Tm- and Ho-based femtosecond lasers for 2-µm region *
by user
Comments
Transcript
Tm- and Ho-based femtosecond lasers for 2-µm region *
University of St Andrews Tm- and Ho-based femtosecond lasers for 2-µm region A.A. Lagatsky,* and W. Sibbett School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, Scotland KY16 9SS, UK *[email protected] Outline University of St Andrews 2-m ultrashort-pulse laser sources and their possible applications Tm/Ho laser operational schemes and the prospects of ultrashort-pulse generation Experimental results - SESAMs design and characteristics - Ultrashort pulse Tm,Ho co-doped KYW and NaYW lasers around 2 m - In-band pumped Ho:YLF mode-locked laser - Broadly tunable femtosecond operation in Tm:KYW - Tm:Sc2O3: a novel medium for femtosecond pulse generation at 2.1 µm Conclusions 2-m femtosecond sources and their possible applications University of St Andrews Molecular “fingerprint” region (2-5 µm) © HITRAN database Absorption line strength, 10-20 cm2/molecule·cm, Vis.-Near-IR Mid-IR Wavelength 0.7-2 µm 2-5 µm CO2 0.3 3000 CO 0.02 300 CH4 1 100 C2H2 10 200 H2O 20 200 NH3 5 10 NO 0.04 0.3 2-m femtosecond sources and their possible applications University of St Andrews 2-µm ultrafast oscillator Mid-IR supercontinuum Optical Fiber 2-µm ultrafast oscillator λi4-10 µm High detection sensitivity Broad detection range High-resolution Short acquisition time OPO Mid-IR Fourier transform spectroscopy Real-time monitoring of atmospheric pollution; remote chemical sensing; industrial control. Detection of medically important molecules, toxic gases, drugs and explosives Calibration of astrophysical spectrographs 2-m femtosecond sources and their possible applications University of St Andrews 3-D microstructuring of semiconductor materials 2-µm femtosecond oscillator Highly-localized surgery with a femtosecond 2-µm laser ? - femtosecond pulse regime Reduction in the shock wave range and cavitation bubble size Ultrafast lasers around 2m University of St Andrews 10000 >1nJ, >1kW Average output power (mW) Tm-fiber CPA 1000 Er-fiber/Raman/Tm-fiber Tm:KLuW Tm,Ho:YAG (CNT) (SESAM) Tm-fiber (NPE) 100 Tm:YLF (CNT) Tm,Ho-fiber GaSb-SDL (SESAM) (CNT) Tm:GdLiF4 Tm:Lu2O3 (CNT) (SESAM) 10 Tm,Ho-fiber Tm-fiber (SESAM) (SESAM) 1 favorable directions Tm-fiber (NPE) 0.1 100 1000 10000 Pulse duration (fs) 100000 Tm fiber laser with carbon nanotube absorber University of St Andrews M.A. Solodyankin, et al. Opt. Lett. 33, 1336 (2008) 92pJ, 1.32ps, 3.4mW Saturable absorber assisted mode-locking. - All-fiber system - Stable operation - Risk of absorber damage at high energies Tm3+-fiber laser and Tm-CPA systems University of St Andrews M. Engelbrecht, et al. Opt. Lett. 33, 690 (2008) F. Haxsen, et al. Opt. Express 16, 20471 (2008) F. Haxsen, et al. Opt. Express 18, 18981 (2010) F. Haxsen, et al. Opt. Lett. 35, 2991 (2010) Chirped-pulse Tm-fiber Amplifier 7W 