS components (WP or DS) for each event is a function only of spatially averaged thickness (due to general corrosion thinning), i.e., previous seismic damage does not affect the strength or configuration of the EBS components, with two exceptions: - State of waste package internals: intact or degraded - WP rupture model when the DS is intact: incipient or immediate ruptures " Total WP and DS damaged areas from multiple events is the sum of the damaged areas from the individual events " Total rubble accumulation from multiple events is the sum of the rubble from the individual events * No expl~icit spatial variability in the TSPA model for damaged areas on WPs and DSs from vibratory ground motion, except for that due to coupling with nominal processes (however, drift-scale variability is incorporated in the underlying process-level damage abstractions) 'Department ioc •of Energy -Office of Civilian Radioactive Waste Management U evoug an- elsm q- ClfI. -I n -uaiOII5. o J1 _PP www'ocrwm'.doe.gov 8 Treatment of Uncertainty * Aleatory uncertainty in the time ofground event, PGV of motion curve), hazard the event (seismic time history for a given event, occurrence and extent of WP damage, occurrence of DS failure, and rockfall volume • Epistemic uncertainty in the friction coefficients, residual stress thresholds to initiate stress corrosion cracking in Alloy 22, general corrosion rates of Alloy 22 and Ti Grade "7and Ti Grade 29 LepMtent of Energy- Office of Civilian Radioactive Waste Management LLVMSevougian Seismic NRCTEO04O4O8.ppt9 9Arwm.doe.gov Conceptual Model for EBS Evolutiotn State 3 (c) After Drip Shield Plate Failure Fragility analysis for rupture of DS plates. WP damage defined by 2-D calcs for WP surrounded by rubble MDL-WIS-PA-000005, Figure 6.6-5 Ut!PdrLITIt~IL 01 CrIelgy - Vitice UI %J LL-YMSevougian-Seismic-NRCTEO040408.ppt nl ridUdlLC1iVt vdv5edlivIandgemeUl Time vw.ocr gov 10 EBS State 1 SCC Damage: * Codisposal WP probability of SCC damage for a 23-mm thick (a ! 1.0 0.8 is 0.6-0.8 M. EO0.8-1 0.4-0.6 M 0.2-0.4 11 0-0.2 -0.6 (a) (Intact DS, Intact Internals) • CSNF WP probability of SCC :damage for a 23-mm thick * 0.9-1 * 0.8-0. - 0 • cuE 0.2 2. C -0.4 * 0.7-0.8 F1.0 0.9 ! 0 0.6-0.7 M 0.5-0.6 0 0.4-0.5 1110.3-0.4 -0.8 -0.7 -0.6 o 0.2-0.3 1 0.1-0.2 0.3 105 0.4 .0 MU 0.2 0.1 0.0 S90 1.05 0.4 pG•/." loo5 * Codisposal WP mean damage area for a 23-mm thick (a) 5.0 0 A 4.0 0 • 100% YS Data S105%YS Data 3.0 -----....... -- - Quadratic Fit - 90% YS - Quadratic Fit - 100% YS - Quadratic. Fit - 105% YS ..... ...... ---. . .-.. . .-. . ................... -- 2.0 1.0 .... ... ... ... .... ...--...-...--... C)](I 00i .0 1 .............. 2 4 PGV- H1 (m/s). ueparrment Or tnergy - urrice or tuv LLYMSevougiarnSelamicjJRCTEO040408.ppt - . . .-----.. - ...... . ........ 3 4.07 2.44ls P*1.o5s 0.4 pGIP" . ls [DIRS 183478] Figure 6.6-10(a) - . ... .... .... .... ... .... . ... .... ... ........... 20 a_ • CSNF WP mean damage area for a 23-mm thick 9B0%YYS Data 4q, .a) -0.5 0 0-0.1 0.0 0 5 0.00408 m2 at PGV=4.07 mls and RST=90% Y.S. 0.0 m2 for all other data points MDL-WIS-PA-000005, Fi~qures 6.6-11 and 6.6-13 in Kaaloactive waste inagement wv w.ocrwm.doe.gov 11 EBS State 1 SCC Damage: Codisposa] WP probability of SCC damage for a 17-mm thick (Intact DS, Degraded Internals) eCSNF WP probability of SCC damage for a 17-mm thick 1.0 .1.0 SO;B-i :0.6 t•. 