...

SUPPLEMENTAL DATA REPORT NO.1 DYNAMIC LABORATORY TESTING RESULTS REV. 0

by user

on
Category: Documents
16

views

Report

Comments

Transcript

SUPPLEMENTAL DATA REPORT NO.1 DYNAMIC LABORATORY TESTING RESULTS REV. 0
SUPPLEMENTAL DATA REPORT NO.1
DYNAMIC LABORATORY TESTING RESULTS
NORTH ANNA POWER STATION COL PROJECT
REV. 0
OCTOBER, 2007
MACTEC PROJECT NO. 6468-06-1472
DCN NACOL 253
MACTEC Engineering and Consulting
MACTEC Project 6468-06-1472
October 2007
North Anna Power Station COL Supplemental Data Report No.1, Rev. 0
SUPPLEMENTAL DATA REPORT No.1, Rev. 0
DYNAMIC LABORATORY TESTING RESULTS
1.0
INTRODUCTION
This report is a supplement to the MACTEC Geotechnical Data Report issued as Rev. 0 on
January 23, 2007. The Resonant Column/Torsional Shear laboratory testing was not complete
when the Geotechnical Data Report Rev. 0 was issued. It was agreed by all parties that the test
results would be issued as a supplemental report, not as a revision to the Geotechnical Data
Report. The information in this supplemental data report is submitted for entry into the project
document system and release for use.
2.0
SCOPE OF WORK
The attached test results were obtained from a laboratory study performed at Fugro Consultants
(Fugro) laboratory in Houston, Texas. The dynamic properties of 3 intact soil samples from the
North Anna site were evaluated. Combined resonant column and torsional shear (RCTS)
equipment was used to perform the measurements. The dynamic characteristics evaluated with
the RCTS equipment are the shear modulus (G), and the material damping ratio in shear (D).
Dynamic testing of each specimen involved the evaluation of G and D over a range of isotropic
confining pressures. Five isotropic confining pressures were used for each specimen, ranging
from below to above the estimated in-situ mean effective stress.
Remaining material in the undisturbed sample tubes was used by Fugro to perform particle size
distribution tests (ASTM D 422-63 (2002) and ASTM D 6913-04).
3.0
METHODOLOGY
3.1
Locations
Samples for testing were obtained from Borings B-901(1 sample) and B-911A (2
samples), both located within the Power Block area. The samples were undisturbed
samples obtained using techniques of ASTM D 1587 -00. The undisturbed tubes were
placed upright in protective boxes and transferred under chain of custody from the North
Anna site to Fugro's laboratory following methods of ASTM D 4220-95 (2000) for
Group C samples. The samples were received by Fugro personnel and set aside in climate
controlled storage.
The samples to be tested were listed on a laboratory testing assignment issued by Bechtel.
Twelve samples were assigned for testing. Bechtel later reduced the number of samples
for testing to 4. Three samples were tested successfully; the testing on the fourth sample
was problematic due to material changes in the sample, and Bechtel determined that
testing on that sample was not to be completed.
3.2
Subcontractors
The RCTS testing was done by Fugro under subcontract to MACTEC. Dr. Ken Stokoe of
the University of Texas Austin reviewed and approved the test reports prior to their issue
by Fugro.
NACOL253
MACTEC Engineering and Consulting
MACTEC Project 6468-06-1472
October 2007
North Anna Power Station COL Supplemental Data Report No.1, Rev. 0
3.3
Technical Procedures
3.3.1 . RCTS Tests
The RCTS testing was performed in accordance with "Test Procedures and Calibration
Documentation Associated with the RCTS and URC Tests at the University of Texas at
Austin, Geotechnical Engineering Report GR06-4, DCN: UTSD RCTS GR06-4 REV 0,
dated April 25, 2006." A copy of the procedure is maintained in MACTEC project QA
files.
3.3.2
Particle Size Distribution Tests
Brief descriptions of the particle size distribution tests assigned by Bechtel, performed by
Fugro and contained in this Supplemental Report are given in the paragraphs below.
3.3.2.1 Particle Size Analysis
4.0
3.3.2.1.1
Sieve Analysis (ASTM D 6913-04) - The dried soil sample
is separated into a series of fractions using a standard set of
nested sieves. The sieving operation is conducted by means
of a lateral and vertical motion of the nest of sieves,
accompanied by jarring action to keep the sample moving
continuously over the surface of the sieves. The weights
retained on each of the set of nested sieves are used to
calculate the percent of the sample passing each sieve size.
3.3.2.1.2
Combined sieve and hydrometer Analysis (ASTM D 42263(2002» - The sieve analysis is performed as described
above. The portion of the soil sample passing the No. 200
(75 f..Lm) sieve is soaked in water and dispersed using a
dispersing agent. The solution is placed in a cylinder and
stirred, and the density of the solution is monitored over time
with a hydrometer to observe the settling out of suspended
soil particles. Diameters corresponding to the readings of
the hydrometer are then calculated using Stoke's law.
QUALITY ASSURANCE
4.1
Procurement
Fugro was procured for the work in accordance with the procedures in section QS-7 of
the MACTEC Quality Assurance Project Document (QAPD).
Page 2 of3
NACOL253
MACTEC Engineering and Consulting
MACTEC Project 6468-06-1472
October 2007
North Anna Power Station COL Supplemental Data Report No.1, Rev. 0
4.2
Personnel
Fugro personnel were qualified and operated under the Fugro Quality Assurance plan.
Qualifications for the RCTS reviewer, Dr. Ken Stokoe were reviewed and accepted by
MACTEC in accordance with MACTEC Quality Assurance Procedure QAP 20-1 as
included in the MACTEC QAPD. Qualifications information is maintained in MACTEC
QA files.
4.3
Equipment Calibration
Equipment in the Fugro laboratory was calibrated in accordance with the Fugro Quality
Assurance Program. Copies of the calibration records furnished by Fugro are maintained
in MACTEC QA files.
4.4
Surveillances
MACTEC QA personnel conducted surveillances of the Fugro laboratory during the
course of the RCTS testing. Records of the surveillances are maintained in MACTEC
QA files.
5.0
RESULTS
The test results report from Fugro was reviewed and accepted by MACTEC. The report is
attached.
Page 3 of3
NACOL253
A
MACTEC
DOCUMENTATION OF TECHNICAL REVIEW
SUBCONTRACTOR WORK PRODUCT
Project Name:
Project Number:
North Anna COL
6468-06-1472
Project Manager: Steve Criscenzo
Project Principal: Al Tice
The test results described below have been prepared by the named subcontractor retained in
accordance with the MACTEC QAPD. The test results have been technically reviewed by Dr.
Ken Stokoe of the University of Texas Austin by agreement between Fugro and MACTEC.
Comments on the work or report, if any, have been satisfactorily addressed by the subcontractor.
The attached test results are approved in accordance with section QS-7 of MACTEC' s QAPD
The information and data contained in the attached test results are hereby released by MACTEC
for project use.
REPORT: RCTS Test Results for B-901-UD-I, B-91IA-UDI and B-91IA-PBI - Fugro report
dated August 10, 2007 supplemented by revised tables and test reports dated September 27, 2007.
SUBCONTRACTOR: Fugro Consultants, Inc.
DATE OF ACCEPTANCE: 9-28-07
TECHNICAL REVIEWER:
Dr. Ken Stokoe
PROJECT PRINCIPAL
DCN NACOL - 253
~
MACTEC
:BO J Atlanlic A"eIlUl":. Raleig.h. NC 276114
FUGRO CONSULTANTS, INC.
6100 Hillcroft (77081)
P.O. Box 740010
Houston, Texas 77274
Tel: 713-369-5400
Fax: 713-369-5518
August 10, 2007
Mr. Michael P. Sufnarski, P.E.
Principal Engineer/Project Manager
MACTEC Engineering and Consulting, Inc.
2801 Yorkmont Road I Charlotte, NC 28208
RE:
Three (3) RCTS Reports For The North Anna Project
Dear Mr. Sufnarski:
Fugro has completed three (3) RCTS tests for the North Anna project. The final
reports and the associated RCTS Test Approval by Dr. Kenneth Stokoe have
been attached.
Please let us know if you have questions. Thanks.
Very truly yours,
Fugro Consultants, Inc.
Jiewu Meng, PhD, P.E.
Project Engineer
1!~:.Y
Laboratory Department Manager
Cc: Dr. Kenneth Stokoe
Enclosures
...t:J:A
A member of the Fugro group of companies with offices throughout the world.
-W------------
FUGRO CONSULTANTS, INC.
