Comments
Description
Transcript
Chapter 11,
Chapter 11, continued Greatest possible side lengths: 1.4 1 0.05 5 1.45 cm 12. 17 cm 12 cm 1 cm 1 cm Greatest possible error 1 }(1 cm) 5 0.5 cm 2 1 } (1 cm) 5 0.5 cm 2 Relative error } ø 0.029 Unit of measure 0.5 cm 17 cm ø 2.9% 0.5 cm 12 cm } ø 0.0417 ø 4.2% 5.1 1 0.05 5 5.15 cm Greatest possible perimeter: P 5 2(1.45) 1 2(5.15) 5 13.2 cm Least possible side lengths: 1.4 2 0.05 5 1.35 cm 5.1 2 0.05 5 5.05 cm Least possible perimeter: P 5 2(1.35) 1 2(5.05) 5 12.8 cm The precision is the same. 17 centimeters is more accurate. Lesson 11.2 13. 18.65 ft 25.6 ft 0.01 ft 0.1 ft Greatest possible error 1 }(0.01 ft) 5 0.005 ft 2 1 } (0.1 ft) 5 0.05 ft 2 Relative error 0.005 ft } ø 0.0003 18.05 ft } ø 0.002 Unit of measure Investigating Geometry Activity 11.2 (p. 729) 1 1. The area of one trapezoid is } the area of the 2 parallelogram formed from two trapezoids. 0.05 ft 25.6 ft ø 0.03% ø 0.2% b 5 b1 1 b2 1 1 A 5 }2 bh 5 }2 (b1 1 b2)h 2. The base of the rectangle is d1 and the height of the rectangle is }2 d2. A 5 (d1)1 }2 d2 2 5 }2 d1d2 1 18.65 feet is more precise and more accurate. 1 1 14. 6.8 in. 13.4 ft 11.2 Guided Practice (pp. 731–732) 1 1 1. A 5 } h(b1 1 b2) 5 }(4)(6 1 8) 5 28 ft2 2 2 0.1 in. 0.1 ft Greatest possible error }(0.1 in.) 5 0.05 in. } (0.1 ft) 5 0.05 ft Relative error } ø 0.007 1 2 0.05 in. 6.8 in. 1 2 0.05 ft 13.4 ft } ø 0.004 ø 0.7% ø 0.4% 6.8 inches is more precise. 13.4 feet is more accurate. 15. 1 1 2. A 5 } d1d2 5 } (6)(14) 5 42 in.2 2 2 3. d1 5 30 m 1 30 m 5 60 m d2 5 40 m 1 40 m 5 80 m 1 1 4. A 5 } d1d2; when A 5 80 ft2, d1 5 x, and d2 5 4x. 2 1 3.5 ft 35 in. 80 5 }2 (x)(4x) 0.1 ft 1 in. 80 5 }2 4x2 Greatest possible error }(0.1 ft) 5 0.05 ft } (0.1 in.) 5 0.5 in. Relative error } ø 0.014 Unit of measure 1 2 0.05 ft 3.5 ft 1 2 ø 1.4% 0.5 in. 35 in. 16. Greatest possible error for 5.1 cm side: 1 40 5 x 2 } 2Ï10 5 x } ø 0.014 ø 1.4% 35 inches is more precise. The accuracy is about the same. } 1 1 5. A 5 } d1d2 5 }(4)(8) 5 16 units2 2 2 The area of the rhombus is 16 square units. y Greatest possible error for 1.4 cm side: P 5 2(5.1 cm) 1 2(1.4 cm) 5 13 cm Greatest possible error for perimeter: 1 2 } (1 cm) 5 0.5 cm Geometry Worked-Out Solution Key } 4(2Ï10 ) 5 8Ï 10 ft. 1 2 1 } (0.1 cm) 5 0.05 cm 2 } One diagonal is 2Ï10 ft and the other diagonal is } (0.1 cm) 5 0.05 cm 338 1 A 5 }2 d1d2 5 }2 (60)(80) 5 2400 m2 N M P 1 Q 1 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Unit of measure Chapter 11, continued 11.2 Exercises (pp. 733–736) Skill Practice 1 15. B; A 5 } d1d2 when d1 5 x, d2 5 3x, and A 5 24 ft2 2 1 1. The perpendicular distance between the bases of a trapezoid is called the height of the trapezoid. 2. The vertical diagonal is bisected by the horizontal diagonal. You also know the angles formed by the intersecting diagonals are right angles. 