SUPPLEMENTAL DATA REPORT NO.1 DYNAMIC LABORATORY TESTING RESULTS REV. 0
by user
Comments
Transcript
SUPPLEMENTAL DATA REPORT NO.1 DYNAMIC LABORATORY TESTING RESULTS REV. 0
SUPPLEMENTAL DATA REPORT NO.1 DYNAMIC LABORATORY TESTING RESULTS NORTH ANNA POWER STATION COL PROJECT REV. 0 OCTOBER, 2007 MACTEC PROJECT NO. 6468-06-1472 DCN NACOL 253 MACTEC Engineering and Consulting MACTEC Project 6468-06-1472 October 2007 North Anna Power Station COL Supplemental Data Report No.1, Rev. 0 SUPPLEMENTAL DATA REPORT No.1, Rev. 0 DYNAMIC LABORATORY TESTING RESULTS 1.0 INTRODUCTION This report is a supplement to the MACTEC Geotechnical Data Report issued as Rev. 0 on January 23, 2007. The Resonant Column/Torsional Shear laboratory testing was not complete when the Geotechnical Data Report Rev. 0 was issued. It was agreed by all parties that the test results would be issued as a supplemental report, not as a revision to the Geotechnical Data Report. The information in this supplemental data report is submitted for entry into the project document system and release for use. 2.0 SCOPE OF WORK The attached test results were obtained from a laboratory study performed at Fugro Consultants (Fugro) laboratory in Houston, Texas. The dynamic properties of 3 intact soil samples from the North Anna site were evaluated. Combined resonant column and torsional shear (RCTS) equipment was used to perform the measurements. The dynamic characteristics evaluated with the RCTS equipment are the shear modulus (G), and the material damping ratio in shear (D). Dynamic testing of each specimen involved the evaluation of G and D over a range of isotropic confining pressures. Five isotropic confining pressures were used for each specimen, ranging from below to above the estimated in-situ mean effective stress. Remaining material in the undisturbed sample tubes was used by Fugro to perform particle size distribution tests (ASTM D 422-63 (2002) and ASTM D 6913-04). 3.0 METHODOLOGY 3.1 Locations Samples for testing were obtained from Borings B-901(1 sample) and B-911A (2 samples), both located within the Power Block area. The samples were undisturbed samples obtained using techniques of ASTM D 1587 -00. The undisturbed tubes were placed upright in protective boxes and transferred under chain of custody from the North Anna site to Fugro's laboratory following methods of ASTM D 4220-95 (2000) for Group C samples. The samples were received by Fugro personnel and set aside in climate controlled storage. The samples to be tested were listed on a laboratory testing assignment issued by Bechtel. Twelve samples were assigned for testing. Bechtel later reduced the number of samples for testing to 4. Three samples were tested successfully; the testing on the fourth sample was problematic due to material changes in the sample, and Bechtel determined that testing on that sample was not to be completed. 3.2 Subcontractors The RCTS testing was done by Fugro under subcontract to MACTEC. Dr. Ken Stokoe of the University of Texas Austin reviewed and approved the test reports prior to their issue by Fugro. NACOL253 MACTEC Engineering and Consulting MACTEC Project 6468-06-1472 October 2007 North Anna Power Station COL Supplemental Data Report No.1, Rev. 0 3.3 Technical Procedures 3.3.1 . RCTS Tests The RCTS testing was performed in accordance with "Test Procedures and Calibration Documentation Associated with the RCTS and URC Tests at the University of Texas at Austin, Geotechnical Engineering Report GR06-4, DCN: UTSD RCTS GR06-4 REV 0, dated April 25, 2006." A copy of the procedure is maintained in MACTEC project QA files. 3.3.2 Particle Size Distribution Tests Brief descriptions of the particle size distribution tests assigned by Bechtel, performed by Fugro and contained in this Supplemental Report are given in the paragraphs below. 3.3.2.1 Particle Size Analysis 4.0 3.3.2.1.1 Sieve Analysis (ASTM D 6913-04) - The dried soil sample is separated into a series of fractions using a standard set of nested sieves. The sieving operation is conducted by means of a lateral and vertical motion of the nest of sieves, accompanied by jarring action to keep the sample moving continuously over the surface of the sieves. The weights retained on each of the set of nested sieves are used to calculate the percent of the sample passing each sieve size. 3.3.2.1.2 Combined sieve and hydrometer Analysis (ASTM D 42263(2002» - The sieve analysis is performed as described above. The portion of the soil sample passing the No. 200 (75 f..Lm) sieve is soaked in water and dispersed using a dispersing agent. The solution is placed in a cylinder and stirred, and the density of the solution is monitored over time with a hydrometer to observe the settling out of suspended soil particles. Diameters corresponding to the readings of the hydrometer are then calculated using Stoke's law. QUALITY ASSURANCE 4.1 Procurement Fugro was procured for the work in accordance with the procedures in section QS-7 of the MACTEC Quality Assurance Project Document (QAPD). Page 2 of3 NACOL253 MACTEC Engineering and Consulting MACTEC Project 6468-06-1472 October 2007 North Anna Power Station COL Supplemental Data Report No.1, Rev. 0 4.2 Personnel Fugro personnel were qualified and operated under the Fugro Quality Assurance plan. Qualifications for the RCTS reviewer, Dr. Ken Stokoe were reviewed and accepted by MACTEC in accordance with MACTEC Quality Assurance Procedure QAP 20-1 as included in the MACTEC QAPD. Qualifications information is maintained in MACTEC QA files. 4.3 Equipment Calibration Equipment in the Fugro laboratory was calibrated in accordance with the Fugro Quality Assurance Program. Copies of the calibration records furnished by Fugro are maintained in MACTEC QA files. 