Comments
Description
Transcript
Physical Deposition- Sputtering
Physical Deposition- Sputtering Breakdown voltage: Paschen law V Pd ln( Pd ) b P: pressure, d: electrode spacing d Threshold energy ~10-30 eV V32 Ion flux J mion d 2 • Less directional coverage Angular dependence • No melting point limit • Inert gas pressure ~0.1 torr • d~ 10 cm • Maximum yield E~ 1 keV • E > 10 keV → implantation Ref: Campbell: 10.6 5-5 Ref: Campbell: 13.8 CVD Metal Deposition • Plug can reduce contact area • Cold wall LPCVD WF6 3H 2 W 6HF 5-6 SiO2 Etch • H2O:HF = 6: 1 etches thermal oxide at 1200Å/min SiO2 6HF H 2 SiF6 2H 2O • Selectivity: etch rate of SiO2/Si =100 • Buffered HF: maintain HF and pH NH 4 F NH 3 HF NH 4 F : HF 6 : 1 At room temperature, Water: BHF=20:1 etch rate: thermal oxide:300Å/min, Si3N4: 10Å/min Aluminum Etch CH3COOH:H3PO4:HNO3 = 20:77:3 acetic acid phosphoric acid nitric acid 5-7 Isotropic Silicon Etch • HNO3 oxidizes Si and HF etches the SiO2 hereby formed Si HNO3 6HF H 2 SiF6 HNO2 H 2 H 2O • HNO3 (70%): HF (49%): CH3COOH = 20: 60: 20 produces an etch rate of 165 µm/min Region 1: High HF concentrations • Reaction limited by HNO3 , follow constant HNO3% lines. • Rate limited by oxidation, etched wafer surface have some oxide. 1 2 Rate increase Ref: Campbell: 11.1 Region 2: High HNO3 concentrations • Reaction limited by HF, follow constant HF % lines. • Rate limited by reduction, etched wafer surface have more oxide. 5-8 Anisotropic Silicon Etch • Strong alkaline solutions (pH>12) such as KOH and TMAH (tetramethylammonium hydroxide N(CH3) 4OH•5H2O) etch Si via 𝑆𝑖 + 4𝑂𝐻− → 𝑆𝑖 𝑂𝐻 KOH (6 M, or 25.4 wt%) 4 + 4𝑒 − • SiO2 or Si3N4 are the preferred masking materials; Au can be a mask too. Etch rate: Si(100)=13 µm/h SiO2 will also be etched Etch rate ratios in different crystal orientations: Si(100)/Si(111)=300, Si(110)/Si(111)=600 [100] [110] Si(111) PR72-09 5-9 Anisotropic Silicon Etch PR69-17 PR69-38 PR69-18 PR69-23 PR69-30 PR74B-01 5-9 Reactive Ion Etch (RIE) • Reduce wet chemical waste, enhance anisotropic etching • Capacitively coupled plasmas (DC, RF: 50 kHz, 13.56 MHz), Inductively coupled plasmas (ICP), Electron cyclotron resonance (ECR: 2.45 GHz microwave) Barrel reactor: uniformity issue, lack of temperature control Downstream reactor Parallel plate reactor • Gases: O2 , CF4, CCl4 , CHF3, CCl3F, CCl2F2, SF6 • Volatile products removed from surface. 5-10 Reactive Ion Etch (RIE) • DC bias generated: 𝐴𝑔𝑟𝑜𝑢𝑛𝑑 𝑉𝐷𝐶 ~ 𝐴𝑝𝑜𝑤𝑒𝑟 plasma 𝑛 0V • RIE-1C Dark sheath 13.56 MHz, 75-225 mTorr gas pressure -VDC Power: increase energy and density of electrons • Etch and passivation: SF6/O2 etch Si Si F SiF SF6 e SF5 F e SiF F SiF2 SiF3 F SiF3 g SiF2 SiF2 SiF4 g Si SF5 e SF4 F e O2 e O e O Si SiOx SiOx F SiFx SiOx Fy • Polymer formation: can affect profile • Selectivity • Increase vertical wall profile needs long mean free path or low pressure but denser plasma: ICP operate a 0.1-1 mTorr 5-11 SF6/O2 RIE SF6:O2=10:5 sccm