...

BIODEGRADABLE FACADE COMPONENT

by user

on
Category: Documents
22

views

Report

Comments

Transcript

BIODEGRADABLE FACADE COMPONENT
BIODEGRADABLE
FACADE COMPONENT
“A research about enhancing the use of biodegradable
materials in the Dutch building envelopes by the
industrialisa on of straw as a building material “
GRADUATION THESIS
TYRZA ALEXANDRA LIGTHART
4004701
TU DELFT, ARCHITECTURE & THE BUILT ENVIRONMENT
FACADE DESIGN DEPARTMENT
25 06 2015
COLOPHON
REPORT P5
Master Thesis
TITLE
Biodegradable façade component, a research about enhancing the
use of biodegradable materials in the Dutch building envelopes by the
industrialisa on of straw as a building material
UNIVERSITY
Technical University of Del
Faculty of Architecture & the Built Environment
Master Building Technology, Façade Design
TUTORS
Dr. Ing. Tillmann Klein
Dr. Ir. Fred A. Veer
EXTERNAL EXAMINOR
Mw. dr. Marie a E.A. Haffner
DATE
25-06-2015
STUDENT
Tyrza Alexandra Ligthart
Student Number: 4004701
[email protected]
4 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// PREFACE
This master thesis is the finalisa on of my master
Building Technology at the faculty of Architecture,
part of the Technical University Del . The
gradua on subject is part of the ‘Façade Design’
track. The goal of this research is to add new
scien fic knowledge and technologies for a more
sustainable future façade design. The subject is
born from my interest in sustainable materials and
façade technologies. By looking at solu ons of how
biodegradable materials can be implemented in a
more industrialised way, the combina on of two
interests was established.
I would like to thank Dr. Ir. F.A. Veer and Dr. -Ing T.
Klein for their guidance and instruc ons during
the gradua on process. I would also like to thank
P. Hondeveld and R. Borgers for sharing their
knowledge and opinions related to the straw
industry.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 5
6 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// ABSTRACT
The major advantages of using biodegradable
materials, is that the energy consump on can be
decreased by 20 percent, compared to currently
used material. For this reason these materials
are used in different industries like in the fashion
industry, the furniture industry, as packaging
industry and in the building industry.
The building industry is the biggest user of
energy consump on worldwide. Yet the use of
biodegradable materials in the building industry is
low. This is a ributable to the limited knowledge
of how to implement these materials in the
industrialised building industry.
The hypothesis in this thesis is that a façade
component with a high level of produc on and
industrialisa on will solve this limited use of
biodegradable materials in the façade industry.
By pu ng the focus on one product, in this case
straw, the research can be done more in detail. It
will focus on exis ng produc on techniques, the
func on as a building material, the proper es of
the material, and also its shortcomings.
Based on recommenda ons and improvements
at predetermined criteria, the straw elements are
compared to the case study. This will show the
possibili es of this material in the façade building
industry and to be able to convince the building
industry of the poten al of this material in the
building industry. The main goal is to enhance the
use of straw and other biodegradable materials in
the building industry.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 7
8 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// CONTENT
PAGE
0 // SUMMARY
10
1 // INTRODUCTION
14
1 //
2 //
3 //
4 //
5 //
6 //
INTRODUCTION
1.1 General introduc on
1.2 Research introduc on
PROBLEM STATEMENTT
2.1 Main problem statement
2.2 Possible sub-problems
GOAL
3.1 Goal
3.2 Final products
3.3 Boundary condi ons
3.4 Hypothesis
RESEARCH QUESTION
4.1 Research ques on
METHODOLOGY
5.1 Methodology
5.2 Research methods
RELEVANCE
6.1 Societal & scien fic relevance
6.2 Relevant research
6.3 Addi on of research
2 // RESEARCH PART I
1 //
2 //
3 //
EXISTING FACADES
1.1 The selec on
1.2 proper es
RATING
2.1 ra ng proper es
2.2 Product level
2.3 Subdivision product level
2.4 Subdivision level of industrialisa on
RELATION MATRICES
3.1 Conclusion product level matrix
3.2 proper es matrix
3.3 System versus material
3.4 Availability & durability
3.5 Products handbook E. Ganatopoulou
3 // RESEARCH PART II
1 //
2 //
3 //
4 //
TECHNIQUE EN PRACTICE
1.1 Straw building techniques
1.2 interviews
PIM HONDEVELD
2.1 Summary interview P. Hondeveld
RENS BORGERS
3.1 Summary interview R. Borgers
CATEGORISING ELEMENTS
4.1 Subdivision techniques
4.2 Analysis exis ng straw elements
15
15
15
17
17
18
19
19
19
19
20
22
22
23
23
24
25
25
25
26
PAGE
4 // DESIGN
1 //
2 //
3 //
4 //
5 //
28
CRITERIA
1.1 Criteria
1.2 Criteria explana on
1.3 The assessment
RELATION CRITERIA
2.1 Rela on criteria
2.2 Finish layers
2.3 Risks
2.4 Techniques
2.5 Complexity
2.6 Produc on Time
2.7 Building speed
2.8 Psychological & image
2.9 Conslusion criteria
DIMENSIONALLY STABLE
3.1 Dimensionally stable
FINAL DESIGN
4.1 Dimensions
4.2 Elements
4.3 Realisa on
4.4 Transport
4.5 Final drawings
COMPARISON
5.1 Comparison
5.2 disadvantages & advantages
52
53
53
53
57
58
58
58
58
59
59
59
60
61
61
62
62
64
64
65
66
67
67
70
70
71
29
29
30
31
31
32
32
32
34
34
36
38
38
39
5 // CONCLUSION
74
6 // REFLECTION
78
7 // REFERENCES
80
8 // APPENDIX
84
42
1 //
2 //
3 //
4 //
5 //
6 //
7 //
8 //
9 //
43
43
43
44
44
46
46
48
48
50
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 //
2 //
CONCLUSION
RECOMMENDATIONS
EXISTING FACADE ELEMENTS
MATRIX EXISTING FACADE ELEMENT
PRODUCT LEVEL STORY
STRUCTURE INTERVIEW
INTERVIEW PIM HONDEVELD
INTERVIEW RENS BORGERS
CALCULATIONS
TECHNIQUAL DRAWINGS CASE STUDY
DESIGN DETAILS
75
7
86
98
100
104
106
118
127
128
134
// 9
0 // SUMMARY
10 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Biodegradable materials are becoming more and
more popular in several industries. Known by
research is the fact that the use of biodegradable
materials can reduce the energy consump on and
CO2 produc on by 20%. Nowadays, the building
industry is s ll responsible for 40% of the energy
consump on in Europe and 45% worldwide. One
of the key means to reach the goal of emi ng 5085 % less CO2 by 2050, is to reduce the energy
consump on in the building industry. Implemen ng
biodegradable materials in the building industry
can decrease the embodied energy in the
building industry. In this thesis the focus is on the
composi on of a biodegradable façade component.
Biodegradable materials have some features that
cause difficul es with the requirements a façade
has to offer. Examples of these requirements
are biological contamina on, moisture, pest
infesta on, maintenance, low tensile strength,
interior space quality, fire resistance, tes ng a
façade element (cost) and colour limita on. The
elimina on of biodegradable materials because of
these features, is haphazard reasoning. Currently
used façades deal with the same proper es, but
one knows how to protect, apply or treat them.
Next step is to know how to treat, apply and protect
biodegradable materials in order to fulfil the façade
requirements.
Product level
By analysing several exis ng façade elements,
an overview of important aspects in the façade
industry is created. Important features of
biodegradable façades are the high Rc-value, the
low embodied energy and the environmental
impact. For enhancing the use of these materials
they also need to be lightweight, have comparable
wall thickness and a higher level of prefabrica on.
According to the product level matrix, the level of
industrialisa on and produc on is very important.
With a high level of industrialisa on and a high
product level the biodegradable façade element will
be comparable to currently used façade elements.
Fig. 0.1.1 establishes the posi on of current
biodegradable facades. Most of these facades
are realised with cra smanship and commercial
materials. One façade is posi oned in the more
industrialised corner. However, bio composite
(M3) turned out to be less biodegradable than it
seems. Chemical addi ons are needed to start the
degrada on process. Bio composite is therefore not
a biodegradable material but an Oxo-biodegradable
plas c.
To con nue the research on how to realise a
biodegradable façade element, the focus is set on
straw as an industrialised building material. The
Modcell, which represents straw, has the highest
product level of the analysed biodegradable façade
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
Building
FIG. 0.1.1 // DEVELOPMENT ON BIODEGRADABLE FACADE ELEMENTS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 11
elements and is to some extension prefabricated.
