Pattern formation, Superfluidity and Coherence of Polariton Condensates. Jonathan Keeling
by user
Comments
Transcript
Pattern formation, Superfluidity and Coherence of Polariton Condensates. Jonathan Keeling
Pattern formation, Superfluidity and Coherence of Polariton Condensates. Jonathan Keeling UMass Amherst, January 2012 Funding: Jonathan Keeling Polariton condensation UMass Amherst, January 2012 1 / 32 Bose-Einstein condensation: macroscopic occupation Polaritons. ∼ 20K Atoms. ∼ 10−7 K [Kasprzak et al. Nature, ’06] [Anderson et al. Science ’95] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 2 / 32 Macroscopic coherence: vortices Polaritons: Atoms: [Lagoudakis et al. Nat. Phys. ’08] [Abo-Shaeer et al. Science ’01] But also, nonlinear optics: [Arecchi et al. PRL ’91] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 3 / 32 Excitons Energy Electronic spectrum: Momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 4 / 32 Excitons Energy Electronic spectrum: Holes Momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 4 / 32 Excitons Energy Electronic spectrum: H= X X Tie +Tih + Vijee +Vijhh −Vijeh i ij Holes Ti = pi2 2mj Vij = e2 r |ri − rj | Momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 4 / 32 Excitons Energy Electronic spectrum: H= X X Tie +Tih + Vijee +Vijhh −Vijeh i ij Holes Ti = pi2 2mj Vij = e2 r |ri − rj | Momentum Bound state: Exciton, M ∼ me + mh Approximate Bose statistics: † [cexciton,k , cexciton,k 0 ] ' δk,k 0 D If ρ(aB,exciton ) 1 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 4 / 32 Excitons Energy Electronic spectrum: H= X X Tie +Tih + Vijee +Vijhh −Vijeh i ij Holes Ti = pi2 2mj Vij = e2 r |ri − rj | Momentum Optical spectrum e−h continuum Jonathan Keeling 1s exciton Energy Approximate Bose statistics: † [cexciton,k , cexciton,k 0 ] ' δk,k 0 D If ρ(aB,exciton ) 1 Momentum Polariton condensation Absorption Bound state: Exciton, M ∼ me + mh Excitons e−h continuum Energy UMass Amherst, January 2012 4 / 32 Microcavity polaritons Cavity Jonathan Keeling Quantum Wells Polariton condensation UMass Amherst, January 2012 5 / 32 Microcavity polaritons Quantum Wells n=3 n=2 n=1 m∗ ∼ 10−4 me lk ' ω0 + k 2 /2m∗ n=4 Bu Cavity photons: q ωk = ω02 + c 2 k 2 Energy Cavity Momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 5 / 32 Microcavity polaritons Cavity Quantum Wells ' ω0 + k /2m Pho Exciton Energy 2 ton Cavity photons: q ωk = ω02 + c 2 k 2 ∗ ∗ m ∼ 10−4 me In−plane momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 5 / 32 Microcavity polaritons Cavity Quantum Wells ' ω0 + k /2m Pho Exciton Energy 2 ton Cavity photons: q ωk = ω02 + c 2 k 2 ∗ ∗ m ∼ 10−4 me In−plane momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 5 / 32 Microcavity polaritons θ Cavity Quantum Wells Cavity ' ω0 + k /2m Pho Exciton Energy 2 ton Cavity photons: q ωk = ω02 + c 2 k 2 ∗ ∗ m ∼ 10−4 me In−plane momentum Jonathan Keeling Polariton condensation UMass Amherst, January 2012 5 / 32 Polariton experiments: occupation and coherence [Kasprzak, et al. Nature, ’06] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 6 / 32 Polariton experiments: occupation and coherence Sample Coherence map: Beam Splitter + = Tunable Delay CCD Retroreflector [Kasprzak, et al. Nature, ’06] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 6 / 32 (Some) other polariton condensation experiments Polariton traps [Balili et al. Science ’07)] Multimode condensate and sharp lines [Love et al. PRL ’08] Wavepacket propagation [Amo et al. Nature ’09] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 7 / 32 (Some) other polariton condensation experiments