24 5 }2(x)(3x) 1 24 5 }2 (3x2) 16 5 x2 45x d1 5 4 d2 5 3(4) 5 12 The diagonals are 4 ft and 12 ft. 1 1 3. A 5 } h(b1 1 b2) 5 } (10)(8 1 11) 5 95 units2 2 2 1 1 4. A 5 } h(b1 1 b2) 5 }(6)(6 1 10) 5 48 units2 2 2 1 1 5. A 5 } h(b1 1 b2) 5 }(5)(4.8 1 7.6) 5 31 units2 2 2 1 108 5 }2(x)(14 1 22) 108 5 18x 6 ft 5 x 1 17. A 5 } h(b1 1 b2) 2 1 300 5 }2(20)(10 1 x) 5.4 cm 6. 1 16. A 5 } h(b1 1 b2) 2 8 cm 300 5 10(10 1 x) 30 5 10 1 x 10.2 cm 1 1 A 5 }2 h(b1 1 b2) 5 }2 (8)(5.4 1 10.2) 5 62.4 cm2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 1 7. A 5 } d1d2 5 }(50)(60) 5 1500 units2 2 2 1 8. A 5 } d1d2 5 2 1 }(16)(48) 5 384 units2 2 1 9. A 5 } d1d2 5 2 1 }(21)(18) 5 189 units2 2 1 10. A 5 } d1d2 5 2 }(10)(19) 5 95 units2 1 2 11. d1 5 12 1 12 5 24 d2 5 15 1 15 5 30 1 A 5 }2 d1d2 5 1 }(24)(30) 5 360 units2 2 12. d1 5 2 1 2 5 4 d2 5 4 1 5 5 9 1 2 1 2 A 5 } d1d2 5 }(4)(9) 5 18 units2 13. The height is 12 cm, not 13 cm. 1 A 5 }2 (12)(14 1 19) 5 198 cm2 14. The length of the one diagonal is 12 1 12 5 24, not just 12 itself. 1 20 m 5 x 1 18. A 5 } d1d2 2 1 100 5 }2(10)(x) 100 5 5x 20 yd 5 x 19. The figure is a trapezoid. b1 5 {4 2 2{ 5 2, b2 5 {5 2 0{ 5 5 h 5 {4 2 1{ 5 3 1 1 A 5 }2h(b1 1 b2) 5 }2 (3)(2 1 5) 5 10.5 units2 20. d1 5 {3 2 (21){ 5 4 d2 5 {23 2 1{ 5 4 The figure is a rhombus. 1 1 A 5 }2 d1d2 5 }2(4)(4) 5 8 units2 21. The figure is a kite. d1 5 {4 2 0{ 5 4 d2 5 {2 2 (23){ 5 5 1 1 A 5 }2 d1d2 5 }2(4)(5) 5 10 cm2 A 5 }2 (24)(21) 5 252 cm2 Geometry Worked-Out Solution Key 339 Chapter 11, continued 1 22. A 5 } h(b1 1 b2); b1 5 x, b2 5 2x 2 1 13.5 5 }2 (3)(x 1 2x) 26. Use the Pythagorean Theorem to find part of the second base. a2 1 202 5 292 a2 5 441 3 13.5 5 }2 (3x) 9 2 20 a 5 21 b2 5 21 1 21 5 42 9 13.5 5 }3 x 35x 1 2 a 1 2 A 5 } h (b1 1 b2) 5 }(20)(21 1 42) 5 630 units2 One base is 3 feet and the other base is 2(3) 5 6 feet. 1 23. A 5 } h(b1 1 b2); b1 5 x, b2 5 x 1 8 2 1 54 5 }2 (6)(x 1 x 1 8) 27. Height of trapezoid 5 7 2 5 5 2 Area 5 Area of trapezoid 1 Area of rectangle 1 hT 5 height of trapezoid, bR 5 base of rectangle, and 1 h } 5 2(2)(7 1 10) 1 (10)(5) R 5 height of rectangle A 5 }2hT (b1 1 b2) 1 bRhR 54 5 3(2x 1 8) 18 5 2x 1 8 5 67 units2 10 5 2x 28. Use the Pythagorean Theorem to find the height of 55x One base is 5 cm and the other base is 5 1 8 5 13 cm. the trapezoid and half of the shorter diagonal of the rhombus: 24. Use the Pythagorean Theorem to find the length of half of the shorter diagonal. 