4.4 Surveillances MACTEC QA personnel conducted surveillances of the Fugro laboratory during the course of the RCTS testing. Records of the surveillances are maintained in MACTEC QA files. 5.0 RESULTS The test results report from Fugro was reviewed and accepted by MACTEC. The report is attached. Page 3 of3 NACOL253 A MACTEC DOCUMENTATION OF TECHNICAL REVIEW SUBCONTRACTOR WORK PRODUCT Project Name: Project Number: North Anna COL 6468-06-1472 Project Manager: Steve Criscenzo Project Principal: Al Tice The test results described below have been prepared by the named subcontractor retained in accordance with the MACTEC QAPD. The test results have been technically reviewed by Dr. Ken Stokoe of the University of Texas Austin by agreement between Fugro and MACTEC. Comments on the work or report, if any, have been satisfactorily addressed by the subcontractor. The attached test results are approved in accordance with section QS-7 of MACTEC' s QAPD The information and data contained in the attached test results are hereby released by MACTEC for project use. REPORT: RCTS Test Results for B-901-UD-I, B-91IA-UDI and B-91IA-PBI - Fugro report dated August 10, 2007 supplemented by revised tables and test reports dated September 27, 2007. SUBCONTRACTOR: Fugro Consultants, Inc. DATE OF ACCEPTANCE: 9-28-07 TECHNICAL REVIEWER: Dr. Ken Stokoe PROJECT PRINCIPAL DCN NACOL - 253 ~ MACTEC :BO J Atlanlic A"eIlUl":. Raleig.h. NC 276114 FUGRO CONSULTANTS, INC. 6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518 August 10, 2007 Mr. Michael P. Sufnarski, P.E. Principal Engineer/Project Manager MACTEC Engineering and Consulting, Inc. 2801 Yorkmont Road I Charlotte, NC 28208 RE: Three (3) RCTS Reports For The North Anna Project Dear Mr. Sufnarski: Fugro has completed three (3) RCTS tests for the North Anna project. The final reports and the associated RCTS Test Approval by Dr. Kenneth Stokoe have been attached. Please let us know if you have questions. Thanks. Very truly yours, Fugro Consultants, Inc. Jiewu Meng, PhD, P.E. Project Engineer 1!~:.Y Laboratory Department Manager Cc: Dr. Kenneth Stokoe Enclosures ...t:J:A A member of the Fugro group of companies with offices throughout the world. -W------------ FUGRO CONSULTANTS, INC. 6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518 September 27, 2007 Mr. J. Allan Tice, P. E. Senior Principal Engineer/Assistant Vice President MACTEC Engineering and Consulting, Inc. 3301 Atlantic Avenue Raleigh, NC 27604 RE: Revised Tables, Particle Size Distribution Curves, and Clarification Letter of Transmittal August 10, 2007 for the North Anna Project Dear Mr. Tice: Per your request, Fugro has enclosed the above referenced items for the following specimens for the North Anna Project: 1. B901-UD1 2. B911A-UD1 3. B911A-PB1 Please let us know if you have questions. Thanks. Very truly yours, Fugro Consultants, Inc. Jiewu Meng, PhD, P.E. Project Engineer Bill DeGroff, P.E. Laboratory Department Manager Enclosures ..t:J:A A member of the Fugro group of companies with offices throughout the world. -W------------ RCTS TEST APROVAL PROJECT SITE/NAME I~N--..:o_rt_h_Ann----:a-=------ Test ID RCTS#A RCTS#B RCTS#C RCTS# Sample ID B901-UD1 B911A-UD1 B911A-PB1 ~ _ Depth B.S. (Ft) 9.5 11.7 21.7 The RCTS tests for the site referenced above were tested, and a report was prepared, by Fugro Consultants, Inc. I have reviewed the data and associated results listed above and found them to be reasonable. Dr. Kenneth Stokoe FUGRO CONSULTANTS, INC. 6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518 September 27, 2007 Mr. J. Allan Tice, P. E. Senior Principal Engineer/Assistant Vice President MACTEC Engineering and Consulting, Inc. 3301 Atlantic Avenue Raleigh, NC 27604 RE: Clarification of Three {3} RCTS Reports, Transmitted August 10, 2007, For The North Anna {NA} Project Dear Mr. Tice: Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the final reports, which were transmitted on August 10, 2007, of three (3) RCTS tests for the North Anna project. Please let us know if you have questions. Thanks. Very truly yours, Fugro Consultants, Inc. Jiewu Meng, PhD, P.E. Project Engineer ~ Bill DeGroff, P.E. Laboratory Department Manager A member of the Fugro group of companies with offices throughout the world. -'6¢i----------------- APPENDIX A Specimen NA B901-UD1 Borehole B901 Sample UD1 Depth = 9.5 ft ( 2.9 m) 3 Total Unit Weight = 120.5 Ib/ft Water Content = 17.9 DID Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 4.3 psi FUGRO JOB #: 0401-1662 Testing Station: Re5 1"£;1 -(x,1)-- cQ NOTE: Visual classification, if not specifically stated otherwise, was practiced in determining the soil types. 4000 Silty SAND - NA B901-UD1 .1.1 psi Test Station: RC-5 1IIil2.2 psi Shearing Strain: <0.001 % ....en .lll:: >< eu E C> 3000 A- 4.3 psi ~ 8.7 psi )I( 17.4 psi 150 r0 =e :i> 3 "'C ;:::;: en l: :s :s c. CD "'C 0 ~ ~ eu (]) en :::r )I( )I( )I( )I()I()I( 100 2000 3: J: 0 en c. (]) "'C :s I@ ~ e:r: 3= I@ ~ ~~ l: l: ~ en I@ c. E 0 CD .,I» A- 1000 IIIil • ...J G) A- A A A- AA A- IIIil IIIil IIIil ,1IIil1llil IIIil • • • •• • 50 1 10 100 3: ""C I» o o 3 I» .?< 1000 Duration of Confinement, t, minutes Figure A.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 15 Silty SAND - NA B901-UD1 • 1.1 psi Test Station: RC-5 11II2.2 psi Shearing Strain: <0.001 % t: E c A 4.3 psi ~ 8.7 psi ::K 17.4 psi o ~ 10 0::: C) t: a. E C'lS C C'lS 'i: SC'lS :E Q) -g :!: 5 a. E ~ 3= o ..J o 1 10 100 1000 Duration of Confinement, t, minutes Figure A.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 1.0 Silty SAND - NA B901-UD1 • 1.1 psi Test Station: RC-5 lIiIII2.2 psi Shearing Strain: <0.001 % A 4.3 psi ~ 8.7 psi )I( 17.4 psi 0.8 0 +:l ns a:: '0 0 > '0 (I) ns E +:l tJ) w I)I( 0.6 I )I( I IIII I )I( )I( )I()I( )I( )I( 0.4 1 10 100 1000 Duration of Confinement, t, minutes Figure A.