210.6-0.8 00.4-0.6 -:0.6 11111.2-0.4 '0.4m:E 190-0.2 _=0) 0.2 N 0.8-1 B• o.6-0.8 S0.8 40 D 0.4.0.6 0.6 > (D = 0.2-0.4 :0 0-0.2 0. 0.0 105 pG\.MA 0.4 . 9ý 0 00817DC00257.ai * Codisposal WP mean damage area for a 17-mmt thick 0) -0.4 00 U ,0.2 a -" 0C 0.0 j a$ 1001 S105 0~ _ 2.4 2;44 s 0OB17DC_0256.ai * CSNF WP mean damage area for a 17-mm thick 6.0 6.0 5.0 5.0. C..' 2 2 4.0 C -A < 3.0 o 2.0 4.0 A, 13.03< 16 2.0 C ca a.) 1.0 0.0 0 1 2 3 4 5 PGV-H1 (m/s) MDL-WIS-PA-000005, Figures 6.6-11 and 6.6-13 Department of Energy. Office of Civilian Radioactive Waste: Management LLYMSevougian Seismic NRCTE_04408.ppt 0.0 2 3 PGV-HI (m/s) MDL-WIS-PA-000005, Figures 6.6-10 .and 6.6-12! vvvVw.ocrwm.doe.gov 12 (a) 0.2 EBS State 1: WP Rupture (Intact DS, Degraded Internals) 0.18 C, 0~ - 0.16 - * 0.14 - 0.12 - .............. * Data - Incipient Rupture (immediate) Rupture Data -Rupture ..... -----il- ---- --- I----- ------- 0.1 * Probability of incipient and immediate rupture - incipient rupture requires a subsequent seismic event to cause damage - WP rupture allows advective releases " Mean damage area is sampled uniformly - between 0 m2 and the WP cross-sectional area 2.78 or 3.28 m2 Incipient Rupture - 0.08 ---. -0 a. .-- ./--- 0.06 . 0.04' ... - ---- 0.02 0. 0 1 2 3 4 5 PGV-H1 (m/s) (b) n , 0.18- * 0.16- * ca. 0.14 .4- 0 Incipient Rupture Data - Incipient Rupture . S-(Immediate) Rupture Data - Rupture ....... . . . . .... . --.....---------------... . ......... ---... ........................ ................... ....-t. ... --- 0.12 0.1'- ..... . .............. ... -2 IL . 0.06- .. ....... .. . ...- .. .. .. ..... ............ ........ / . . ..................... .- -------- - 0.040.02 t ;0 1 2 5 3 PGV-HI (m/s) MDL-WIS-PA-000005, Figure 6.6-14 I Department of Energy • Office of Civilian Radioactive Waste Management LLYMSevougian.Seismic NRCTE.040408.ppt www.ocrw•m.doe.gov 13 Conceptual Model for EBS Evolution Kinematic analyses and damage catalogs define damaged areas for a WP moving freely beneath the DS. WP SCC or rupture may occur, degrading internals .Fragility analysis for rupture of DS plates. WP damage defined by 2-D calcs for WP surrounded by rubble DS Failure,, MDL-WIS-PA-000005, Figure 6.6-5 uepdriment OT Energy - urrice or uvlitan Kacloactive waste Management LLYMSevouglan SeismicNRCTE 040408.ppt Time wwvw.ocrwm~doe.gov 14 EBS Evolution State 2: Rubble Accumulation Weighted Probability of Lithophysal * Rubble from multiple events is defined as the sum of the volumes from individual events until the drift is full Rockfall MDL-WIS-PA-000003, Figure 6-52 * Volume of rubble that fills the drift is an epistemic parameter [U(30,120) m 3/m] * DS fragility abstractions are basedý on lithophysal rubble volume* Abstractions for nonlithophysal rockfali are developed for use in the seepage abstraction. 90 - 80 Mean Rubble Volume in E 70 the Lithophysal Zone 60 50 MDL-WIS-PA-000005, Figure 6.6-7(a) 20 n 0 PGV-H1 (m/s) " bDeparitment of Energyo Office of Civilian Radioactive Waste Management LLYMSevougianSeismlc NRCTEO040408.ppt wvvw.ocrwm.doe.gov 15 EBS Evolution State 2: (a)' Drip Shield Framework Collapse =,0.8 'Probability of DS Framework Failure 1.0 - * Response surface for the probability of DS framework failure: - - PGV levels of 0.2, 0.4, 1.05, 2.44, and 4.07 m~s thickness reductions of 0, 5, 10, 13 mm for plates and structural elements of framework -- 5mm Plate - ": 0.6 the waste packages (always occurs before plate failure) 15 mm Plate ---- LL * Failureý of the DS framework prevents kinematic motion of -0-• : 0.4 ------- .0 0.2.. 