However, to make it comparable it must be
improved to fulfil several criteria. Exis ng straw
elements do not have the requirements users want,
therefore the focus is on the realisa on of a storey
high straw façade element, which consist of all
façade layers off site and will only need some small
adjustments and applica ons on site. This enables
to make the switch of a barely used cra smanship
biodegradable material to an industrialised
biodegradable building material.
common ground in different fields, which is of great
importance, because if the client is convinced,
whether it is the building contractor, architect
and/or user, the straw element will contribute to
enhance the use of straw as a building material,
thus the use of biodegradable materials in the
Dutch building envelopes.
The known techniques in the straw industry can
be categorised in four groups: cra smanship nonself-suppor ve, cra smanship self-suppor ve,
prefabricated non-self-suppor ve and prefabricated
self-suppor ve (Fig. 0.1.2). The most common way
of building with straw is the non-self-suppor ve
technique, due to the building permit, the fewer
risks and DIY (Do-It-Yourself) possibility. However,
if straw will be interes ng for the bigger picture in
the building industry, it must fulfil the func on of
the structure as well. Otherwise it cannot compete
to other insula on materials. Mainly because of
the cost and the confidence clients have with the
other insula on materials.
The proposed straw element in this thesis is an
element produced in the factory including sprayed
finishing layer, which eliminates the risks like fire
resistance, mice, pets, insects and moisture. It will
influence the building speed by its completeness
and clean building site. Compared to the case
study, this is a cheaper solu on, a faster way to
build and it will influence the energy consump on
during the building process and also during the
user phase. The straw element will ensure posi ve
12 //
PREFAB
SELF-SUPPORTING
STRUCTURE
NON-SELF-SUPPORTING
STRAW
GENERAL
SELF-SUPPORTING
IN-FILL
STRAW
S
STRA
BLOCK SYSTEM
KREATIVER HOLZBAU
POST-AND-BEAM
NEBRASKA
DIRK SCHRAMER
MAGWOOD
EXAMPLES
If straw also fulfils the suppor ve aspect, it will
make straw more a rac ve as a building material,
due to the cost for structure and insula on. Other
important criteria for a straw façade element
are the moisture resistance, the transport, the
produc on technique, the produc on me and
the building speed. If the straw façade element
acts equally or be er within these criteria, it will
posi vely influence the confidence of the client and
indirectly the image of straw as a building material.
CRAFTSMANSHIP
NON-SELF-SUPPORTING
CUT TECHNIQUE
STRAW BLOCK SYSTEM
MODCELL
FIG. 0.1.2 // CATAGORISING STRAW TECHNIQUES OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
BALA BOX
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 13
1 // INTRODUCTION
14 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // GENERAL INTRODUCTION
1.1
General introduc on
This report is a thesis of my gradua on project,
within the master Building Technology of the
Technical University Del . The gradua on subject
is part of by the ‘Façade Design’ track. The goal to
this research is to find possibili es to implement
biodegradable materials in the industrialized
building industry in the Netherlands.
1.2
Research introduc on
Biodegradable materials are becoming more and
more popular in several industries. The industries
where these materials are accepted as common
materials are for example the automo ve industry,
interior design and packaging industry (Fig. 1.2.1
& 1.2.2). The benefits and posi ve influences
that biodegradable materials offer, ensures lower
energy consump on compared to other regular
used materials. Hence, the use of biodegradable
materials is increasing in these industries, unlike
to the building industry. The named industries,
which are familiar with the use of biodegradable
materials, are mostly industries that do not have to
deal with strict material requirements, unlike the
building industry (Fig. 1.2.3). Next to this, these
industries do not have to deal with weather
condi ons or have to fulfil a longer life span. Thereby
the compostable property of these materials is
protected or in other words postponed. The façade
in the building industry is constantly exposed to the
outside and its influences, like water, cold, sun and
snow. The combina on of biodegradable materials
and these influences do not go well together, but it
is not impossible. Some examples of biodegradable
buildings exist, but the percentage is low.
Known by research is the fact that the use of
biodegradable materials can reduce the energy
consump on and CO2 produc on by 20%. The
building industry nowadays is s ll responsible for
40% of the energy consump on in Europe and
45% worldwide. One of the key means to reach
the goal of emi ng 50-85 % less CO2 by 2050 is to
reduce the energy consump on in buildings (ÜrgeVorsatz & Metz, 2009). By the use of biodegradable
materials this target may come in reach. (Mohanty,
Misra, & Drzal, 2005). (Kempen, 2014)
Important to know are the facts why these
materials are not applied in the façade industry,
does the façade industry not have the techniques
to implement these materials and why has this
industry not been improved or adjusted for these
materials? The degradability of biodegradable
FIG. 1.2.1 // BIODEGRADABLE FURNITURE BIODESIGNIN, 2013
FIG. 1.2.2 // FASHION INDUSTRY, BIODEGRADABLE SHOES BAILLY INTERIEURADVIES, 2011
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 1.2.3 // FAÇADE REQUIREMENTS KNAACK, KLEIN, BILOW, & AUER, 2014
// 15
materials can have a large impact in the building
industry, the energy needed for the demoli on
of biodegradable façades will be negligible to the
demoli on of current used façades. On other
levels, the biodegradable material cannot compete
with other materials yet. Hence, the biodegradable
material is seen as a ‘no go’ in the building envelopes
(only some examples are known).
Research will and is changing these uncertain es.
Previous research is done on the availability of
these materials, their implementa on manners in
the building industry, their proper es and so on. A
lot of knowledge is combined in order to be able to
con nue improvements of biodegradable materials
in the building industry.
First we have to summarise the facts that cause
the elimina on of biodegradable materials in
the building industry. Centuries ago they had
the knowledge to build a biodegradable house.
Naturally, they had no choice, but due to the
industrial revolu on and the new inven ons within
the technology, they replaced the old materials.
Main reason is the lost knowledge of how to use
biodegradable materials. Thereby the inven on in
biodegradable materials stopped and nowadays
they are not able to pass the requirements for
cer fica ons, which has an influence on the faith
in these materials as a building material (Borgers,
2015). Next to that, the lifespan of biodegradable
materials is rela vely short compared to other
materials and biodegradable materials are also
more sensi ve to weather condi ons. In Europe,
and especially in The Netherlands, the weather
condi ons are not op mal to apply these kinds
of materials; people should learn how to design
with these materials (Borgers, 2015). In addi on,
biodegradable materials have some other adverse
proper es when working with these materials.
(Ganatopoulou, 2014)
breathability & hygroscopicity (the property of a
substance to absorb or to a ract water from the
air) (Ganatopoulou, 2014). Besides the known
materials, e.g. hemp, rammed earth, jute, etc.,
new invented biodegradable materials are wai ng
to be implemented in the building industry. With
all these new inven ons and growing knowledge,
a biodegradable façade component is increasingly
conceivable.
Important is the assurance that a façade element
has to offer, same for a biodegradable one. If a
standardized façade element, consis ng out of
biodegradable materials can offer this assurance, a
lot of counterarguments for these materials can be
eliminated. Therefore, research has to be done on
how a biodegradable standardized façade element
can be accomplished, which is comparable to other
exis ng façade elements.
Secondly, when can we call a material a
biodegradable
material?
Some
important
condi ons of biodegradable materials are
the renewable resources, the low embodied
energy & CO2 emission, the degrada on of the
material, thermal & acous c proper es and the
16 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
2 // PROBLEM STATEMENT
2.1
Main problem statement
The importance of sustainability is (extensively)
increasing in almost every industry. Within the
building industry energy neutral buildings appear
and ´clean´ energy systems are implemented. The
focus of the use of sustainable façade materials
is however minimal, while this is fundamental
for every building. The contemporary products
used in the building industry, provide on the one
hand a high life-expectancy and durability along
the building’s life-cycle, but on the other hand
create a major waste problem when it comes
to their disposal (Ganatopoulou, 2014). When
biodegradable materials are used, the degrada on
of materials occurs naturally, which results in less
energy consump on and CO2 (Mohanty et al.,
2005).
the design process of the Enexis in Zwolle, they
considered using bio-composite expanded cork,
but the PIR composite had more advantages in
their opinion (Geoij, 2014). Due to the lower fire
resistance, the life span of 25-30 years that they
could not guarantee and the cost for the tes ng
they had to do. By these aspects they conclude
the bio-composite to be 204% more expensive
than a regular brick façade. The PIR was 138%
more expensive but s ll affordable for Atelier Pro,
also looking at the posi ve environmental impact
compared to the reference (Fig. 2.1.1).
