Comments
Description
Transcript
-t6tf
Unit 5: Graphing Polynomial Functions Review Supplement 1. 5.2: Evaluate and Graph Polynomial Functions Given '(-t) Bookwork: None -|rt * 10, use direct substitution to find /(*a). - r +io : t i(+)*- ?t-1)) : .t * \ \Eb) '3, { -U+)*,o o ^-" -t6tf ! + 10x3 - 27, use /(x) = synthetic substitution to find f (-3). Given 6xS "tl6 o ro o o-21 ["6 *rB !4 -rq? 6lb -fng i..--_..-a+'.*_ Given g(.r) = 2x3 + Sxz * 1!x direct substitution IGY)= 2fY)' * {- 14, use -'(+ ' = 2(e"5(H) :trrr i-A)__7e)1 -.rdr =W +_V ' x-,rs..<.+t - 30, use synthetic substitution to tnA e 5. " Describe the degree and leading coefficient of the polynomial function (]). graphedbelow. r 5z L-1O27-$a if-6;;{z gd@ - to rino g (- i). z Given g(x) =Zxa -9xz +37x 4. 2. - _rer *€ + zrs. 4l :. lr +128+el 81 lo a!r* 3. /(x) = x +*xa t cka6<cL : rr 45jA l' I lred*.l t l l 4e'{'l ';afr: 5 -'CI -7* :: 7 -t .-10 rZ L-lL iI Bd* (-9FE4-*k*i".Ekrce#\ -/*al Describe the dr rgree and leading coefficient of tl re polynomial function graphed below ' A(q.*t= 7. 8. Describe the-en{behavior of f (x) =13+*u:')+ 6x32r + gd! * dt"'J*trca- {-l neqol-tvt *"1--*. ' n te.v&a .. vl ,/\''i:;H,,-o I ; : . nrr*L" -J'3:. { *sY q -at A5 9. 5.5: Find Rational Zeros ++cn, f{o) -u Describe the g1x1 B *- €r* -++< /(1) = $ ,lb -\)-r) t, a -1 ffi bFz -1s -l-8 :a f (x) = l2x3 - Sxz +'J.Ix -+ - 16 i8^ fr,') z/, 0= *'-bvz+1y -> )'/, ,'1,, l*+ *tx + x?a.,ulq U"Lt { VJ I 13. )<;J',? =A-5X;;[z-.21 Find the exact values of all real zeros of g(x) = x3 +3x2'!54'=t*,'in,|, 3tt 3 o -s+ |I- 3 {g Lo I :o x-r) I : 3 --i-: Lo r)(lx * z) I Ly'd" ) lq h,Yl |t?t |Y",'l+ exagllgluelof all real 5x2 + 6 = x3 - xz +9x + 4 solutions of ": l, )r *r t Find the !. \ ztx'+!3x-Z:o IJ 12. \/ - ?" r X: tla) *+ Use the Rational Zero Theorem to list all of the possible rational zeros of '!. f(x) = 24x3 + 133x2 + 63x given one of the factors is r * 5 zD ( 7x 11. - 10. Factor Find all the zeros of given Txzs *4 -r & fts xq +el {lr) -v +e FS X')-@t 4(x) f(x):6x3-r3x2-r3x*20 Bookwork: P. tt05:33-34 =W,;'6:J- ,1 ^ eld behavior of -l{F x-J-L1*{5-- ir=LlJtr;zl E+ 6 -tE-_E X'+f y tt$:'a Xr+bx+t t-18*3- ix+3)""-4 va3: { 3i /F#.-'--{4,,1 {x'-3:3i : S w i 14. Find the exact values of all real zeros ofh(x) = 3x3 - 34x2 +7Bx * 68 -]i3, ; is taken from a polynomial function. Use the Location Principle to determine the interval(s), one unit in length, in which there must be a 15. The table of values below zero. _.1 2+ _LV 5 ,iL f(z Lg x -4 -3 -, -1 0 1 , 3 4 f(x) 121 -3 -13 5 -3 -L6 12 78 2r3 :.:, -t i.1i -, ..t *^ s .i ,,. } f" -a t -b y, - t 2 .t -, .*?.:: .. 'Y - L-i"r '\ - r: ; 1,.:. i 17. Where does the given zero from Q16 5.7: Fundamental Theorem of Algebra appear on the graph of f(r)? Where do the other zeros appear? ti Bookwork: P.405: 35-38 :?( : t( tla' 'Wi _ a .- :. tl 18. Let ftx): x'(x - a)(x - 19. b)3. a) How many zeros does b) How many distinct zeros does /(x) have? '1't I'ii A.''\ \t' c) Describethebehaviorof thegraphatx = 0. t!" d) Describethebehaviorofthegraph alx = e. I .rr-:-r'' Let / : b. ' o :i" ' , .,i '' Min times tt crosses t-axis crosses t-axis tl L7 22 22. Given f (x) = x(6x3 ,f, 1 - 2x), determine whethe_r /(x) is even, I L odd, or neither. :;';;" ' i , t.J1.f,, Maxtimes t. ." "'-' -. J'.'' l,\.+*' I' :- in'' - ,t / tangent to.r- Min times tangent to.r- Max number of turning axis axis ooints r"' tb L ,{- .'ir f(x) = rzxa + ut * *' - { i- be a polynomial of degree zr. For each value of n, find each of the following: Max times dir Use Descartes Rule of Signs to create r ii l"\ i'l ;)u" o'; - 21. t q,. ' ) 4.i4 I inl - . .\_ _ \ -i Use Descartes Rule of Signs to create.-t table of the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for a ?t il 23. Given f (x) = 3x4 +'L1xz determine whether odd, or neither. :--"- iFvcn ' f(x) -31, is even, 2a. ", f I 20. _") table of the possible numbers of positive real zeros, negative real zeros, and imaginary zeros for f(x) have? 3 Describe the behavior of the graph alx ii a f,e I e) *,-,f ff f (-x) = f (x),what conclusions about/(r)? can you draw -il,'. r.