20 5 h a 4 4 1 h 5 52 2 h2 5 9 a 1 16 5 20 2 2 a2 5 144 a 5 12 d1 5 12 1 12 5 24 d2 5 16 1 30 5 46 1 1 A 5 }2 d1 1 d2 5 }2 (24)(46) 5 552 units2 25. Use the Pythagorean Theorem to find the height of the trapezoid. h53 b1 5 4, b2 5 4 1 4 1 4 5 12, d1 5 3 1 3 5 6, and d2 5 4 1 4 5 8 1 Area 5 Area of trapezoid 1 }2 Area of rhombus A 5 }2h(b1 1 b2) 1 }2 1 }2d1d1 2 1 1 1 F G 1 1 1 5 }2(3)(4 1 12) 1 }2 1 }2 2(6)(8) 5 36 units2 29. Area 5 Area of parallelogram 2 Area of kite 9 1 1 A 5 bh 2 }2 d1d2 5 (12)(7) 2 }2(12)(7) 5 42 units2 h 15 30. Sample answer: 4 3 92 1 h2 5 152 h 5 144 h 5 12 b2 5 9 1 11 5 20 1 1 a 5 }2h(b1 1 b2) 5 }2(12)(8 1 20) 5 168 units2 3 8 2 2 1 A 5 8(3) 5 24 units2 1 A 5 }2 (3)(4 1 12) 5 24 units2 5 2 3 3 1 1 A 5 }2(3)(5 1 11) 5 24 units2 4 1 1 A 5 }2(3)(2 1 14) 5 24 units2 340 Geometry Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 16 2 2 Chapter 11, continued 31. Use the Pythagorean Theorem to find the length of the B B side of the trapezoid. 7 7 A C D 15 2 7 15 E 62 1 82 5 s2 F H 170 5 BC2 10 5 s } Ï170 5 BC P 5 6 1 7 1 15 1 10 5 38 units 1 To find mABC, use trigonometric ratios. 1 A 5 }2 h(b1 1 b2) 5 }2(6)(7 1 15) 5 66 units2 B u1 u2 6 7 10 32. Use the Pythagorean Theorem to find the length of part of the other diagonal. A 13 13 a 12 170 8 C 11 8 11 tan u1 5 }6 12 13 tan u2 5 } 7 u 5 tan21 1 }3 2 u2 5 tan211 } 72 u1 ø 53.18 u2 ø 57.58 4 24 a2 1 122 5 132 a2 5 25 11 } So, mABC ø 53.18 1 57.78 ø 110.68. Extend BC and drop an altitude down from A to find the height of the parallelogram. By the Linear Pairs Postulate, } } the angle made by joining extended BC to AB is 1808 2 110.68 5 69.48. Use a trigonometric function to find the height. a55 d1 5 5 1 5 5 10 P 5 4(13) 5 52 units 1 A 5 }2 d1d2 5 }2(10)(24) 5 120 units2 } 33. First, make a horizontal line from A to the segment BF. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. G 112 1 72 5 BC2 100 5 s2 1 C 11 s 6 6 The length of the new segment is 8 because it is parallel } to EF, and EF 5 8. Because BF 5 16 and AE 5 10, the part of the segment from B to this new segment is 16 2 10 5 6. Using the Pythagorean Theorem, you can } find out the length of AB. 82 1 62 5 AB2 h sin 69.48 5 } 10 10 + sin 69.48 5 h 9.36 ø h B 69.48 h 10 A So, the area } of the parallelogram is A 5 bh ø Ï 170 + 9.36 ø 122 square units. B 100 5 AB 2 6 10 5 AB A 8 } } Because ABCD is a parallelogram, AB > CD and } } BC > DA. So, CD 5 10. Next extend a vertical line } } up from GD to meet BC. Because BAD > BCD, } } AB > CD, and two more corresponding angles of the triangles are congruent (by Alternate Interior and Suppementary Angles Theorems), you know the triangle } } } made by AB and parts of AD and BF is congruent to } } } the triangle made by CD and parts of BC and AD by AAS. You can now say GH 5 8 because you have corresponding parts of congruent triangles. Now draw a } horizontal line connecting C to BF. You know the base is the length of FG 1 GH 5 8 1 2 5 11 and the height is 16 2 9 5 7. Use the Pythagorean Theorem to find BC. Problem Solving 1 1 34. A 5 } h(b1 1 b2) 5 } (35)(70 1 79) 5 2607.5 in.2 2 2 The area of the glass in the wind shield is 2607.5 square inches. 