6100 Hillcroft (77081)
P.O. Box 740010
Houston, Texas 77274
Tel: 713-369-5400
Fax: 713-369-5518
September 27, 2007
Mr. J. Allan Tice, P. E.
Senior Principal Engineer/Assistant Vice President
MACTEC Engineering and Consulting, Inc.
3301 Atlantic Avenue
Raleigh, NC 27604
RE:
Revised Tables, Particle Size Distribution Curves, and Clarification
Letter of Transmittal August 10, 2007 for the North Anna Project
Dear Mr. Tice:
Per your request, Fugro has enclosed the above referenced items for the
following specimens for the North Anna Project:
1. B901-UD1
2. B911A-UD1
3. B911A-PB1
Please let us know if you have questions. Thanks.
Very truly yours,
Fugro Consultants, Inc.
Jiewu Meng, PhD, P.E.
Project Engineer
Bill DeGroff, P.E.
Laboratory Department Manager
Enclosures
..t:J:A
A member of the Fugro group of companies with offices throughout the world.
-W------------
RCTS TEST APROVAL
PROJECT SITE/NAME I~N--..:o_rt_h_Ann----:a-=------
Test ID
RCTS#A
RCTS#B
RCTS#C
RCTS#
Sample ID
B901-UD1
B911A-UD1
B911A-PB1 ~
_
Depth B.S.
(Ft)
9.5
11.7
21.7
The RCTS tests for the site referenced above were tested, and a report was prepared, by
Fugro Consultants, Inc.
I have reviewed the data and associated results listed above and found them to be
reasonable.
Dr. Kenneth Stokoe
FUGRO CONSULTANTS, INC.
6100 Hillcroft (77081)
P.O. Box 740010
Houston, Texas 77274
Tel: 713-369-5400
Fax: 713-369-5518
September 27, 2007
Mr. J. Allan Tice, P. E.
Senior Principal Engineer/Assistant Vice President
MACTEC Engineering and Consulting, Inc.
3301 Atlantic Avenue
Raleigh, NC 27604
RE:
Clarification of Three {3} RCTS Reports, Transmitted August 10,
2007, For The North Anna {NA} Project
Dear Mr. Tice:
Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the
final reports, which were transmitted on August 10, 2007, of three (3) RCTS tests
for the North Anna project.
Please let us know if you have questions. Thanks.
Very truly yours,
Fugro Consultants, Inc.
Jiewu Meng, PhD, P.E.
Project Engineer
~
Bill DeGroff, P.E.
Laboratory Department Manager
A member of the Fugro group of companies with offices throughout the world.
-'6¢i-----------------
APPENDIX A
Specimen NA B901-UD1
Borehole B901
Sample UD1
Depth = 9.5 ft ( 2.9 m)
3
Total Unit Weight = 120.5 Ib/ft
Water Content = 17.9 DID
Estimated In-Situ Ko = 0.5
Estimated In-Situ Mean Effective
Stress = 4.3 psi
FUGRO JOB #: 0401-1662
Testing Station: Re5
1"£;1
-(x,1)--
cQ
NOTE: Visual classification, if not specifically stated
otherwise, was practiced in determining the soil types.
4000
Silty SAND - NA B901-UD1
.1.1 psi
Test Station: RC-5
1IIil2.2 psi
Shearing Strain: <0.001 %
....en
.lll::
><
eu
E
C>
3000
A-
4.3 psi
~
8.7 psi
)I(
17.4 psi
150 r0
=e
:i>
3
"'C
;:::;:
en
l:
:s
:s
c.
CD
"'C
0
~
~
eu
(])
en
:::r
)I(
)I(
)I( )I()I()I(
100
2000
3:
J:
0
en
c.
(])
"'C
:s
I@
~
e:r:
3=
I@
~
~~
l:
l:
~
en
I@
c.
E
0
CD
.,I»
A-
1000
IIIil
•
...J
G)
A-
A
A A- AA
A-
IIIil
IIIil
IIIil
,1IIil1llil
IIIil
•
• • •• •
50
1
10
100
3:
""C
I»
o
o
3
I»
.?<
1000
Duration of Confinement, t, minutes
Figure A.1 Variation in Low-Amplitude Shear Modulus with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
15
Silty SAND - NA B901-UD1
• 1.1 psi
Test Station: RC-5
11II2.2 psi
Shearing Strain: <0.001 %
t:
E
c
A
4.3 psi
~
8.7 psi
::K
17.4 psi
o
~ 10
0:::
C)
t:
a.
E
C'lS
C
C'lS
'i:
SC'lS
:E
Q)
-g
:!:
5
a.
E
~
3=
o
..J
o
1
10
100
1000
Duration of Confinement, t, minutes
Figure A.2 Variation in Low-Amplitude Material Damping Ratio with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
1.0
Silty SAND - NA B901-UD1
• 1.1 psi
Test Station: RC-5
lIiIII2.2 psi
Shearing Strain: <0.001 %
A
4.3 psi
~
8.7 psi
)I(
17.4 psi
0.8
0
+:l
ns
a::
'0
0
>
'0
(I)
ns
E
+:l
tJ)
w
I)I(
0.6
I
)I(
I IIII I
)I(
)I( )I()I( )I(
)I(
0.4
1
10
100
1000
Duration of Confinement, t, minutes
Figure A.3 Variation in Estimated Void Ratio with Magnitude and
Duration of Isotropic Confining Pressure from Resonant Column
Tests
10000
Silty SAND - NA 8901-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
(.)
Time=60 min at each pressure
(I)
~
t/)
>
~
(.)
o
(I)
>
(I)
>
C'CI
3:
...
1000
C'CI
(I)
.c
en
(I)
•
"C
::J
~
•
•
•
•
c.
E
<J:
3=
o
...I
100
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure A.4 Variation in Low-Amplitude Shear Wave Velocity with
Isotropic Confining Pressure from Resonant Column Tests
10000
Silty SAND - NA B901-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
-
Time=60 min at each pressure
~
><
eu
E
•
C)
ur
::::s
•
::::s
"C
0
:E
eu
Q)
...
1000
.s::::
en
•
•
•
Q)
"C
::::s
:!:
c.
E
~
3=
0
..J
100
1
10
100
Isotropic Confining Pressure, (fo, psi
Figure A.5 Variation in Low-Amplitude Shear Modulus with Isotropic
Confining Pressure from Resonant Column Tests
100
Silty SAND - NA B901-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
0~
s:::::
E
c
0
':j:i
C'lS
0::
C)
s:::::
Co
E
C'lS
c
10
C'lS
'i:
SC'lS
:E
Q)
'0
:::s
:!::
Co
E
e:t:
3:
0
•
...J
•
•
•
•
1
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure A.6 Variation in Low-Amplitude Material Damping Ratio with
Isotropic Confining Pressure from Resonant Column Tests
1.0
Silty SAND - NA B901-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
0.8
0
~
co
l:r:
"C
0
>
"C
JBco
E
~
tn
W
0.6
•
•
•
•
•
0.4
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure A.7 Variation in Estimated Void Ratio with Isotropic Confining
Pressure from Resonant Column Tests
4000
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
A
4.3 psi
)K
17.4 psi
150
3000
en
:::T
'I-
~
(I)
.,
s:
0
S»
><
ctI
E
C)
III
~
)K
)K
)K
)K
)K
C.
)K
)K
)K
100
2000
)K
~
'C
0
=-
l:
til
G)
)K
3
:!:
...
S»
)K
.?<
ctI
s:
CI)
.c
en
'C
S»
)K
A
A
A
A
A
A
A
1000
50
)K
A
)K
A
A
A
o
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.8 Comparison of the Variation in Shear Modulus with
Shearing Strain and Isotropic Confining Pressure from the Resonant
Column Tests
1.2
1.0
)I(
)I(~ )I(~ )I( ~ )I( ~
)I(
)I(~
)I(~
)I(
><
eu
~
E
C)
C)
)I(
0.8
~
tn
)I(
::::s
::::s
"C
0
~
:e:
0.6
I-
)I(
eu
CI)
J:
en
~
"C
)I(
CI)
.!:::!
.&.
eu 0.4
)I(
E
I0
Silty SAND - NA B901-UD1
z
Test Station: RC-5
0.2
0.0
1.E-05
Time> 60 min at each pressure
.&.
4.3 psi
)I(
17.4 psi
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.9 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain and Isotropic Confining Pressure from
the Resonant Column Tests
15
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
A
4.3 psi
)I(
17.4 psi
~
0
10
6
0
+:i
C'IS
0::
C)
s::::
c.
