Comments
Description
Transcript
Flippin’ Proofs! Proving Lines Parallel
Flippin’ Proofs! Proving Lines Parallel Easy Section: Given: 𝑚∠1 = 56° and 𝑚∠2 = 56° Prove: 𝑙 ∥ 𝑚 Given: 𝑚∠1 = 65° and 𝑚∠2 = 115° Prove: 𝑙 ∥ 𝑚 m l 2 n 1 Given: ∠1 ≅ ∠2 ̅̅̅̅ ∥ 𝑆𝑅 ̅̅̅̅ Prove: 𝑃𝑄 l 2 n 1 m R Q 1 This space is intentionally left blank 2 S P Medium Section: Given: ∠1 and ∠2 are supplementary; ∠2 and ∠3 are supplementary Prove: 𝑃𝑄𝑅𝑆 is a Parallelogram Q 1 Given: 𝑚∠1 = 114°, 𝑚∠2 = 66°, and 𝑚∠3 = 48° Prove: 𝑙 ∥ 𝑚 l 2 3 P R m S Given: ∠1 ≅ ∠2 and ∠3 ≅ ∠4 Prove: ̅̅̅̅ 𝐴𝐵 ∥ ̅̅̅̅ 𝐶𝐷 P 2 3 2 D D A 1 E 2 Q 1 C B A Given: ∠1 and ∠2 are complementary; ∠3 and ∠2 are complementary; ̅̅̅̅ ∥ 𝑅𝑆 ̅̅̅̅ Prove: 𝑄𝑇 n 1 3 T B C 3 R 4 S Hard Section: Given: ∠1 ≅ ∠2 and ∠3 ≅ ∠4 Prove: 𝑛 ∥ 𝑝 ̅̅̅̅ bisects Given: 𝐵𝐶 ̅̅̅̅ bisects ∠𝐴𝐵𝐸; 𝐸𝐷 ⃡ ⃡ ∠𝐹𝐸𝐵; 𝐴𝐵 ∥ 𝐸𝐹 ̅̅̅̅ ∥ 𝐸𝐷 ̅̅̅̅ Prove: 𝐵𝐶 A B 1 C 2 E Given: ∠1 ≅ ∠4 and ∠2 ≅ ∠3 ̅̅̅̅ Prove: 𝐴𝐵 ∥ ̅̅̅̅ 𝐶𝐷 A F E 2 F H 3 G This space is also intentionally left blank. 4 V B 4 C T 1 D 3 D Flippin’ Proofs! Proving Lines Parallel