25W 151 nJ, 256 fs, 5.7 W 5.4nJ, 216fs, 180mW NPE: nonlinear polarisation evolution mode-locking. - Complicated design which requires a combination of fiber and bulk optics - Less environmentally stable Tm3+ and Ho3+ laser operational schemes University of St Andrews Tm AlGaAs LD 800nm Tm,Ho 2-2.1 m Ho 2-2.1 m Tm Ho AlGaAs LD 800nm Tm-laser 1.9-2 m or Tm-laser Tm and Ho codoped laser In-band pumped Ho laser InGaAsSb/P 1.9-2 µm AlGaAs LD 800nm 2-2.1 m Intra-cavity pumped Ho laser Tm3+ and Ho3+ energy schemes University of St Andrews Tm3+ 25 Ho3+ ET 1 5 G4 20 4 3F ET 4 Pump 800nm 3H 6 3 CR Energy, 10 cm 3H Ho3+ 5I 7 Lasing 5I 8 NR ET -1 Tm3+ 15 5 F5 3 F2,3 5 I4 3 H4 10 5 I5 UC2 CR 3 H5 5 I6 ET 3 UC1 F4 5 5 I7 Pump Laser 3 5 H6 0 I8 Intensity, a.u. 14 Up-conversion losses in the Tm or Tm-Ho systems could prevent highpower operation 3 F2, K8 F3 5 5 S2, F4 5 5 5 S2- I8 (Ho) Ppump=1.2W 12 1% OC 2% OC 4% OC no lasing 10 8 6 1 3 G4- H6 (Tm) 4 5 5 F3- I8 (Ho) 5 5 F5- I8 (Ho) 3 3 F2,3- H6 (Tm) 2 0 400 450 500 550 600 Wavelength, nm 650 700 Tm3+ vs Ho3+ for ultrafast lasers University of St Andrews Ho3+ (4f10 electronic configuration) features optical absorption and emission bands with the usual sharpness of most trivalent lanthanides (i.e., those with 4fN N<11 electronic configurations) Tm3+ : 4f12 electronic configuration - inhomogeneous broadening of electronic transitions Ho3+:KYW Tm3+:KYW 3.0 5 2 cm 3 2 1 0.5 0.0 1600 4 -20 1.0 EllNm E ll Nm em, x10 2 -20 1.5 cm 2.0 em, x10 2.5 1700 1800 1900 2000 Wavelength, nm FWHM 170nm 2100 2200 0 1900 1950 2000 Wavelength, nm FWHM 15 nm 2050 Water vapor transmission around 2m University of St Andrews 1.0 Transmission 0.8 0.6 0.4 1mm H2O 0.2 0.0 1.8 1.9 2.0 2.1 2.2 Wavelength, m Water vapor absorption could prevent continuous tunability and broadband modelocking in a Tm/Tm,Ho laser system OH- containing liquids are prone to bleaching effects on nanosecond time scale initiating Q-switching instabilities in a solid-state laser system Tm-Ho codoped KYW laser University of St Andrews Tm(5at%), Ho(0.5at%):KYW, EllNm, L=1.5mm 2 1 0 -1 -2 -3 -4 1880 1920 1960 2000 2040 Wavelength, nm 2080 450 400 350 300 250 200 150 100 50 0 1850 Ppump=1.2 W 1% OC 140 120 100 80 60 40 20 1900 1950 2000 2050 -1 = Ne/Nt Water absorption, cm 3 = 0.1 = 0.2 = 0.3 = 0.4 = 0.5 = 0.6 = 0.7 Tm,Ho:KYW tunability Output power, mW Gain cross-section, x10 -20 cm 2 Gain spectra 0 2100 Wavelength, nm A.A. Lagatsky et al, “Spectroscopy and efficient continuous wave operation of Tm,Ho:KYW near 2 m”, Appl. Phys. B 97, 321 (2009). SESAM structures design University of St Andrews Low-finesse A-FPSA (SBR structure) 0.4 102 0.3 4.4 0.2 4.0 0.1 3.6 0.0 3.2 20xGaSb/AlAsSb BDR 2.8 -0.1 0 500 1000 1500 2000 2500 3000 Thickness (nm) Reflectivity (%) + 2xInGaAsSb QWs Refractive index E-field (a.u.) 4.8 N ion implantation 100 98 96 12 94 92 90 1900 -2 5x10 cm 12 -2 2.1x10 cm 12 -2 1x10 cm as grown 1950 2000 2050 2100 Wavelength (nm) Absorber structure 10nm GaSb protective cap 41nm Al0.24Ga0.76As0.021Sb0.979 5.5nm In0.4Ga0.6As0.14Sb0.86 20nm QW Al0.24Ga0.76As0.021Sb0.979 5.5nm In0.4Ga0.6As0.14Sb0.86 QW 50.85nm Al0.24Ga0.76As0.021Sb0.979 0.61nm GaSb protective layer A0=0.5-2% @ 2000-2100 nm QW PL peak = 2100 nm 2150 Experimental set-ups: (Tm,Ho:KYW, NaYW and Tm:KYW) La ser ca vity Pump configura tions Ti:S Pump 1.2 W @ 800 nm University of St Andrews OC 1% Tm,Ho:NaYW, KYW 63mm M1 FS TLD Pump 1.2 W @ 802 nm 75mm M2 AL SESAM CL wpumpwcavity = 28 m; wSESAM=80-140 m M1 and M2: HT@800nm & HR@1800-2100nm, r=-100mm FS: IR-grade fused silica prisms Single prism insertion: GVD -114 fs2 Tip-to-tip prisms separation: 8 cm (double pass GVD -1200 fs2) Femtosecond Tm,Ho:KYW laser University of St Andrews 120 ML,thr FSESAM =42.7 J/cm sech 2 100 80 Intensity, a.u. ML Output power, mW 140 ML threshold 60 Q-ML 40 0.8 =7.9 nm 2 0.8 p=570 fs =0.32 0.4 0.4 CW 20 0.0 0.0 0 0 200 400 600 800 1000 Absorbed pump power, mW 1200 -2 0 Delay, ps 2 2040 2060 2080 Wavelength, nm Stable ultrashort-pulse operation was observed when the fluence on the SESAM exceeded 42.7 J/cm2. Pulses as short as 570 fs were generated at average output power of 130 mW and pulse repetition frequency of 118 MHz, this corresponded to 1.1 nJ of the pulse energy and 1.9 kW of the peak power. A.A. Lagatsky et al, “Femtosecond pulse operation of a Tm,Ho cocodoped crystalline laser near 2 m”, Opt. Lett. 35, 172-174 (2010). Tetragonal double tungstates University of St Andrews Ho3+ drawback Ho3+ (4f10 electronic configuration) features optical absorption and emission bands with the usual sharpness of most trivalent lanthanides (i.e., those with 4fN N<11 electronic configurations) ~ 10-15 nm for KYW Partial solution: locally disordered crystals MT(XO4)2 : (M= Li+, Na+); (T= La3+, Gd3+, Lu3+ or Y3+); (X=Mo6+ or W6+) NaY(WO4)2: Czochralski growth method Yb3+ - ~ 50 fs pulses [A. García-Cortés, et al. IEEE J. Quant. Electron. 34, 758 (2007)] Tm3+ - 1850-2070 nm tunability [M. Rico, et al. in Advanced Solid-State Photonics, 2009, WB27] CW Tm,Ho codoped NaYW lasers University of St Andrews Tm(5at%),Ho(0.25at%):NaYW 300 - polarisation Pabs=1 W 200 100 FWHM 142 nm 0 1850 1900 1950 2000 2050 2100 Wavelength, nm L=3.8 mm, Output power (mW) Output power, mW L=3.8 mm, Tm(5at%),Ho(0.25at%):NaYW 350 300 250 200 150 100 50 0 - polarisation Pabs=0.95 W FWHM=130 nm 1850 1900 1950 2000 2050 2100 Wavelength (nm) Modelocked Tm,Ho:NaYW (-pol.) 24.8nm =0.33 17.6nm =0.32 160 Q-switching Modelocking 140 258 fs 120 100 588 fs 80 Intensity (a.u.) 1.0 Tm,Ho:NaYW luminescence 0.5 191 fs 60 0.0 2000 40 20 500 fs 2040 2080 2120 Wavelength (nm) 0 0 200 400 600 800 1000 p=191 fs 1.0 p=258 fs Absorbed pump power (mW) PRF=144 MHz Ep=1.08 nJ, P=4.2 kW FSESAM=80-190 J/cm2 Intensity (a.u.) Average output power (mW) University