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 10000 Silty SAND - NA 8901-UD1 Test Station: RC-5 Shearing Strain: <0.001 % (.) Time=60 min at each pressure (I) ~ t/) > ~ (.) o (I) > (I) > C'CI 3: ... 1000 C'CI (I) .c en (I) • "C ::J ~ • • • • c. E <J: 3= o ...I 100 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure A.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests 10000 Silty SAND - NA B901-UD1 Test Station: RC-5 Shearing Strain: <0.001 % - Time=60 min at each pressure ~ >< eu E • C) ur ::::s • ::::s "C 0 :E eu Q) ... 1000 .s:::: en • • • Q) "C ::::s :!: c. E ~ 3= 0 ..J 100 1 10 100 Isotropic Confining Pressure, (fo, psi Figure A.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests 100 Silty SAND - NA B901-UD1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure 0~ s::::: E c 0 ':j:i C'lS 0:: C) s::::: Co E C'lS c 10 C'lS 'i: SC'lS :E Q) '0 :::s :!:: Co E e:t: 3: 0 • ...J • • • • 1 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure A.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests 1.0 Silty SAND - NA B901-UD1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure 0.8 0 ~ co l:r: "C 0 > "C JBco E ~ tn W 0.6 • • • • • 0.4 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure A.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests 4000 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure A 4.3 psi )K 17.4 psi 150 3000 en :::T 'I- ~ (I) ., s: 0 S» >< ctI E C) III ~ )K )K )K )K )K C. )K )K )K 100 2000 )K ~ 'C 0 =- l: til G) )K 3 :!: ... S» )K .?< ctI s: CI) .c en 'C S» )K A A A A A A A 1000 50 )K A )K A A A o o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 1.2 1.0 )I( )I(~ )I(~ )I( ~ )I( ~ )I( )I(~ )I(~ )I( >< eu ~ E C) C) )I( 0.8 ~ tn )I( ::::s ::::s "C 0 ~ :e: 0.6 I- )I( eu CI) J: en ~ "C )I( CI) .!:::! .&. eu 0.4 )I( E I0 Silty SAND - NA B901-UD1 z Test Station: RC-5 0.2 0.0 1.E-05 Time> 60 min at each pressure .&. 4.3 psi )I( 17.4 psi 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 15 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure A 4.3 psi )I( 17.4 psi ~ 0 10 6 0 +:i C'IS 0:: C) s:::: c. E C'IS c C'IS "i: Q) C'IS 5 ::E o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.1 0 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 4000 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure • RC (60 Hz - 93 Hz) 150 3000 ....In 11III TS 1st Cycle (0.5 Hz) A TS 10th Cycle (0.5 Hz) en :s- ~ CI) E .,su s: o In 100 =. c >< C'll c. C) :s 2000 :s In "C 0 G) ... su 3 :E C'll 1< .c "'0 s: (1) en su 50 1000 11III • o o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, ¥, % Figure A.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 4.3 psi from the Combined RCTS Tests 1.2 1.0 • m.... _. ~ ~ • >< ns III!. E C) C) 0.8 • t/) ~ '. ~ "C 0 :!: 0.6 ns (1) ... III!. J: • en "C (1) I. .!:::! ns 0.4 ...E 0 Silty SAND - NA B901-UD1 • Test Station: RC-5 z Time> 60 min at each pressure 0.2 0.0 1.E-05 • RC (60 Hz - 93 Hz) l1li TS 1st Cycle (0.5 Hz) ~ TS 10th Cycle (0.5 Hz) 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 4.3 psi from the Combined RCTS Tests 15 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure • RC (60 Hz - 93 Hz) ?ft. 6 11III TS 1st Cycle (0.5 Hz) b. TS 10th Cycle (0.5 Hz) 10 o ~ eu 0::: • C) s:::: Co E eu c eu 'i: .seu 5 :E • • • • •i • • Il!l• It • .. f o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 4.3 psi from the Combined RCTS Tests 4000 Silty SAND - NA B901-UD1 Test Station: RC-5 =0.001 % lIIII Shearing Strain =0.01 % • Shearing Strain 150 3000 en .... :::r ~ (I) II) ., >< s:0 ctI E c. C) en ::::s ::::s 100 2000 l: l: en "C G) :!E 3 II) 0 ...ctI ,?< s:""C CI> .c en 1000 • lIIII • • • lIIII lIIII lIIII • 50 lIIII o o 0.01 II) 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure A.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 4.3 psi from the Combined RCTS Tests 15 Silty SAND - NA B901-UD1 Test Station: RC-5 =0.001 % 11II Shearing Strain =0.01 % • Shearing Strain 0~ 10 c 0 +:i co 0::: C) r:::: c. E co c co .~ (1) co ~ 5 11II 11II • • • 0.1 1 11II 11II • • 0 0.01 10 100 1000 Loading Frequency, f, Hz Figure A.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 4.3 psi from the Combined RCTS Tests 4000 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure • RC (77 Hz - 123 Hz) 3000 III TS 1st Cycle (0.5 Hz) ~ TS 10th Cycle (0.5 Hz) 150 .... (/) ::r t/) .lIl:: (I) $I) ""I >< eu E C> t/) ::::J ::::J "C 0 2000 3: 0 a- • •• •• • •• • A 11II II 100 t/) III G') II· :E eu CI) ... 3 $I) • .?< II .s:::: en 3: "tJ 1\ $I) • 1000 50 • o o 1.E-05 =- s:::: 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 17.4 psi from the Combined RCTS Tests 1.2 , - - - - - - - - - - - - - - - - - - - -............... 1.0 • • • • • , I11III ..&. ~ .&. .I11III >< co .&. E - (!) (!) 0.8 • I11III .&. • (fJ :::s :::s "C 0 -. • I11III .&. :!: a.. 0.6 co Q) J: en • "C Q) .~ co 0.4 E a.. Silty SAND - NA B901-UD1 z Test Station: RC-5 0 • Time> 60 min at each pressure 0.2 0.0 1.E-05 • RC (77 Hz - 123 Hz) I11III TS 1st Cycle (0.5 Hz) .&. TS 10th Cycle (0.5 Hz) 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 17.4 psi from the Combined RCTS Tests 15 Silty SAND - NA B901-UD1 Test Station: RC-5 Time> 60 min at each pressure • RC (77 Hz - 123 Hz) 0~ II1II TS 1st Cycle (0.5 Hz) .4. TS 10th Cycle (0.5 Hz) ci 10 0 +:l eu 0:: C) s::: c. E • eu C eu .t: .seu .. 5 it :E I . • • • • • • • • • • • • o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure A.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 17.4 psi from the Combined RCTS Tests 4000 Silty SAND - NA B901-UD1 Test Station: RC-5 =0.001 % IiIIII Shearing Strain =0.01 % • Shearing Strain 150 3000 .... en ~ :::r >< C'lS E s:0 CD .., $I) (!) l/) ::::J ::::J "C 2000 0 .. • • • • • • a. 100 G) 3 $I) .?