Unit 6 – Introduction to Trigonometry The Unit Circle (Unit 6.3)
by user
Comments
Transcript
Unit 6 – Introduction to Trigonometry The Unit Circle (Unit 6.3)
Unit 6 – Introduction to Trigonometry The Unit Circle (Unit 6.3) William (Bill) Finch Mathematics Department Denton High School Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Lesson Goals When you have completed this lesson you will: W. Finch Unit Circle I Find values of trigonometric functions for any angle. I Find the values of trigonometric functions using the unit circle. DHS Math Dept 2 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Trigonometric Functions of Any Angle θ is an angle in standard position, P(x, y ) is a point on the terminal side, and r is the distance from P to the origin (denominators 6= 0): sin θ = y r csc θ = r y cos θ = x r sec θ = r x tan θ = y x cot θ = x y y P(x, y ) r θ x Recall the equation of a circle centered at the origin: r2 = x2 + y2 p r = x2 + y2 W. Finch DHS Math Dept Unit Circle Introduction 3 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 1 The point (−3, 2) is on the terminal side of an angle in standard position. Find the exact values of the six trigonometric functions of θ. W. Finch Unit Circle DHS Math Dept 4 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Quadrental Angles Quadrental angles terminate on an axis. y y (0, r ) y y θ θ θ θ (r , 0) x x x (−r , 0) x (0, −r ) θ = 0◦ or 0 radians θ = 90◦ or π/2 radians θ = 180◦ or π radians W. Finch θ = 270◦ or 3π/2 radians DHS Math Dept Unit Circle Introduction 5 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 2 Find the exact value of each trigonometric function, if defined. If not defined, write undefined. a) cos π b) tan(−270◦ ) c) sec 3π 2 d) sin 5π W. Finch Unit Circle DHS Math Dept 6 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant II y (−a, b) b b r a cos θ = − r b tan θ = − a sin θ = r θ θ0 a x W. Finch b r a cos θ0 = r b tan θ0 = a sin θ0 = DHS Math Dept Unit Circle Introduction 7 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant III y b r a cos θ = − r b tan θ = a sin θ = − θ a b (−a, −b) W. Finch Unit Circle θ0 r x b r a cos θ0 = r b 0 tan θ = a sin θ0 = DHS Math Dept 8 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Angles Not Acute or Quadrental Quadrant IV y b r a cos θ0 = r b tan θ0 = a b sin θ = − r a cos θ = r b tan θ = − a θ a x θ0 r b (a, −b) sin θ0 = W. Finch DHS Math Dept Unit Circle 9 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Reference Angles If θ is an angle in standard position, its reference angle θ0 is the acute angle formed by the terminal side of θ and the x-axis. y y θ x θ0 y θ θ x x θ0 θ0 = θ W. Finch Unit Circle θ0 = 180◦ − θ θ0 = π − θ y θ0 = θ − 180◦ θ0 = θ − π θ x θ0 θ0 = 360◦ − θ θ0 = 2π − θ DHS Math Dept 10 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 3 Sketch the angle and the identify its reference angle. a) −150◦ b) 315◦ c) 3π 4 d) 5π 3 W. Finch DHS Math Dept Unit Circle Introduction 11 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Evaluating Trigonometric Functions of Any Angle y 1. Sketch the angle. 2. Determine the reference angle θ0 . 3. Find the value of the trig function for θ0 . 4. Determine the sign (pos or neg) based on the quadrant containing the terminal side of θ. W. Finch Unit Circle Quad sin θ : cos θ : tan θ : II + − − Quad I sin θ : + cos θ : + tan θ : + Quad III sin θ : − cos θ : − tan θ : + Quad IV sin θ : − cos θ : + tan θ : − x DHS Math Dept 12 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Special Reference Angles θ (radians) π 6 π 4 π 3 θ (degrees) 30◦ 45◦ √ 2 2 √ 2 2 60◦ √ 3 2 1 2 √ 3 sin θ cos θ tan θ 1 2 √ 3 2 √ 3 3 1 W. Finch DHS Math Dept Unit Circle Introduction 13 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 4 Find the exact value of each expression. 