10% rubbifiill ........... 1(a 10mm Plate I . 2 mm Plate . --...... - -.------------------- .. ..... - ... ... 0.0 0 1 2 3 5 4 PGV-H1 (m/s) (b) (D, 1.0 .--. 15 mm Plate ~0.8 ---7-(b) 50%1J'Uhib he 0,0.6 ' Plate-~5mlt A-3-0m 1f-e 2mm Plate 0.4 ca -0+ 0.2 0.0. C. ) 4 I 5 PGV-H1 (m/s) (c) 1.0 M, 0.8 '0 0.6 - Static rubble loads for drifts that are 10%, 50%, and 100% filled with lithophysal rubble * DS is still a barrier to seepage 10.4 S.0 20. '10.0 PGV-H1 (m/s) iMDL-WIS-PA-000005, Figure 6.6-9 Department&of Energy . Office of Civilian Radioactive Waste Management LLYMSevouglan Seismic NRCTEO040408.ppt wvvw.ocrwmdoe.gov- 16 EBS State 2 SCC Damage: * CodisposalWP probability of SCC damage for a 17-mm thick (Buckled DS, Degraded Internals) 0 CSNF WP probability of SCC damage for a 17-mm thick 1.0 - 1.0 0.8 I10.6-0.8 EO 0.4-0.6 * 0.2-0.4 r0i0-0.2 0.8 -0 4- 0.4 Er OA M0.6-0.8 ol - 0.4-0.6 0.8-1 0 0.2-0.4 110-0.2 -0.6 •.) 0.4 0.2 a. 0.2 a. 0.0 go0 A•0 90 00817DC_0257.ai * Codisposal WP mean damage area for a 17-mm thick 0.0 4.07 1oo 1.05 pG'J-"' (MIS) ccE 2.0• 1.o05 M IS 0.4 p"A GJ 00817DC_0256.ai * CSNF WP mean damage area for a 17-mm thick 6.0 5.0 E 4.0 0 A 0 0) 0 A 3.0 2.0 C "6 CO a) 1.0 0.0 0 1 2 3 4 5 2 MDL-WIS-PA-000005, Figures 6.6-11 and 6.6-13 LJepdrd riernn UT enrergy * urrIce O0 U' LL_YMSevouglanSeismic.NRCTE_040408.ppt in i'auloa[uive • 3 PGV-H1 (mis) PGV-H1 (m/s) anagernenE MDL-WIS-PA-000005. Fiaures 6.6-10 and 6.6-12 vwvuw.ocrwm.doe.gov 17 Conceptual Model for EBS Evolution (a). Initial Configuration Kinematic analyses and damage catalogs define damaged areas for a WP moving freely; beneath the DS. WP SCC or rupture may occur, degrading internals MDL-WIS-PA-000005, Figure 6.6-5 Dbepartmenti of Energy • office of Civilian Radioactive Waste Management LLYMSevouglan Seismlc.NRCTEO040408.ppt Time W~A~ A1ocrwm.doe gov 18 EBS State 3: Drip Shield Plate Rupture Probability of DS Plate Rupture (a) 1.0 I5ram Plate' -4- -U- lOmm plael 0,e Ll~ .L -- ! " i ,I 2mm Plate |' ........ i.......(a) -10% rubble fill 0.6 0 "CO 0.4 " Failure of the DS plate results in complete failure as a barrier to flow 1L 0.2 0.0 1 0 4 3 2 PGV-H1 (m/s) 5 (b) 4 4 N• " Response surface for probability of DS plate failure: - -4-- w . 0.6 --- 15 mm Plate 10 mm Plate 5mmPlate 2ram Plate (b))50% rIbble-filI- 0 0.4- PGV levels of 0.2, 0.4, 1.05, 2.44, and 4.07 m/s 0.2 0.0 thicknesses of 2 mm, 5mm 10 mm, and 15 mm 2 -- 4 3 PGV-H1 (m/s) -plate 1.0 (ca static rubble loads for drifts that area 10%, 50%, and 100% filled with lithophysal rubble C--. - 11 2 0.8 L 0.6 PltetI -4 1-5mm --ml- 0MMPlate -e-2 MM Plate C 1 .Oriub-AlefI N 0.4 EKr> .0 ~11 2 LL 0.2rtl-i 0. • 0.5 1 1.5 2 , • C 2.5 3 3.5 4 4.5 PGV-H1 (m/s) MDL-WIS-PA-000005, Figure 6.6-8 Department of Energy - Office of Civilian Radioactive Waste Management LLYMSevouglanSelsmtcNRCTE O404OB.ppt wvuvv.ocrwm.doe.gov 19 EBS State 3: WP CrackDamage Failed DS, Degraded Internals . 0.4-0.5 B 0.3-0.4 e Probability of SCC damage for a 17-mm thick CSNF WP surrounded by rubble (same abstraction is used for the CDSP WP) ~,0.5 o 0.2-0.3 * 0.1-0.2 0.4 * 0-0.1 0.3 cD 0.2 .0 E 2 c -0.1 0-02 -0.0 A 6 90 l• 2.44 cmlXA 0.4 .05 -105 00817DC_0261.ai 4 = Mean damage area for a 17mm thick CSNF (or CDSP) WP surrounded by rubble under a failed DS at 4.07 m/s Iy = 0.0083948x 2 - 1.775504 0] Bx+ 94.01.16401 -- A j i (V31 .. . .... . .... ...... . ..... .. ...... . ..... aJ) 0) 8V 0 [Abstraction also used for CSNF (or CDSP) WP with intact internals under a buckled DS] 0 90 100 110 120 Percent of Yield Strength (%) MDL-WIS-PA-000005, Figures 6.6-15(b) and 6.6-16(b) n Radioactive Waste Management www.ocrwm.doe.gov 20 EBS State 3: WP Puncture (Failed DS, Degraded Internals) Probability of puncture 0.