< :E IiIIII C'lS G) IiIIII t: t: til IiIIII IiIIII s:""C J: en $I) 50 1000 o o 0.01 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure A.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 17.4 psi from the Combined RCTS Tests 15 Silty SAND - NA B901-UD1 Test Station: RC-5 • Shearing Strain = 0.001 % II 0~ c Shearing Strain = 0.01 % 10 0 ~ ns 0::: C) c a. E ns C ns 'i: CD +" ns :!: 5 11IIII 11IIII 11IIII 11IIII 11IIII 11IIII • 0 0.01 • • • 0.1 1 • • 10 100 1000 Loading Frequency, f, Hz Figure A.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 17.4 psi from the Combined RCTS Tests Table A.1 Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests of Specimen NA B901-UD1 Isotropic Confining Pressure, (psi) 1.1 2.2 4.3 8.7 17.4 (psf) 158 317 619 1253 2506 0"0 (kPa) 8 15 30 60 120 Low-Amplitude Shear Modulus, Gmax (ksf) 919 990 1226 1574 2140 (MPa) 44 48 59 76 103 Low-Amplitude Shear Wave Velocity, Vs (fps) 495 514 571 646 750 Low-Amplitude Estimated Void Material Damping Ratio, e Ratio, Dmin (%) 2.45 0.616 2.44 0.615 2.14 0.612 1.92 0.605 1.63 0.594 Table A.2 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B901-UD1; Isoptropic Confining Pressure, cro = 4.3 psi (0.6 ksf =30 kPa) Peak Shearing Strain, % Shear Modulus, G, ksf Normalized Shear Modulus, G/G max + Average Shearing Strain, % Material Damping Ratio X , D, % 6.70E-05 6.70E-05 1248 1.00 2.22 1.32E-04 2.21 1.32E-04 1248 1.00 2.66E-04 1242 2.66E-04 0.99 2.34 5.24E-04 5.24E-04 1233 0.99 2.39 1211 0.97 1.05E-03 1.06E-03 2.63 2.01 E-03 2.79 2.03E-03 1167 0.93 3.57E-03 3.66E-03 1094 0.88 3.23 6.90E-03 6.74E-03 972 0.78 3.83 1.29E-02 1.38E-02 816 0.65 4.94 2.73E-02 6.29 0.51 3.05E-02 635 4.67E-02 5.42E-02 522 0.42 7.84 + Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table A.3 Peak Shearing Strain, % 1.05E-04 1.81 E-04 3.76E-04 8.76E-04 1.79E-03 3.87E-03 9.86E-03 2.46E-02 3.96E-02 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA B901-UD1; Isotropic Confining Pressure, 0"0= 4.3 psi (0.6 ksf = 30 kPa) First Cycle Normalized Shear Material Modulus, Shear Modulus, Damping G/G max Ratio, D, % G, ksf 1.73 1103 1.00 1.00 1.70 1103 1.00 1.72 1103 1.75 1050 0.95 0.93 2.44 1026 2.55 945 0.86 0.67 4.83 740 0.54 6.51 593 501 0.45 8.63 Peak Shearing Strain, % 1.03E-04 2.01 E-04 3.58E-04 8.74E-04 1.78E-03 3.94E-03 9.82E-03 2.51 E-02 4.09E-02 Tenth Cycle Normalized Shear Modulus, Shear Modulus, G/G max G, ksf 1083 1083 1083 1056 1031 927 743 580 485 1.00 1.00 1.00 0.97 0.95 0.86 0.69 0.54 0.45 Material Damping Ratio, D, % 1.93 1.77 1.52 1.93 2.42 2.71 4.75 6.70 9.10 Table A.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B901-UD1; Isoptropic Confining Pressure, cr o= 17.4 psi ( 2.5 ksf = 120 kPa) Peak Shearing Strain, % Material Normalized Average + Damping Shear Shearing Modulus, RatioX , D, Strain, % G/G max % 1.00 1.30E-05 1.61 1.00 2.70E-05 1.64 1.00 5.20E-05 1.77 1.00 1.03E-04 1.89 1.00 1.98E-04 2.06 2.21 0.99 3.92E-04 0.98 7.93E-04 2.40 1.49E-03 0.95 2.59 0.90 2.74E-03 2.86 4.81 E-03 3.20 0.83 0.72 9.42E-03 3.44 1.89E-02 0.60 3.93 0.46 3.96E-02 5.18 0.40 6.10E-02 6.77 Strain from the First Three Cycles of the Free Vibration Decay Curve Ratio from the First Three Cycles of the Free Vibration Decay Curve Shear Modulus, G, ksf 1.30E-05 2200 2.70E-05 2200 5.20E-05 2200 1.03E-04 2200 1.98E-04 2189 3.92E-04 2183 7.93E-04 2155 1.51 E-03 2094 2.81 E-03 1987 5.17E-03 1819 9.78E-03 1592 2.03E-02 1313 4.44E-02 1015 7.14E-02 875 + Average Shearing x Average Damping Table A.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA B901-UD1; Isotropic Confining Pressure, 0"0=17.40 psi (2.5 ksf = 120 kPa) Peak Shearing Strain, % 4.04E-04 9.01 E-04 1.87E-03 3.99E-03 9.28E-03 1.75E-02 2.14E-02 First Cycle Shear Normalized Modulus, Shear G, ksf Modulus, 1959 1.00 1965 1.00 1886 0.96 1764 0.90 0.77 1519 1340 0.68 1283 0.65 Material Damping Ratio, D, 0.99 1.00 1.41 2.30 4.09 4.75 5.27 Peak Shearing Strain, % 3.91 E-04 9.05E-04 1.87E-03 4.03E-03 9.26E-03 1.76E-02 2.14E-02 Tenth Cycle Shear Normalized Material Modulus, Shear Damping G, ksf Modulus, Ratio, D, % 2028 1.00 0.90 1956 0.96 1.28 1887 0.93 1.65 1749 0.86 2.36 1523 0.75 3.95 1333 0.66 4.92 1283 0.63 5.39 U.S. STANDARD SIEVE SIZES IN INCHES 1.5 3/4 3/8 II II II 3 100 II 4 10 II U. S. STANDARD SIEVE NUMBERS 20 40 - 100 I I t\.~ 200 II r-... "\ 80 lI \\ Q w $: 60 >co 0::: w \ z Li: \ I- as HYDROMETER ANALYSIS 40 () 0::: "I W n. t--lt I--.. N I-e20 l\a. • -I-. N'-. r. ; o 100 10 0.1 GRAIN SIZE IN MILLIMETERS GRAVEL Coarse 0.01 SAND Fine SYMBOL BORING DEPTH, FT • B-901-UD1 9.5 Medium SILT or CLAY Fine CLASSIFICATION 5.73 158.30 0.1766 0.53 Silty Fine Sand, tan 'lJ GRAIN SIZE CURVE -l TEST METHOD ASTM D422-63 (2002) s: m N -- • 100 0.001 ------------------------------======-- APPENDIX B Specimen NA B911A-UD1 Borehole B911A Sample UD1 Depth = 11.7 ft ( 3.6 m) 3 Total Unit Weight = 121.9 Ib/ft Water Content = 16.6 o~ Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 5.6 psi FUGRO JOB #: 0401-1662 Testing Station: Re5 --@------------------------ NOTE: Visual classification, if not specifically stated otherwise, was practiced in determining the soil types. 6000 SAND - NA B911A-UD1 • 1.4 psi Test Station: RC-5 11III2.8 psi Shearing Strain: <0.001 % - .& 5.6 psi en it 11.2 psi I 0 >< ns ~ 22.5 psi :i> ~ E C) :E 4000 200 3 "C ;:::;: en s:::: :::s :::s Co CD en :::r "C 0 :E ...ns CD ... Sl) :s: 0 CI) .s:: en ~ CI) ~ ~~~ ~ Co s:::: s:::: "C :::s en ~ Co E 100 2000 it it it it it it .& .& .& .&.&.& .& 11II 11II 11II 11II 11II 11II 11II « 3 Sl) .?< I 3= 0 -I & 11II • :s: ""C Sl) • • • ••• • o o 1 10 100 G) 1000 Duration of Confinement, t, minutes Figure 8.