Nanostructures for Memory Devices and Bio-Sensors KAIST September 27, 2006
by user
Comments
Transcript
Nanostructures for Memory Devices and Bio-Sensors KAIST September 27, 2006
Nanostructures for Memory Devices and Bio-Sensors KAIST (Department of Electrical Engineering) September 27, 2006 Yang-Kyu Choi NanO-Bio-Electronic Laboratory KAIST Outline 1. Sub-5nm FET Fabrication 2. Nanodots for Non-volatile Memory 3. Nanogap Devices for DNA Chips 4. Nano-Chestnut for Bio-Sensors 5. Summary KAIST Why Novel Structures? Tbody Gate Gate Gate Source Source Drain Source Drain Drain BOX Body/Halo Doping Gate Substrate Bulk Ultra-Thin Body G S D Fluid analog KAIST Double-Gate FinFET (Fin Field Effect Transistor) in e in a r D ra at e t a G D C ur r en t ur ce e c r u So So n i F G Fin KAIST Pinchcock Evolution of Transistor G S G D S D Fin Fin Fin Double gate Ω-gate All-around Buried Oxide Bulk-single gate SOI single gate No report for Sub-50nm LG=4nm NEC IEDM 2003 LG=8nm IBM IEDM 2003 LG=10nm AMD/Berkeley IEDM 2003 KAIST LG=10nm LETI VLSI 2005 We did it! Sub-5nm AAG FinFET Gate Before LG=5nm gate spacer formation Source Drain Source WFin=3nm Gate Gate Gate Drain KAIST World Record Smallest Si FET (3nm) Source Gate Gate Drain KAIST Sub-5nm AAG FinFET: Gate Poly-si 5nm HfO2 IFO 5nm Poly-si Gate Source Gate Gate Si Drain Silicon fin KAIST 5nm Drain Current [A/µm] 1x10 1x10 10 10 -3 Simulated Measured 160 VD=1.0V 140 -4 VD=0.2V -5 DIBL=230mV/V SS=208 mV/dec HfO2 =1.4nm LG=5nm WFin=3nm -6 -7 -1.0 -0.6 -0.2 0.2 0.6 120 100 80 60 40 20 0 1.0 Transconductance [µS/µm] 10 Drain Current [µA/µm] I-V of Sub-5nm AAG FinFET Gate Voltage [V] 350 HfO2 =1.4nm LG=5nm 250 W =3nm Fin 200 300 0.6V 0.4V 150 VG=0.2V 100 50 0 0.0 0.2 0.4 0.6 0.8 Drain Voltage [V] Electrically 5nm FinFET (3D SILVACO) Large DIBL and SS due to thick EOT ITRS requirement: 0.5nm EOT for DG KAIST 1.0 CMOS Scaling Scenario 70nm 45nm 25nm 2002 2005 2008 18nm 10nm (Lg) 2011 2014 S G D Bulk G S UTB D BOX G Multiple-Gate (FinFET) S D G KAIST Nanosphere Lithography Nanobeads Metal Evaporation Metal Lift-off Cross-sectional View Top View R.P. Van Duyne, J. Phys. Chem. B., 1999 KAIST Metal Nanodots by Nanosphere Lithography D d=0.23D 500nm PS Nanobeads 110nm PS Nanobeads d=115nm metal dots d=25nm metal dots • Bead Diameter : D • Metal Dot Size : d = 0.23D • Density = 4 3D2 • Density = 9.2x1011/cm2 • Density = 1.9x1011/cm2 • Well ordered 25nm metal dots are achieved. KAIST Nanodots for Flash Memory Before IPA 1.0 Dipping Ti Metal Nanodot 50µmX50µm Pad ∆VT [V] C/CMAX 1.5 1.0 0.5 0.0 -2 D P-Type Substrate TTunneling=5nm(SiO2) TControl=30nm(HfO2) 2.0 P-Type Substrate TTunneling=5nm(SiO2) TControl=30nm(HfO2) -4 NFGM (Flash Memory) 2.5 ∆VT 0.4 0.2 S 3.0 0.8 0.6 Gate 0 2 4 0.0 30X30 50X50 100X100 2 VTOP [V] Top Electode Size [µm ] Hysteresis ( ∆VT ) >1.5V. No device size dependence → Well-ordered