E
C'IS
c
C'IS
"i:
Q)
C'IS
5
::E
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.1 0 Comparison of the Variation in Material Damping Ratio
with Shearing Strain and Isotropic Confining Pressure from the
Resonant Column Tests
4000
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
• RC (60 Hz - 93 Hz)
150
3000
....In
11III
TS 1st Cycle (0.5 Hz)
A
TS 10th Cycle (0.5 Hz)
en
:s-
~
CI)
E
.,su
s:
o
In
100 =.
c
><
C'll
c.
C)
:s 2000
:s
In
"C
0
G)
...
su
3
:E
C'll
1<
.c
"'0
s:
(1)
en
su
50
1000
11III
•
o
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, ¥, %
Figure A.11 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 4.3 psi from
the Combined RCTS Tests
1.2
1.0
• m.... _.
~
~
•
><
ns
III!.
E
C)
C)
0.8
•
t/)
~
'.
~
"C
0
:!: 0.6
ns
(1)
...
III!.
J:
•
en
"C
(1)
I.
.!:::!
ns 0.4
...E
0
Silty SAND - NA B901-UD1
•
Test Station: RC-5
z
Time> 60 min at each pressure
0.2
0.0
1.E-05
• RC (60 Hz - 93 Hz)
l1li
TS 1st Cycle (0.5 Hz)
~
TS 10th Cycle (0.5 Hz)
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.12 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
4.3 psi from the Combined RCTS Tests
15
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
• RC (60 Hz - 93 Hz)
?ft.
6
11III
TS 1st Cycle (0.5 Hz)
b.
TS 10th Cycle (0.5 Hz)
10
o
~
eu
0:::
•
C)
s::::
Co
E
eu
c
eu
'i:
.seu
5
:E
•
• • • •i
•
• Il!l• It
• .. f
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.13 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 4.3 psi
from the Combined RCTS Tests
4000
Silty SAND - NA B901-UD1
Test Station: RC-5
=0.001 %
lIIII Shearing Strain =0.01 %
• Shearing Strain
150
3000
en
....
:::r
~
(I)
II)
.,
><
s:0
ctI
E
c.
C)
en
::::s
::::s
100
2000
l:
l:
en
"C
G)
:!E
3
II)
0
...ctI
,?<
s:""C
CI>
.c
en
1000
•
lIIII
• •
•
lIIII
lIIII
lIIII
•
50
lIIII
o
o
0.01
II)
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure A.14 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 4.3 psi
from the Combined RCTS Tests
15
Silty SAND - NA B901-UD1
Test Station: RC-5
=0.001 %
11II Shearing Strain =0.01 %
• Shearing Strain
0~
10
c
0
+:i
co
0:::
C)
r::::
c.
E
co
c
co
.~
(1)
co
~
5
11II
11II
•
• •
0.1
1
11II
11II
•
•
0
0.01
10
100
1000
Loading Frequency, f, Hz
Figure A.15 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of 4.3
psi from the Combined RCTS Tests
4000
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
• RC (77 Hz - 123 Hz)
3000
III
TS 1st Cycle (0.5 Hz)
~
TS 10th Cycle (0.5 Hz)
150
....
(/)
::r
t/)
.lIl::
(I)
$I)
""I
><
eu
E
C>
t/)
::::J
::::J
"C
0
2000
3:
0
a-
• •• •• • ••
•
A
11II
II
100
t/)
III
G')
II·
:E
eu
CI)
...
3
$I)
•
.?<
II
.s::::
en
3:
"tJ
1\
$I)
•
1000
50
•
o
o
1.E-05
=-
s::::
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.16 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 17.4 psi from
the Combined RCTS Tests
1.2 , - - - - - - - - - - - - - - - - - - - -...............
1.0
• • • • •
,
I11III
..&.
~
.&.
.I11III
><
co
.&.
E
-
(!)
(!)
0.8
•
I11III
.&.
•
(fJ
:::s
:::s
"C
0
-.
•
I11III
.&.
:!:
a.. 0.6
co
Q)
J:
en
•
"C
Q)
.~
co 0.4
E
a..
Silty SAND - NA B901-UD1
z
Test Station: RC-5
0
•
Time> 60 min at each pressure
0.2
0.0
1.E-05
• RC (77 Hz - 123 Hz)
I11III
TS 1st Cycle (0.5 Hz)
.&.
TS 10th Cycle (0.5 Hz)
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.17 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
17.4 psi from the Combined RCTS Tests
15
Silty SAND - NA B901-UD1
Test Station: RC-5
Time> 60 min at each pressure
• RC (77 Hz - 123 Hz)
0~
II1II
TS 1st Cycle (0.5 Hz)
.4.
TS 10th Cycle (0.5 Hz)
ci 10
0
+:l
eu
0::
C)
s:::
c.
E
•
eu
C
eu
.t:
.seu
..
5
it
:E
I
.
•
•
•
•
•
•
•
•
•
• • •
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure A.18 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 17.4 psi
from the Combined RCTS Tests
4000
Silty SAND - NA B901-UD1
Test Station: RC-5
=0.001 %
IiIIII Shearing Strain =0.01 %
• Shearing Strain
150
3000
....
en
~
:::r
><
C'lS
E
s:0
CD
..,
$I)
(!)
l/)
::::J
::::J
"C
2000
0
..
•
• •
• •
•
a.
100
G)
3
$I)
.?<
:E
IiIIII
C'lS
G)
IiIIII
t:
t:
til
IiIIII
IiIIII
s:""C
J:
en
$I)
50
1000
o
o
0.01
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure A.19 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 17.4 psi
from the Combined RCTS Tests
15
Silty SAND - NA B901-UD1
Test Station: RC-5
• Shearing Strain = 0.001 %
II
0~
c
Shearing Strain = 0.01 %
10
0
~
ns
0:::
C)
c
a.
E
ns
C
ns
'i:
CD
+"
ns
:!:
5
11IIII
11IIII
11IIII
11IIII
11IIII
11IIII
•
0
0.01
•
• •
0.1
1
•
•
10
100
1000
Loading Frequency, f, Hz
Figure A.20 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of 17.4
psi from the Combined RCTS Tests
Table A.1
Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen NA B901-UD1
Isotropic Confining Pressure,
(psi)
1.1
2.2
4.3
8.7
17.4
(psf)
158
317
619
1253
2506
0"0
(kPa)
8
15
30
60
120
Low-Amplitude Shear
Modulus, Gmax
(ksf)
919
990
1226
1574
2140
(MPa)
44
48
59
76
103
Low-Amplitude
Shear Wave
Velocity, Vs
(fps)
495
514
571
646
750
Low-Amplitude Estimated
Void
Material Damping
Ratio, e
Ratio, Dmin
(%)
2.45
0.616
2.44
0.615
2.14
0.612
1.92
0.605
1.63
0.594
Table A.2
Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen NA B901-UD1; Isoptropic Confining Pressure, cro = 4.3 psi (0.6 ksf =30 kPa)
Peak
Shearing
Strain, %
Shear
Modulus,
G, ksf
Normalized
Shear
Modulus,
G/G max
+
Average
Shearing
Strain, %
Material
Damping
Ratio X , D, %
6.70E-05
6.70E-05
1248
1.00
2.22
1.32E-04
2.21
1.32E-04
1248
1.00
2.66E-04
1242
2.66E-04
0.99
2.34
5.24E-04
5.24E-04
1233
0.99
2.39
1211
0.97
1.05E-03
1.06E-03
2.63
2.01 E-03
2.79
2.03E-03
1167
0.93
3.57E-03
3.66E-03
1094
0.88
3.23
6.90E-03
6.74E-03
972
0.78
3.83
1.29E-02
1.38E-02
816
0.65
4.94
2.73E-02
6.29
0.51
3.05E-02
635
4.67E-02
5.42E-02
522
0.42
7.84
+ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve
x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve
Table A.3
Peak
Shearing
Strain, %
1.05E-04
1.81 E-04
3.76E-04
8.76E-04
1.79E-03
3.87E-03
9.86E-03
2.46E-02
3.96E-02
Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen NA B901-UD1; Isotropic Confining Pressure, 0"0= 4.3 psi (0.6 ksf
= 30 kPa)
First Cycle
Normalized
Shear
Material
Modulus, Shear Modulus, Damping
G/G max
Ratio, D, %
G, ksf
1.73
1103
1.00
1.00
1.70
1103
1.00
1.72
1103
1.75
1050
0.95
0.93
2.44
1026
2.55
945
0.86
0.67
4.83
740
0.54
6.51
593
501
0.45
8.63
Peak
Shearing
Strain, %
1.03E-04
2.01 E-04
3.58E-04
8.74E-04
1.78E-03
3.94E-03
9.82E-03
2.51 E-02
4.09E-02
Tenth Cycle
Normalized
Shear
Modulus, Shear Modulus,
G/G max
G, ksf
1083
1083
1083
1056
1031
927
743
580
485
1.00
1.00
1.00
0.97
0.95
0.86
0.69
0.54
0.45
Material
Damping
Ratio, D, %
1.93
1.77
1.52
1.93
2.42
2.71
4.75
6.70
9.10
Table A.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen NA B901-UD1; Isoptropic Confining Pressure, cr o= 17.4 psi ( 2.5 ksf = 120 kPa)
Peak
Shearing
Strain, %
Material
Normalized
Average + Damping
Shear
Shearing
Modulus,
RatioX , D,
Strain,
%
G/G max
%
1.00
1.30E-05
1.61
1.00
2.70E-05
1.64
1.00
5.20E-05
1.77
1.00
1.03E-04
1.89
1.00
1.98E-04
2.06
2.21
0.99
3.92E-04
0.98
7.93E-04
2.40
1.49E-03
0.95
2.59
0.90
2.74E-03
2.86
4.81 E-03
3.20
0.83
0.72
9.42E-03
3.44
1.89E-02
0.60
3.93
0.46
3.96E-02
5.18
0.40
6.10E-02
6.77
Strain from the First Three Cycles of the Free Vibration Decay Curve
Ratio from the First Three Cycles of the Free Vibration Decay Curve
Shear
Modulus,
G, ksf
1.30E-05
2200
2.70E-05
2200
5.20E-05
2200
1.03E-04
2200
1.98E-04
2189
3.92E-04
2183
7.93E-04
2155
1.51 E-03
2094
2.81 E-03
1987
5.17E-03
1819
9.78E-03
1592
2.03E-02
1313
4.44E-02
1015
7.14E-02
875
+ Average Shearing
x Average Damping
Table A.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen NA B901-UD1; Isotropic Confining
Pressure, 0"0=17.40 psi (2.5 ksf = 120 kPa)
Peak
Shearing
Strain, %
4.04E-04
9.01 E-04
1.87E-03
3.99E-03
9.28E-03
1.75E-02
2.14E-02
First Cycle
Shear
Normalized
Modulus,
Shear
G, ksf
Modulus,
1959
1.00
1965
1.00
1886
0.96
1764
0.90
0.77
1519
1340
0.68
1283
0.65
Material
Damping
Ratio, D,
0.99
1.00
1.41
2.30
4.09
4.75
5.27
Peak
Shearing
Strain, %
3.91 E-04
9.05E-04
1.87E-03
4.03E-03
9.26E-03
1.76E-02
2.14E-02
Tenth Cycle
Shear
Normalized
Material
Modulus,
Shear
Damping
G, ksf
Modulus, Ratio, D, %
2028
1.00
0.90
1956
0.96
1.28
1887
0.93
1.65
1749
0.86
2.36
1523
0.75
3.95
1333
0.66
4.92
1283
0.63
5.39
U.S. STANDARD SIEVE
SIZES IN INCHES
1.5
3/4
3/8
II
II
II
3
100
II
4
10
II
U. S. STANDARD SIEVE
NUMBERS
20
40
-
100
I
I
t\.~
200
II
r-...
"\
80
lI
\\
Q
w
$: 60
>co
0:::
w
\
z
Li:
\
I-
as
HYDROMETER
ANALYSIS
40
()
0:::
"I
W
n.
t--lt
I--..
N I-e20
l\a.
•
-I-. N'-. r.
;
o
100
10
0.1
GRAIN SIZE IN MILLIMETERS
GRAVEL
Coarse
0.01
SAND
Fine
SYMBOL
BORING
DEPTH, FT
•
B-901-UD1
9.5
Medium
SILT or CLAY
Fine
CLASSIFICATION
5.73
158.30
0.1766
0.53
Silty Fine Sand, tan
'lJ
GRAIN SIZE CURVE
-l
TEST METHOD ASTM D422-63 (2002)
s:
m
N
--
•
100
0.001
------------------------------======--
APPENDIX B
Specimen NA B911A-UD1
Borehole B911A
Sample UD1
Depth = 11.7 ft ( 3.6 m)
3
Total Unit Weight = 121.9 Ib/ft
Water Content = 16.6 o~
Estimated In-Situ Ko = 0.5
Estimated In-Situ Mean Effective
Stress = 5.6 psi
FUGRO JOB #: 0401-1662
Testing Station: Re5
--@------------------------
NOTE: Visual classification, if not specifically stated
otherwise, was practiced in determining the soil types.
6000
SAND - NA B911A-UD1
• 1.4 psi
Test Station: RC-5
11III2.8 psi
Shearing Strain: <0.001 %
-
.&
5.6 psi
en
it
11.2 psi
I
0
><
ns
~
22.5 psi
:i>
~
E
C)
:E
4000
200 3
"C
;:::;:
en
s::::
:::s
:::s
Co
CD
en
:::r
"C
0
:E
...ns
CD
...
Sl)
:s:
0
CI)
.s::
en
~
CI)
~ ~~~
~
Co
s::::
s::::
"C
:::s
en
~
Co
E
100
2000
it
it
it it it it
.&
.&
.& .&.&.&
.&
11II
11II 11II 11II 11II 11II
11II
«
3
Sl)
.?<
I
3=
0
-I
&
11II
•
:s:
""C
Sl)
• • • ••• •
o
o
1
10
100
G)
1000
Duration of Confinement, t, minutes
Figure 8.1 Variation in Low-Amplitude Shear Modulus with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
15
SAND - NA B911A-UD1
• 1.4 psi
Test Station: RC-5
Ii
2.8 psi
I.
5.6 psi
~
11.2 psi
)I(
22.5 psi
Shearing Strain: <0.001 %
~
0
s::::
E
c
0
+:i
ca 10
0:::
C)
s::::
a.
E
ca
C
ca
'i:
(1)
ca
:i!E
(1)
"C
::::J
~
•
5
•
a.
E
~
)I(
::0
18
t
11III
~
t •• ,
.)1(
II~~
I
•
)I(
...J
o
1
10
100
1000
Duration of Confinement, t, minutes
Figure 8.2 Variation in Low-Amplitude Material Damping Ratio with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
1.2
SAND - NA B911A-UD1
.1.4 psi
Test Station: RC-5
Shearing Strain: <0.001 %
1.0
II
2.8 psi
.t.
5.6 psi
~
11.2 psi
)I(
22.5 psi
o
+:i
C'lS
0::
"C
o
~ 0.8
SC'lS
E
+:i
en
W
0.6
I I IIII !
0.4
1
10
100
1000
Duration of Confinement, t, minutes
Figure 8.3 Variation in Estimated Void Ratio with Magnitude and
Duration of Isotropic Confining Pressure from Resonant Column
Tests
10000
SAND - NA 8911A-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
()
Time=60 min at each pressure
Q)
~
~
~
()
o
Q)
>Q)
>
ca
3:
1000
r.-
ca
Q)
.s:::
U)
Q)
"C
•
:J
~
•
•
•
•
c.
E
<J:
3=
o
..J
100
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure 8.4 Variation in Low-Amplitude Shear Wave Velocity with
Isotropic Confining Pressure from Resonant Column Tests
10000
SAND - NA B911A-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
....
~
><
eu
•
E
C>
•
tn
::::s
::::s
•
"C
0
:!:
...eu
1000
•
(1)
J:
en
•
(1)
"C
::::s
:!:
c.
E
~
3=
0
...J
100
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure 8.5 Variation in Low-Amplitude Shear Modulus with Isotropic
Confining Pressure from Resonant Column Tests
10
SAND - NA B911A-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
'#.
Time=60 min at each pressure
s::
E
c
6
+:l
nl
0:::
C)
s::
•
c.
E
nl
C
•
•
•
nl
•
'i:
~
nl
:E
CI)
"C
::J
:!:
C.
E
1o
..J
1
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure 8.6 Variation in Low-Amplitude Material Damping Ratio with
Isotropic Confining Pressure from Resonant Column Tests
1.2
SAND - NA 8911A-UD1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
1.0
o
+::
(}.