___ucrfo1- for a CSNF W P surrounded by rubble under a failed DS * for SamaCDSP e abstraction fo ra. WP used 0 Dam age larea given by a uniform distribution U (O, 0 .1 Mi 2) 0.18 -. - c: -.- Puncture for 23-mm OCB Data - 23-mm OCB @ -------------------0.1 --2 i -------------- Puncture for 17-am OCB Data-17-mm OCB --0.2 ---- .0.14--.-.---------...... -... ................................. ---------------------------.......... --.----. . . . . . .................... . .-........... . . .--------------. . . . . . . . ... ................. ........................-----7..i7.. 012 -- .................. 00 01 ------------ - ---.... ---------....................... 0.08~~~~~~~---.................. ........... . .............. --------.-------------- 0 .0 6 0.04 ..... .. . . . 0.02 0 ...... ......... i .......... ................. .. . . - -- -----------------.. ..- ---------------- ...... .•-. -. . .... . ---------. ....... .. ........... ------ ---------1- 021 2 2. 353 4 5 PGV-H1 (m/s) MDL-WIS-PA 000005, Figure 6.6-17 Department of Energy Office of Civilian Radioactive Waste Management LL YMSevouglan Seismic NRCTE_040408.ppt i vwvw.ocrwm.doe.gov 21 Summary of WP Damage States * There are eight possible WP damage states and associated abstractions: 1. 2. 3. 4. 5. 6. 7. 8. No damage SCC of WP under an intact DS with WP internals intact SCC of WP under an intact DS with WP internals degraded WP rupture under an intact DS with WPj internals degraded SCC of WP under a buckled DS with internals intact SCC of WP under a buckled DS with internals degraded SCC of WP under a failed DS WP puncture under a failed DS * Consequences are based on the magnitude of the event (PGV), the residual stress threshOld (RST) for Alloy 22, and the Alloy 22 thickness for the eight modeled states of the system at the time of the event yepdrumrlen 01 tneryy - uriice ot%. LLYMSevouglan-Seismic-NRCTEO04O4O8.ppt n raoloactive waste inanagemenT vwwwocrwm.doe.gov 22 Fault Displacement Abstraction " The conceptual model was developed using displacement data from known and hypothetical (generic) faults " The fault-displacement damage abstraction is based on a comparison of clearances between. potentially displaced EBS components - Independent of component thicknesses (nominal corrosion processes not included) * Expected number of WPs that could fail from fault displacement is small (the number of WPs lying on known, or generic, faults is about 214) * Damaged area on the WP is determined by sampling a uniform distribution with a lower bound of 0 m2 and an upper bound equal to the WP cross sectional area - The same damaged area applies to all failed WPs The resulting damage allows advective 'flow and transport The associated drip shield is taken to be 100% damaged O TDepartment of Energy . Office of Civilian Radioactive.Waste Management LL YMSevougian Seismic NRCTE 040408.ppt Nvww.ocrwA/m.doe.gov 23 Other Processes * Seepage - Seepage flux is interpolated between'the intact-drift seepage flux and the fully collapsed seepage flux as a function