of St Andrews 2 sech fit 0.5 0.0 -1.0 -0.5 0.0 0.5 1.0 Delay (ps) A.A. Lagatsky et al, “Femtosecond (191-fs) NaY(WO4)2 Tm,Hocodoped laser at 2060 nm”, Opt. Lett. 35, 3027-3029 (2010). Modelocked Tm,Ho:NaYW (-pol.) University of St Andrews 600 D=-2100 fs 500 -7 =2.95x10 W 400 -7 =7.8x10 W 300 dp/dlDl=0.111 fs 2 Pulse duration, fs Pulse duration (fs) 440 -1 -1 400 -1 Ep=107.5 nJ 360 320 280 200 240 20 30 40 50 60 70 80 90 100 -3500 Intracavity pulse energy (nJ) p 1.7627 2 n2 Lg Aeff D, fs d p 2D Ep -3000 dD -2500 -2000 2 1.7627 2 Ep n2=16.4x10-16 cm2/W @ 2060 nm n2=30x10-16 cm2/W @ 820 nm [A. García-Cortés, et al. Appl. Phys. B 91, 507 (2008)] TLD pumping of Tm,Ho codoped KYW and NaYW University of St Andrews farfield position beamwaist position Eagleyard Photonics GmbH Pout=2 W @ 802 nm M2 ~ 5, PCL=80% Tm,Ho:KYW, Pout=200mW 1.0 =675 fs sech 0.5 =0.32 =0.32 1.0 =355 fs =6.7 nm 2 0.5 0.0 -2 0 Delay, ps 2 0.0 2020 2040 2060 2080 Wavelength, nm Intensity, a.u. Intensity, a.u. 1.0 Tm,Ho:NaYW, Pout=120mW 1.0 sech 0.5 2 =12.6 nm 0.5 0.0 0.0 -1 0 Delay, ps 1 2000 2050 2100 Wavelength, nm In-band pumped Ho:YLF ultrafast laser University of St Andrews N. Coluccelli, A.A. Lagatsky et al, “Passive mode locking of in-bandpumped Ho:YLiF4 laser at 2.06m”, Opt. Lett. 36, 3209 (2011). In-band pumped Ho:YLF ultrafast laser University of St Andrews 1%OC 4%OC Pout=1.7W (4% OC), PRF=122 MHz, Ep=13.9 nJ Efficient and broadly tunable Tm:KYW laser University of St Andrews 700 Output power, mW 600 Tm(5at%):KYW, L=2mm Epump ll Nm, kpump ll Ng Free lasing 1% and 2% OCs 500 400 Lyot filter FWHM=172 nm 300 200 FS prism T=1% Pin=1.2 W 100 277 nm 0 1850 1900 1950 2000 2050 Wavelength, nm 2100 2150 =73% (82% theoretical limit) @ 1940 nm =48% @ 2060 nm Tunable Mode-locking of Tm:KYW University of St Andrews FS 63 mm M1 Knife edge Tm:KYW OC Ti:sapphire P = 1.2 W M2 SESAM wpumpwcavity = 28 m; wSESAM=142 m M1 and M2: HT@800nm & HR@1800-2100nm, r=-100mm; OC – 1% output coupler FS: IR-grade fused silica prisms (GVD=-114fs2/mm) Single prism insertion 6 mm (double pass GVD -1370 fs2) Tip-to-tip prisms separation: 9 cm (double pass GVD -1800 fs2) Broadly tunable ML with a single prism 1200 Intensity, a.u. 1350 SESAM#2 1050 900 750 1.0 sech 2 0.5 -2 400 360 320 280 240 200 1980 p=549 fs 0.0 600 Intensity, a.u. Average power, mW Pulse duration, fs University of St Andrews 2000 2020 2040 Wavelength, nm 2060 2080 0 Delay, ps 2 1.0 FWHM=8 nm 0.5 0.0 1960 1970 1980 1990 2000 2010 Wavelength, nm Tunability: 1985nm (549fs, 410 mW) – 2074nm (1.32ps, 210mW) Pulse energy: 3.9 nJ Peak power: 7.1 kW A.A. Lagatsky et al, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2µm”, Opt. Express 19, 9995 (2011). Optimised pulse duration 900 1.0 800 SESAM#2 700 SESAM#1 Intensity, a.u. 1.0 600 500 p=386 fs 11.14 nm 0.5 0.5 0.0 0.0 400 -2 240 210 180 150 120 90 1980 2000 2020 2040 Wavelength, nm 2060 RF power density, dBm