"C
o
~ 0.8
.eeu
E
+::
t/)
w
0.6 -
•
•
•
•
•
0.4
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure 8.7 Variation in Estimated Void Ratio with Isotropic Confining
Pressure from Resonant Column Tests
6000
SAND - NA B911A-UD1
45.6 psi
Test Station: RC-5
Time> 60 min at each pressure
~
22.5 psi
200 en
~
4000
.lII::
:::r
(I)
..,ll)
><
eu
E
s:o
ur
::::l
l:
l:
III
C)
Co
::::l
"C
G')
o
3
ll)
.?<
:E
...eu
CI>
100
~ 2000
ll)
o
o
1.E-06
s:
"C
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure B.8 Comparison of the Variation in Shear Modulus with
Shearing Strain and Isotropic Confining Pressure from the Resonant
Column Tests
1.2
1.0
)K
)K4.~~~~~~
~
)K~
><
ns
E
-
C>
C> 0.8
)K
~
tn
;j
)K
;j
'0
0
~
~ 0.6
ns
.c
)K
(1)
en
~
'0
(1)
.~
ns 0.4
l
E
"'-
SAND - NA B911A-UD1
0
z
Test Station: RC-5
0.2
0.0
1.E-06
Time> 60 min at each pressure
~
5.6 psi
)K
22.5 psi
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure B.9 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain and Isotropic Confining Pressure from
the Resonant Column Tests
15
SAND - NA B911A-UD1
Test Station: RC-5
Time> 60 min at each pressure
~
5.6 psi
:t(
22.5 psi
~
0
ci 10
0
+:0
ns
0:::
C)
I:
a.
E
ns
C
'iii
-i:
Q)
ns
5
:!:
Shearing Strains in RC Test were
corrected to the average of the first 3
free-vibration cycles
o
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8_10 Comparison of the Variation in Material Damping Ratio
with Shearing Strain and Isotropic Confining Pressure from the
Resonant Column Tests
6000
SAND - NA B911A-UD1
Test Station: RC-5
Time >60 min at each pressure
+ RC (62 Hz - 100 Hz)
m TS 1st Cycle (0.5 Hz)
~ 4000
&
200
TS 10th Cycle (0.5 Hz)
en
:::r
(l)
D)
..,
><
eu
3:
E
o
c.
C)
c
tn
:::s
:::s
C
tn
G)
"C
o
3
:E
~
l-
eu
(I)
100 3:
~ 2000
""0
D)
+ + + + + + + +
..... , 'III
+
III
+
III
+
+
+
o
o
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.11 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 5.6 psi from
the Combined RCTS Tests
1.2
••
1.0
.... .- • •
II
IIIIll
><
ctl
IIIIll
•
&.
E
C)
C)
•
0.8
In
:::s
:::s
IIIIll
&.
•
't:I
0
:E 0.6
...
ctl
(1)
J:
en
•
't:I
(1)
.~
ctl
...0E
0.4
SAND - NA B911A-UD1
•
Test Station: RC-5
z
Time >60 min at each pressure
0.2
• RC (62 Hz - 100 Hz)
IIIIll
TS 1st Cycle (0.5 Hz)
'" TS 10th Cycle (0.5 Hz)
0.0
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.12 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
5.6 psi from the Combined RCTS Tests
15
SAND - NA B911A-UD1
Test Station: RC-5
Time >60 min at each pressure
•
• RC (62 Hz -100 Hz)
?fi!.
IlIIi
TS 1st Cycle (0.5 Hz)
&.
TS 10th Cycle (0.5 Hz)
•
ci 10
o
;
~
•
C)
c
c.
E
eu
C
eu
•
'i:
.seu
:E
5
• • • • • • ••
•
o
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.13 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 5.6 psi
from the Combined RCTS Tests
6000
SAND - NA 8911A-UD1
Test Station: RC-5
• Shearing Strain = 0.001 %
IIIi
'Ui
~
Shearing Strain
=0.01 %
200 (J)
:::r
4000
(I)
A)
.,
><
E
s:
n:l
o
Co
l:
l:
C)
Ii
::::s
::::s
en
G)
"C
o
3A)
.?<
100 ~
:iE
I-
n:l
(1)
ti
2000
A)
•
• •
• •
•
o
o
0.01
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure 8.14 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 5.6 psi
from the Combined RCTS Tests
15
SAND - NA B911A-UD1
Test Station: RC-5
=0.001 %
IiII Shearing Strain =0.01 %
• Shearing Strain
~
0
ci 10
6'
ns
~
0:::
C)
s:::
0-
E
ns
C
ns
-
IiII
'i:
IiII
(1)
ns
:i:
IiII
IiII
5
•
•
•
•
• •
o
0.01
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure 8.15 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of 5.6
psi from the Combined RCTS Tests
6000
SAND - NA B911A-UD1
Test Station: RC-5
Time >60 min at each pressure
• RC (86 Hz - 136 Hz)
11III
TS 1st Cycle (0.5 Hz)
~
TS 10th Cycle (0.5 Hz)
200
]
4000
(J)
:r
(I)
D)
.,
><
CIS
E
:s:
o
c.
C)
s::::
s::::
en
::J
::J
en
"C
G)
•••••••••
o
:!:
3
D)
)<
"-
CIS
Q)
100
~ 2000
:s:
"'0
D)
•
o
1.E-06
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.16 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 22.5 psi from
the Combined RCTS Tests
1.2 - - . - - - - - - - - - - - - - - - - - - - - - - - ,
1.0
•
•
•
•
III •
•
II
•
><
eu
E
§
0.8
ur
~
•
~
"C
o
:iiE
L0.6
eu
C!)
•
.c
en
"C
C!)
.~
•
eu 0.4
E
L-
SAND - NA B911A-UD1
o
Z
Test Station: RC-5
Time >60 min at each pressure
0.2
• RC (86 Hz - 136 Hz)
o.0
II
TS 1st Cycle (0.5 Hz)
A
TS 10th Cycle (0.5 Hz)
-!--'--l.....J...L.J...l.Ll.j--i-.!-W...J..J.J.Jt-..l......J...J.-.J...W.J..lt--.L-J....J...W.J,..Uf--L.-J....w...J..l.l.l.j---l-...l-L.J...J...UJ.j
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.17 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
22.5 psi from the Combined RCTS Tests
15
SAND - NA B911A-UD1
Test Station: RC-5
Time >60 min at each pressure
• RC (86 Hz - 136 Hz)
';fl.
•
II
TS 1st Cycle (0.5 Hz)
A
TS 10th Cycle (0.5 Hz)
C 10
•
•
5
•
••
••••••••
.l
I
..
t
I I.
o
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
Shearing Strain, y, %
Figure 8.18 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 22.5 psi
from the Combined RCTS Tests
6000
SAND - NA B911A-UD1
Test Station: RC-5
• Shearing Strain
III
=0.001 %
Shearing Strain = 0.01 %
200 en
'; 4000
::::T
CD
~
l»
><
co
""I
s:
0
E
c-
C)
C
C
til
ur
::::J
::::J
"C
G)
•
0
:E
lco
(1)
.c
tn 2000
•
IIIIR
• •
III
III
• •
IIIIR
100
s:
""C
l»
III
o
o
0.01
3
l»
.?<
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure 8.19 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 22.5 psi
from the Combined RCTS Tests
15
SAND - NA B911A-UD1
Test Station: RC-5
=0.001 %
iIIII Shearing Strain =0.01 %
• Shearing Strain
~
0
ci 10
0'
~
C'CI
0::
tn
C
c.