of rubble accumulation in lithophysal zones Collapsed-drift seepage fractions are used for the entire simulation but different seepage fractions are applicable for the first 10,000 years versus the post-I0,000-year period Separate calculations of rubble (rockfall) accumulation for lithophysal and nonlithophysal zones * EBS Environment - WP temperature and WP relative humidity are changed after the drift fills with rubble (small effect because rubble accumulation is slow) * EBS Flow and Transport - The WP damage area fraction (sum of seismic damage and corrosion damage) is an input to the diffusive transport and the water flux calculations of the EBS Transport submodel Department of Energy. Office Of Civilian Radioactive Waste Management LLVYMSevougian-Seismic_NRCTE_040408.ppt vvNww.ocrwnm.doe.gov . 24 Example Results " Lithophysal Rubble Accumulation * Drip Shield Plate Failure * Waste Package Breach Fractions - Seismic and nominal processes - Seismic processes alone * Waste Package Damage Area IF - Crack and patch damage by both seismic and nominal processes - Damage area on-a per failed WP basis (failed by cracks or general corrosion patches or both) .Department of Energy . Office of Civilian Radioactive Waste Management ,,.&....... to. O^,o_.. ,I.. f o.n=, U-N VI.eUvoU Ugllan_•,ewcI |II•1 •iI, U%.,-.QU. JJ , .wvw .ocrWm.doe.gov 25 Lithophysal Rubble Accumulation ai) LAkv5.005 SM 009000_011.gsm v5M005,StandAloneFrac_Rubble VolIAccum Lith_ RevOO.JNB 1.0: :-o C- 0.8 0,.6 0 0.4 75 I- .0.21 0O.0 - 100 10000 1.000 100000 1000000 Time,(years) DTN: MO0803TSPAPSAR.000 _________________ ___________________ Department of Energy - Office of Civilian Radioactive Waste Management LLYMSevougianSeismic_NRCTE_040408.ppt I1' gjr~ wwr .owrwm.doe.gov 26 Probability of Drip Shield Plate Failure Seismic Ground Motion (includes general corrosion) General Corrosion LA_v5.005_NC_000300_0 CO.eM; 0a LA.vS.005_SM_009000_003.gsm; v5.005 StandAlone WAPDEG.CDFO_DSFaiLTime RevOO.JNB (a) 1.0 1.0 - 0.8 / - - - .......... Best Estimate (9000 Values) Average CDF (Over Epistemic Uncertainty) 0.8- LL :9 co 0.6 E 0.6 0. 0 0.4 2 0.4- ............... IL -0 0.2 0.2" . a1- --F 0.0 -t200,000 250,000 300,000 0.0 - 350,000 400,000 Time (years) 50,000 0 100,000 150,000 200,000 250,000 Key Points: I T: Time of Drip Shield Failure (years) Key Points: * * DS failure under nominal conditions by general corrosion (GC) of Titanium Grade 7 plate Failure times from about 270,000 to 340,000 yrs 300,000 350,000 DS failure under seismic conditions by rubble accumulation and plate thinning by GC Probability of DS failure before 100,000 years is 0.0055 i (Note: The TSPA model does not include spatial variability in drip shield failure) Department of Energy - Office of Civilian Radioactive Waste Management LL YMSevougian SeismicNRCTE_040408.ppt wwvv.ocrvr.doe.gov 27 Expected Fraction of Breached Waste Packages • By seismic processes only (d) LkvA 005_SM_009000ý01.9-Yr (b) v5 00 9 Pereentle 5tahn Me Median Sth Percentile 10- E) tandAlan- ý FaJLCSNj-ejsmj amage0nlyRev01 JNS !CSNF I --------------........... -7: C a) a) 2 10-2 - ........... tWU, 0)0 120) CLa x-a W U) Mu 10-3- 3: .......... ...... ........ 