Quantised vortices [Lagoudakis et al. Nat. Phys. ’08. Science ’09, PRL ’10; Sanvitto et al. Nat. Phys. ’10; Roumpos et al. Nat. Phys. ’10 ] + = Josephson oscillations [Lagoudakis et al. PRL ’10] Pattern formation/Hydrodynamics [Amo et al. Science ’11, Nature ’09; Wertz et al. Nat. Phys ’10] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 8 / 32 1 Introduction to polariton condensation What are excitons and polaritons Experimental features Approaches to modelling 2 Pattern formation Experiments Modelling pattern formation 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function 4 Coherence Experiments Power law decay of coherence Jonathan Keeling Polariton condensation UMass Amherst, January 2012 9 / 32 1 Introduction to polariton condensation What are excitons and polaritons Experimental features Approaches to modelling 2 Pattern formation Experiments Modelling pattern formation 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function 4 Coherence Experiments Power law decay of coherence Jonathan Keeling Polariton condensation UMass Amherst, January 2012 10 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + System Hex [φα , φ†α ] Jonathan Keeling Energy P hoton Non-equilibrium approach: Steady state, and fluctuations Exciton In−plane momentum Decay bath Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + System Hex [φα , φ†α ] Energy P hoton Non-equilibrium approach: Steady state, and fluctuations Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Jonathan Keeling Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + System Hex [φα , φ†α ] Energy P hoton Non-equilibrium approach: Steady state, and fluctuations Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . X gα hφα i Self-consistent equation: (i∂t − ω0 + iκ) ψ = α Jonathan Keeling Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + Energy P hoton Non-equilibrium approach: Steady state, and fluctuations System Hex [φα , φ†α ] Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Self-consistent equation: (µs − ω0 + iκ) ψ0 = χ(ψ0 , µs )ψ0 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + Energy P hoton Non-equilibrium approach: Steady state, and fluctuations System Hex [φα , φ†α ] Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Self-consistent equation: (µs − ω0 + iκ) ψ0 = χ(ψ0 , µs )ψ0 Fluctuations h i † 0 [D − D ](t, t ) = −i ψ(t), ψ (t ) R A 0 − Jonathan Keeling Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + Energy P hoton Non-equilibrium approach: Steady state, and fluctuations System Hex [φα , φ†α ] Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Self-consistent equation: (µs − ω0 + iκ) ψ0 = χ(ψ0 , µs )ψ0 Fluctuations h i † 0 [D − D ](t, t ) = −i ψ(t), ψ (t ) R A 0 − Jonathan Keeling Polariton condensation [D R − D A ](ω) = DoS(ω) UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + Energy P hoton Non-equilibrium approach: Steady state, and fluctuations System Hex [φα , φ†α ] Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Self-consistent equation: (µs − ω0 + iκ) ψ0 = χ(ψ0 , µs )ψ0 Fluctuations h i † 0 [D − D ](t, t ) = −i ψ(t), ψ (t ) − h i D K (t, t 0 ) = −i ψ(t), ψ † (t 0 ) R A 0 [D R − D A ](ω) = DoS(ω) + Jonathan Keeling Polariton condensation UMass Amherst, January 2012 11 / 32 Pump bath H = Hsys + Hsys,bath + Hbath , X X Hsys = ωk ψk ψk† + gα (φ†α ψk + H.c.) α k + Energy P hoton Non-equilibrium approach: Steady state, and fluctuations System Hex [φα , φ†α ] Exciton In−plane momentum Decay bath Steady state, ψ(r, t) = ψ0 e−iµS t . Self-consistent equation: (µs − ω0 + iκ) ψ0 = χ(ψ0 , µs )ψ0 Fluctuations h i † 0 [D − D ](t, t ) = −i ψ(t), ψ (t ) − h i D K (t, t 0 ) = −i ψ(t), ψ † (t 0 ) R A 0 + Jonathan Keeling Polariton condensation [D R − D A ](ω) = DoS(ω) D K (ω) = (2n(ω) + 1)DoS(ω) UMass Amherst, January 2012 11 / 32 Pattern formation: 1 Introduction to polariton condensation What are excitons and polaritons Experimental features Approaches to modelling 2 Pattern formation Experiments Modelling pattern formation 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function 4 Coherence Experiments Power law decay of coherence Jonathan Keeling Polariton condensation UMass Amherst, January 2012 12 / 32 Pattern formation in experiments Polariton Traps Vortex formation Elliptical ring pump [Lagoudakis et al. Nat. Phys ’08] [Manni et al. PRL ’11] [Balili et al. Science ’07] Patterned lattice: Momentum space image [Kim et al. Nat. Phys ’11] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 13 / 32 Non-equilibrium features in experiment Flow from pumping spot [Wertz et al. Nat. Phys. ’10] |ψ(k)|2 6= |ψ(−k)|2 : Broken time-reversal symmetry. [Krizhanovskii et al. PRB ’09] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 14 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Jonathan Keeling Polariton condensation UMass Amherst, January 2012 15 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Gross-Pitaevskii equation ∇2 ψ(r ) = χ(ψ(r , t))ψ(r , t) i∂t + iκ − V (r ) − 2m Nonlinear, complex susceptibility Jonathan Keeling Polariton condensation UMass Amherst, January 2012 15 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Gross-Pitaevskii equation ∇2 ψ(r ) = χ(ψ(r , t))ψ(r , t) i∂t + iκ − V (r ) − 2m Nonlinear, complex susceptibility i∂t ψ|nlin = U|ψ|2 ψ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 15 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Gross-Pitaevskii equation ∇2 ψ(r ) = χ(ψ(r , t))ψ(r , t) i∂t + iκ − V (r ) − 2m Nonlinear, complex susceptibility i∂t ψ|nlin = U|ψ|2 ψ i∂t ψ|loss = −iκψ Jonathan Keeling i∂t ψ|gain = iγeff ψ Polariton condensation UMass Amherst, January 2012 15 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Gross-Pitaevskii equation ∇2 ψ(r ) = χ(ψ(r , t))ψ(r , t) i∂t + iκ − V (r ) − 2m Nonlinear, complex susceptibility i∂t ψ|nlin = U|ψ|2 ψ i∂t ψ|loss = −iκψ Jonathan Keeling i∂t ψ|gain = iγeff ψ − iΓ|ψ|2 ψ Polariton condensation UMass Amherst, January 2012 15 / 32 Complex Gross-Pitaevskii equation Steady state equation: (µs − ω0 + iκ) ψ = χ(ψ, µs )ψ Local density limit: Gross-Pitaevskii equation ∇2 ψ(r ) = χ(ψ(r , t))ψ(r , t) i∂t + iκ − V (r ) − 2m Nonlinear, complex susceptibility i∂t ψ|nlin = U|ψ|2 ψ i∂t ψ|loss = −iκψ i∂t ψ|gain = iγeff ψ − iΓ|ψ|2 ψ ∇2 2 2 i∂t ψ = − + V (r ) + U|ψ| + i γeff − κ − Γ|ψ| ψ 2m Jonathan Keeling Polariton condensation UMass Amherst, January 2012 15 / 32 Gross-Pitaevskii equation: Harmonic trap mω 2 2 ∇2 2 2 + r + U|ψ| + i γeff − κ − Γ|ψ| i∂t ψ = − ψ 2m 2 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 16 / 32 Gross-Pitaevskii equation: Harmonic trap mω 2 2 ∇2 2 2 + r + U|ψ| + i γeff − κ − Γ|ψ| i∂t ψ = − ψ 2m 2 Density 30 25 20 15 10 5 0 0 Jonathan Keeling Polariton condensation 2 4 6 8 Radius UMass Amherst, January 2012 16 / 32 Stability of Thomas-Fermi solution 1 ∂t ρ+∇·(ρv) = (γnet − Γρ)ρ 2 3γnet 2Γ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 17 / 32 Stability of Thomas-Fermi solution High m modes: δρn,m ' eimθ r m . . . 1 ∂t ρ+∇·(ρv) = (γnet − Γρ)ρ 2 Unstable growth 3γnet 2Γ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 17 / 32 Stability of Thomas-Fermi solution High m modes: δρn,m ' eimθ r m . . . 