Summarising this, it leads to the main problem:
the limited use of biodegradable materials in the
building industry. Within this thesis the focus will
be on the integra on of biodegradable materials
within the building envelopes.
The low energy consump on is one of the mul ple
advantages that occur in biodegradable materials,
hence it should be applied more in the building
industry to fulfil the goal of emi ng 50-85 % less
CO2 by 2050. S ll, companies choose for less
sustainable op ons, for example Atelier Pro. During
FIG. 2.1.1 // ATELIER PRO COMPARISON FACADE POSSIBILITIES GEOIJ, 2014
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 17
2.2
Possible sub-problems
As men oned in the research introduc on
biodegradable materials also have some adverse
proper es when working with these materials, like
biological contamina on, moisture, pest infesta on,
maintenance, low tensile strength, interior space
quality, fire resistance, tes ng a façade element
(cost) and colour limita on(Ganatopoulou, 2014;
Geoij, 2014). The sub-problems can be linked
to the inven on of a façade element consis ng
out of biodegradable materials which is suitable
for a par cular loca on, for this thesis set to The
Netherlands, and which is comparable to the
exis ng façade elements. The Netherlands has
strict building regula ons making it more difficult to
realise a cer ficate biodegradable façade element.
18 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
3 // GOAL
3.1
General goal
The General objec ve which is related to the
main problem; the limited use of biodegradable
materials in the building envelopes can be framed
in the following sentence: “Enhance the use of
biodegradable materials in the building envelopes”.
To reach this goal, sub-objec ves are set which are
directly connected to the sub-problems. Men oned
is the inven on of a biodegradable façade element.
A façade element has a lot of requirements to fulfil,
which will ensure the moisture resistance, the fire
resistance, the tes ng, and other requirements.
Inven ng such a façade element does not mean
reinven ng the wheel, but looking into possibili es
of replacing materials in exis ng façade elements
by biodegradable ones which will direct to a final
design of a biodegradable façade component. Next
to that, looking into the exis ng biodegradable
façade components, how can those be improved
to fulfil the requirements and what are the
shortcomings.
3.2
Final products
The final product will be a proposal of a
biodegradable façade element comparable to
the most industrialised currently used façade
elements. The big difference is the percentage
of biodegradable material. The aim is to have an
element consis ng out of biodegradable materials
for 100 percent, when this is not feasible the aim
will decrease to a percentage as high as possible.
3.3
Boundary condi ons
Boundary condi ons must be set in order to specify
the research direc on, reduce the research field
and to be able to examine the thesis during the
design part and at the end of the research. The
boundaries related to this master thesis can be
divided in the following aspects:
a.
Loca on & quan ty
First of all the material specifica on, due to the
number of different biodegradable materials it
is wise to screen out some (groups of) materials.
Important for the biodegradable materials that
are suitable for the design part is the quan ty and
loca on of the raw material. Quan ty is important
to be able to have enough materials to make façade
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
components. The loca on is more a cost aspect.
Centuries ago they already build with the materials
available within a small radius, that of course due
to the lack of transporta on possibili es. But why
would you import bamboo from China if you have
local materials which are useful as well. S ll, some
examples are seen. The brick is a ‘home’ made
product in the Netherlands and impossible to
circumvent, when crossing the country. The first
boundary is set, the material must be surplus or
available in large numbers within a radius that must
be set. In the Netherlands and surroundings the
following materials are available: Mud bricks, earth
bags, lime stone, cellulose, recycled paper, flax,
hemp, seaweed and straw (Ganatopoulou, 2014).
b.
Biodegradable material
Already men oned is the goal of the percentage
biodegradable materials in the façade element. It
can be that for several reasons a non-biodegradable
material is needed. An example, wood is o en
applied in the façade industry but treated to be
able to stand the weather condi on. This is done by
impregna on or a layer of paint. This results also in
annual maintenance. For these problems, the best
op on, looking to biodegradability, will be chosen.
An op on can be to Platonise the wood, a more
sustainable way of protec ng wood (Alblas, 2014).
c.
Exis ng façade component
To make the standardized biodegradable façade
component comparable to currently used façade
elements, these façade elements will be used as
basic principle. Besides, a (high) repe on factor is
required to make a success, which is feasible when
comparable to contemporary façade elements by
produc on technique, way of fixa on and more.
Research will be done on the façade components
used in the Netherlands. Thereby, the requirements
for the biodegradable materials are set by the
façade element.
d.
Climate
Requirements for a façade strongly depend on the
loca on. The specifica ons of the façade are very
important to know which materials are suitable,
so is the specifica on of the climate. The research
will be focussed on the building envelopes in The
// 19
Netherlands, therefore we need to understand the
Dutch climate. The Netherlands have a temperate
mari me climate with cool summers and moderate
winters. Day me temperatures vary from 2°C-6°C
in the winter and 17°C-20°C in the summer. With
rain during all seasons, hence water resistance is
very important. (WEATHER ONLINE, 2014).
e.
Thickness
Also important is the thickness of the standardized
façade component. If a biodegradable material has
insula on poten al, but it means that the total
dimension of the façade will be around 700 mm,
the material is not suitable for insula on in the
building envelopes. The maximum dimension for
the standardized façade component must be set
by the original façade component. It is not allowed
to deviate too much from the original thickness.
The requirements for the Rc-value are changed
lately, which cause that some currently used façade
systems will not meet this new requirement of 4.5
m2K/W (BRISbouwbesluit-online, 2015)
Product level
f.
Durability
Durability is an important factor for Biodegradable
materials. Some have a longer life span than others.
But to make them saleable they have to be capable
to a set serviceability. Within the Enexis project they
had to guarantee a life span of 25-30 years (Goeij
de, 2012). The final boundary is the minimum life
span of 25-30 years for the façade element.
3.4
Hypotheses
The hypothesis of this thesis is about the product
level of façade elements. Known is the product
level of currently used elements and also known
the level of industrialisa on. To shi biodegradable
façade elements to the same spot (red in the
matrix) as currently used elements, the use of
biodegradable materials in the façade industry
will be increased (Fig. 3.4.1). The focus must be on
how such a biodegradable façade element can be
realised.
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
!
Building
FIG. 3.4.1 // HYPOTHESE OWN ILLUSTRATION
20 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 21
4 // RESEARCH QUESTION
4.1
Research ques on
The research ques on is derived from the problem
statement, the limited use of biodegradable
materials. Stated is the similarly biodegradable
façade element as the ‘missing link’ in the façade
industry to enhance the use of biodegradable
materials. This leads us to the main research
ques on:
•
How can this biodegradable façade component
be produced?
-What kind of shape is possible for the
material(s)?
-What kind of process is suitable for
this material?
-Which combina on of materials will
be most suitable?
“How can biodegradable materials form a façade
component, which is comparable to currently
used façade components, to enhance the use of
biodegradable materials in the Dutch building
envelopes?”
In order to be able to answer the main ques on,
sub ques ons must be set. The sub-ques ons are:
• What kind of façade elements are used in the
Netherlands
-What are their characteris cs?
-Do they already partly consist out of
biodegradable materials?
-What are the used techniques?
-How are they produced?
•
What are the criteria for façade elements in
The Netherlands?
•
Which biodegradable materials are already
available materials on the market?
-Which are already used o en in the
building envelopes?
-Which biodegradable materials have a
lot of poten al for the building industry
in the Netherlands?
-What is the origin of the material and
the availability?
-What techniques and elements are
used in this industry?
•
What proper es does a biodegradable
material need to func on in the exis ng façade
components?
-What are the requirements of the
layer?
-Is it an interior or exterior layer or in
between?
22 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
5 // METHODOLOGY
5.1 methodology
The methodology of this research will focus
on improving exis ng biodegradable façade
components to make them comparable for the
current building industry and at the same me
looking in the exis ng façade industry, which will
result in an industrialised biodegradable façade
element. To fulfil this research, different types
of methods must be used to understand what
is already there, what do people miss and/or
need and what is possible in the combina on of
biodegradable materials and standardized façade
components.
The research is divided in 3 main parts, research
part I, research part II and design (Fig. 5.1.1). Fig.
5.1.2 establishes the analysis approach of research
part I, where the focus will be on the analysing of
exis ng façade elements, biodegradable ones and
non-biodegradable ones. In the second research
part the focus will be on one material and the
analysing of the techniques used in this specific
industry. How do the exis ng elements work, which
criteria must they fulfil. Next to that, two interviews
will be taken by people from the industry. The
design part is about recommenda ons for the
exis ng element, the poten als for this industry
and the pi alls. In
RESEACRH I
this part a case study will be chosen to compare
the current industry with the proposals for the
biodegradable elements. It will also summarise the
conclusion of the recommenda ons given, in what
condi ons the elements will fulfil the best.