10-40 Time (years) 400,000 600,000 800,000 1,000,000 Time (years) By seismic and nominal processes 0 200,000 (C) * By seismic and nominal processes (a) LA .v5.000 SM 00000k Ohlasin WP FaIllCSNF Seismic_RovO3.JN5 5 0c .0 -D 4D _ Ca, 000 W U) LLC 00 0 200,000 400,000 600,000 800.000 1,000.000 Time (years) MDL-WIS-PA-000005, Figure 8.3-8(c and d)[a] Depariment of Energy - Office of Civilian Radioactive Waste Management LLYMSevouglanSeismic_NRCTE_040408.ppt Time (years) MDL-WIS-PA-000005, Figure 8.3-8(a and b)[a] ww/.ocrwmn.doe.gov 28 Breached WP Surface Area: (nominal and seismic processes) LA_vS.005_SM 009000 011.gsm; (a) (a) a) a) 0) CU 0) ,0) LL~ U) x wJ w 0 200.000 400,000 Time (vears) C0L) L U 95th percentile Mean Median 5--peroente 0)LL C 10-3. 0)0-2. C•S.NF.patch damagei (per failed WVP) ..... .................I .... ..... . . . -i I , ., LV0> 100-4M ( ,-io-.. . ........................... 4.............. w0)~ v5.005 StandAlole Patch DamCSNFSeenicRaevG4.JI 10-1- faldP (pe (D(D 2 LA 05.005_SM 009000001 Igam; (a) CDSP patch damage . (pr...... a e W . . . . .. 95th percentile Mean Median 5th percentile 10-1 1,000,000 Time (years) LAk5.005 SM_09G000 O11.Usm; LA_.005 SM 000000_011_AvgDam_Calc.g,; 45.005 Stad/•Aone Patch Da- CDSP Sam-Ic ReO4. JN0 ioo 800,000 600,000 .. ............ ....... i. . ...................... -.............................. ..... , ...... .. ........ CO10-4- 10-5 w 0 . .. -i....................... a)- 10--60 - 200,000 400,000 600,000 800,000 1,000,000 0 200,000. 400,000 600,000 800,000 1,000,000 Time (years) Time (years) MDL-WIS-PA-000005, Figures 8.3-9(a)[a], 8.3-1 0(a)[a] , 8.3-11 (a)[a], 8.3-12(a)[a] Ut!Pd FIL LI I tUIIL 01 CFrieryy - V IILL- O1 LI LL-YMSevougian-Betsmic-NRCTEO040408.ppt in t-tdUlodL1ive vvidste ridtndylem~enc vvww.ocrwm.doe.gov 29 Summary * Detailed damage analyses developed for degraded states of the EBS components. - Intact DS analyses - Failed DS analyses * Conservatism removed from the upper end of the seismic hazard curve * Seismic consequence abstractions for CSNFITAD package and codisposal package, including kinematic analyses, damage catalogs, and analyses for WP surrounded by rubble * Multi-realization TSPA results reflect the varying probabilities and damage areas of the underlying abstractions Department.of Energy Office of Civilian Radioactive Waste Management LLjYMSevougian SeismicNRCTE_040408.ppt Wv.w oc~rwm doe.gov 30 U.S. Department ofEnergy I..Department Energy Waste Management Office of Civilian of Radioactive Disruptive Scenaros": Igneous- Eruptil . doe.gov www.ocrwm. Vvvvvv.ocrwm.doe..gov TSPA-LA Model Components for the Volcanic EruDtio.n Modelina Case Waste Entrainment in Ash. Plumne *Wind Speed - Wind Direction. event Probablility -Eruption. Characteristics MDL-WIS-PA-000005 Rev 00 Figure 6.5-7 Department of Energy Office of Civilian Radioactive Waste, Management LLYMSwiftStathamNRCTED040408.ppt 0o81c o15,a w wwocrwm.doe gov 2 Distribution of Basaltic Rocks in the Yucca Mounta in Region Legend ý,PýAe B I asailts:. ::i PlMiocene - MDL-WIS-PA-000005 Rev 00 Figure 6.5-1 Unknown age 7.7.caldV -0 OWho y . . ,________ I,.--•r Department.of Energy- Office of Civilian Radioactive Waste, Management LLYMSwiftStathamNRCTE_040408.ppt .. 1.-11W iN ww.ocrwm.doe.gov 3 Annual Frequency of Intersection by Dike Probabilistic Volcanic Hazard Analysis Expert Interpretations (1996) (a) 5 4 3 I 0 0 a_ 1 0. /L.\ I AM BC GT *5th, 50th, and 95thMean GW MK CL MS W RC RF I0 4 WD C-R WH I Aggregate (A L) .!...........I "i 0-12 Annua10-10 • ey10o910-8nr0tn Annual Frequency of Intersectibn . 