Comments
Transcript
( ) Graphs of Functions and Their Derivatives
Name: __________________________________ Block: _____________ Date: __________ Graphs of Functions and Their Derivatives f ( x ) , f ' ( x ) , f '' ( x ) For each of the following identify which graph is that of the function, f ( x ) , and which is that of the first derivative, f ' ( x ) . Justify your choices by identifying all of the key relationships between the two graphs. -----------------------------------------------------------------------------------------------------------------------------Example. - A relative minimum of f ( x ) occurs at x=B and x=D x=B corresponds to a zero of f ' ( x ) . f ( x) x=A - A relative maximum of f ( x ) occurs at x=D and corresponds to a zero of f ' ( x ) . - B and D are critical numbers of f ( x ) where f '( x) = 0 . - Relative extrema of f ' ( x ) occur at x=A, C, E f '( x) and correspond to Inflection Points of f ( x ) . - A, C, E are critical numbers of f ' ( x ) where x=C x=E f '' ( x ) = 0 . -----------------------------------------------------------------------------------------------------------------------------1. FcnDerivGraphs.doc Page 1 of 6 2. -----------------------------------------------------------------------------------------------------------------------------3. FcnDerivGraphs.doc Page 2 of 6 4. -----------------------------------------------------------------------------------------------------------------------------5. FcnDerivGraphs.doc Page 3 of 6 For each of the following identify the graph of f ( x ) , of the first derivative, f ' ( x ) , and the second derivative f '' ( x ) . Justify your choices by identifying all of the key relationships between the three graphs. 6. -----------------------------------------------------------------------------------------------------------------------------7. FcnDerivGraphs.doc Page 4 of 6 8. -----------------------------------------------------------------------------------------------------------------------------9. FcnDerivGraphs.doc Page 5 of 6 10. -----------------------------------------------------------------------------------------------------------------------------11. FcnDerivGraphs.doc Page 6 of 6