The analysis form Research part I will mainly contain
of research to biodegradable materials and to
exis ng façade components. To see what poten al
there is and which exis ng façade elements can be
improved into more industrialised and degradable
façade elements. Some façade elements already are
partly biodegradable and others consist out of nondegradable materials. Both fields will be included
in this research, to see the poten al of the used
techniques in combina on with biodegradable
materials. The aim during this research is to make
them 100% biodegradable if feasible.
RESEACRH II
ExisƟng facade elements
Techniques
Materials
DESIGN
Analysing techniques
ExisƟng elements
Criteria
Interviews
How fulĮl criteria
Recurring problems
Case study
SoluƟons
FIG. 5.1.1 // GLOBAL RESEARCH APPROACH OWN ILLUSTRATION
2.
1.
BIODEGRADABLE
MATERIALS
BIODEGRADABLE
MATERIALS
EXISTING FACADE
COMPONENTS
EXISTING FACADE
COMPONENTS
EXISTING FACADE
COMPONENTS
BIODEGRADABLE
MATERIALS
EXISTING FACADE
COMPONENTS
BIODEGRADABLE
MATERIALS
Ϭй/K'Z>
(EXISTING FACADE
COMPONENTS)
BIODEGRADABLE
MATERIALS
ϭϬϬй/K'Z>
FIG. 5.1.2 // GLOBAL SCHEME ANALYSIS PHASE, RESEARCH PART I OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 23
5.2
Research methods
Literature will be the main research method in
this thesis. This includes books, journals, lectures,
ar cles and other scien fic publica ons. To find
this literature I use the Libraries situated in the
Architecture Faculty and the University Library.
Next to that, Google Scholar is a big source for
related literature. For other informa on as related
projects, new invented biodegradable materials
and suchlike I will use the internet. CES will also
be an informa on source for material proper es,
which func on can a material fulfil and which not.
24 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
6 // RELEVANCE
6.1
Societal & scien fic relevance
Every year 130 million tonnes of building material
is put into circula on, at the same me 16 million
tonnes (over a ¼ of new materials) of building
waste arises. By making use of renewable and
recycled sources the life cycle of building materials
can be closed. Biodegradable materials have
renewable resources which will be reproduced
by nature during life me of the material. (When
biodegradable materials will be used, the three main
environmental problems; deple on of resources,
ecosystem degrada on and harm to human health
will decrease (Fig. 6.1.1). (Anink, Boonstra, & Mak,
1996; Dobbelsteen & Alberts, 2005)
Figures 6.1.2 & 6.1..3 establish the rela ve
importance of building materials for the energy
consump on in the building industry. The biggest
part of the environmental cost is caused by energy
consump on, almost 80% (lifespan of 75 years).
But when speaking of office buildings, which have
an average life span of 20 years, the environmental
cost of energy consump on and building materials
is almost equal. To decrease the environmental
cost, biodegradable and other sustainable materials
must be applied in the building industry. (van den
Dobbelsteen & Alberts, 2001)
6.2
Relevant research
As men oned in chapter 6, this topic is derived from
two previous theses. Their focus was on showing the
cons and pros of applying biodegradable materials
in the building envelopes and the poten als these
materials have in the building industry in The
Netherlands. Their theses are fundamentals for
my research, to develop biodegradable façade
components.
Related research or projects in the building industry
are the Osirys project and projects of BioBuild.
Osirys is a safe, energy-efficient and affordable new
eco-innova ve material façade component, which
is s ll in the design and development phase (Osirys,
2015). They also want to develop new products for
FIG. 6.1.1 // THE POSSIBLE DEGRADATION OF ENVIRONMENTAL PROBLEMS BY BIODEGRADABLE MATERIALS DOBBELSTEEN, 2005
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 25
facades and interior par on, like bio-composite
profiles (Osirys, 2013). This new technology is
also men oned by BioBuild, showing poten al for
extruded biocomposite profiles within the near
future (Dzalto, 2014). My thesis exists of two levels
(biodegradable materials and façade components)
which will merge into one another. Thereby
companies like Ecova ve are also related to my
research (Ecova ve, 2014). They make products
with a lot of poten al for the biodegradable façade
industry. These inven ons, which show great
similari es to current materials, will be significant
to this research.
6.3
Addi on of research
Apparently, the current biodegradable façade
elements do not fulfil wishes of the industrialized
building industry. Thereby the elimina on of these
materials stays and the big energy consump on
stays as well. By equate the biodegradable façade
elements to the current façade elements, looking
into a product level of building part, the use of
these materials can be enhanced.
26 //
FIG. 6.1.2 // SPREADING THE ENVIRONMENTAL COSTS, ASSUMING A USEFUL LIFE OF
75 YEARS DOBBELSTEEN, 2005
FIG. 6.1.3 // ENVIRONMENTAL COST VERSUS USEFUL LIFE TIME DOBBELSTEEN, 2005
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 27
2 // RESEARCH PART I
28 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // EXISTING FAÇADES
1.1
The selec on
The analysis of exis ng façades will contribute to
knowledge on how to improve façade elements for
the use of biodegradable materials and to establish
what is currently missing in the façade industry.
The purpose of analysing the façade elements is
to conclude why we use the façade elements that
we use, what the similari es are and benefits of
these elements. Façade elements which use a
biodegradable material will also be analysed. The
same principles for these elements, involving the
similari es and what are the benefits, but more
important the differences between the two façade
groups are men oned in this thesis.
When the differences are specified, the missing
elements can be pointed. This involves what kind
of proper es should be improved, what kind of
dimensions an element should have and what
level of prefabrica on is needed. Briefly, it is
about combining the benefits of currently used
biodegradable facades and the benefits of currently
used façade elements. Fig. 1.1.1 establishes the
chosen elements for this analysis.
SYSTEM
1.
Name project:
Slim fort 4,5
MATERIAL
1.
System:
ConƟnuous insulaƟon
2.
Name project:
Norwin SIPS 6,8
Name project:
Enexis
2.
Name project:
Gasontvangst
Name project:
Modcell
5.
Name project:
Modcell
3.
4.
System:
Biocomposite element
Name project:
Gasontvangst
Name project:
Library Borne
Material:
Reed
6.
Name project:
Eco park
Material:
Isovlas insulaƟon
Material:
Straw with wood
System:
PIR composite facade
4.
With the biodegradable elements the purpose
is to delve into the way the material is used. For
example is it used as an insula on, internal or
external material and does it need weather or
other protec on and how is it fixed in the element.
What is important is the year when the façade
elements were first introduced. For this analysis
only façade elements realised during the last 10
years are relevant.
Material:
Straw with lime
System:
Simple smart connecƟon HSB element
3.
The focus within the currently used façade
elements will be on the system they use. What is
important is the level of prefabrica on and the use
of a smart system. Smart defines a newer system
than most, a system which is easy to produce or
simple to connect on site. With the analysis the
goal is to inquire into the way they are produced
but also to see if these systems have some poten al
or poten al for implemen ng a biodegradable
material.
7.
Name project:
Carriage house
Material:
Flax, hemp & bioresin
Material:
Earthbags & papercrete
Name project:
Seaweed House
Name project:
OpƟwin wood2wood
Material:
Seaweed
Material:
Wood & cork
FIG. 1.1.1 // COMPARISON FACADE COMPONENTS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 29
1.2
Proper es
To be able to compare the façade elements certain
relevant proper es were selected. These proper es
are divided into four clusters, general proper es,
cost, environmental proper es and proper es
related to the prefabrica on level.
1. General proper es
Density
Thickness element
Thickness insula on
RC-value
Acous c quali es
Fire resistance
2. Cost
Shadow cost
3. Environment
Embodied energy
Environmental classifica on
Percentage of biodegradable materials
4. Prefabrica on
Level of prefabrica on
Amount of connec ons on site
Not all proper es are equally relevant to both façade
groups (material & system). The environmental
cluster is more relevant to the material façades and
the prefabrica on proper es are more important
for ra ng the system façade group.
The proper es chosen are based on the movability
of an element (thickness, weight, prefabrica on),
general proper es to establish whether it is
suitable (Density, acous cs and the fire resistance)
and various other important factors regarding the
environmental impact. The cost is to compare the
shadow cost, which mainly explains why regular
materials are preferred to biodegradable ones.
The shadow cost method is a method to get an
overview of the environmental price tag of the
materials. This is done by mul ply the equivalent
expressed environmental impacts by the shadow
cost per environmental impact.
30 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
2 // RATING
2.1
Ra ng proper es
These data are organized in a matrix, rated from 1
to 5 so that a clear overview is thereby created. The
numbers are also indicated by bubbles and colours.