nanodots KAIST Chemical Synthesis and Thermal Decomposition Ni Target=3nm 2~5nm/2.4X1012cm-2 XRD Analysis Ag 24 22 20 18 16 14 12 10 8 6 4 2 Ag (111) Ag (200) Ag (220) 30 100nm 40 q 20nm AgNO3 20mmol / Oleylamine 1L* heating the mixture at 130'C for 2hours Intensity(a.u.) AgNO3 50mmol / Oleylamine 1L* heating the mixture at 130'C for 2hours 50 60 2 (deg) 5~8nm/5.8X1011cm-2 • High Ag NC density:~1012cm-2 • Acceptable NC size and dot-to-dot distance : ~3nm/~4nm • Controllable Ag NC size by AgNO3 concentration • No Ag Oxidizing KAIST 70 Ag (311) 80 Thermodynamic Agglomeration XRD After 24h After Annealing Au (111) 4 10 Intensity (a.u.) Au Target=3nm 3 Si (400) Au (200) 10 3~8nm/ 2 10 Au (220) Au (311) Si (400) Si (200) 8.8X1011cm2 1 10 20 30 40 50 60 70 80 2θ (deg) Pt Target=3nm Ni Target=3nm Si (400) Pt 3~14nm/ 11cm4.7X10 2 4 Intensity (a.u.) S P U T T E R I N G E V A P O R A T O R Size/Density 10 3 10 Si (200) Si (400) 2 10 Ni (200) Ni (111) 1 10 20 30 40 50 2θ (deg) KAIST 60 70 80 Ni 3~7nm/ 12cm1.2X10 2 Double-Stacked Nanodot Memory C-V Hysteresis Retention Time P/E Efficiency Ag 12 4 4 DSNC embedded MOS capacitor w/o Ag NCs tinter=6nm(HfO2) 12 9 6 ∆Vfb=300mV 6 1 0 -1 3 4 2 3 Ag SNC Ag DSNC,TInter=2nm Ag DSNC,TInter=6nm VFB Shift [V] 8 3 VFB Shift [V] Capacitance [pF] +7/-7V tcontrol=23nm(SiO2) +9/-9V ttunnel=4.5nm(SiO2) tinter=2nm(HfO2) +1/-1V +3/-3V +5/-5V 10 0 -12 -8 -4 0 4 8 12 -2 2 -3 0 3 6 Gate Voltage [V] 9 12 15 -4 DSNC with tinter=2nm P/E Voltage: +9/-9V DSNC with tinter=6nm 2 P/E Voltage:+11/-13V 1 τP/E=1sec 0 -1 -3 -6 Programmed state Ag SNC P/E Voltage:+9/-9V Erased state -15 -12 -9 -6 -3 0 3 6 9 Program Voltage [V] 12 15 -2 0 10 1 10 2 10 3 10 4 10 5 10 6 10 Retention Time [sec] Interfacial dielectric(HfO2) thickness ÆTrade-off between program/erase(P/E) efficiency & retention time Double-stacked Nanocrystals(DSNC) with 6nm interfacial HfO2 layer ÆWide memory window(>1.5V) & conspicuously extended retention time Æ Reduced charge loss rate compared to single NCs(SNC) case KAIST 7 10 8 10 Nanodot Memory Characteristics <D>avg=3nm, Density=2.4x1012cm-2 VG-Vth=1.5V w/o NCs L/W=1.6µm/50µm 1.2V 2.4 Thermal Decomposition (Ag NCs) -4 10 ttunnel=4.5nm tcontrol(HfO2)=30nm L/W=1.4um/50um -5 10 0.9V 1.6 ID [A] ID [µ A/µ m] 3.2 -6 10 10 -8 ∆Vth=0.7V 10 0.6V -9 10 -7 0.8 0.0 +7/-7V +9/-9V -7 10 -6 0.3V 10 -4 -2 0 2 4 6 8 10 +3/−3V +7/−7V -8 0 1 2 3 10 VD [V] -4 -2 0 2 4 6 +5/−5V +9/−9V 8 VG [V] Gate Voltage vs. Drain Current (Double Sweet Mode) Drain Voltage vs. Drain Current For different Gate Voltages KAIST 10 Fatigue Characteristics 3 2.4 LG=1.6um LG=2um LG=8um 0.8 0.0 2 Programmed and erased @VG=+9/-9V τp(Program time))=τe(Erase time)=80µs ∆ Vth [V] ∆ Vth [V] 1.6 1 0 -0.8 -1 -1.6 -2.4 0 10 1 10 2 10 3 10 4 10 5 10 6 10 data "1" Cycling and readout pulse +9/-7V, 80µsec W/L = 10/2um tcont.(HfO2)=30nm, ttunnel.