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 15 SAND - NA B911A-UD1 • 1.4 psi Test Station: RC-5 Ii 2.8 psi I. 5.6 psi ~ 11.2 psi )I( 22.5 psi Shearing Strain: <0.001 % ~ 0 s:::: E c 0 +:i ca 10 0::: C) s:::: a. E ca C ca 'i: (1) ca :i!E (1) "C ::::J ~ • 5 • a. E ~ )I( ::0 18 t 11III ~ t •• , .)1( II~~ I • )I( ...J o 1 10 100 1000 Duration of Confinement, t, minutes Figure 8.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 1.2 SAND - NA B911A-UD1 .1.4 psi Test Station: RC-5 Shearing Strain: <0.001 % 1.0 II 2.8 psi .t. 5.6 psi ~ 11.2 psi )I( 22.5 psi o +:i C'lS 0:: "C o ~ 0.8 SC'lS E +:i en W 0.6 I I IIII ! 0.4 1 10 100 1000 Duration of Confinement, t, minutes Figure 8.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 10000 SAND - NA 8911A-UD1 Test Station: RC-5 Shearing Strain: <0.001 % () Time=60 min at each pressure Q) ~ ~ ~ () o Q) >Q) > ca 3: 1000 r.- ca Q) .s::: U) Q) "C • :J ~ • • • • c. E <J: 3= o ..J 100 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure 8.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests 10000 SAND - NA B911A-UD1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure .... ~ >< eu • E C> • tn ::::s ::::s • "C 0 :!: ...eu 1000 • (1) J: en • (1) "C ::::s :!: c. E ~ 3= 0 ...J 100 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure 8.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests 10 SAND - NA B911A-UD1 Test Station: RC-5 Shearing Strain: <0.001 % '#. Time=60 min at each pressure s:: E c 6 +:l nl 0::: C) s:: • c. E nl C • • • nl • 'i: ~ nl :E CI) "C ::J :!: C. E 1o ..J 1 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure 8.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests 1.2 SAND - NA 8911A-UD1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure 1.0 o +:: (}. "C o ~ 0.8 .eeu E +:: t/) w 0.6 - • • • • • 0.4 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure 8.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests 6000 SAND - NA B911A-UD1 45.6 psi Test Station: RC-5 Time> 60 min at each pressure ~ 22.5 psi 200 en ~ 4000 .lII:: :::r (I) ..,ll) >< eu E s:o ur ::::l l: l: III C) Co ::::l "C G') o 3 ll) .?< :E ...eu CI> 100 ~ 2000 ll) o o 1.E-06 s: "C 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure B.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 1.2 1.0 )K )K4.~~~~~~ ~ )K~ >< ns E - C> C> 0.8 )K ~ tn ;j )K ;j '0 0 ~ ~ 0.6 ns .c )K (1) en ~ '0 (1) .~ ns 0.4 l E "'- SAND - NA B911A-UD1 0 z Test Station: RC-5 0.2 0.0 1.E-06 Time> 60 min at each pressure ~ 5.6 psi )K 22.5 psi 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure B.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 15 SAND - NA B911A-UD1 Test Station: RC-5 Time> 60 min at each pressure ~ 5.6 psi :t( 22.5 psi ~ 0 ci 10 0 +:0 ns 0::: C) I: a. E ns C 'iii -i: Q) ns 5 :!: Shearing Strains in RC Test were corrected to the average of the first 3 free-vibration cycles o 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8_10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 6000 SAND - NA B911A-UD1 Test Station: RC-5 Time >60 min at each pressure + RC (62 Hz - 100 Hz) m TS 1st Cycle (0.5 Hz) ~ 4000 & 200 TS 10th Cycle (0.5 Hz) en :::r (l) D) .., >< eu 3: E o c. C) c tn :::s :::s C tn G) "C o 3 :E ~ l- eu (I) 100 3: ~ 2000 ""0 D) + + + + + + + + ..... , 'III + III + III + + + o o 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 5.6 psi from the Combined RCTS Tests 1.2 •• 1.0 .... .- • • II IIIIll >< ctl IIIIll • &. E C) C) • 0.8 In :::s :::s IIIIll &. • 't:I 0 :E 0.6 ... ctl (1) J: en • 't:I (1) .~ ctl ...0E 0.4 SAND - NA B911A-UD1 • Test Station: RC-5 z Time >60 min at each pressure 0.2 • RC (62 Hz - 100 Hz) IIIIll TS 1st Cycle (0.5 Hz) '" TS 10th Cycle (0.5 Hz) 0.0 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 5.6 psi from the Combined RCTS Tests 15 SAND - NA B911A-UD1 Test Station: RC-5 Time >60 min at each pressure • • RC (62 Hz -100 Hz) ?fi!. IlIIi TS 1st Cycle (0.5 Hz) &. TS 10th Cycle (0.5 Hz) • ci 10 o ; ~ • C) c c. E eu C eu • 'i: .seu :E 5 • • • • • • •• • o 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 5.6 psi from the Combined RCTS Tests 6000 SAND - NA 8911A-UD1 Test Station: RC-5 • Shearing Strain = 0.001 % IIIi 'Ui ~ Shearing Strain =0.01 % 200 (J) :::r 4000 (I) A) ., >< E s: n:l o Co l: l: C) Ii ::::s ::::s en G) "C o 3A) .?< 100 ~ :iE I- n:l (1) ti 2000 A) • • • • • • o o 0.01 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure 8.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 5.6 psi from the Combined RCTS Tests 15 SAND - NA B911A-UD1 Test Station: RC-5 =0.001 % IiII Shearing Strain =0.01 % • Shearing Strain ~ 0 ci 10 6' ns ~ 0::: C) s::: 0- E ns C ns - IiII 'i: IiII (1) ns :i: IiII IiII 5 • • • • • • o 0.01 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure 8.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 5.6 psi from the Combined RCTS Tests 6000 SAND - NA B911A-UD1 Test Station: RC-5 Time >60 min at each pressure • RC (86 Hz - 136 Hz) 11III TS 1st Cycle (0.5 Hz) ~ TS 10th Cycle (0.5 Hz) 200 ] 4000 (J) :r (I) D) ., >< CIS E :s: o c. C) s:::: s:::: en ::J ::J en "C G) ••••••••• o :!: 3 D) )< "- CIS Q) 100 ~ 2000 :s: "'0 D) • o 1.E-06 o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 22.5 psi from the Combined RCTS Tests 1.2 - - . - - - - - - - - - - - - - - - - - - - - - - - , 1.0 • • • • III • • II • >< eu E § 0.8 ur ~ • ~ "C o :iiE L0.6 eu C!) • .c en "C C!) .~ • eu 0.4 E L- SAND - NA B911A-UD1 o Z Test Station: RC-5 Time >60 min at each pressure 0.2 • RC (86 Hz - 136 Hz) o.0 II TS 1st Cycle (0.5 Hz) A TS 10th Cycle (0.5 Hz) -!--'--l.....J...L.J...l.Ll.j--i-.!-W...J..J.J.Jt-..l......J...J.-.J...W.J..lt--.L-J....J...W.J,..Uf--L.