The size of the bubble is related to the number
given to the façade element and the colours refer
to the clusters of the proper es. The ra ng varies
per property, corresponding to the range of the
circle, big always indicates the best preforming
one and the smallest the poorest. There are five
stages: poorest, bad, average, good and excellent.
In every property this is translated to specific terms,
explained below.
Fire resistance
The fire resistance is indicated by le ers, A indicates
the highest level.
Density
The lighter the material or element is, the be er
the movability on site will be. Hence, the most light
weight element is the best rated.
Low
Light
Heavy
Thickness element
The thickness is also important for the flexibility
and movability of the element on site. The ra ng
shows that the thicker the element is, the poorer
the element will be rated. The same applies to the
thickness of the insula on
Slim
Thick
Rc-value
Since the current year, January 2015 the
requirements for the Rc-Value of a façade have
been increased. The façade must have an Rc-value
of a minimum of 4.5 m2K/W. Hence every Rc-value
below is graded as unacceptable.
High
Unacceptable
Acous c quai es
The acous c is overall acceptable, the ra ng only
shows the mutual ra ng.
High
Excellent
Poor
Shadow cost
The shadow cost is scien fic LCA data. LCA stands
for “LifeCycleAnalysis”, which is a method for
calcula ng the environmental impact of a product
from the cradle to the grave. The data is derived
from nibe.info.
High
Embodied energy
Only used for the material part, to establish the
difference in the embodied energy.
Low
High
Environmental classifica on
The environmental classifica on is based on several
environmental effects. In total there are 18 effects,
including greenhouse effect, human toxicity and
stench to men oned just a few (Nibe, 2015). This is
indicated by numbers and le ers, for example 1A is
the highest classifica on
High
Low
Biodegradable materials
Here the level of biodegradable materials is
compared. Does the element consist of a high
percentage of biodegradable materials or is it just
a small amount?
All
Nothing
Low
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 31
Level of prefabrica on
Labour intensity is important from the point of
view of cost and me in most of building projects.
Therefore the level of prefabrica on is indicated.
Prefab
Craftsmanship
Connec on on site
The level of prefabrica on and connec on on site
is more or less the same. What is most important
is the difficulty of connec ng elements on site. This
aspect show whether the connec on will be hard
or easy to make.
Easy
Hard
2.2
Product level
Next the ra ng of several proper es, the façade
elements will also be categorized according to the
level of components to see if there are similari es
within the groups and if we can conclude whether
there are important differences at product level.
The product levels are divided into the following
categories: material, commercial material,
element, sub component, component, building
part and building. The product level is plo ed in a
matrix against the level of prefabrica on to gain a
good overview of the façade elements chosen.
What can be seen in Figure 3.1.2 is the separa on
between categorizing the material façade elements
and the system façade elements. Correla ons can
thereby be made within the groups before looking
at the façade elements as a whole.
2.3
Subdivision product level
To order the façade elements the so called ‘product
level’ arrangement can be used. The classifica on
of the product level describes a set of building
products with a defined lowest and highest
boundary. Tillman Klein classified the following
product levels (Klein, 2013):
•
Materials are defined as the base
ingredients without any further shaping or
treatment such as glass or steel. Composite
materials are also included.
32 //
•
Standard
materials
are
so-called
intermediate goods, available in standardised form:
Examples are I-beams, tubes, coils, bricks.
•
A commercial material is shaped for the
purpose of a special product or project, such as
extruded aluminium profiles for window frames or
rubber gaskets designed for a specific purpose.
•
Elements are assembled from different
commercial materials. An insulated glass unit
is made of glass panes, aluminium spacers and
silicone.
•
A sub-component is a closed assembly
of elements with single func onal purpose, e.g.
window frame, sun-shading device, building
services component.
•
Components are described by Eekhout as
an “independent func oning building unit….built
up from a number of composing elements”. It is
assembled “off-site and transported to the site”. A
uni sed façade part is an example.
•
A building part is defined as a collec on of
elements and components with iden cal technical
main func on, meaning a curtain wall or the
primary load-bearing structure of the building.
•
Building needs no further explana on.
Added to the ‘building part’ product level can be,
if the product is the separa on between in and
outside in its whole.
2.4
subdivision level of industrialisa on
In this product level matrix, also a classifica on is
made on the level of industrialisa on versus the
level of cra smanship. This will give a good overview
of the difference between the façade elements. But
how are these façade elements assessed? The five
points in the matrix show the division for assessing
the façade elements:
1.
100 percent of cra smanship, nothing is
produced by industrial applica on.
2.
Some elements are merged before
transported to the site and materials are delivered
in standardized materials.
3.
Higher amount of industrialisa on, even
components are part of this classifica on. S ll a lot
of connec ons and finishing’s must take place on
site, so cra smanship is needed.
4.
Most parts delivered on site are big
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
industrialized elements, consis ng out of (sub)
components. Only connec ons between the
elements must be done on site.
5.
Everything is industrialized, no big
connec ons or finishing must be made. This
classifica on is actually about a complete house
delivered on site.
Seen in the descrip on is the rela on of
cra smanship and industrialisa on to the
classifica on of product levels. The higher the
product level and the percentage of these product
level, the higher the level of prefabrica on.
Prefabrica on depends on the level of processing
and industrialisa on. The ra ng per façade element
is described on the individual pages.
Important to no ce is the part of the elements
assessed for this matrix. In the material façade
elements, the focus is on the biodegradable part
of the elements. In the system façade elements,
the focus is on the system and main material.
The men oned parts will be highlighted on the
individual pages.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 33
3 // RELATION MATRICES
3.1
Conclusion product level matrix
The exis ng façade elements are analysed
individually. Figure 3.1.1 establishes such an
analysis. Looking at the façade product level matrix,
one can conclude that most façade elements with
a biodegradable material are situated on the le
side of the matrix. The level of prefabrica on in
these façade elements is either low or completely
lacking. In rela on to the systems used nowadays,
some examples are shown in the system matrix,
which is situated on the right side.
increased (Fig.3.1.2). Two of the seven material
façade elements are situated on the right, which
shows the bio composite façade and a façade
element with Isovlas as the insula on material.
What are the similari es between those two
materials which the other material façade elements
do not have? And is this a posi ve or nega ve
property?
The level of prefabrica on seems to be and is an
important factor for the use of a façade element.
When we want to enhance the use of biodegradable
materials the level of prefabrica on must be
Material Nr. 4- Seaweed house
Element
General discription
Product level matrix
Seaweed pillows were used as cladding for this holiday house on the
Danish island of Læsø by architecture studio Vandkunsten and
non-profit organisation Realdania Byg. The Modern Seaweed House
revisits the traditional construction method in Læsø, where for many
centuries trees were scarce but seaweed has always been abundant
on the beaches. At one stage there were hundreds of seaweed-clad
houses on the island but now only around 20 remain. The team
enlisted Vandkunsten to design a new house that combines the
traditional material with twenty-first century construction techniques.
Detail
Main material
Product level
Craftsmanship versus industrialisation
The seaweed is a raw material. After
drying the material it is packed
together and the material can be used
for the surfacing of the project. The
material is also put in the prefabricated element as a loose material.
The Seaweed is a material that needs a lot of
adjustments on site, done by experts. The only
prefabricated about this project is the wall
elements insulated with the material, thereby the
level of industrilisation is increased.
General properties
Kg/m3
75
Thickness insulation (mm)
345
Thickness element (mm)
650
Rc value (m2 K / W)
8,6
Seaweed 300mm
Battens
Roof covering
Wooden roofboards
Rafters with seaweed
insulation 245mm
Vapor barrier
OSB 12mm
Seaweed insulation
100 mm
Fire resistant cotton
Detail
Shadow costs (euro)
Initial construction cost (euro)
Acoustics (dB)
4
2
2
5
3
4
Level of prefabricaƟon
ConnecƟon on site
5
2
Biodegradable materials
Shadow cost*
1
Fire resistance
5
Thickness insulaƟon
Rc-value
AcousƟc
4
kg/m3
Thickness element
Environment raƟng
3
ConnecƟon raƟng
Overall raƟng
Rating property matrix
Embodied energy
Environmental classiĮcaƟon*
System properties
1
Connections on site
Most
Fire resistance
B2
Level of prefabrication
Fair amount
Product level
Yes
Function
Low
Environmental classification
FIG. 3.1.1 // ANALYSIS MATERIAL NR. 4 SEAWEED OWN ILLUSTRATION
34 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 3.1.2 // OVERVIEW PRODUCT LEVEL OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 35
S1
M8
M3
IndustrialisaƟon
Building parts
Components
Subcomponents
Elements
Commercial materials
S4
M3
SS6
6 S4
Components
Subcomponents
Elements
Commercial materials
Standard materials
Materials
Building
S2
S3
Product level
Product level
Building
M1
1
IndustrialisaƟon
Building parts
M7
7
M5
CraŌsmanship
CraŌsmanship
Building parts
Components
Subcomponents
Elements
Commercial materials
Standard materials
Materials
Product level
Product level
4. Conclusion
M2
M2
M8
Standard materials
Materials
2. Materials & Systems
M6
M1
1
M6
M4
M4
Product level
IndustrialisaƟon
IndustrialisaƟon
Product level
Building
M7
7
M5
CraŌsmanship
CraŌsmanship
Building
Building parts
Components
Subcomponents
Elements
Commercial materials
Standard materials
Materials
Product level
Product level
M5
CraŌsmanship
CraŌsmanship
CraŌsmanship
CraŌsmanship
M4
M1
M1
M6
M2
2
S1
S1
S2
M8
S2
S3
?