1 ∂t ρ+∇·(ρv) = (γnet Θ(r0 −r )−Γρ)ρ 2 Stabilised 3γnet 2Γ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 17 / 32 Stability of Thomas-Fermi solution High m modes: δρn,m ' eimθ r m . . . 1 ∂t ρ+∇·(ρv) = (γnet Θ(r0 −r )−Γρ)ρ 2 ???? 3γnet 2Γ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 17 / 32 Time evolution: t=0 t=2 t=22 t=30 t=35 t=40 t=45 t=56 [Keeling & Berloff PRL ’08] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 18 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Why vortices 25 Density profile Thomas-Fermi in flattened trap Density 20 15 10 5 0 -15 -10 -5 0 5 Cross Section 10 15 Rotating solution: i∂t ψ = (µ − 2ΩLz )ψ ∇ · [ρ(v − Ω × r)] = (γnet Θ(r0 − r ) − Γρ) ρ, √ ∇2 ρ m m 2 2 2 2 µ= |v − Ω × r| + r (ω − Ω ) + Uρ − √ 2 2 2m ρ γnet µ v = Ω × r, Ω = ω, ρ = Θ(r0 − r ) = Γ U Jonathan Keeling Polariton condensation UMass Amherst, January 2012 19 / 32 Superfluidity 1 Introduction to polariton condensation What are excitons and polaritons Experimental features Approaches to modelling 2 Pattern formation Experiments Modelling pattern formation 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function 4 Coherence Experiments Power law decay of coherence Jonathan Keeling Polariton condensation UMass Amherst, January 2012 20 / 32 Fluctuations above transition When condensed h i−1 Det D R (ω, k) = ω 2 − ξk2 frequency Sound mode With ξk ' ck Poles: momentum ω ∗ = ξk Generic structure of Green’s function: ω + iγnet − k − µ iγnet − µ R −1 [D ] = −iγnet − µ −ω − iγnet − k − µ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 21 / 32 When condensed h i−1 2 Det D R (ω, k) = (ω+iγnet )2 +γnet −ξk2 With ξk ' ck Poles: ω ∗ = − iγnet ± frequency Fluctuations above transition Real Imaginary momentum q 2 ξk2 − γnet Generic structure of Green’s function: ω + iγnet − k − µ iγnet − µ R −1 [D ] = −iγnet − µ −ω − iγnet − k − µ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 21 / 32 When condensed h i−1 2 Det D R (ω, k) = (ω+iγnet )2 +γnet −ξk2 With ξk ' ck Poles: ω ∗ = − iγnet ± frequency Fluctuations above transition Real Imaginary momentum q 2 ξk2 − γnet Generic structure of Green’s function: ω + iγnet − k − µ iγnet − µ R −1 [D ] = −iγnet − µ −ω − iγnet − k − µ Jonathan Keeling Polariton condensation UMass Amherst, January 2012 21 / 32 Polariton “superfluidity” experiments Quantised vortices in disorder potential [Lagoudakis et al. Nature Phys. ’08] Changes to excitation spectrum [Utsunomiya et al. Nature Phys. ’08] Wavepacket propagation [Amo et al. Nature ’09] Driven superfluidity [Amo et al. Nature Phys. (’09) Jonathan Keeling Polariton condensation UMass Amherst, January 2012 22 / 32 Aspects of superfluidity Quantised Landau vortices critical velocity Superfluid 4 He/cold atom Bose-Einstein condensate Non-interacting Bose-Einstein condensate Classical irrotational fluid Incoherently pumped polariton condensates " " % " " % " % Metastable Two-fluid Local persistent hydrody- thermal flow namics equilibrium " % % ? " " " ? " " " % Solitary waves " % " ? Lagoudakis et al. Nat. Phys. ’08. Utsunomiya et al. Nat. Phys. ’08. Amo et al. Nature ’09; Nat. Phys. ’09 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 23 / 32 Aspects of superfluidity Quantised Landau vortices critical velocity Superfluid 4 He/cold atom Bose-Einstein condensate Non-interacting Bose-Einstein condensate Classical irrotational fluid Incoherently pumped polariton condensates " " % " " % " % Metastable Two-fluid Local persistent hydrody- thermal flow namics equilibrium " % % ? " " " ? " " " % Solitary waves " % " ? Lagoudakis et al. Nat. Phys. ’08. Utsunomiya et al. Nat. Phys. ’08. Amo et al. Nature ’09; Nat. Phys. ’09 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 