(SiO2)=4.5nm data "0" -2 -1 0 1 2 3 4 5 6 7 8 10 10 10 10 10 10 10 10 10 10 Retention time [sec] Program/Erase Cycles • Retention : △Vth=1.2V after 104 second • Endurance Characteristic : Program/Erase cycling larger than 107 times KAIST Nanodot Non-Volatile FinFET 3D Structure Cross-sectional Images Electrical Characteristics 6.0 Ag Al-Gate HfO2=30nm Au NCs 0.1um p-Substrate Oxide hard mask +9/-9V +7/-7V +5/-5V +3/-3V 4.5 4.0 ∆Vfb=0.5V 3.5 Gate Gate p--Si body Gate 20um tside_wall=3µm tcontrol=30nm(HfO2) ttunnel=4.5nm(SiO2) 5.0 Gate Ox. Hard mask 3um w/o Au NC MOS Capacitor 5.5 Capacitance [pF] Top Gate (Al) 3.0 p--Si body -9 -6 -3 0 3 6 Gate Voltage [V] 9 5.0 w/ Au NCs embedded MOS Capacitor HfO2=30nm p--Si body p--Si body Capacitance [pF] θ=87 ° Au NCs 3um Oxide hard mask Gate Tun. Ox. (4nm) Gate Gate ttunnel=4.5nm(SiO2) tcontrol=30nm(HfO2) tside_wall=3µm 4.5 4.0 3.5 3.0 +11/-11V +9/-9V +7/-7V +3/-3V -12 -9 -6 -3 0 3 6 Gate Voltage [V] KAIST 9 12 Nanodot Non-Volatile FinFET NCs on the side wall Cross-Section Size:3~5nm Density:6.3X1011cm-2 Air NCs Si-Substrate Au Nanocrystals on the side wall of silicon vertical structure KAIST Poly-Si Nanogap by Spacer Lithography SiO SiO Poly-Si I Poly-Si I SiN Spacer Deposition Poly-Si II Spacer Poly-Si I SiN SiN Patterning SiO Spacer Etch Back Poly-Si (II) Poly-Si (I) Nano-Gap Si3N4 SiO Poly-Si I Poly-Si II Poly-Si I SiN 2nd Poly-Si deposition SiN CMP and removal of spacer KAIST DNA Chip Configuration PDMS Microfluidic Channel ow Fl D n tio c ire Inlet Magnified Nanogap Junctions Image a a’ Addressable Electrode Common Ground Outlet KAIST Sub-8nm Gap of Poly-Si Electrodes G Poly-Si Poly-Si G Opened channel Si Si Sub-8nm 7nm ion channel gap Nitride Poly-Si Opened channel Top View Poly-Si Fluid opened fluidic channel 7.7nm Gap width < 8nm KAIST DNA Hybridization in Nanogap Inside view Top view KAIST Detection of DNA Hybridization 400 400 SAM Immobilization (T) Hybridization (T-A) 300 350 Capacitance (pF) Capacitance (pF) 350 250 T 200 A 150 300 250 50 50 10 3 4 5 10 10 10 Frequency (Hz) 6 10 G 150 100 2 T 200 100 0 1 10 SAM Immobilization (T) Hybridization (T-G) 7 10 0 1 10 Y.-K. Choi et al., MRS, p.185, April 2002 KAIST 2 10 3 4 5 10 10 10 Frequency (Hz) 6 10 7 10 Nano-Chestnuts a b c Y.K. Choi et. al., Nanotechnology (2006) KAIST Nano-Chestnuts (Cont’d) a c b d KAIST Net structure Bio-Sensor Application 9.0u Current (A) 6.0u SWCNT/PS electrode bare Au electrode SWCNT electrode 3.0u 0.0 -3.0u -6.0u -9.0u -400 (a) -200 0 200 400 600 800 Potential (mV) • Potential windows for bare gold, SWCNT, and SWCNT/PS electrode in 5×10-4 mol/L potassium ferrocyanide (K3Fe(CN)6/PBS) KAIST Summary 1. Sub-5nm Si FET was demonstrated. 2. Nanodots were formed for non-volatile memory devices. 3. Sub-lithographic nanogap devices were fabricated for DNA chips. 4. Nano-chesnuts were formed for bio-sensors. KAIST