S3
IndustrialisaƟon
IndustrialisaƟon
S6 S4
IndustrialisaƟon
IndustrialisaƟon
How comes the bio composite scores low, but it is
known as a biodegradable façade? Biodegradable
in this situa on does not mean it is compostable.
Due to the plas c in this façade element it is in
need of addi ves to start a chemical reac on, this
means that it is an Oxo-biodegradable plas c. Oxobiodegradable is merely an accelerated dissolu on
of visible par cles in invisible pollutants. (Nuijsink
& Zijlstra, 2010)
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
4
2
5
Also good, but must be
as
much
as4 possible
3
5
Comes with thickness
1
1
1
5
5
Level of prefabricaƟon
ConnecƟon on site
Facade elements
Embodied energy
Environmental classiĮcaƟon
Biodegradable materials
Straw (with wood or clay) is the only material façade
element that scores high in the environmental
aspects and has to some extends prefabrica on
possibili es. What do these
Shadow cost
If we take a closer look we can see that the benefits
of the le situated material façade elements are
mostly the high Rc-value and also they score high on
the environment cluster. The high Rc-value comes
with the thickness and the density of the elements,
which is also why the other elements have lower Rcvalue but are rated higher on thickness and density.
Said is by several straw experts that in the coming
months all companies must thicken their façade
elements to be able to meet the requirements
of the future. Seen is with the façade elements
rated by one that they already do not meet the
requirements of today and thereby are unsuitable
for the current façade industry.
density, dimensions and connec ons on site.
These proper es are the posi ve corresponding
proper es between the right material group and
the system façade elements.
Density (kg/m3)
Thickness element
Thickness insulaƟon
Rc-value
AcousƟc quality
Fire resistance
3.2
Proper es matrix
Figure 3.2.2 shows the overview of the analysis
done on the façade elements. First one shows the
data, second the ra ng divided from one to five,
third and fourth the ra ng translated to bubbles to
create a clear overview. To see the similari es and
difference between the divisions in the material
group, the difference between the le situated
elements of the material group & the system façade
elements and to see the similari es and difference
between the material elements situated at the right
and the system façade elements we take a closer
look to the matrix (Fig. 3.2.1). The individual ra ng
of The Seaweed house is shown in figure 3.1.1, the
other individual ra ngs can be found in appendix 1.
2
1
1
4
5
4
2
5
2
4
4
5
2
2
5
3
4
1
5
1
4
5
5
1
2
5
2
4
2
5
3
4
1
3
1
5
4
3
4
3
3
1
2
1
5
4
5
1
3
1
5
5
1
4
3
1
1
1
5
3
1
2
5
3
4
1
3
4
5
4
4
1
3
5
3
4
5
5
2
3
2
3
5
4
3
1
3
4
4
3
4
2
4
3
5
4
4
5
3
2
5
3
4
1
2
5
5
5
2
2
5
3
4
1
1
5
5
FIG. 3.2.1 // CONCLUSION MATRIX OWN ILLUSTRATION
Men oned before are the missing elements in the
biodegradable façade elements. The benefits that
the right material façade elements have, which are
needed for the improvement of the other façade
elements, are mainly the level of prefabrica on.
By increasing the level of prefabrica on some
other aspects are important, for example
36 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 3.2.2 // PROPERTY MATRIX OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 37
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
Facade elements
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthebags
8. Cork
Facade elements
2
4
3
5
1
1
3
4
5
4
1
3
5
1
5
4
2
5
2
1
2
5
1
1
400
240
160
65,3
1100
1400
300
240
60
54,3
495
165
250
650
75
120
400
65,3
400
492
268,5
73
500
2
2
3
3
5
1
5
5
2
2
1
1
392
304
226
210
50
1000
140
140
345
392
400
420
5
5
4
2
4
5
1
4
5
5
4
5
3
3
2
3
4
3
3
3
2
3
5
5
-
9,8
-
6,48
-
-
9,5
7,8
39
3,68
31
36,5
6,5
6,69
-
8,6
-
B2
-
9,8
4,5
B2
55
6>
4
4
4
5
1
1
1
4
4
4
4
4
B2
B2
-
B1
E
Poor
C
B2
B2
55
9,85
B2
Density (kg/m3)
Thickness element
Thickness insulaƟon
Rc-value
AcousƟc quality
Fire resistance
446,5
Shadow cost
3
5
3
5
1
1
3
4
5
5
2
3
5
1
5
5
2
2
5
Low
Low
Low
Average
Low
Low
Low
Low
1
2
5
3
3
3
1
1
3
1
2
3
3C
2C
1A
2B
-
-
3A
3A
-
3C
2C
2B
4
4
4
2
4
4
4
5
Most
Most
Most
Few
Most
Most
Most
All
Embodied energy
Environmental classiĮcaƟon
Biodegradable materials
2
-
7,42
3,53
2,28
-
-
1,96
4,3
-
-
4,65
4,28
5
5
4
1
5
1
3
1
1
5
4
4
5
5
4
3
Excellent None
Excellent None
Good Minimum
Poor
Good
Poor
Average
Poor
Fair am.
Excellent
Good
Fair am.
Level of prefabricaƟon
ConnecƟon on site
Good
3
4
2
3
4
3
3
3
3
2
2
4
5
5
3
4
4
3
4
4
3
4
4
Overall raƟng
Environment raƟng
ConnecƟon raƟng
3
5
5
4
5
2
3
4
2
4
1
1
3
4
2
2
3
3
5
1
5
5
5
4
2
4
5
1
4
5
1
3
5
5
2
1
5
5
4
5
2
1
1
2
1
5
2
1
3
3
2
3
4
4
4
4
5
1
1
1
3
3
4
4
4
4
4
3
2
3
5
5
Density (kg/m3)
Thickness element
Thickness insulaƟon
Rc-value
AcousƟc quality
Fire resistance
1
Shadow cost
1
1
3
4
3
2
5
3
2
1
2
2
5
5
5
3
5
5
5
5
1
2
5
3
3
3
1
1
3
1
2
3
4
4
4
2
4
4
4
5
Embodied energy
Environmental classiĮcaƟon
Biodegradable materials
5
5
4
1
5
1
3
1
1
5
4
4
5
5
4
3
ϱ
ϭ
Ϯ
ϯ
ϰ
WŽŽƌ
'ŽŽĚ
Ύ&ŽƌƚŚŝƐŝŶĨŽƌŵĂƟŽŶŶŝďĞ͘ŝŶĨŽŝƐƵƐĞĚĂƐĂŶŝŶĚŝĐĂƚŽƌĨŽƌƚŚĞƐĞƉƌŽƉĞƌƟĞƐ
ΎΎDĂŝŶůLJƌĞƚƌŝĞǀĞĚĨƌŽŵ͗'ĂŶĂƚŽƉŽƵůŽƵ͕͘;ϮϬϭϰͿ͘
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
Facade elements
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
Facade elements
Level of prefabricaƟon
ConnecƟon on site
3.4
Availability & durability
What is also important is the durability of the
materials. When we look at Eleni’s handbook we
can see that all of the materials score below average
on durability (except for UV-radia on). How can we
improve the nega ve aspects to be able to design
a prefabricated biodegradable façade element
which will last for over 20 years? The scope is set
on the façade elements used in the Netherlands,
not insignificant is the availability of the materials.
