Comments
Description
Transcript
Girotondi lunari (e non)
Girotondi lunari (e non) Professor Peruso, mi domando spesso perché la Luna non mi cade sulla testa. Sa darmi qualche delucidazione in proposito? La ringrazio Elisa Irenetta Spesso, quando ci si trova in riva ad un lago, si fa a gara a chi lancia più lontano un sasso. Chi vince? Se tutti i lanciatori facessero partire il sasso orizzontalmente (si dice con velocità tangenziale rispetto alla Terra) e dalla medesima altezza, vincerebbe colui che riesce a dotare la pietra della velocità più alta. Il destino di ogni sasso è poi quello di cadere, ma che succederebbe se potessimo avere la capacità di lanciare i sassi con velocità sempre più grande? Essi cadrebbero sempre più lontani, finché, lanciati alla eccezionale velocità di quasi 28000km/h, essi non toccherebbero più l’acqua (se non ci fossero attriti di sorta), si muoverebbero invece lungo una traiettoria chiusa attorno alla Terra (la forma di quest’orbita è un’ellisse, cioè un “cerchio schiacciato”). Se il sasso venisse invece rilasciato dalla mano con velocità tangenziale nulla, esso cadrebbe verticalmente, attratto dalla Terra, senza compiere nessun passo “in avanti”. Anche il sasso gigante che costituisce il nostro satellite si comporta nello stesso modo, ruota attorno al pianeta Terra perché “è stato lanciato” con una certa velocità tangenziale: infatti, se la Luna fosse “ferma”, cadrebbe. Come il sasso e la Terra, anche la Luna e la Terra si attraggono vicendevolmente con una forza detta di gravità e così accade fra una qualsiasi coppia di corpi (della forza di gravità si è già scritto in questa rubrica). Attrarsi vicendevolmente significa che la Luna è attirata dalla Terra, ma anche la Terra è attratta dalla Luna con una forza identica. Forza identica? Vuole forse dire che la Terra cade sulla Luna? Sì, ma l’effetto è piccolo ( e piccolissimo nel caso del sasso), a causa della grande massa della Terra rispetto a quella lunare (100 volte maggiore). Se entrambi i corpi fossero fermi e non ci fossero altri fattori in gioco, essi precipiterebbero l’uno sull’altro, incontrandosi in un punto molto vicino alla Terra (a circa 1/100 della distanza Terra-Luna). Ma poiché la Luna si muove (la velocità tangenziale è circa 3800km/h), essa percorre un’orbita, che risulta essere quasi circolare, attorno alla Terra. Come già detto, è la presenza congiunta della forza di attrazione gravitazionale e della velocità che dà luogo al girotondo lunare. Se infatti non ci fossero né la Terra né altri corpi ad attrarla verso di sé, la Luna proseguirebbe indisturbata il suo viaggio lungo una linea retta. La forza di gravità fa sì che la direzione del moto della Luna continui a cambiare, dando come risultato una traiettoria circolare anziché diritta. E’ come se fra la Terra e la Luna ci fosse un filo e la Terra continuasse a tirare verso di sé il suo satellite, impedendogli, letteralmente, di partire per la tangente. E’ chiaro a questo punto che questo effetto non è peculiare del sistema Terra-Luna, lo si può infatti ritrovare in innumerevoli sistemi, oltre al già citato sasso lanciato nel lago: i satelliti artificiali che ruotano attorno alla Terra, i pianeti che ruotano attorno al loro sole, i sistemi di stelle doppie… La risoluzione del quesito posto è dovuta ad Isaac Newton, che alla fine del 1600 propose una teoria che descrive la gravitazione e in generale tutto ciò che concerne le cause del moto, riunendo sotto le stesse leggi fenomeni apparentemente diversi (la teoria di Newton nel suo complesso va sotto il nome di “meccanica classica”). Per capire meglio cosa intendo dire, pensiamo ad un corpo che compie una traiettoria che per semplicità supporremo circolare. Gli esempi sono moltissimi e vari: di oggetti che si muovono lungo il bordo di un cerchio, o lungo una porzione di esso, ognuno ne conosce in gran numero: un’automobile che percorre una curva, la massa di un pendolo, un bambino su una giostra a seggiolini, il martello prima di essere lanciato dall’atleta, la pallina del flipper nel momento del lancio, le bolas dei gauchos, .…. In tutti questi casi, il corpo che gira viene “tirato” verso il centro del cerchio, come nel caso della Luna e della Terra. Il tipo di “filo”(o meglio “la forza”, come si dice in fisica) ha una natura diversa a seconda della situazione: può essere l’attrito fra strada e pneumatici (come nel caso dell’automobile), può essere la tensione della corda (come nel pendolo o nella giostra), può essere l’effetto della parete del binario (flipper)….Il risultato è sempre lo stesso: un corpo che cammina lungo un cerchio. Anche in tutte queste situazioni, è essenziale che l’oggetto sia preventivamente posto in movimento, altrimenti a seconda del tipo di forza cui è sottoposto, esso rimane fermo o precipita verso il centro. Così come accadrebbe alla Luna se si arrestasse. Tutti questi fenomeni sono dunque solo apparentemente diversi, le leggi che li governano sono le stesse, quelle della meccanica classica. Questa è la forza di una teoria fisica. Non è dunque sorprendente se agli inizi del ‘900 i fisici non si capacitavano di fronte a oggetti (ultramicroscopici) che non obbediscono a questo splendido edificio teorico. Ma della meccanica che governa gli atomi, detta meccanica quantistica, si è già parlato in questa rubrica. [a cura di Silvia Defrancesco]