23 / 32 Superfluid density Two-fluid hydrodynamics Experimentally, rotation: ρ/ρtotal 1 ρnormal ρsuperfluid 0 0 1 To calculate, transverse/longitudinal: T/Tc ρs , ρn distinguished by slow rotation Jonathan Keeling Polariton condensation UMass Amherst, January 2012 24 / 32 Superfluid density Two-fluid hydrodynamics Experimentally, rotation: ρ/ρtotal 1 ρnormal ρsuperfluid 0 0 1 To calculate, transverse/longitudinal: T/Tc ρs , ρn distinguished by slow rotation Jonathan Keeling Polariton condensation UMass Amherst, January 2012 24 / 32 Superfluid density Two-fluid hydrodynamics Experimentally, rotation: ρ/ρtotal 1 ρnormal ρsuperfluid 0 0 1 To calculate, transverse/longitudinal: T/Tc ρs , ρn distinguished by slow rotation Jonathan Keeling Polariton condensation 00000000000 11111111111 00000000000 11111111111 11111111111 00000000000 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 111111 000000 111111 000000 UMass Amherst, January 2012 24 / 32 Superfluid density Currrent: J = ρv = ψ † i∇ψ = |ψ|2 ∇φ 2ki + qi † ψk Ji (q) = ψk+q 2m Response function: X H→H− f(q) · Ji (q) Ji (q) = χij (q)fj (q) q Vertex corrections essential for superfluid part. Jonathan Keeling Polariton condensation UMass Amherst, January 2012 25 / 32 Superfluid density Currrent: J = ρv = ψ † i∇ψ = |ψ|2 ∇φ 2ki + qi † ψk Ji (q) = ψk+q 2m Response function: X H→H− f(q) · Ji (q) Ji (q) = χij (q)fj (q) q Vertex corrections essential for superfluid part. Jonathan Keeling Polariton condensation UMass Amherst, January 2012 25 / 32 Superfluid density 00000000000 11111111111 00000000000 11111111111 11111111111 00000000000 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 Currrent: 111111 000000 111111 000000 J = ρv = ψ † i∇ψ = |ψ|2 ∇φ 2ki + qi † ψk Ji (q) = ψk+q 2m Response function: X H→H− f(q) · Ji (q) Ji (q) = χij (q)fj (q) q χij (ω = 0, q → 0) = h[Ji (q), Jj (−q)]i = ρS qi qj ρ + N δij 2 m q m Vertex corrections essential for superfluid part. Jonathan Keeling Polariton condensation UMass Amherst, January 2012 25 / 32 Superfluid density 00000000000 11111111111 00000000000 11111111111 11111111111 00000000000 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 00000000000 11111111111 Currrent: 111111 000000 111111 000000 J = ρv = ψ † i∇ψ = |ψ|2 ∇φ 2ki + qi † ψk Ji (q) = ψk+q 2m Response function: X H→H− f(q) · Ji (q) Ji (q) = χij (q)fj (q) q χij (ω = 0, q → 0) = h[Ji (q), Jj (−q)]i = ρS qi qj ρ + N δij 2 m q m Vertex corrections essential for superfluid part. Jonathan Keeling Polariton condensation UMass Amherst, January 2012 25 / 32 Calculating superfluid response function Using Keldysh generating functional d 2 Z[f , θ] i , χij (q) = − 2 dfi (q)dθj (−q) Z Z[f , θ] = f , θ couple as force/response current. X θi S[f , θ] = S + ψ̄cl ψ̄q k+q fi − θi k,q fi + θi −θi Dψ exp(iS[f , θ]) q 2ki + qi 2m ψcl ψq k Saddle point + fluctuations: Jonathan Keeling Polariton condensation UMass Amherst, January 2012 26 / 32 Calculating superfluid response function Using Keldysh generating functional d 2 Z[f , θ] i , χij (q) = − 2 dfi (q)dθj (−q) Z Z[f , θ] = f , θ couple as force/response current. X θi S[f , θ] = S + ψ̄cl ψ̄q k+q fi − θi k,q fi + θi −θi Dψ exp(iS[f , θ]) q 2ki + qi 2m ψcl ψq k Saddle point + fluctuations: Jonathan Keeling Polariton condensation UMass Amherst, January 2012 26 / 32 Calculating superfluid response function Using Keldysh generating functional d 2 Z[f , θ] i , χij (q) = − 2 dfi (q)dθj (−q) Z Z[f , θ] = f , θ couple as force/response current. X θi S[f , θ] = S + ψ̄cl ψ̄q k+q fi − θi fi + θi −θi k,q Dψ exp(iS[f , θ]) q 2ki + qi 2m ψcl ψq k Saddle point + fluctuations: + + Jonathan Keeling + + ... + Polariton condensation UMass Amherst, January 2012 26 / 32 Calculating superfluid response function Using Keldysh generating functional d 2 Z[f , θ] i , χij (q) = − 2 dfi (q)dθj (−q) Z Z[f , θ] = f , θ couple as force/response current. X θi S[f , θ] = S + ψ̄cl ψ̄q k+q fi − θi fi + θi −θi k,q Dψ exp(iS[f , θ]) q 2ki + qi 2m ψcl ψq k Saddle point + fluctuations: Only one diagram for χN + + Jonathan Keeling + + ... + Polariton condensation UMass Amherst, January 2012 26 / 32 Non-equilibrium superfluid response Superfluid response exists because: iψ0 qi 1 iψ0 qj R = (1, −1) D (q, ω = 0) −1 2m 2m R D (ω = 0) ∝ 1/q despite pumping/decay — superfluid response exists. Normal density: Z Z i dω h d ρN = d k k Tr σz D K σz (D R + D A ) 2π Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 27 / 32 Non-equilibrium superfluid response Superfluid response exists because: iψ0 qi 1 iψ0 qj R = (1, −1) D (q, ω = 0) −1 2m 2m R D (ω = 0) ∝ 1/q despite pumping/decay — superfluid response exists. Normal density: Z Z i dω h d ρN = d k k Tr σz D K σz (D R + D A ) 2π Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 27 / 32 Non-equilibrium superfluid response Superfluid response exists because: iψ0 qi 1 iψ0 qj R = (1, −1) D (q, ω = 0) −1 2m 2m R D (ω = 0) ∝ 1/q despite pumping/decay — superfluid response exists. Normal density: Z Z i dω h d ρN = d k k Tr σz D K σz (D R + D A ) 2π Is affected by pump/decay: Does not vanish at T → 0. [JK PRL ’11] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 27 / 32 Non-equilibrium superfluid response Superfluid response exists because: iψ0 qi 1 iψ0 qj R = (1, −1) D (q, ω = 0) −1 2m 2m R D (ω = 0) ∝ 1/q despite pumping/decay — superfluid response exists. Normal density: Z Z i dω h d ρN = d k k Tr σz D K σz (D R + D A ) 2π Is affected by pump/decay: Does not vanish at T → 0. ρN / m µ 3 γnet/µ = 0.0 γnet/µ = 0.1 γnet/µ = 0.5 2 1 0 0 1 2 3 4 5 T/µ [JK PRL ’11] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 27 / 32 Coherence: 1 Introduction to polariton condensation What are excitons and polaritons Experimental features Approaches to modelling 2 Pattern formation Experiments Modelling pattern formation 3 Superfluidity Non-equilibrium condensate spectrum Experiments and aspects of superfluidity Current-current response function 4 Coherence Experiments Power law decay of coherence Jonathan Keeling Polariton condensation UMass Amherst, January 2012 28 / 32 Correlations in a 2D Gas + Correlations: = D E g1 (r, r0 , t) = ψ † (r, t)ψ(r0 , 0) D< = DK − DR + DA Generally, get: " ( D E ln(r /r0 ) † 2 ψ (r, t)ψ(0, 0) ' |ψ0 | exp −ap 1 2 2 2 ln(c t/γnet r0 ) t '0 r '0 # [Szymańska et al. PRL ’06; PRB ’07] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 29 / 32 Correlations in a 2D Gas Correlations: (in 2D) D E g1 (r, r0 , t) = ψ † (r, t)ψ(r0 , 0) h i < ' |ψ0 |2 exp −Dφφ (r, r0 , t) + = D< = DK − DR + DA Generally, get: " ( D E ln(r /r0 ) † 2 ψ (r, t)ψ(0, 0) ' |ψ0 | exp −ap 1 2 2 2 ln(c t/γnet r0 ) t '0 r '0 # [Szymańska et al. PRL ’06; PRB ’07] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 29 / 32 Correlations in a 2D Gas Correlations: (in 2D) D E g1 (r, r0 , t) = ψ † (r, t)ψ(r0 , 0) h i < ' |ψ0 |2 exp −Dφφ (r, r0 , t) + = D< = DK − DR + DA Generally, get: " ( D E ln(r /r0 ) † 2 ψ (r, t)ψ(0, 0) ' |ψ0 | exp −ap 1 2 2 2 ln(c t/γnet r0 ) t '0 r '0 # [Szymańska et al. PRL ’06; PRB ’07] Jonathan Keeling Polariton condensation UMass Amherst, January 2012 29 / 32 Experimental observation of power-law decay G. Rompos, Y. Yamamoto et al. submitted Jonathan Keeling Polariton condensation UMass