-J....w...J..l.l.l.j---l-...l-L.J...J...UJ.j 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 22.5 psi from the Combined RCTS Tests 15 SAND - NA B911A-UD1 Test Station: RC-5 Time >60 min at each pressure • RC (86 Hz - 136 Hz) ';fl. • II TS 1st Cycle (0.5 Hz) A TS 10th Cycle (0.5 Hz) C 10 • • 5 • •• •••••••• .l I .. t I I. o 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Shearing Strain, y, % Figure 8.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 22.5 psi from the Combined RCTS Tests 6000 SAND - NA B911A-UD1 Test Station: RC-5 • Shearing Strain III =0.001 % Shearing Strain = 0.01 % 200 en '; 4000 ::::T CD ~ l» >< co ""I s: 0 E c- C) C C til ur ::::J ::::J "C G) • 0 :E lco (1) .c tn 2000 • IIIIR • • III III • • IIIIR 100 s: ""C l» III o o 0.01 3 l» .?< 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure 8.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 22.5 psi from the Combined RCTS Tests 15 SAND - NA B911A-UD1 Test Station: RC-5 =0.001 % iIIII Shearing Strain =0.01 % • Shearing Strain ~ 0 ci 10 0' ~ C'CI 0:: tn C c. E C'CI C iIIII C'CI 'i: CI) C'CI :E 5 iIIII iIIII • iIIII iIIII iIIII • • • • • 1 10 0 0.01 0.1 100 1000 Loading Frequency, f, Hz Figure 8.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 22.5 psi from the Combined RCTS Tests Table B.1 Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests of Specimen NA B911-UD1 Isotropic Confining Pressure, cro (psi) 1.4 2.8 5.6 11.2 22.5 (psf) 202 403 806 1613 3240 (kPa) 10 19 39 77 155 Low-Amplitude Shear Modulus, G max (ksf) 917 1071 1389 1890 2608 (MPa) 44 51 67 91 125 Low-Amplitude Shear Wave Velocity, Vs (fps) 491 530 603 701 820 Low-Amplitude Estimated Void Material Damping Ratio, e Ratio, Dmin (%) 3.84 0.578 0.575 3.99 3.53 0.568 3.49 0.556 3.20 0.544 Table B.2 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B911A-UD1; Isoptropic Confining Pressure, 0 = 5.6 psi (0.8 ksf = 39 kPa) ° Normalized Material Average + Shear Damping Shearing Modulus, Strain, % Ratio X , D, % G/G max 1.50E-05 1422 1.00 3.51 1.50E-05 2.80E-05 3.51 2.80E-05 1422 1.00 5.70E-05 3.55 5.70E-05 1422 1.00 1.14E-04 1.14E-04 1422 1.00 3.59 2.29E-04 3.55 2.29E-04 1422 1.00 4.56E-04 3.84 4.56E-04 1415 1.00 9.44E-04 0.98 3.88 9.44E-04 1396 1.44E-03 4.04 1357 0.95 1.86E-03 2.78E-03 4.53 3.65E-03 1268 0.89 5.13E-03 5.74 7.18E-03 1124 0.79 9.57E-03 7.89 1.49E-02 920 0.65 1.99E-02 10.84 3.51 E-02 678 0.48 3.29E-02 12.35 6.00E-02 555 0.39 + Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Peak Shearing Strain, % Shear Modulus, G, ksf Table B.3 Peak Shearing Strain, % 1.12E-04 1.99E-04 3.72E-04 9.17E-04 1.97E-03 4.35E-03 1.05E-02 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA B911A-UD1; Isotropic Confining Pressure, 0"0= 5.6 psi (0.8 ksf = 39 kPa) First Cycle Normalized Shear Material Modulus, Shear Modulus, Damping G/G max Ratio, 0, % G, ksf 1076 1.00 0.78 1076 1.00 1.20 1.00 1.12 1076 1076 1.00 1.83 1076 1.00 2.60 0.92 3.14 994 823 0.77 5.23 Peak Shearing Strain, % 9.87E-05 1.87E-04 3.65E-04 8.99E-04 2.00E-03 4.41 E-03 1.07E-02 Tenth Cycle Normalized Shear Modulus, Shear Modulus, G/G max G, ksf 1130 1.00 1130 1.00 1130 1.00 1130 1.00 0.96 1084 982 0.87 0.71 806 Material Damping Ratio, 0, % 1.02 0.92 0.94 2.10 2.78 3.37 5.34 Table BA Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B911A-UD1; Isoptropic Confining Pressure, 0"0= 22.5 psi ( 3.2 ksf =155 kPa) Peak Shearing Strain, % Material Normalized + Average Damping Shear Shearing Modulus, RatioX , D, Strain, % G/G max % 6.00E-06 1.00 3.09 1.20E-05 3.06 1.00 2AOE-05 1.00 3.24 4.80E-05 3.27 1.00 9.50E-05 3.27 1.00 1.91 E-04 3.24 1.00 3.80E-04 3.27 1.00 7.81 E-04 3041 0.99 1.23E-03 0.96 3.59 2.32E-03 3.73 0.91 4.21 E-03 0.83 4.72 7.94E-03 6.13 0.70 1.57E-02 8.52 0.55 3.55E-02 0040 11040 Strain from the First Three Cycles of the Free Vibration Decay Curve Ratio from the First Three Cycles of the Free Vibration Decay Curve Shear Modulus, G, ksf 6.00E-06 2670 1.20E-05 2670 2AOE-05 2670 4.80E-05 2670 9.50E-05 2670 1.91 E-04 2670 3.80E-04 2663 7.81 E-04 2636 1.53E-03 2555 2.93E-03 2423 5.58E-03 2204 1.13E-02 1860 2A8E-02 1465 6.29E-02 1077 + Average Shearing x Average Damping Table 8.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA 8911A-UD1 ; Isotropic Confining Pressure, 0"0=22.5 psi (3.2 ksf = 155 kPa) Peak Shearing Strain, % 9.36E-05 1.86E-04 3.52E-04 9.60E-04 1.96E-03 4.13E-03 9.36E-03 1.33E-02 1.92E-02 First Cycle Normalized Material Shear Shear Damping Modulus, Ratio, D, Modulus, G, ksf --2230 1.00 1.00 1.25 2230 1.00 1.13 2230 1.22 1.00 2230 0.99 1.46 2209 2.15 0.94 2096 0.83 3.73 1850 4.12 0.80 1783 4.85 0.74 1644 Peak Shearing Strain, % 9.88E-05 1.81 E-04 3.60E-04 9.52E-04 1.96E-03 4.18E-03 9.33E-03 1.34E-02 1.93E-02 Tenth Cycle Shear Normalized Material Modulus, Damping Shear G, ksf Modulus, Ratio, D, % 1.17 2211 1.00 2211 1.00 1.09 0.98 2211 1.00 2211 1.00 1.50 2208 2.00 1.00 2.21 2073 0.94 1856 3.67 0.84 4.28 1770 0.80 1638 5.04 0.74 U.S. STANDARD SIEVE SIZES IN INCHES 1.5 3/4 3/8 II II II 3 100 II U. S. STANDARD SIEVE NUMBERS 4 IT 10 --- ." 20 80 40 100 200 I I II , --" f\ N , \. 20 \ -0 m \ ;:0 0 m z 60 "'. W Z u::: 40 -I 0 »0 ;:0 (fl m \ l- 40 <.) 0:: w a. ;:0 OJ 60 -< ~ m ... ~ i' 20 Q I -I ~ 80 ·1'14 o 100 10 0.1 0.01 GRAIN SIZE IN MILLIMETERS GRAVEL Coarse SAND Fine Medium SILT or CLAY Fine SYMBOL BORING DEPTH. FT ~ .Q~ • B-911A-UD1 11.7 0.215 0.66 CLASSIFICATION Sand, tan \J GRAIN SIZE CURVE -I TEST METHOD ASTM 0422-63 (2002) s;: m <:> 0 (J) (J) 0:: rQ z 0 .;>. W >co CD "0 0 ;:+ 0 lI <.9 S ;:0 HYDROMETER ANALYSIS 100 0.001 APPENDIX C Specimen NA B911A-PB1 Borehole B911A Sample PB1 Depth 21.7 ft ( 6.6 m) = = = 3 Total Unit Weight 124.2 Ib/ft Water Content 15.1 0/0 Estimated In-Situ Ko 0.5 Estimated In-Situ Mean Effective Stress 11.4 psi = = FUGRO JOB #: 0401-1662 Testing Station: Re5 NOTE: Visual classification, ifnot specifically stated otherwise, was practiced in determining the soil types. 