1 1 35. A 5 } d1d2 5 }(8)(5) 5 20 mm2 2 2 The area of the logo is 20 square millimeters. Sample answer: Geometry Worked-Out Solution Key 341 Chapter 11, continued 1 A 5 }2 d1d2 39. The kite was cut along the diagonal and then the other 1 432 5 }2 (36)(d2) 24 5 d2 The length of the other diagonal is 24 inches. 37. a. The two polygons are a trapezoid and a right triangle. b. Area of field 5 Area of triangle 1 Area of trapezoid 1 1 Area of field 5 }2 bh 1 }2 h(b1 1 b2) 1 5 103,967.5 Theorem 11.5. 1 1 40. The area of nPRS is }b1h and the area of nPQR is }b2h. 2 2 1 2 1 2 The area of the playing field is about 103,968 square feet or about 11,552 square yards. 1 2 41. By the SSS Congruence Postulate, nPQR > nPSR. 1 1 1 The area of nPQR is }2d2 }2d1 5 }4d1d2. So, the area of 1 2 kite PQRS is twice the area of nPQR, or 21 }4 2d1d2 5 }2d1d2. 1 2 1 42. a. Sample answer: Diagram Area, A 2 4 3 6 Rhombus number, n original kite rhombus isosceles triangle right triangle many different triangles many different kites many different quadrilaterals 4 Diagram Area, A you can go through the same process with a rhombus, }b1h 1 }b2h 5 }h(b1 1 b2). 103,968 ft2 1 yd2 }+} 5 11,552 yd2 1 9 ft2 Rhombus number, n 1 The area of trapezoid PQRS is equal to ø 103,968 ft2 1 1 1 1 Rhombus number, n have A 5 (d1)1 }2 d2 2, which simplifies to }2d1d 2. Because the formula will also simplify to }2 d1d2, which is Area of field 5 }2 (315)(322) 1 }2(179)(145 1 450) 38. a. diagonal to make 1 big triangle and 2 smaller triangles. The resulting figure, once the smaller triangle was moved, was a rectangle. The formula for the area of a rectangle is b + h. In this case, the base was the first diagonal, and the height was half of the other diagonal. Substituting those values into the area formula, you 8 5 b. Yes, you can make isosceles and right triangles by moving the vertical diagonal down all the way and to the middle or down all the way and to the left or right all the way. Diagram 1 1 c. Area of original kite: }d1d2 5 }(4)(6) 5 12 units2 2 2 1 1 Area, A 10 Area of rhombus: }2d1d2 5 }2(4)(6) 5 12 units2 1 1 b. The area is twice the rhombus number n. The area of the nth rhombus is A n 5 2n. c. The length of the other diangonal is 2n for the nth 1 1 rhombus. A 5 }2 d1d2 5 }2(2)(2n) 5 2n. The rule for area in this part is the same as the rule for area in part (b). 342 Geometry Worked-Out Solution Key Area of isosceles triangle: }2 bh 5 }2(6)(4) 5 12 units2 1 1 Area of right triangle: }2 bh 5 }2(6)(4) 5 12 units2 1 1 Area of different kiles: }2d1d2 5 }2(4)(6) 5 12 units2 All of the areas are equal, 12 square units. The lengths of the diagonals are not being changed, just moved around. Although the shapes made by connecting the diagonals will be different, the area will remain the same. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 36. Chapter 11, continued Lesson 11.3 43. Looking at the trapezoid: b1 5 a, b2 5 b1 and h 5 a 1 b 11.3 Guided Practice (pp. 738–739) 1 1 A 5 }2 h(b1 1 b2) 5 }2(a 1 b)(a 1 b) 1 1 a 4 16 1. Ratio of perimeters: } 5 } 5 } 3 b 12 1 5 }2 (a2 1 2ab 1 b2) 5 }2a2 1 ab 1 }2b2 Looking at the triangles that make up the trapezoid: 1 2 1 2 1 2 1 2 A 5 }(a)(b) 1 }(a)(b) 1 }(c)(c) 5 ab 1 }c2 1 2 1 2 1 2 64(9) 5 16(Area of nDEF) 36 5 Area of nDEF 16 1 2 20 2. Ratio of area: } 36 21 }2a2 1 }2 b2 2 5 21 }2 c2 2 1 576 5 16(Area of nDEF) . The area of nDEF is 36 square feet. is } 9 }a2 1 }b2 5 }c2 1 1 } } 2Ï5 Ï20 Ï36 } Ï5 Ratio of sides: } } 5 } 5 } 6 3 a2 1 b2 5 c2 } Ï5 . The ratio of their corresponding side lengths is } 3 Mixed Review for TAKS 3. Step 1 Find the ratio of the perimeters. Use the same 44. C; units for both lengths in the ratio. 0.25 in. j dimension in blueprint Scale 5 } 1 ft j actual dimension Perimeter of Rectangle I Perimeter of Rectangle II 0.25 in. 2 0.0625 in.2 Let x 5 the area of the actual kitchen 5.5 in.2 x 66 in. (Periemter of Rectangle I)2 (Perimeter of Rectangle II) 12 20 88 5 x 1 400 }2 5 } The area of the actual kitchen is 88 square feet. Step 3 Find the area of Rectangle I. 45. G; Area of Rectangle I Area of Rectangle II 1 400 Area of Rectangle I (35)(20) 1 400 0 1 }} 5 } (23)2 2 1 02 2 1 12 2 1 }} 5 } 5921 5021 5121 58 5 21 50 2(23)2 2 1 2(0)2 2 1 2(1)2 2 1 5 2(9) 2 1 5 2(0) 2 1 5 2(1) 2 1 5 18 2 1 5021 5221 23 x Area of Rectangle I + 400 5 700 Area of Rectangle I 5 1.75 ft2 2 144 in. Step 4 1.75 ft2 + } 5 252 in.2 2 1 ft 1 The ratio of the area is } and the area of 400 5 17 5 21 51 2(23)2 1 1 2(0)2 1 1 2(1)2 1 1 5 29 1 1 5 20 1 1 5 21 1 1 11.3 Exercises (pp. 740–743) 5 28 5011 50 Skill Practice 51 y 5 2x 2 1 1 Area of Rectangle I Area of Rectangle II }}}2 5 }} 5.5 5 0.0625x y 5 2x 2 1 1 1 Step 2 Find the ratio of the areas of the two rectangles. 0.0625 in.2 1 ft y 5 2x 2 2 1 5.5 ft 5} 5} 5} 20 110 ft 110 ft }5} 2 y 5 x2 2 1 66 in. 2(35 ft) 1 2(20 ft) }} 5 }} j area in blueprint 5} (Scale)2 5 1 } 1 ft 2 j actual area 1 ft2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 16 9 64 Area of nDEF The ratio of the area of nABC to the area of nDEF }a2 1 ab 1 }b2 5 ab 1 }c2 1 2 16 }} 5 } Because the areas are equal, you can set the area of the trapezoid and the combined area of the triangles equal to each other. 1 2 42 3 a2 b Ratio of areas: }2 5 }2 5 } 9 Rectangle I is 252 square inches. 1. Sample answer: 2(23)2 1 1 2(0)2 1 1 2(1)2 1 1 5 2(9) 1 1 5 2(0) 1 1 5 2(1) 1 1 5 18 1 1 5011 5211 5 19 51 53 E B 5 A 4 10 3 C D 8 6 F The function y 5 2x 2 1 best represents the mapping shown. 2 Geometry Worked-Out Solution Key 343