10-o 10-5 ANL-MGR-GS-000001 REV 03 ACN 01 Finur 6-lB . Department of Energy, Office of Civilian Radioactive Waste- Management LLYMSwiftStatham_NRCTE_040408.ppt www .ocrwmrdoe gov 4 Volcanic Interaction with Repository Submodel - - - - - d 00817DC_0014b.ai MDL-WlS-PA-000005 Rev 00 Figure 6.5-10 Probability of Conduit Intersecting Repository Footprint Probability of Intersecting Conduit Contacting Waste Mean Probability of Conduit Intersecting Waste bDeparment of Energy. Office of Civilian Radioactive Waste Management LLYMSwlftStatham_NRCTE_040408.ppt 0.28 0.30 = = (1.7 x 10-8) x (0.28) x (0.30) 1.4 x 10.9 per year www.ocrwm.doe.gov 5 Volcanic Interaction with Repository Submodel Not To Scale For Illustration Only 00Q400Aj24. Igneous Dike ANL-MGR-GS-000003 Rev 03 Figure 5-1 ANL-MGR-GS-000003 Rev 03 Figure 6-8 U.n Number of dikes in a swarm: 1-5 (P of I = 0.40) Dike width: normal, mean 8 m, 9 5 th 12 m Dike spacing: uniform, 0.5-1500 m Number of conduits: 1-3 (P of I = 0.85) Conduit diameter: normal, mean 15 m, 9 5 th 21 m 0.6 0.40 2 a.L 0.2 MDL-WIS-PA-000005 Rev 00 Figure 6.5-11 ANL-MGR-GS-000003 Rev 03 Table 4-1 0.0 0 2 4 6 8 Number of Waste Packages -Fit(Igneous Eruption) LCL_ ILIIt1tathIILNUI ICTEYY - V4I4ILI UI %-I LL YMSwiftStatham NRCTE 040408.ppt )CILLIVt MYCII11=111. vwww.ocrwm.doe.gov 6 Atmospheric Transport of Contaminated TeDhra Submodel (ASHPLUME) Ash Pl,urmne PM~ i Ash Fail North • Volcanic Conduit*~ !i k A~sh Layer on Surface ••'• Potentially Contaminated ou Dike__7 •,,...;,South 18kkm MDL-WIS-PA-000005 Rev 00 Figure 6.5-12 JI Department of Energy -Office of Civilian Radioactive Waste, Management LLYMSwiftStatham_NRcTE040.408.ppt IW vwwiocrwm.doe.qov 7 Atmospheric Transport of Contaminated Tephra Submodel - Key Parameters Uncertainty Type Value(s) Constant relating eddy diffusivity and particle -fall time (cm 2 /s 512 ) Fixed value 400 Erupt Power Eruptive power (W) Aleatory Erupt Velocity Initial Rise Velocity (cmls) Aleatory Beta Dist Column diffusion constant Epistemic. 0.01 - 0.5 (uniform) Dash Mean Mean ash particle diameter (cm) Epistemic 0.001 - 0.01 - 0.1 (log Tri.) Dash sigma Ash particle diameter standard deviation (log cm) Epistemic 0.301 - 0.903 (uniform) D_min Minimum waste particle diameter (cm) Fixed value 0.0001 D_mode Mode of waste particle diameter (cm) Fixed-value 0.0013 D_max Maximum waste particle diameter (cm) Fixed value 0.2 Rhocut Waste incorporation ratio Fixed value 0.0 Erupt Time Eruption duration (seconds) Aleatory DTN: LA0702PADE03GK.002 Wind Direction Wind direction (degrees) Aleatory DTN: MO0408SPADRWSD.002 Wind Speed Wind speed (cm/s) Aleatory DTN: MO0408SPADRWSD.002 Magma Partitioning Fractional multiplier on waste mass to account for waste-containing magma erupted in scoria cone and lava flows Aleatory 0.1 - 0.5 (uniform) TSPA Parameter Parameter Description C Department of Energy - Office of Civilian Radioactive Waste Management LLYM SwiftStathamNRCTE_040408.ppt 1.0 x 109 - 1.0 x 1012 (log uniform) 4 1.0 -1.0 x-10 (uniform) MDL-WIS-PA-000005 Rev 00 Table 6.5-4 • wwvw.ocrwvm.doe.qov 8 Tephra Redistribution Submodel (FAR- Fortymile Wash Ash Redistribution) 535000 Two Model Domains 1) Drainage Basin 540000 545000 550000 555000 560000 565000 570000 575000 580000 ° 0, Moiization from hill 0 slopes Channel transport mixing/dilution 2) - Alluvial Fan (RMEI Vlocation) Diffusion into soil column Channel and Divides MDL-WIS-PA-000005 Rev 00 Figure 6.5-13 oo i;n...'Elevation (m) " .Low: o 842.046[ 00317DC0519..1 epartrnent of Energy - Office