E
C'CI
C
iIIII
C'CI
'i:
CI)
C'CI
:E
5
iIIII
iIIII
•
iIIII
iIIII
iIIII
•
• •
• •
1
10
0
0.01
0.1
100
1000
Loading Frequency, f, Hz
Figure 8.20 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of
22.5 psi from the Combined RCTS Tests
Table B.1
Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen NA B911-UD1
Isotropic Confining Pressure, cro
(psi)
1.4
2.8
5.6
11.2
22.5
(psf)
202
403
806
1613
3240
(kPa)
10
19
39
77
155
Low-Amplitude Shear
Modulus, G max
(ksf)
917
1071
1389
1890
2608
(MPa)
44
51
67
91
125
Low-Amplitude
Shear Wave
Velocity, Vs
(fps)
491
530
603
701
820
Low-Amplitude Estimated
Void
Material Damping
Ratio,
e
Ratio, Dmin
(%)
3.84
0.578
0.575
3.99
3.53
0.568
3.49
0.556
3.20
0.544
Table B.2
Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen NA B911A-UD1; Isoptropic Confining Pressure, 0 = 5.6 psi (0.8 ksf = 39 kPa)
°
Normalized
Material
Average +
Shear
Damping
Shearing
Modulus,
Strain,
%
Ratio X , D, %
G/G max
1.50E-05
1422
1.00
3.51
1.50E-05
2.80E-05
3.51
2.80E-05
1422
1.00
5.70E-05
3.55
5.70E-05
1422
1.00
1.14E-04
1.14E-04
1422
1.00
3.59
2.29E-04
3.55
2.29E-04
1422
1.00
4.56E-04
3.84
4.56E-04
1415
1.00
9.44E-04
0.98
3.88
9.44E-04
1396
1.44E-03
4.04
1357
0.95
1.86E-03
2.78E-03
4.53
3.65E-03
1268
0.89
5.13E-03
5.74
7.18E-03
1124
0.79
9.57E-03
7.89
1.49E-02
920
0.65
1.99E-02
10.84
3.51 E-02
678
0.48
3.29E-02
12.35
6.00E-02
555
0.39
+ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve
x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve
Peak
Shearing
Strain, %
Shear
Modulus,
G, ksf
Table B.3
Peak
Shearing
Strain, %
1.12E-04
1.99E-04
3.72E-04
9.17E-04
1.97E-03
4.35E-03
1.05E-02
Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen NA B911A-UD1; Isotropic Confining Pressure, 0"0= 5.6 psi (0.8
ksf = 39 kPa)
First Cycle
Normalized
Shear
Material
Modulus, Shear Modulus, Damping
G/G max
Ratio, 0, %
G, ksf
1076
1.00
0.78
1076
1.00
1.20
1.00
1.12
1076
1076
1.00
1.83
1076
1.00
2.60
0.92
3.14
994
823
0.77
5.23
Peak
Shearing
Strain, %
9.87E-05
1.87E-04
3.65E-04
8.99E-04
2.00E-03
4.41 E-03
1.07E-02
Tenth Cycle
Normalized
Shear
Modulus, Shear Modulus,
G/G max
G, ksf
1130
1.00
1130
1.00
1130
1.00
1130
1.00
0.96
1084
982
0.87
0.71
806
Material
Damping
Ratio, 0, %
1.02
0.92
0.94
2.10
2.78
3.37
5.34
Table BA Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen NA B911A-UD1; Isoptropic Confining Pressure, 0"0= 22.5 psi ( 3.2 ksf =155 kPa)
Peak
Shearing
Strain, %
Material
Normalized
+
Average
Damping
Shear
Shearing
Modulus,
RatioX , D,
Strain,
%
G/G max
%
6.00E-06
1.00
3.09
1.20E-05
3.06
1.00
2AOE-05
1.00
3.24
4.80E-05
3.27
1.00
9.50E-05
3.27
1.00
1.91 E-04
3.24
1.00
3.80E-04
3.27
1.00
7.81
E-04
3041
0.99
1.23E-03
0.96
3.59
2.32E-03
3.73
0.91
4.21 E-03
0.83
4.72
7.94E-03
6.13
0.70
1.57E-02
8.52
0.55
3.55E-02
0040
11040
Strain from the First Three Cycles of the Free Vibration Decay Curve
Ratio from the First Three Cycles of the Free Vibration Decay Curve
Shear
Modulus,
G, ksf
6.00E-06
2670
1.20E-05
2670
2AOE-05
2670
4.80E-05
2670
9.50E-05
2670
1.91 E-04
2670
3.80E-04
2663
7.81 E-04
2636
1.53E-03
2555
2.93E-03
2423
5.58E-03
2204
1.13E-02
1860
2A8E-02
1465
6.29E-02
1077
+ Average Shearing
x Average Damping
Table 8.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen NA 8911A-UD1 ; Isotropic Confining
Pressure, 0"0=22.5 psi (3.2 ksf = 155 kPa)
Peak
Shearing
Strain, %
9.36E-05
1.86E-04
3.52E-04
9.60E-04
1.96E-03
4.13E-03
9.36E-03
1.33E-02
1.92E-02
First Cycle
Normalized Material
Shear
Shear
Damping
Modulus,
Ratio, D,
Modulus,
G, ksf
--2230
1.00
1.00
1.25
2230
1.00
1.13
2230
1.22
1.00
2230
0.99
1.46
2209
2.15
0.94
2096
0.83
3.73
1850
4.12
0.80
1783
4.85
0.74
1644
Peak
Shearing
Strain, %
9.88E-05
1.81 E-04
3.60E-04
9.52E-04
1.96E-03
4.18E-03
9.33E-03
1.34E-02
1.93E-02
Tenth Cycle
Shear
Normalized
Material
Modulus,
Damping
Shear
G, ksf
Modulus, Ratio, D, %
1.17
2211
1.00
2211
1.00
1.09
0.98
2211
1.00
2211
1.00
1.50
2208
2.00
1.00
2.21
2073
0.94
1856
3.67
0.84
4.28
1770
0.80
1638
5.04
0.74
U.S. STANDARD SIEVE
SIZES IN INCHES
1.5
3/4
3/8
II
II
II
3
100
II
U. S. STANDARD SIEVE
NUMBERS
4
IT
10
--- ."
20
80
40
100
200
I
I
II
,
--"
f\
N
,
\.
20
\
-0
m
\
;:0
0
m
z
60
"'.
W
Z
u:::
40 -I
0
»0
;:0
(fl
m
\
l-
40
<.)
0::
w
a.
;:0
OJ
60 -<
~
m
... ~
i'
20
Q
I
-I
~
80
·1'14
o
100
10
0.1
0.01
GRAIN SIZE IN MILLIMETERS
GRAVEL
Coarse
SAND
Fine
Medium
SILT or CLAY
Fine
SYMBOL
BORING
DEPTH. FT
~
.Q~
•
B-911A-UD1
11.7
0.215
0.66
CLASSIFICATION
Sand, tan
\J
GRAIN SIZE CURVE
-I
TEST METHOD ASTM 0422-63 (2002)
s;:
m
<:>
0
(J)
(J)
0::
rQ
z
0
.;>.
W
>co
CD
"0
0
;:+
0
lI
<.9
S
;:0
HYDROMETER
ANALYSIS
100
0.001
APPENDIX C
Specimen NA B911A-PB1
Borehole B911A
Sample PB1
Depth 21.7 ft ( 6.6 m)
=
=
=
3
Total Unit Weight 124.2 Ib/ft
Water Content 15.1 0/0
Estimated In-Situ Ko 0.5
Estimated In-Situ Mean Effective
Stress 11.4 psi
=
=
FUGRO JOB #: 0401-1662
Testing Station: Re5
NOTE: Visual classification, ifnot specifically stated
otherwise, was practiced in determining the soil types.
6000
SAND -NA B911A-PB1
.2.9 psi
Test Station: RC-5
II
5.7 psi
A
11.4 psi
....en
~
22.8 psi
><~
)I(
Shearing Strain: <0.001 %
r
0
~
200
E
C)
~
45.6 psi
nl
4000
"C
;:::;:
en
c
c.
(I)
en
~
~
"C
0
~
:::r
)I(
L.
)I( )I()I( )I(
(I)
)I(
..,s:u
nl
s:
0
G)
.c
CJ)
c.
C
C
G)
"C
~
:!:::
c.
E
~
»
3
2000
~ ~~
~
~
fj]l
A
~
A A AA
A
II
IiIIl
II IiIIl 1111
IiIIl
100
3
s:u
1<
~
s:"'tI
0
-I
~
II
s:u
• • • • ••• •
0
1
10
en
G')
100
0
1000
Duration of Confinement, t, minutes
Figure C.1 Variation in Low-Amplitude Shear Modulus with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
20
SAND -NA 8911A-P81
• 2.9 psi
Test Station: RC-5
II
5.7 psi
A
11.4 psi
Iij
22.8 psi
Shearing Strain: <0.001 %
c
E 15
::':45.6 psi
c
o
+:i
ca
0::
C)
c
a.
E
ca
C 10
ca
'i:
~
ca
:E
(1)
'0
~
:t::
a.
E 5
1o
•
..J
I
I
, Ilii
o
1
10
100
1000
Duration of Confinement, t, minutes
Figure C.2 Variation in Low-Amplitude Material Damping Ratio with
Magnitude and Duration of Isotropic Confining Pressure from
Resonant Column Tests
1.0
SAND -NA B911A-PB1
• 2.9 psi
Test Station: RC-5
Shearing Strain: <0.001 %
0.8
IIIlI
5.7 psi
A
11.4 psi
~
22.8 psi
): 45.6 psi
.
0
C'll
0:::
"0
0
>
-.