Eleni rated all materials posi ve on availability, with
straw, flax and papercrete as the most available
materials. (Ganatopoulou, 2014)
38 //
Tensile strenght
Biocomposite
^ƚƌĂǁ &ůĂdž;ďŝŽĐŽŵƉŽƐŝƚĞͿ
^ĞĂǁĞĞĚ
/ƐŽǀůĂƐ Seaweed
Reet facade
Isovlas
Ϭ͕ϬϭͲϬ͕ϬϮDWĂ
ϮϬϬͲϰϬϬDWĂ
ϭ͕ϰϳĞͲϮDƉĂ
ConnecƟon possibility
^ůŝŵĨŽƌƚƐLJƐƚĞŵ
High density parts
Earthbags & papercrete
ŽŵƉƌĞƐƐŝǀĞƐƚƌĞŶŐŚƚ
W^ Ϭ͕ϴͲϭDWĂ
Straw
Biocomposite
^ƚƌĂǁ ŽŵƉŽƐŝƚĞ
,ĞŵƉ ĂƌƚŚ WĂƉĞƌĐƌĞƚĞ
Seaweed
Reet facade
Isovlas
Ϭ͕ϭϲͲϬ͕ϰϴDWĂ
ϭϯϴͲϮϬϳDWĂ
Ϭ͕ϰϲͲϯ͕ϬϬDWĂ
Ϯ͕ϬͲϱ͕ϬDWĂ
Ϭ͕ϴϰͲϮ͕ϯϲDWĂ
Earthbags & papercrete
^ŝŵŝůĂƌƚŽW^
ŽƌŬ Ϭ͕ϱϰͲϮDWĂ
DƵƐŚƌŽŽŵ Ϭ͕ϰϵͲϭ͕ϴDWĂ
Cork
water resistand
EŽƌǁŝŶƐLJƐƚĞŵ
PrefabricaƟon
Mushroommaterial
Light weight
look to the smaller components which we can
implement, due to the fact that biodegradable
materials cannot replace the material on its own.
For the Slimfort system, cork and mushroom
material is also compared. Known for mushroom
material is that it is comparable to EPS, therefore
this material can maybe replace the EPS in this
system. Cork is also a good candidate, but this is
heavier than mushroom material and EPS. This is
only to show that not every biodegradable material
is unsuitable.
Fiber
Compressive strenght
Formability
Light weight
dĞŶƐŝůĞƐƚƌĞŶŐŚƚ
'ůĂƐƐĮďĞƌ ϭĞϯͲϮĞϯDWĂ
Straw
Compressive strenght
The proper es of the materials are compared to the
material used in the system. When it is in the same
range it can be answered as suitable, otherwise it is
not. One can see that all (except for bio composite)
cannot meet the important requirement. To use
parts of the system in a biodegradable façade
element we need to
ŽŵƉŽƐŝƚĞƐLJƐƚĞŵ
Light weight
3.3
system versus material
The systems are analysed for increasing knowledge
about how the systems are applied and how
they work. How can we use this informa on to
increase the use of biodegradable materials in the
façade elements? The first step is to see which
requirements the materials need to replace the
material in the system façade element. The main
three elements are divided in several requirements,
shown in Figure 3.3.1. For this analysis we only
need the material itself, therefore they the main
materials used are listed in the façade elements.
Straw
Biocomposite
Seaweed
Reet facade
Isovlas
Earthbags & papercrete
FIG. 3.3.1 // SYSTEMS WITH BIODEGRADABLE MATERIALS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
3.5
Products handbook Eleni
As men oned above, in the product level
matrix a clear division can be established, not
only between the two material groups but also
between the material and the system group. To
make the biodegradable materials more suitable
for the façade market, they must be more equally
posi oned compared to the system façade
elements (Figure 3.1.2). The more the element is
posi oned in the bo om right the be er chance of
success.
To support these result, the most developed (higher
product level, higher level of industrialisa on)
products form Eleni’s thesis are picked and placed
in the same matrix as the façade elements. The
products chosen are shown in Fig 3.5.1. The
products ra ed as building product level are
eliminated, because they are not buildings in total
as a product level, see criteria on page 32 and 33.
The set criteria for posi oning the products are
apparently different from Eleni’s thesis, hence the
product are shi ed to different posi ons to meet
this review (Fig. 3.4.2). Established in Figure 3.4.3
is how the product coincides with the analysed
products. Conclude can be that the groups coincides
with material 1 and material 8 are most developed
on product level and industrialisa on.
Figure 4.2.6: Products level for sheep-wool products
Figure 4.2.4: Products level for earthen products
Figure 4.2.7: Products level for wood-fiber products
Figure 4.2.5: Products level for straw products
FIG. 3.5.1 // CHOSEN MATERIALS HANDBOOK ELENI GANOTOPOULOU GANOTOPOULOU, 2014
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 39
To have more profound results in the end of the
research, the focus must be on one material.
The ques on is which of the two groups has the
most poten al? The one more developed on
industrialisa on, the other more developed on
product level. Can one say it is easier to improve the
industrialisa on, due to the fact it is less depending
on the proper es of the material?
improvement of straw as a prefabricated material
is less complex but the percentage of chance to
succeed is also higher. Therefore this material has
the most poten al and will be research further on.
Straw has a big poten al which is derived from the
fact that straw (with wood or clay is the only façade
element that scores high in all the environmental
aspects, it has the highest product level of the
le material group (component) and has to some
extend prefabrica on possibili es (Fig. 3.4.4). S ll,
the prefabrica on is at a poor level due to the fact
that some ac ons must be fulfilled on site to finish
the façade as a whole. Building with straw is also
becoming more and more popular and is on the
right track of being accepted as a building material.
For the other biodegradable materials the steps
that must be made to upgrade to a prefabricated
element are more complex (Fig. 3.4.4). Of course
there is poten al as well in these materials, but the
result will probably be around the same percentage
of prefabrica on that straw already has. The
Product level
CraŌsmanship
IndustrialisaƟon
Materials
Standard materials
Commercial materials
1
Elements
2
Subcomponents
Components
Building parts
3
4
5
6
8
7
9
Building
FIG. 3.4.2 // SHIFTING OF PRODUCTS ELENI GANOTOPOULOU OWN ILLUSTRATION
40 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Product level
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
M7
M4
Standard materials
M6
Commercial materials
Elements
M1
Subcomponents
M2
Components
M3 SM
6 3 S6
Building parts
Building
FIG. 3.4.3 // PRODUCTS ELENI COINCIDE WITH FACADE ELEMENTS OWN ILLUSTRATION
Product level
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
Building
FIG. 3.4.4 // CONCLUSION FURTHER RESEARCH OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 41
3 // RESEARCH PART II
42 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // TECHNIQUES IN PRACTICE
1.1
Straw building techniques
The techniques used for building with straw vary
by country. The countries which are mainly familiar
with straw are Germany, Austria, England, France,
Belgium, Canada and the Netherlands. Shown
in the table below is an overview of techniques
related to the country. (Strobouw, 2015b)
In the Netherlands they decide by project which
technique is the most suitable for the design
(Strobouw, 2015b). Thereby, a lot of me is wasted
during the design phase of a building, because the
chosen technique decides the final outcome of the
design. Due to the fixed dimensions of straw bales
and the possibili es or limita ons the material
offers. (Borgers, 2015)
In the Netherlands they decide by project which
technique is the most suitable for the project
(Strobouw, 2015b). Thereby, a lot of me is wasted
during the design phase of a building, because the
chosen technique decides the final outcome of the
design. Due to the fixed dimensions of straw bales
and the possibili es or limita ons the material
offers. (Borgers, 2015) To establish an idea about
how straw can act as a building product, some
proper es are summarised below. (Strobouw,
2015b; Minke, 2005)
-Straw bales superfluous products from
agriculture. It is therefore available and cheap.
-Straw is a 100% organic material.
-A straw bale wall is free of toxic substances.
-Dimensions: ca. 480 x 360 x 800 mm
-Weight straw bale 15-20 kg
-Processing into walls is simple and safe. Straw bale
construc on is therefore suitable for DIY.
-Depending on the design, it is possible to build in
short me. The finishing and detailing determine
the required amount of work and thus to a large
extent the cost.
-The heat insula on is excellent (Rc> 7m2K / W).
-The acous c proper es are good (Rw 55 dBA).
-The plastered straw bales are excellent fire
resistant (> B90).
-During demoli on, no harmful substances are
released. A er demoli on, only materials which
are easy to process or reusable remain.
-Straw bales cost around €15 per cubic meter.
-Straw bales walls can last for over 100 years, if
applied with good finish layers (Fig 1.1.1.).
1.2
Interviews
To gain knowledge about the prac cal experiences
two interviews are taken. The first interview is taken
with Pim Hondeveld, the cofounder of Straw Block
Elements, which is a more industrialised straw
element compared to the way Rens Borgers builds
with straw bales. This contrast is good to compare
the different thoughts about the industrialisa on
of this product as a building material. The results
of these interviews and the introduc ons of the
interviewee can be read on the next pages. For the
full interview see appendix 5 & 6.