-,'i'ni:. Tt'r !,.up't' ", ,)' ty,n,.,l . r (' ii^r ;" {. t,,.}, ,,f; .; 25. lf f (-x) : -f can you draw about /(x)? .\ F(*. ,. :i;, {.1 , '' ' l-'' i i {"i ,iir: Without 27 y ' cjlct lator, gr aph x:?L) ' n:3. il4r, Bookwork: P.406: 39-40 _.t inl -{lbl /i I ri VpLr l0 rt irl ; r," :1: i ..-r/ 1i a grapling y:*(;Y'ff("+t Functions t. r 26. Without 5.8: Analyze the Graphs of Polynomial (x), what conclusions a grap-hing - -!tr:'zlt :, i - 28. Let's cut a square from the corner of a piece of 11" by 14" construction paper and then fold the resulting net into a box without a lid. Find a function 7(r) for the calculgtor, gr aph 'i si;l i- ,; \i:'. ta. volume of the box. State the domain. Find the value of x that maximizes the -r.f5;:volume. Finally, find the max volume of the box. i ,i8 Fx IIti 1: Ili {r ,i-! .tr i, Y! | .. 29. Use x fk\ ,:/ .- i r.te,l1.i.r.-.,: i -2 -605 -276 r. ;," find the zeros of the function. Then sraph it. the table below to -3 r- *'ft ":1a,t -1 , -3s x =f 0 1 ? 3 10 -9 -20 49 -32x2*x*10 -', [? ,/ ':1', j i: .-...1...".... l t,.i i :l;i \i: .:'!..'......,......:. For e30-31, you can use the related quadratic equation (called the first derivative) to determine where the local minimums and maximums occur for the given cubic function. Solve the first derivative equation. The solutions are the r-coordinates of the minimums or maximums. To determine the y-coordinates, evaluate the cubic functions at the solutions to the first der-iV;ltive. t 31. Cubic Function: 30. Cubic Function: /*i ) l-,i :'a'' :'l f(x)=x3+7xz-5x*f First Derivative: 3x2+14x-5=0 Io"' f (x) = -2x3 + 15x2 First Derivative: + 36x -'J- -6x2+30x+36=0 - . vt -'5y:*L ^1.. I ,-''- ''' '1 ! 323 ;'. i,-/-o', J t i \-f;;t r.^,,..i, I \_ _. 32. From Q30-31, how is the coefficient of the x3-term in the cubic function related to the coefficient of the xz-term in the first derivative? How is the coefficienl of x2term of the cubic function related to the r-term of the first derivative? How is the coefficient of the r-term of the cubic function related to the constant term of the first derivative? ( oe&r t"''"So{ *" p3 -t€'o"'' "{**^ ',)';';";;efi. ,*&r[ * : o{ y-{-e'** ) z . ct ep€t'Jof \"*{'c'*.*- cse'f,;dit,.*-( * *'{ c''* *' Ce"*'$r1':4 +"'G'rv1k A coe-lS''ci* J *t- 33. Find the first derivative of f(x) = x3 +9x2 *24x * 3, and then determine the location of the local minimums and maximums. F,vsf i3rr + l9v +2T'o il Y- +bx +8:? Ne-v+ltuc : ( *.::){*: f\' x-? .j o I -? t bxtr C.Y *d + Ct s* dre",*afu"C 62-- 3a-*2 * 2d' (ybrc-> y: {r<t rl t" 2,.-) 5.9: Write Polynomial Functions and Models 34. Find the cubic function through the points {-5,0), (3,0), (4, 0), {11, -1) 11 Bookwork: P.405:41 1, Y'1/v'-(rt. - 7x rbo --+vL '4..?' yi , *? 3s r lt) .^ 1 -1i., _ i) 4ts +{ i yz+.tf -t-,t &Y -t c"? -tx? 35_ t3 cxx} -t /b) ) - 1]oxl -b\X io rL -x?S:K -!Ao 2.r? +x3 -4txL -L81x-Qa -t t a(x +s)(x-B)fx -t) brflr{- *r-l);i-l-i; -,_,_q\ flf -\ =a(d+)(-t)-s) = ";€F :Ja-"i- r,, -22> The table shows the average speed y (in feet per second) of a space shuttle for different times t (in seconds) after launch. Use a graphing calculator to ! =, roA5v 1- ?5,? "13X5*\1+69bfcy- Z 37. When the space shuttle reaches a speed of approximately 4400 feet per second, its booster rockets fall off. Use your polynomial modelto determine how long after launch this happens. lFo N * atz : 4 { rx-t i{ -:X -q2=-8T* O W@ !: o lob"l Se*r--)s -:,) h u*t)(x"'n) +l}-9a'9 -* a(-++sf,-+*3)(2'- x a<-(r+ 5h+ 3) LCA) -- ?ea t _,-,r=|orF,o)>--- .\._ /' Y-a(x+sXx+3)(x + )-';( u?1 = -t 35. Find the quartic ftmctiqn through the points (-5, 0),t(-4, -21))(-3,0), 1" * l+ 6\ * r* z) ,'?rr - i fr" ?-l t) 2^l= tr(2*1 ,*3-7xz-Zffix -tz.) g;Lt zx't-r- Y-3 *Wk' - 2\t \- lr') Ly +Li v -r = Lr(v'rii *: )(zx + r)(x-