6000 SAND -NA B911A-PB1 .2.9 psi Test Station: RC-5 II 5.7 psi A 11.4 psi ....en ~ 22.8 psi ><~ )I( Shearing Strain: <0.001 % r 0 ~ 200 E C) ~ 45.6 psi nl 4000 "C ;:::;: en c c. (I) en ~ ~ "C 0 ~ :::r )I( L. )I( )I()I( )I( (I) )I( ..,s:u nl s: 0 G) .c CJ) c. C C G) "C ~ :!::: c. E ~ » 3 2000 ~ ~~ ~ ~ fj]l A ~ A A AA A II IiIIl II IiIIl 1111 IiIIl 100 3 s:u 1< ~ s:"'tI 0 -I ~ II s:u • • • • ••• • 0 1 10 en G') 100 0 1000 Duration of Confinement, t, minutes Figure C.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 20 SAND -NA 8911A-P81 • 2.9 psi Test Station: RC-5 II 5.7 psi A 11.4 psi Iij 22.8 psi Shearing Strain: <0.001 % c E 15 ::':45.6 psi c o +:i ca 0:: C) c a. E ca C 10 ca 'i: ~ ca :E (1) '0 ~ :t:: a. E 5 1o • ..J I I , Ilii o 1 10 100 1000 Duration of Confinement, t, minutes Figure C.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 1.0 SAND -NA B911A-PB1 • 2.9 psi Test Station: RC-5 Shearing Strain: <0.001 % 0.8 IIIlI 5.7 psi A 11.4 psi ~ 22.8 psi ): 45.6 psi . 0 C'll 0::: "0 0 > -. "0 0.6 Q) C'll E @Jl • • •••• • ): a t /) A W A A .& .&.&.& .& ~ ~ @Jl ~ ~~ ~ ): ): ): ):):): ): 0.4 0.2 1 10 100 1000 Duration of Confinement, t, minutes Figure C.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests 10000 SAND -NA B911A-PB1 Test Station: RC-5 Shearing Strain: <0.001 % (.) Time=60 min at each pressure (J) ~ !j ~ (.) o (J) >(J) > ~ 1000 • l- ns (J) .s:: en (J) "C ::s ~ • c. E • • • 1 ...J 100 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure C.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests 10000 SAND -NA B911A-PB1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure .... til .lIl::: • >< C'lS E • C) til ::::s ::::s "C 0 • :E L. C'lS 1000 • Q) J: en • Q) "C ::::s :!: c. E ~ 3= 0 ...J 100 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure C.S Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests 100 SAND -NA B911A-PB1 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure 0~ c: E c 0 +:i C'lS 0:: C) c: a. E C'lS C 10 C'lS .i: SC'lS :E (J) "C :::J :!: a. E ~ ;: 0 ...J • • • • • 1 1 100 10 Isotropic Confining Pressure, 0'0' psi Figure C.G Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests 1.0 SAND -NA 8911A-P81 Test Station: RC-5 Shearing Strain: <0.001 % Time=60 min at each pressure 0.8 0 +:i eu 0::: "C 0 > "C 0.6 Seu E • +:i tn W • • • • 0.4 0.2 1 10 100 Isotropic Confining Pressure, (jo, psi Figure C.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests 6000 SAND -NA B911A-PB1 Test Station: RC-5 Time> 60 min at each pressure A 11.4 psi :t( 45.6 psi 200 'Ui 4000 .llI:: (J) :::T CD l» ., ><~ :s: o ra E a. C> l: l: In ::::s ::::s en G) "C o 3 l» .?< :E lra Q) 100 ~ 2000 l» o o 1.E-05 :s: "C 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.B Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 1.2 1.0 ;(;(.il(~.il(~ ~ >< eu - ~ ~ E C) C) &. 0.8 ;( tn &. ~ ~ "C 0 :E 0.6 eu Q) ... .s:::: en ,j( "C Q) .!:::! ;( eu 0.4 ...0E &. SAND -NA 8911A-P81 z Test Station: RC-5 0.2 Time> 60 min at each pressure &. 11.4 psi ;( 45.6 psi 0.0 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 20 SAND -NA B911A-PB1 Test Station: RC-5 Time> 60 min at each pressure 15 Shearing Strains in RC Test were corrected to the average of the first 3 free-vibration cycles 0~ C~ 0 ~ 11.4 psi )K 45.6 psi ~ co 0:: C) s:::: 10 Co E co c co - 'i: (1) co :i!E 5 o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests 6000 SAND -NA B911A-PB1 Test Station: RC-5 Time >60 min at each pressure • RC (36 Hz - 61 Hz) ~ 4000 IlIlI TS 1st Cycle (0.5 Hz) j, TS 10th Cycle (0.5 Hz) 200 en :::s(I) p) .., >< ns :s: o E a. C) r:::: r:::: tn :::s :::s tn "C G) :E 3 p) .?< o l- ns CI) 100 c75 2000 :s: -0 p) . .. •••••• ~ ~ ~ II • II • II • II • o o 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 11.4 psi from the Combined RCTS Tests 1.2 1.0 • • • GIl III • • >< n:s E ~ 0.8 • ,. In ::s ::s "'C o :E ... 0.6 n:s (1) .c ,. en "'C (1) .!:::! 0.4 ...E o z SAND -NA B911A-PB1 Test Station: RC-5 • Time >60 min at each pressure 0.2 0.0 1.E-05 • RC (36 Hz - 61 Hz) IIIIi TS 1st Cycle (0.5 Hz) ~ TS 10th Cycle (0.5 Hz) 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 11.4 psi from the Combined RCTS Tests 20 SAND -NA B911A-PB1 Test Station: RC-5 Time >60 min at each pressure • RC (36 Hz - 61 Hz) 15 o~ II TS 1st Cycle (0.5 Hz) &. TS 10th Cycle (0.5 Hz) c o :;:; C'lS 0::: • C) .5:c. 10 E C'lS c I C'lS 'i: .s C'lS :!E 5 I • • • • •I 0 1.E-05 •I 1.E-04 • •• ·11 lIIll 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 11.4 psi from the Combined RCTS Tests 6000 SAND -NA B911A-PB1 Test Station: RC-5 =0.001 % Shearing Strain =0.01 % • Shearing Strain 11IIII 'Ui ~ 200 en 4000 :::T (1) D) ., :s: 0 >< E C'l:I c. s:: s:: (/) C) (/) :::s :::s G) '0 0 3 D) .?< :!E ... C'l:I Q) .s:: en 100 2000 D) • • • II 11IIII • • 11IIII II o o 0.01 :s: ""D 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure C.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 11.4 psi from the Combined RCTS Tests 20 SAND -NA B911A-PB1 Test Station: RC-5 • Shearing Strain II!i1 =0.001 % Shearing Strain = 0.01 % 15 5 II!i1 II!i1 II!i1 II!i1 o 0.01 • • • 0.1 1 • • 10 100 1000 Loading Frequency, f, Hz Figure C.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 11.4 psi from the Combined RCTS Tests 6000 SAND -NA B911A-PB1 Test Station: RC-5 Time >60 min at each pressure • RC (60 Hz - 93 Hz) IIIlI TS 1st Cycle (0.5 Hz) " TS 10th Cycle (0.5 Hz) 200 en :::r ~ 4000 (1) .,S» >< s: o ctI E C) ••••••• • (/) ::s ::s "0 o ~ L. c. c c(/) • G) • 3 S» .?< ctI Q) t5 II 2000 Iii • ~ 100 .• o o 1.E-05 s:""0 S» 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 45.6 psi from the Combined RCTS Tests 1.2 . - - - - - - - - - - - - - - - - - - - -.. . . 