"0
0.6
Q)
C'll
E
@Jl
• • •••• •
):
a
t /)
A
W
A
A
.& .&.&.&
.&
~
~
@Jl
~ ~~
~
):
):
): ):):):
):
0.4
0.2
1
10
100
1000
Duration of Confinement, t, minutes
Figure C.3 Variation in Estimated Void Ratio with Magnitude and
Duration of Isotropic Confining Pressure from Resonant Column
Tests
10000
SAND -NA B911A-PB1
Test Station: RC-5
Shearing Strain: <0.001 %
(.)
Time=60 min at each pressure
(J)
~
!j
~
(.)
o
(J)
>(J)
>
~
1000
•
l-
ns
(J)
.s::
en
(J)
"C
::s
~
•
c.
E
•
•
•
1
...J
100
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure C.4 Variation in Low-Amplitude Shear Wave Velocity with
Isotropic Confining Pressure from Resonant Column Tests
10000
SAND -NA B911A-PB1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
....
til
.lIl:::
•
><
C'lS
E
•
C)
til
::::s
::::s
"C
0
•
:E
L.
C'lS
1000
•
Q)
J:
en
•
Q)
"C
::::s
:!:
c.
E
~
3=
0
...J
100
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure C.S Variation in Low-Amplitude Shear Modulus with Isotropic
Confining Pressure from Resonant Column Tests
100
SAND -NA B911A-PB1
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
0~
c:
E
c
0
+:i
C'lS
0::
C)
c:
a.
E
C'lS
C
10
C'lS
.i:
SC'lS
:E
(J)
"C
:::J
:!:
a.
E
~
;:
0
...J
•
•
•
•
•
1
1
100
10
Isotropic Confining Pressure,
0'0'
psi
Figure C.G Variation in Low-Amplitude Material Damping Ratio with
Isotropic Confining Pressure from Resonant Column Tests
1.0
SAND -NA 8911A-P81
Test Station: RC-5
Shearing Strain: <0.001 %
Time=60 min at each pressure
0.8
0
+:i
eu
0:::
"C
0
>
"C
0.6
Seu
E
•
+:i
tn
W
•
•
•
•
0.4
0.2
1
10
100
Isotropic Confining Pressure, (jo, psi
Figure C.7 Variation in Estimated Void Ratio with Isotropic Confining
Pressure from Resonant Column Tests
6000
SAND -NA B911A-PB1
Test Station: RC-5
Time> 60 min at each pressure
A
11.4 psi
:t(
45.6 psi
200
'Ui
4000
.llI::
(J)
:::T
CD
l»
.,
><~
:s:
o
ra
E
a.
C>
l:
l:
In
::::s
::::s
en
G)
"C
o
3
l»
.?<
:E
lra
Q)
100
~ 2000
l»
o
o
1.E-05
:s:
"C
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.B Comparison of the Variation in Shear Modulus with
Shearing Strain and Isotropic Confining Pressure from the Resonant
Column Tests
1.2
1.0
;(;(.il(~.il(~
~
><
eu
-
~
~
E
C)
C)
&.
0.8
;(
tn
&.
~
~
"C
0
:E 0.6
eu
Q)
...
.s::::
en
,j(
"C
Q)
.!:::!
;(
eu 0.4
...0E
&.
SAND -NA 8911A-P81
z
Test Station: RC-5
0.2
Time> 60 min at each pressure
&.
11.4 psi
;( 45.6 psi
0.0
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.9 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain and Isotropic Confining Pressure from
the Resonant Column Tests
20
SAND -NA B911A-PB1
Test Station: RC-5
Time> 60 min at each pressure
15
Shearing Strains in RC Test were
corrected to the average of the first 3
free-vibration cycles
0~
C~
0
~
11.4 psi
)K
45.6 psi
~
co
0::
C)
s::::
10
Co
E
co
c
co
-
'i:
(1)
co
:i!E
5
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.10 Comparison of the Variation in Material Damping Ratio
with Shearing Strain and Isotropic Confining Pressure from the
Resonant Column Tests
6000
SAND -NA B911A-PB1
Test Station: RC-5
Time >60 min at each pressure
• RC (36 Hz - 61 Hz)
~ 4000
IlIlI
TS 1st Cycle (0.5 Hz)
j,
TS 10th Cycle (0.5 Hz)
200 en
:::s(I)
p)
..,
><
ns
:s:
o
E
a.
C)
r::::
r::::
tn
:::s
:::s
tn
"C
G)
:E
3
p)
.?<
o
l-
ns
CI)
100
c75 2000
:s:
-0
p)
. ..
••••••
~ ~ ~
II
•
II
•
II
•
II
•
o
o
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.11 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 11.4 psi from
the Combined RCTS Tests
1.2
1.0
• • •
GIl
III
•
•
><
n:s
E
~ 0.8
•
,.
In
::s
::s
"'C
o
:E
... 0.6
n:s
(1)
.c
,.
en
"'C
(1)
.!:::!
0.4
...E
o
z
SAND -NA B911A-PB1
Test Station: RC-5
•
Time >60 min at each pressure
0.2
0.0
1.E-05
• RC (36 Hz - 61 Hz)
IIIIi
TS 1st Cycle (0.5 Hz)
~
TS 10th Cycle (0.5 Hz)
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.12 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
11.4 psi from the Combined RCTS Tests
20
SAND -NA B911A-PB1
Test Station: RC-5
Time >60 min at each pressure
• RC (36 Hz - 61 Hz)
15
o~
II
TS 1st Cycle (0.5 Hz)
&.
TS 10th Cycle (0.5 Hz)
c
o
:;:;
C'lS
0:::
•
C)
.5:c. 10
E
C'lS
c
I
C'lS
'i:
.s
C'lS
:!E
5
I
• • • • •I
0
1.E-05
•I
1.E-04
•
••
·11
lIIll
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.13 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 11.4 psi
from the Combined RCTS Tests
6000
SAND -NA B911A-PB1
Test Station: RC-5
=0.001 %
Shearing Strain =0.01 %
• Shearing Strain
11IIII
'Ui
~
200 en
4000
:::T
(1)
D)
.,
:s:
0
><
E
C'l:I
c.
s::
s::
(/)
C)
(/)
:::s
:::s
G)
'0
0
3
D)
.?<
:!E
...
C'l:I
Q)
.s::
en
100
2000
D)
•
• •
II
11IIII
•
•
11IIII
II
o
o
0.01
:s:
""D
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure C.14 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 11.4 psi
from the Combined RCTS Tests
20
SAND -NA B911A-PB1
Test Station: RC-5
• Shearing Strain
II!i1
=0.001 %
Shearing Strain = 0.01 %
15
5
II!i1
II!i1
II!i1
II!i1
o
0.01
•
• •
0.1
1
•
•
10
100
1000
Loading Frequency, f, Hz
Figure C.15 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of 11.4
psi from the Combined RCTS Tests
6000
SAND -NA B911A-PB1
Test Station: RC-5
Time >60 min at each pressure
• RC (60 Hz - 93 Hz)
IIIlI
TS 1st Cycle (0.5 Hz)
" TS 10th Cycle (0.5 Hz)
200 en
:::r
~ 4000
(1)
.,S»
><
s:
o
ctI
E
C)
•••••••
•
(/)
::s
::s
"0
o
~
L.
c.
c
c(/)
•
G)
•
3
S»
.?<
ctI
Q)
t5
II
2000
Iii
•
~
100
.•
o
o
1.E-05
s:""0
S»
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.16 Comparison of the Variation in Shear Modulus with
Shearing Strain at an Isotropic Confining Pressure of 45.6 psi from
the Combined RCTS Tests
1.2 . - - - - - - - - - - - - - - - - - - - -.. . .
1.0
•••
.. ,
11III
~,
><
C'lS
•
E
C)
C)
11III
•I
0.8
tn
::::s
::::s
"C
0
:e...
~
•
0.6
C'lS
(1)
J:
en
•
"C
(1)
N
C'lS
...E
•
0.4
SAND -NA B911A-PB1
0
z
Test Station: RC-5
Time >60 min at each pressure
0.2
• RC (60 Hz - 93 Hz)
0.0
1.E-05
ill
TS 1st Cycle (0.5 Hz)
A
TS 10th Cycle (0.5 Hz)
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.17 Comparison of the Variation in Normalized Shear
Modulus with Shearing Strain at an Isotropic Confining Pressure of
45.6 psi from the Combined RCTS Tests
20
SAND -NA B911A-PB1
Test Station: RC-5
Time >60 min at each pressure
• RC (60 Hz - 93 Hz)
15
';fl.
11II
TS 1st Cycle (0.5 Hz)
£
TS 10th Cycle (0.5 Hz)
c
o
~
eu
0:::
C)
,: 10
c.