of Civilian Radioactive Waste Management LL_YMSwiftStathamNRCTE_040408.ppt "I I w ww.ocrwm.doeýgov Tephra Redistribution Submodel (continued) ASHPLUME results calculated for a hypothetical vent located at YM and superimposed on FAR domain (Example shown with wind to east) MDL-MGR-GS-000006 Rev 00 Figure 6.3.3-2 uepartment OT tnergy - urrice or L.viian Kaamoactive waste management LLYMSwiftStathamNRCTE_040408.ppt MDL-MGR-GS-000006 Rev 00 Figure 6.3.3-9 www.ocrrWm.doe.gov 10 Tephra Redistribution Submodel Vertical Transport of Radionuclides in Soil Cd(z,50)/(Cdodw) Surface transport of contaminated tephra assumed to be instantaneous 0.0 011 0.2 C.3 0.4 0 Subsequent vertical migration in soil estimated assuming bulk transport from all processes can be represented by diffusion (Fick's Law) U i- 0) &2 C(z,t) el'C.(Zt) 0' Rate of transport depends on effective diffusivity and layer thickness Effective diffusivity constants are uncertain parameters based on field measurements of 137Cs Validated by comparison to data from Chernobyl and Harwell -. -.TDe L _ M....... . .... - fl~~dI;-~ .. ~ ~ -a . .LLYMSwiftStatham NRCTE_040408.ppt 4 6 t>O .az 2 " at 2 i ~ fl~UIUdLLjV~ l Lt - vva~I.~ management vvsteManagement 8 0 11 2 I1~ Example calculation: normalized concentration versus depth for a divide sample point 50 years after deposition MDL-MGR-GS-000006 Rev 00 Figure 7.1.3-3 I w Vw.ocrwvm.doe.gov 11 Tephra Redistribution Submodel Key Parameters TSPA Parameter Distribution Uncertainty Name Parameter Description type Type Value (s) CriticalCr~tiaL~l°e--a Slope a moblization fromfor hRlsIopes Crifical gradient tephra Unifom Epistem~i 0.21-0A7 Drainage _Density a Average drainage density for the Fortymile Wash drainage basin Unrifxmm Epistemaic ScourDepl~a Scour depth in Fortymrle Wash at the fan apex RFOIFlArea Area of the Fortynile Wash fan Fraction, F, of the Fortyniile Constant Wash fan subectto fluvial Unifom LChannelsa Depth of permeable soil on channels, L-, of the Fotynre Wash fan (RMFEI location) Constant L_Dividesa Depth of permeable soil on divides, L•. of the Fortymile Wash fan (RMEI location) Uniform Frcto._Channel-a __________actiity Epistemc Dffus*ty of waste in divides, QD:,or the Fortymile Wash fan (RMEI location) Uniform bý_ililage Tillage depth MDL-WlS-PA-000005 Rev 00 Table 6.5-5 200 cm 102 -140 cm __ D_Diidesa T 0109 - 0.54 Episteric, Unifomicrn/yr b" 33 kin fixed value Difusivityof waste in channels, D. of the Ftdymnle Wash fan (IRMEI location) Tephra setled density fixed vakue 3-2 Episternic DChannelsa Ash Density a 20- 33 km" Epistenric Epistemic 0035 - 0166 I0rt1 - 9 I Episternc 3130 - 1,50) kghm3 tmean = 1000 ,fm" stdw. dev. = 100 3 Episternic 0,65- 0.3Dmj Tonrcated nornul edtt.-.kgI Uniform uepartmeni.OT tnergy • urnce or yLvan Kaaioacnve vvasme ivianagement LLYMSwiftStathamNRCTE_040408.ppt VVww.ocrwm.doe.gov 12 Biosphere SubmodeI for the Volcanic Eruption Modeling. Case • • Animail [gestio ~Subm.Odel .. .Eruption.Case Bios. here Dose Conversion •5 Factors (BDCFs) for Volcanic Eruption Case . ,. Ingestion pathway External Eue External exposure pathway T jInhalation Accounts for high air mass loading following and longerterm soil stabilization bmeeruption h Mron nta - N W841 BCMDL-WIS-PA-000005 tS pathway Rev 00 Figure 6.3-11-6 00817DC 0050.ai *LJUpr mnent of Energy Office of Civilian Radioactive Waste: Management I13 i LL-T MOWIROLa HaM-11M, I CVf0408.ppt WWW.ocrrjm.doe.gov