Average power, mW Pulse duration, fs University of St Andrews 0 Delay, fs 2 2000 2040 2080 Wavelength, nm -40 -60 -80 69 dBc Span 50 kHz RBW 300 Hz -100 -120 97.36 97.37 97.38 97.39 97.40 Frequency, MHz p=386 fs, Average power: 235 mW; Pulse energy: 2.4 nJ (peak power 6.2 kW) Modelocking thresholds: 252 J/cm2 and 227 J/cm2 on the SESAMs #1 and #2 Mode-locking stability in Tm:KYW University of St Andrews Pulse duration, fs 1350 Q-switching instabilities 1200 1050 Q-switching or CW 900 750 600 400 0.8 360 320 0.6 280 0.4 240 200 1900 0.2 1920 1940 1960 1980 2000 Wavelength, nm 2020 2040 2060 2080 Transmission Average power, mW 1.0 Tm-doped sesquioxides (Sc2O3, Lu2O3, Y2O3) University of St Andrews P. Koopmann, et al, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond”, ASSP 2011, paper ATuA5. Gain spectra of Tm:Sc2O3 k=16.5 W/m·K (11 W/m·K for YAG) Tm:Sc2O3 cw laser Pout=26W (70W pump @ 796nm) Tm:Sc2O3 femtosecond laser University of St Andrews Experimental set-up OC SWPF -100mm 2.6W @ 796nm FS Dual wavelength operation Tm:Sc2O3 SWPF 12 600 2115.5 nm -100mm 10 1998 nm 8 400 6 300 200 4 100 2 0 1950 0 2000 2050 Wavelength, nm 2100 2150 Transmission, % SESAM Intensity, a.u. 500 Tm:Sc2O3 femtosecond laser University of St Andrews 250 600 200 500 ML 150 QS-ML 400 100 CW 50 300 0 200 0 200 400 600 800 1000 1200 Absorbed pump power, mW 1400 1600 Pulse duration, fs 700 Intensity, a.u. T=2.3% 300 Output power, mW 1.0 800 p=218 fs PRF=118.8 MHz TBP=0.32 2 0.5 sech 0.0 -0.8 -0.4 0.0 0.4 0.8 Delay, ps 1.0 Intensity, a.u. 350 P=210 mW =2107nm =21.7 nm 0.5 0.0 2040 2080 2120 Wavelength, nm p=218 fs, Average power: 325 mW; Pulse energy: 2.6 nJ (PRF=123 MHz) Modelocking threshold: 32.4 J/cm2 of intracavity fluence on the SESAM 2160 2200 Ho and Tm crystalline femtosecond lasers University of St Andrews 𝑷𝒎𝒂𝒙 𝒂𝒗 , mW 𝝉𝒎𝒊𝒏 𝒑𝒖𝒍𝒔𝒆 , fs Tm,Ho:KYW 130 570 1.1 2055 - Tm,Ho:NaYW 155 191 1.08 2058 2016-2066 Ho:YLF 1700 1100 13.9 2064 - Tm:KYW 410 386 3.9 2029 1985-2074 Tm:Sc2O3 325 218 2.6 2107 - Laser Epulse , nJ λc, nm Tunability, nm Ho and Tm crystalline femtosecond lasers University of St Andrews 10000 Tm-fiber CPA Tm-fiber CPA Output power, mW Ho:YLF 1000 Tm:Sc2O3 Tm:KYW Tm-fiber 100 Tm,Ho:KYW Tm,Ho:NaYW 10 100 1000 Pulse duration, fs Acknowledgements University of St Andrews James Gupta Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada Stephane Calvez Institute of Photonics, University of Strathclyde, Glasgow, UK Viktor Kisel and Nikolai Kuleshov Institute for Optical Materials and Technologies, Belarus National Technical University, Minsk, Belarus Carlos Zaldo Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain Nicola Coluccelli and Paolo Laporta Dipartimento di Fisica - Politecnico di Milano and Istituto di Fotonica e Nanotecnologie - CNR, Milano, Italy, Philipp Koopmann and Günter Huber Institute of Laser Physics, University of Hamburg, Hamburg, Germany