1.0 ••• .. , 11III ~, >< C'lS • E C) C) 11III •I 0.8 tn ::::s ::::s "C 0 :e... ~ • 0.6 C'lS (1) J: en • "C (1) N C'lS ...E • 0.4 SAND -NA B911A-PB1 0 z Test Station: RC-5 Time >60 min at each pressure 0.2 • RC (60 Hz - 93 Hz) 0.0 1.E-05 ill TS 1st Cycle (0.5 Hz) A TS 10th Cycle (0.5 Hz) 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 45.6 psi from the Combined RCTS Tests 20 SAND -NA B911A-PB1 Test Station: RC-5 Time >60 min at each pressure • RC (60 Hz - 93 Hz) 15 ';fl. 11II TS 1st Cycle (0.5 Hz) £ TS 10th Cycle (0.5 Hz) c o ~ eu 0::: C) ,: 10 c. E • eu c C\i • 'i: .eeu ::a!: 5 • • • • • II•• • 0 1.E-05 1.E-04 • • • lIB II lib 11II £ 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 Shearing Strain, y, % Figure C.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 45.6 psi from the Combined RCTS Tests 6000 SAND -NA B911A-PB1 Test Station: RC-5 =0.001 % III Shearing Strain =0.01 % • Shearing Strain 200 't) 4000 CD ~ ... D) >< co s: 0 E C) ::::J ::::J "0 c C (/) G) 0 11III :E I- co en a. • (/) CI> J: en :::r 2000 • • • • 11III 11III 11III III 100 s: 1J D) o o 0.01 3 D) .?< 0.1 1 10 100 1000 Loading Frequency, f, Hz Figure C.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 45.6 psi from the Combined RCTS Tests 20 SAND -NA 8911A-P81 Test Station: RC-5 =0.001 % Shearing Strain =0.01 % • Shearing Strain 11IIII 15 c o ;.;:; C'IS 0:: C) .=c. 10 E C'IS c C'IS .i: SC'IS :!E 5 11IIII 11IIII 11IIII 0 0.01 • 11IIII • • • 0.1 1 • 10 100 1000 Loading Frequency, f, Hz Figure C.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 45.6 psi from the Combined RCTS Tests Table C.1 Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests of Specimen NA B911A-PB1 Isotropic Confining Pressure, (psi) 2.9 5.7 11.4 22.8 45.6 (psf) 418 821 1642 3283 6566 0"0 (kPa) 20 39 79 157 314 Low-Amplitude Shear Modulus, G max (ksf) 665 876 1276 2017 3142 (MPa) 32 42 61 97 151 Low-Amplitude Shear Wave Velocity, Vs (fps) 414 474 569 710 879 Low-Amplitude Estimated Void Material Damping Ratio, e Ratio, Dmin (%) 0.524 2.36 1.96 0.515 1.88 0.501 0.478 1.86 1.73 0.456 Table C.2 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B911A-PB1; Isoptropic Confining Pressure, 0'0= 11.4 psi (1.6 ksf =79 kPa) Peak Shearing Strain, % Shear Modulus, G, ksf Normalized Shear Modulus, G/G max + Average Shearing Strain, % Material Damping Ratio X , D, % 1.02E-04 1300 1.02E-04 1.00 1.74 2.10E-04 1300 1.00 2.10E-04 1.71 4.11 E-04 1300 4.11 E-04 1.00 1.94 8,46E-04 1300 8.46E-04 1.00 1.95 1.621::-03 1272 1.36E-03 0.98 2.25 3.07E-03 1230 2.55E-03 0.95 2.59 5'.72E-03 1155 4.63E-03 0.89 2.95 1.06E-02 1067 0.82 8.36E-03 3.34 2.061::-02 930 1.53E-02 0.72 4.40 4.23E-02 2.87E-02 776 0.60 5.92 9.47E-02 613 0.47 5.96E-02 7.89 2.24E-01 468 0.36 1.25E-01 10.44 + Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table C.3 Peak Shearing Strain, % 2.05E-04 3.80E-04 9.71 E-04 1.95E-03 4.22E-03 1.02E-02 2.42E-02 6.22E-02 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA B911A-PB1; Isotropic Confining Pressure, 0'0= 11.4 psi (1.6 ksf =79 kPa) First Cycle Normalized Shear Material Modulus, Shear Modulus, Damping G/G max G, ksf Ratio, D, % 1.00 0.84 1073 1.00 0.87 1073 1073 1.00 0.54 1.00 1073 1.30 0.87 2.47 938 0.72 774 3.84 0.61 5.84 650 0.47 506 7.96 Peak Shearing Strain, % 1.96E-04 3.75E-04 9.50E-04 1.97E-03 4.26E-03 1.02E-02 2.46E-02 6.28E-02 Tenth Cycle Normalized Shear Modulus, Shear Modulus, G/G max G, ksf 1089 1089 1089 1089 930 773 640 501 1.00 1.00 1.00 1.00 0.85 0.71 0.59 0.46 Material Damping Ratio, D, % 0.97 0.68 0.54 1.11 2.46 3.77 5.77 7.80 Table CA Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NA B911A-PB1; Isoptropic Confining Pressure, G o = 45.6 psi ( 6.6 ksf =314 kPa) Peak Shearing Strain, % Material Normalized + Average Damping Shear Shearing X Modulus, Ratio , D, Strain, % G/G max % 1.00 3.10E-05 1.88 1.00 6.20E-05 1.92 1.00 1.23E-04 1.91 1.00 2.47E-04 1.84 1.00 4.89E-04 1.95 9.92E-04 0.99 2.13 0.97 1.60E-03 2.41 0.93 2.99E-03 2.73 2.94 5.41 E-03 0.87 0.80 9.73E-03 3.37 3.39E-02 5.83 0.59 6.77E-02 0.48 7.41 1.01 E-01 8.92 0.42 Strain from the First Three Cycles of the Free Vibration Decay Curve Ratio from the First Three Cycles of the Free Vibration Decay Curve Shear Modulus, G, ksf 3.10E-05 3178 6.20E-05 3178 1.23E-04 3178 2A7E-04 3178 4.89E-04 3178 9.92E-04 3137 1.90E-03 3069 2951 3.56E-03 6.60E-03 2779 1.23E-02 2543 4.84E-02 1887 1523 1.04E-01 1.65E-01 1330 + Average Shearing x Average Damping Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NA B911A-PB1 ; Isotropic Confining Pressure, 0 0 =45.6 psi (6.6 ksf = 314 kPa) Peak Shearing Strain, % 4.07E-04 9.86E-04 1.99E-03 4.13E-03 9.22E-03 2.06E-02 4.94E-02 First Cycle Shear Normalized Modulus, Shear Modulus, G, ksf 2396 1.00 2396 1.00 2378 0.99 2283 0.95 2044 0.85 1825 0.76 0.64 1527 Material Damping Ratio, D, 0.87 1.33 1.34 2.24 2.73 3.89 5.74 Peak Shearing Strain, % 4.06E-04 9.75E-04 2.02E-03 4.16E-03 9.18E-03 2.08E-02 4.88E-02 Tenth Cycle Shear Normalized Material Modulus, Damping Shear G, ksf Modulus, Ratio, D, % 1.03 2409 1.00 2409 1.00 1.18 2342 0.97 1.05 2.29 2265 0.94 2051 0.85 2.71 1810 0.75 3.83 5.54 1547 0.64 U.S. STANDARD SIEVE SIZES IN INCHES 1.5 3/4 3/8 3 100 II II II ;:0 U. S. STANDARD SIEVE NUMBERS 4 IT 10 20 40 _____ II CD HYDROMETER ANALYSIS 100 200 I II I "0 0 ;::l. z !" 0 0 1Ir-, .j>. 0 , ~ ~ 't\ (J) (J) "'- 80 N 20 l"'\ lI "U m ;:0 CJ (") W S 60 m i 40 >en , Z u:: d'i o 40 :t> ;:0 (j) m ;:0 OJ \ 0:: LU Q. 0 \ I- . 60 -< ~ m Gi I -l '\ 20 80 o 100 10 0.1 0.01 GRAIN SIZE IN MILLIMETERS GRAVEL Coarse SAND Fine Medium SILT or CLAY Fine SYMBOL BORING DEPTH, FT .Qil! .Qml • B-911A-PB1 21.7 0.2285 0.67 CLASSIFICATION Sand, tan IJ GRAIN SIZE CURVE -l TEST METHOD ASTM D 6913.04 s;: m -l (") • 0:: LU z 100 0.001