E
•
eu
c
C\i
•
'i:
.eeu
::a!:
5
• • • • • II••
•
0
1.E-05
1.E-04
•
•
•
lIB
II
lib
11II
£
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01
Shearing Strain, y, %
Figure C.18 Comparison of the Variation in Material Damping Ratio
with Shearing Strain at an Isotropic Confining Pressure of 45.6 psi
from the Combined RCTS Tests
6000
SAND -NA B911A-PB1
Test Station: RC-5
=0.001 %
III Shearing Strain =0.01 %
• Shearing Strain
200
't) 4000
CD
~
...
D)
><
co
s:
0
E
C)
::::J
::::J
"0
c
C
(/)
G)
0
11III
:E
I-
co
en
a.
•
(/)
CI>
J:
en
:::r
2000
•
• •
•
11III
11III
11III
III
100
s:
1J
D)
o
o
0.01
3
D)
.?<
0.1
1
10
100
1000
Loading Frequency, f, Hz
Figure C.19 Comparison of the Variation in Shear Modulus with
Loading Frequency at an Isotropic Confining Pressure of 45.6 psi
from the Combined RCTS Tests
20
SAND -NA 8911A-P81
Test Station: RC-5
=0.001 %
Shearing Strain =0.01 %
• Shearing Strain
11IIII
15
c
o
;.;:;
C'IS
0::
C)
.=c. 10
E
C'IS
c
C'IS
.i:
SC'IS
:!E
5
11IIII
11IIII
11IIII
0
0.01
•
11IIII
•
• •
0.1
1
•
10
100
1000
Loading Frequency, f, Hz
Figure C.20 Comparison of the Variation in Material Damping Ratio
with Loading Frequency at an Isotropic Confining Pressure of
45.6 psi from the Combined RCTS Tests
Table C.1
Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen NA B911A-PB1
Isotropic Confining Pressure,
(psi)
2.9
5.7
11.4
22.8
45.6
(psf)
418
821
1642
3283
6566
0"0
(kPa)
20
39
79
157
314
Low-Amplitude Shear
Modulus, G max
(ksf)
665
876
1276
2017
3142
(MPa)
32
42
61
97
151
Low-Amplitude
Shear Wave
Velocity, Vs
(fps)
414
474
569
710
879
Low-Amplitude Estimated
Void
Material Damping
Ratio, e
Ratio, Dmin
(%)
0.524
2.36
1.96
0.515
1.88
0.501
0.478
1.86
1.73
0.456
Table C.2
Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen NA B911A-PB1; Isoptropic Confining Pressure, 0'0= 11.4 psi (1.6 ksf =79 kPa)
Peak
Shearing
Strain, %
Shear
Modulus,
G, ksf
Normalized
Shear
Modulus,
G/G max
+
Average
Shearing
Strain, %
Material
Damping
Ratio X , D, %
1.02E-04
1300
1.02E-04
1.00
1.74
2.10E-04
1300
1.00
2.10E-04
1.71
4.11 E-04
1300
4.11 E-04
1.00
1.94
8,46E-04
1300
8.46E-04
1.00
1.95
1.621::-03
1272
1.36E-03
0.98
2.25
3.07E-03
1230
2.55E-03
0.95
2.59
5'.72E-03
1155
4.63E-03
0.89
2.95
1.06E-02
1067
0.82
8.36E-03
3.34
2.061::-02
930
1.53E-02
0.72
4.40
4.23E-02
2.87E-02
776
0.60
5.92
9.47E-02
613
0.47
5.96E-02
7.89
2.24E-01
468
0.36
1.25E-01
10.44
+ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve
x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve
Table C.3
Peak
Shearing
Strain, %
2.05E-04
3.80E-04
9.71 E-04
1.95E-03
4.22E-03
1.02E-02
2.42E-02
6.22E-02
Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen NA B911A-PB1; Isotropic Confining Pressure, 0'0= 11.4 psi (1.6
ksf =79 kPa)
First Cycle
Normalized
Shear
Material
Modulus, Shear Modulus, Damping
G/G max
G, ksf
Ratio, D, %
1.00
0.84
1073
1.00
0.87
1073
1073
1.00
0.54
1.00
1073
1.30
0.87
2.47
938
0.72
774
3.84
0.61
5.84
650
0.47
506
7.96
Peak
Shearing
Strain, %
1.96E-04
3.75E-04
9.50E-04
1.97E-03
4.26E-03
1.02E-02
2.46E-02
6.28E-02
Tenth Cycle
Normalized
Shear
Modulus, Shear Modulus,
G/G max
G, ksf
1089
1089
1089
1089
930
773
640
501
1.00
1.00
1.00
1.00
0.85
0.71
0.59
0.46
Material
Damping
Ratio, D, %
0.97
0.68
0.54
1.11
2.46
3.77
5.77
7.80
Table CA Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen NA B911A-PB1; Isoptropic Confining Pressure, G o = 45.6 psi ( 6.6 ksf =314 kPa)
Peak
Shearing
Strain, %
Material
Normalized
+
Average
Damping
Shear
Shearing
X
Modulus,
Ratio , D,
Strain, %
G/G max
%
1.00
3.10E-05
1.88
1.00
6.20E-05
1.92
1.00
1.23E-04
1.91
1.00
2.47E-04
1.84
1.00
4.89E-04
1.95
9.92E-04
0.99
2.13
0.97
1.60E-03
2.41
0.93
2.99E-03
2.73
2.94
5.41 E-03
0.87
0.80
9.73E-03
3.37
3.39E-02
5.83
0.59
6.77E-02
0.48
7.41
1.01 E-01
8.92
0.42
Strain from the First Three Cycles of the Free Vibration Decay Curve
Ratio from the First Three Cycles of the Free Vibration Decay Curve
Shear
Modulus,
G, ksf
3.10E-05
3178
6.20E-05
3178
1.23E-04
3178
2A7E-04
3178
4.89E-04
3178
9.92E-04
3137
1.90E-03
3069
2951
3.56E-03
6.60E-03
2779
1.23E-02
2543
4.84E-02
1887
1523
1.04E-01
1.65E-01
1330
+ Average Shearing
x Average Damping
Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen NA B911A-PB1 ; Isotropic Confining
Pressure, 0 0 =45.6 psi (6.6 ksf = 314 kPa)
Peak
Shearing
Strain, %
4.07E-04
9.86E-04
1.99E-03
4.13E-03
9.22E-03
2.06E-02
4.94E-02
First Cycle
Shear
Normalized
Modulus,
Shear
Modulus,
G, ksf
2396
1.00
2396
1.00
2378
0.99
2283
0.95
2044
0.85
1825
0.76
0.64
1527
Material
Damping
Ratio, D,
0.87
1.33
1.34
2.24
2.73
3.89
5.74
Peak
Shearing
Strain, %
4.06E-04
9.75E-04
2.02E-03
4.16E-03
9.18E-03
2.08E-02
4.88E-02
Tenth Cycle
Shear
Normalized
Material
Modulus,
Damping
Shear
G, ksf
Modulus, Ratio, D, %
1.03
2409
1.00
2409
1.00
1.18
2342
0.97
1.05
2.29
2265
0.94
2051
0.85
2.71
1810
0.75
3.83
5.54
1547
0.64
U.S. STANDARD SIEVE
SIZES IN INCHES
1.5
3/4
3/8
3
100
II
II
II
;:0
U. S. STANDARD SIEVE
NUMBERS
4
IT
10
20
40
_____ II
CD
HYDROMETER
ANALYSIS
100
200
I
II
I
"0
0
;::l.
z
!"
0
0
1Ir-,
.j>.
0
,
~
~
't\
(J)
(J)
"'-
80
N
20
l"'\
lI
"U
m
;:0
CJ
(")
W
S 60
m
i
40
>en
,
Z
u::
d'i
o
40
:t>
;:0
(j)
m
;:0
OJ
\
0::
LU
Q.
0
\
I-
.
60 -<
~
m
Gi
I
-l
'\
20
80
o
100
10
0.1
0.01
GRAIN SIZE IN MILLIMETERS
GRAVEL
Coarse
SAND
Fine
Medium
SILT or CLAY
Fine
SYMBOL
BORING
DEPTH, FT
.Qil!
.Qml
•
B-911A-PB1
21.7
0.2285
0.67
CLASSIFICATION
Sand, tan
IJ
GRAIN SIZE CURVE
-l
TEST METHOD ASTM D 6913.04
s;:
m
-l
(")
•
0::
LU
z
100
0.001
Fly UP