4π a) sin 3 b) sec 15π 4 c) tan 150◦ d) cos (−120◦ ) W. Finch Unit Circle DHS Math Dept 14 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 5 √ 29 Let sec θ = , where sin θ > 0. Find the exact values of 5 the remaining five trigonometric functions of θ. W. Finch DHS Math Dept Unit Circle Introduction 15 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary The Unit Circle A unit circle is a circle of radius 1 centered at the origin. The radian measure of a central angle is s s θ= = =s r 1 so the arc length intercepted by θ equals the angle’s radian measure. W. Finch Unit Circle y (0, 1) r s θ (−1, 0) x (1, 0) r (0, −1) DHS Math Dept 16 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary The Unit Circle and the Wrapping Function Place a number line vertically tangent to a unit circle at (1, 0). Wrap this line around the circle (counterclockwise for positive values and clockwise for negative values), each point t on the line would map to a unique point P(x, y ) on the circle. This is referred to as the wrapping function w (t). Since r = 1, the six trigonometric rations of angle t can be defined in terms of just x and y . y P(x, y ) t t x (1, 0) 1 W. Finch DHS Math Dept Unit Circle Introduction 17 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Trigonometric Functions on the Unit Circle sin t = y cos t = x y tan t = x And, of course, no denominator = 0. W. Finch Unit Circle 1 csc t = y 1 x x cot t = y sec t = P(x, y ) P(cos t, sin t) y t t x 1 These functions are referred to as circular functions DHS Math Dept 18 / 25 Introduction Quadrental Angles Other Angles Unit Circle Periodic Functions Summary 16-Point Unit Circle y √ − 2 , 2 √ − 3 1 , 2 2 − 12 , √ √ 3 2 (0, 1) 2 2 √ 3 2 √ 180◦ π 3 3 1 , 2 2 5π 4 4π 3 5π 3 3π 2 √ 225◦ − 23 , − 12 240◦ √ √ 2 2 −2,−2 √ 1 3 −2, − 2 7π 4 π 6 (1, 0) x 360 0◦ ◦ 2π 7π 6 30◦ π 4 π 210◦ 2 2 √ 45◦ π 2 2π 3π 3 4 √ 2 , 2 60◦ 135◦ 5π 6 1 , 2 90 120◦ (−1, 0) ◦ 150◦ 11π 6 330◦ √ 315◦ 300◦ 3 , 2 √ ◦ 270 (0, −1) 1 , 2 √ − √ 2 , 2 3 2 − 2 2 − 21 W. Finch DHS Math Dept Unit Circle 19 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary 16-Point Unit Circle y y √ − 2 , 2 − 12 , √ √ 3 2 2 2 √ − ◦ π 210 W. Finch Unit Circle 225◦ (0, 1) (0, 1) 90◦ 90135◦ ◦ 120◦ 150◦ 5π 6 3π 4 2π 3 2 2 √ − 2 , 2 √ 240◦ − 2 2 √ − 12 , − 23 5π 4 4π 3 3π 2 π 2 60◦ √ 1 3 √ 2 , 2 √ √ 1 2 , 23 , 2 2 √ √2 √2 60◦ 2 2 3 1 , 45◦2 , 2 2 2 π 3 45◦ π (−1, 0)2π ◦ π 3 3π 3 180 4 5π 7π 6 6 5π 4 4π 210◦ 3 √ 225◦ − 3, −1 7π 6 ◦ 3 2 π 2 1 3 1 , 2 2 √ 2 2 135 180 3 2 , 2 ◦ 150◦ 1, 0) √ − − 12 , √ 120◦ √ − 23 , 12 √ Trig Functions – Circle π 4 π 4 30◦ √ 3 1 , 2 2 π 6 ◦ 302π π 6 5π 3 3π 2 2π 7π 4 (1, 0) x 360 0◦ ◦ 11π 6 330◦ 315◦◦ ◦ 360 0 300◦ (1, 0) √ 3 , −1 2 x2 √ 2 , − 22 2 √ √ 270◦ 11π 6 7π (0, −1) 4 5π 3 1 , 2 − 3 2 ◦ 330 315◦ √ DHS Math Dept 3 1 20 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Unit Circle Periodic Functions Summary Example 6 Find the exact value of each expression. 7π a) sin 6 b) cos π 3 c) tan 4π 3 d) sec 270◦ W. Finch DHS Math Dept Unit Circle Introduction 21 / 25 Trig Functions – Circle Quadrental Angles Other Angles Summary Periodic Functions A number line can be wrapped around a circle infinitely many times, so the domain of both the sine and cosine functions is (−∞, ∞). This means more than one value t will be mapped onto the same point P(x, y ). Graphing ordered pairs of the form (t, sin t) shows how the function repeats periodically. W. Finch Unit Circle DHS Math Dept 22 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Periodic Functions A function y = f (t) is periodic if there exists a positive real number c such that f (t + c) = f (t) for all values of t in the domain of f . The smallest number c for which f is periodic is called the period of f . sin(t + n · 2π) = sin t period = 2π cos(t + n · 2π) = cos t period = 2π tan(t + n · π) = tan t period = π W. Finch DHS Math Dept Unit Circle Introduction 23 / 25 Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary Example 7 Use the period of each function to determine an exact value. 9π a) cos 4 b) sin c) tan W. Finch Unit Circle −2π 3 29π 6 DHS Math Dept 24 / 25 Introduction Trig Functions – Circle Quadrental Angles Other Angles Unit Circle Periodic Functions Summary What You Learned You can now: W. Finch Unit Circle I Find values of trigonometric functions for any angle. I Find the values of trigonometric functions using the unit circle. I Do problems Chap 4.3 #1, 5, 9-31 odd, , 33-37 odd, 43-57 odd, 61-65 odd, 73, 75 DHS Math Dept 25 / 25