Amherst, January 2012 30 / 32 Experimental observation of power-law decay g1 (r, −r) ∝ r r0 −ap G. Rompos, Y. Yamamoto et al. submitted Jonathan Keeling Polariton condensation UMass Amherst, January 2012 30 / 32 Exponent in a non-equilibrium 2D gas D E h i 2r † 2 < lim ψ (r, 0)ψ(−r, 0) = |ψ0 | exp −Dφφ (r, −r) ∝ exp −ap ln r →∞ r0 Experimentally, aP ' 1.2 mkB T 1 In equilibrium ap = < (BKT transition) 4 2π~2 ns Non-equilibrium theory depends on thermalisation. I I Thermalised (yet diffusive modes) mkB T ap = 2π~2 ns Non-thermalised, Pumping noise aP ∝ . ns Jonathan Keeling Polariton condensation UMass Amherst, January 2012 31 / 32 Exponent in a non-equilibrium 2D gas D E h i 2r † 2 < lim ψ (r, 0)ψ(−r, 0) = |ψ0 | exp −Dφφ (r, −r) ∝ exp −ap ln r →∞ r0 Experimentally, aP ' 1.2 mkB T 1 In equilibrium ap = < (BKT transition) 4 2π~2 ns Non-equilibrium theory depends on thermalisation. I I Thermalised (yet diffusive modes) mkB T ap = 2π~2 ns Non-thermalised, Pumping noise aP ∝ . ns Jonathan Keeling Polariton condensation UMass Amherst, January 2012 31 / 32 Exponent in a non-equilibrium 2D gas D E h i 2r † 2 < lim ψ (r, 0)ψ(−r, 0) = |ψ0 | exp −Dφφ (r, −r) ∝ exp −ap ln r →∞ r0 Experimentally, aP ' 1.2 mkB T 1 In equilibrium ap = < (BKT transition) 4 2π~2 ns Non-equilibrium theory depends on thermalisation. I I Thermalised (yet diffusive modes) mkB T ap = 2π~2 ns Non-thermalised, Pumping noise aP ∝ . ns Jonathan Keeling Polariton condensation UMass Amherst, January 2012 31 / 32 Exponent in a non-equilibrium 2D gas D E h i 2r † 2 < lim ψ (r, 0)ψ(−r, 0) = |ψ0 | exp −Dφφ (r, −r) ∝ exp −ap ln r →∞ r0 Experimentally, aP ' 1.2 mkB T 1 In equilibrium ap = < (BKT transition) 4 2π~2 ns Non-equilibrium theory depends on thermalisation. I I Thermalised (yet diffusive modes) mkB T ap = 2π~2 ns Non-thermalised, Pumping noise aP ∝ . ns Jonathan Keeling Polariton condensation UMass Amherst, January 2012 31 / 32 Exponent in a non-equilibrium 2D gas D E h i 2r † 2 < lim ψ (r, 0)ψ(−r, 0) = |ψ0 | exp −Dφφ (r, −r) ∝ exp −ap ln r →∞ r0 Experimentally, aP ' 1.2 mkB T 1 In equilibrium ap = < (BKT transition) 4 2π~2 ns Non-equilibrium theory depends on thermalisation. I I Thermalised (yet diffusive modes) mkB T ap = 2π~2 ns Non-thermalised, Pumping noise aP ∝ . ns Jonathan Keeling Polariton condensation UMass Amherst, January 2012 31 / 32 Conclusion Instability of Thomas-Fermi and spontaneous rotation t=22 t=35 t=56 Survival of superfluid response momentum ρN / m µ frequency 3 Real Imaginary γnet/µ = 0.0 γnet/µ = 0.1 γnet/µ = 0.5 2 1 0 0 1 2 3 4 5 T/µ Power law decay of correlations Jonathan Keeling Polariton condensation UMass Amherst, January 2012 32 / 32 Jonathan Keeling Polariton condensation UMass Amherst, January 2012 33 / 38 Extra slides 5 GPE stability 6 Detecting vortex lattice 7 Measuring superfluid density 8 Coherence Finite size and Schawlow-Townes Jonathan Keeling Polariton condensation UMass Amherst, January 2012 34 / 38 Instability of Thomas-Fermi: details 1 ∂t ρ + ∇ · (ρv) = (γnet − Γρ)ρ 2 mω 2 2 m 2 ∂t v + ∇(Uρ + r + |v| ) = 0 2 2 Jonathan Keeling 3γnet 2Γ Polariton condensation UMass Amherst, January 2012 35 / 38 Instability of Thomas-Fermi: details 1 ∂t ρ + ∇ · (ρv) = (γnet − Γρ)ρ 2 mω 2 2 m 2 ∂t v + ∇(Uρ + r + |v| ) = 0 2 2 Normal modes for γnet , Γ → 0: 3γnet 2Γ δρn,m (r , θ, t) = eimθ hn,m (r )eiωn,m t p ωn,m = ω2 m(1 + 2n) + 2n(n + 1) Jonathan Keeling Polariton condensation UMass Amherst, January 2012 35 / 38 Instability of Thomas-Fermi: details 1 ∂t ρ + ∇ · (ρv) = (γnet − Γρ)ρ 2 mω 2 2 m 2 ∂t v + ∇(Uρ + r + |v| ) = 0 2 2 Normal modes for γnet , Γ → 0: 3γnet 2Γ δρn,m (r , θ, t) = eimθ hn,m (r )eiωn,m t p ωn,m = ω2 m(1 + 2n) + 2n(n + 1) Add weak pumping/decay: ωn,n → ωn,m + iγnet Jonathan Keeling m(1 + 2n) + 2n(n + 1)−m2 2m(1 + 2n) + 4n(n + 1) + m2 Polariton condensation UMass Amherst, January 2012 35 / 38 Instability of Thomas-Fermi: details 1 ∂t ρ + ∇ · (ρv) = (γnet − Γρ)ρ 2 mω 2 2 m 2 ∂t v + ∇(Uρ + r + |v| ) = 0 2 2 Normal modes for γnet , Γ → 0: Unstable growth 3γnet 2Γ δρn,m (r , θ, t) = eimθ hn,m (r )eiωn,m t p ωn,m = ω2 m(1 + 2n) + 2n(n + 1) Add weak pumping/decay: ωn,n → ωn,m + iγnet Jonathan Keeling m(1 + 2n) + 2n(n + 1)−m2 2m(1 + 2n) + 4n(n + 1) + m2 Polariton condensation UMass Amherst, January 2012 35 / 38 Instability of Thomas-Fermi: details 1 ∂t ρ + ∇ · (ρv) = (γnet − Γρ)ρ 2 mω 2 2 m 2 ∂t v + ∇(Uρ + r + |v| ) = 0 2 2 Normal modes for γnet , Γ → 0: Stabilised 3γnet 2Γ δρn,m (r , θ, t) = eimθ hn,m (r )eiωn,m t p ωn,m = ω2 m(1 + 2n) + 2n(n + 1) Add weak pumping/decay: ωn,n → ωn,m + iγnet Jonathan Keeling m(1 + 2n) + 2n(n + 1)−m2 2m(1 + 2n) + 4n(n + 1) + m2 Polariton condensation UMass Amherst, January 2012 35 / 38 Detecting vortex lattices 30 25 20 ω Snapshot Spectrum: 15 10 5 0 −5 0 kx 5 Defocussed homodyne intereference: Jonathan Keeling Polariton condensation UMass Amherst, January 2012 36 / 38 Measuring superfluid density 1. Effect rotating frame Polariton polarization: (ψ , ψ ) `2 r 2 e2iφ H=λ r 2 e−2iφ −`2 Jonathan Keeling Polariton condensation (a) µc UMass Amherst, January 2012 37 / 38 Measuring superfluid density Polariton condensation mℓ2ω `2 φ̂ 1− √ = mω × r = r r 4 + `4 Jonathan Keeling µc (b)0.3 Ground state Berry phase: qAeff (a) 0.4 0.3 0.2 0.2 0.1 0.1 0 0 1 2 r/ℓ 3 qAφℓ = mvℓ 1. Effect rotating frame Polariton polarization: (ψ , ψ ) `2 r 2 e2iφ H=λ r 2 e−2iφ −`2 0 4 UMass Amherst, January 2012 37 / 38 Measuring superfluid density µc `2 φ̂ 1− √ = mω × r = r r 4 + `4 mℓ2ω (b)0.3 Ground state Berry phase: qAeff (a) 0.4 0.3 0.2 0.2 0.1 0.1 0 0 1 2 r/ℓ 3 qAφℓ = mvℓ 1. Effect rotating frame Polariton polarization: (ψ , ψ ) `2 r 2 e2iφ H=λ r 2 e−2iφ −`2 0 4 2. Measure resulting current Energy shift of normal state: ∆E = (1/2)mv 2 = 0.08/m`2 ' 0.1meV Jonathan Keeling Polariton condensation UMass Amherst, January 2012 37 / 38 Finite size effects: Single mode vs many mode D E h i < ψ † (r, t)ψ(r0 , 0) ' |ψ0 |2 exp −Dφφ (r, r0 , t) Jonathan Keeling Polariton condensation UMass Amherst, January 2012 38 / 38 Finite size effects: Single mode vs many mode D E h i < ψ † (r, t)ψ(r0 , 0) ' |ψ0 |2 exp −Dφφ (r, r0 , t) < Dφφ (r, r0 , t) from sum of phase modes. Study ct r limit: < Dφφ (r, r, t) ∝ nX max Z n Jonathan Keeling |ϕn (r)|2 (1 − eiωt ) dω 2π (ω + iγnet )2 + γ 2 − ξn2 2 net Polariton condensation UMass Amherst, January 2012 38 / 38 Finite size effects: Single mode vs many mode D E h i < ψ † (r, t)ψ(r0 , 0) ' |ψ0 |2 exp −Dφφ (r, r0 , t) < Dφφ (r, r0 , t) from sum of phase modes. Study ct r limit: < Dφφ (r, r, t) ∝ nX max Z n r ∆ξ γnet Emax t Jonathan Keeling |ϕn (r)|2 (1 − eiωt ) dω 2π (ω + iγnet )2 + γ 2 − ξn2 2 net Emax ∆ < Dφφ ∼ 1 + ln(Emax Energy Polariton condensation UMass Amherst, January 2012 q t γnet ) 38 / 38 Finite size effects: Single mode vs many mode D E h i < ψ † (r, t)ψ(r0 , 0) ' |ψ0 |2 exp −Dφφ (r, r0 , t) < Dφφ (r, r0 , t) from sum of phase modes. Study ct r limit: < Dφφ (r, r, t) ∝ nX max Z n r |ϕn (r)|2 (1 − eiωt ) dω 2π (ω + iγnet )2 + γ 2 − ξn2 2 net E γnet ∆ξ Emax t Energy ∆ r E γnet ∆ξ Emax t Energy ∆ (Recovers Schawlow-Townes laser linewidth) max max Jonathan Keeling Polariton condensation < Dφφ ∼ 1 + ln(Emax < Dφφ ∼ πC 2γnet q t γnet ) t 2γnet UMass Amherst, January 2012 38 / 38