SF6:O2=20:5 sccm KOH: 32 min, 50 °C SF6:O2=18:5 sccm 0.16 Torr, 50W, 10 min 0.22 Torr, 50W, 7 min 0.18 Torr, 50W, 2 min SiO2 SiO2 SiO2 Si 5.4 µm Si PR9315-B5_02 PR76I6_06 SF6:O2=20:5 sccm SF6:O2=10:10 sccm 0.22 Torr, 50W, 7 min 0.15 Torr, 50W, 1 min PR76N6_40 Black Si formation SiO2 SiO2 2.7 µm Si Si PR76P8_07 PR93-02 PR93-05 5-12 Kinetic Theory of Gases Ref: Campbell: 10.2 • Most gas systems can be treated as ideal gas • Probability of finding a gas molecule with a speed v and v+dv per unit volume is given by Maxwell distribution vave vmax 32 m 2 mv 2 kT vrms Pv dv 4 dv ve 2kT 2 v Pv vdv 0 vrms v 2 vmax 8kT m 3kT m 2kT m • Number of particles hitting a surface per unit area per unit time J 14 nv Ideal gas law p nkT At 300K and 760 torr, N2 J p 2mkT v 500 m / s J 31023 cm 2 s 1 6-1 Ref: Campbell: 10.2 Conductance of Gas Flows Viscous flow regime: dimensions of the container > l (mean free path) d: diameter of molecule Molecular flow regime: dimensions of the container < l l~ 1 kT 2nd 2 2 Pd 2 5 At 760 torr, 300 K, l ~ 3 10 cm, so it is in viscous flow, small tubing is Ok. But P < 10-2 torr, l 2.3 cm, it is in molecular flow regime, large inlets are necessary. Conductance of a long round tube of diameter D and length L in the molecular flow regime at 300 K is C 121D3 L m3 sec Conductance of an orifice of area A in the molecular flow regime at 300 K is C 116 A m 3 sec Conductance of a series of tubing and inlets 1 1 1 1 ... C C1 C2 C3 The total conductance is less than that of the smallest component. 6-2 Vacuum Pumps Ref: Campbell: 10.3 Rough Rough vacuum: atm to 110-3 torr medium Mechanical pump: Oil change, gas ballast Oil backstreaming Molecular sieve trap High vacuum: 110-3 to 110-8 torr Turbomolecular pump: Needs a backing pump Don’t vent through backing pump Vent when the rotor is spinning Air cool or water cool Ultrahigh vacuum: <110-8 torr Ion pump: Needs forepump, needs bakeout, no moving parts Titanium sublimation pump: No moving parts, non-continuous pumping 6-3 Vacuum Gauges Ref: Campbell: 10.4 Thermocouple : 10-110-3 torr Convectron gauge: 103 to 110-4 torr Ionization gauge: 10-3-110-10 torr Capacitance manometer 25,000 to 0.1 torr 6-4 Vacuum Seals KF/QF/NW (Klein Flansche) flanges: atm to 110-8 torr , 0-150 °C Compression fitting; Swagelok/Yor-lok Parker A-lok Back ferrule Front ferrule NPT ConFlat (CF) flanges: atm to 110-13 torr, -196 - 450°C Cajon -VCR gasket F-nut gland 6-5 Vacuum Compatible Materials Residual gas in a stainless steel UHV chamber –Residual Gas Analyzer JAP 42, 1208 (1971) Common materials for UHV OFHC copper 304, 316 stainless steel 6061, 5052, 4043 Aluminum Kovar/Invar: Fe-Ni alloy Fused silica (< 1580 °C) Al2O3 Alumina (< 1700 °C) Macor (< 800 °C) Low vacuum elastomers • Low vapor pressure; no Pb, Zn, Cd, Se, S (SS303) Teflon, viton (< 150 ° C) • Low gas permeability: especially for H2 Buna-N (<80 ° C) Al< Mo<Ag<Cu<Pt<Fe<Ni<Pd • Low outgassing: 18-8 SS has Cr2O3 barrier 6-6