FIG. 1.1.1 // TIMELINE STRAW BALE BUILDINGS, RETRIEVED FROM Minke, 2005; OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 43
2 // PIM HONDEVELD
2.1
Summary interview P. Hondeveld
Pim Hondeveld is the co-founder of the Straw Block
System, a building system which forms straw bales
into a block with tonque and rabbet (Fig. 2.1.2).
Thereby, the strength of the structure increases.
Pim par cipated in a workshop for straw buildings
and thought of how to improve the industry, hence
the inven on of a more industrialized straw bale
block. Most people build a straw bale house with
raw straw bales and want to keep the industry
like that, but that does not guarantee the quality
of straw as a building material. He compares this
industry to toys for children. When he was young
you had wooden blocks to build a house, one
push and the wall will collapse. His system is more
comparable to Lego, with the snap-in construc on
you cannot push one block out of the wall, which
results in a stringer structure (Fig. 2.1.1).
FIG. 2.1.1 // STRAW2 BLOCKS AS LEGO OWN ILLUSTRATION
With this system it is important to determine the
density of the bales. With the rated density you
can calculate the amount of pressure the bale
needs for op mized quality. Two guys from the TU
Eindhoven are researching the op mal density of a
straw bale, in order to deliver quality. The density
is important for the RC-value and the load bearing
capacity. Straw
is in most projects only used as an insula on
material, which is regre able because of the price
and the capabili es the material has. Straw is
produced in the Netherlands and thereby has the
benefit that it is available in the surrounding area
and does not need a lot of transport. Also the clay
and lime render are available in the Netherlands
and are natural products. The straw blocks are also
cut smooth and thereby saves clay and lime render.
This system only use two cen metres on both sides
FIG. 2.1.2 // LINKED IN PROFILE PIM HONDEVELD LINKED IN, 2015
44 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
in contrast to the conven onal building techniques
where they use more. Clay is not usually applied at
the exterior because of the weather condi ons in
the Netherlands, but in this project it is. Taken into
account are the inwardly inclined walls and distance
to the ground. Damage occurred by splashing rain,
which can be fixed with a simple wipe of a wet
sponge. This is also done inside where cracks occur,
caused by fric on. You can compare it to cleaning
your house, which cannot be done in current house
interiors.
Straw block is also applicable as a story high
element, but not done yet. According to Pim this is
caused by the fears and ignorance of people. O en
men oned is the inadequate fire resistance, that it
is a rac ve for mice and other pets and the price
of the material. People think it is a cheap material,
like three or four euros per bale and you can get it
shaped as a block for that price. Thereby it a racts
people with low budget, who in the end cannot
pay it. Pim men ons that it is 23-30% cheaper than
conven onal (straw) building industry, but people
expect it cheaper than that. Due to those aspects,
people choose currently used materials over straw
products. What people do not know is the me
they save, which can save money in the end. ‘The
Steltloper’ for example could be built in a few
weeks. The founda on only exists out of old round
founda ons, crushed rubble and shells on top.
Other material used is steel for the bo om part of
the façade, thereby the clay will be protected from
groundwater.
zero to few adjustments, renewable resource and
light weight. However, moisture is something that
should be taken into account while construc ng.
When the bale will be finished with a layer of clay,
the percentage of moisture must be around 10%.
A fact which cause fear to people to work with
this material, but with a total closed element this
aspect can be eliminated. Next to that, years ago
people said wood carpentry cannot be done in this
climate, but we learned how to deal with it because
of the gained knowledge. Ignorance plays a big part
for choosing known materials. Straw buildings are
characterised by the lime render and clay finish,
which does not show connec on seams. When
using finished elements the final look should be
taken into account. You can choose to use only
a base layer of clay and add one later, use a wet
sponge to maybe fix the seam or use another finish
material like wood. The wet sponge technique can
only be applied with pure clay, not in combina on
with cement or lime plaster.
Finally, important to men on is the designing of the
building. When building with straw you have to take
this into account while designing. The dimensions
of the bales vary from 35 to 40 cen metres wide
by 105 or 210 cen metres long. Making fi ng
elements is not that hard, but avoid them as much
as possible. In the design phase a en on should be
paid at the connec ons, especially the connec ons
with the frames.
A more difficult part of making this building, and
also in other straw buildings, is the roof. Pim chose
to realise one the most difficult designs to show
the possibili es straw as a building material. The
roof could also be done in prefab so the roof would
be easier to realise and take less me. According
to Pim prefab will also contribute to change the
image of straw and thereby enhance the use of
the material. To convince the tradi onal building
industry we need comparable elements, which
have same criteria’s as currently used elements
like dust-proof and ensuring a clean building site.
Besides, straw shows benefits which currently
materials do not, like low energy consump on,
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 45
3 // RENS BORGERS
3.1
Summary interview R. Borgers
Rens worked for twenty years in the building
industry (Fig. 3.1.1). He no ced the amount of
spilled materials and quit this building industry. By
his interest and involvement in nature, he preferred
eco-friendly materials. Eco-friendly means to
Rens the amount of energy needed to produce a
material and threat the material respec ul, the less
adjustments and transport the be er. Important is
the involvement of the people, to build their own
house and to know the origin of the material.
According to Rens, one of the most important
aspects to choose materials like straw.
The technique used by Rens is a Post-and-Beam
method, due to the lack of requests of selfsuppor ve straw projects. Arranging construc ons
permits for self-suppor ve straw buildings is also
harder than for projects where it is only applied as
an insula on material. Rens says this is also caused
by the building regula ons in the Netherlands,
which is guided by some big families and stop
this industry. Probably, because they cannot make
money of it, or even lose money with it. Some
projects show this is unjus fied. For example the
Maison Feuile e in Montargis in France, built in
1921, which is lately renovated. When taking of
some lime render, the building constructers found
the straw bales totally intact a er almost 100 years.
Rens mostly work with lime hemp, due its be er
connec on capacity and the quality guarantee.
Building with raw straw bales can cause poor
connec ons and the quality of the bales is ranging
and o en poor. Important are the length of the
stalk and the sec on of the stalk. That is the reason
bales are expensive if you want quality and thereby
people lose their interest. Money is an important
factor in the building industry, with a prefabricated
element the labour intensiveness will decrease and
thereby the price of realizing a straw building.
The characterising of the straw building industry will
change when industrialising it and also the amount
eco-friendly materials according to Rens. He is
afraid for green-washing and what will remains of
the pure product when implemented in big building
projects. Clay as exterior and interior finish will be
46 //
FIG. 3.1.1 // LINKED IN PROFILE RENS BORGERS LINKED IN, 2015
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
difficult when applying it in advance. An op on can
be to use foil in combina on with wood finish like
they did in Amsterdam IJburg II. When applying foils
in your element take into account you use a vapour
permeable one. According to Rens, membranes
will silt in a while caused by fine dust, which in the
end cause big problems. 9 to 10 months of a year
people produce more moisture inside a building
than outside. Thereby, moisture transport will
take place from in to outside most of the year. If
the membranes cannot allow the moisture to pass
through, accumula on of fluid will occur in the
straw, which can cause serious consequences.
Another disadvantage for people to eliminate straw
as a building material is the thickness of the wall.
But in the end straw can be applied in the slimmest
way and s ll have a high Rc-value. The thickness of
the wall is in that situa on comparable to a cavity
wall, but has a be er insula ng property which
saves money during the use phase. But before
introducing new materials into the building market a
lot of test should be done. In the Netherlands these
test cost a lot of money and are not representa ve
to what the material can really offer. In England
they test the building before with small test like in
the Netherlands, but they also test it a er finishing
the project. This shows a good impression of the
behaviour of the complete design. A lime hemp
project in England was tested this way and showed
be er results than tested the other way, up to 36%.
With the lime hemp Rens makes blocks which have
the same look as limestone, which is used o en in
the building industry nowadays (Fig. 3.1.2 & 3.1.3).
If this can be done with straw, making a comparable
element, it will make a difference in the straw
building industry, it will open doors.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 3.1.2 // LIME HEMP BRICKS COMPARABLE TO LIME STONE ATTENTUS, 2012
FIG. 3.1.3 // LIMESTONES HUZINK, 2009
// 47
4 // CATEGORISING ELEMENTS
4.1
Subdivision techniques
Shown before is the subdivision of cra smanship
versus prefabrica on (Fig. 4.1.2). Within these
groups, as you can understand, is also a subdivision,
which is for both groups the same. Important
ques on within this industry is if you are building
as non-self-suppor ng structure or as a selfsuppor ng structure? The first examples of straw
buildings are mostly self-suppor ng structures
made by hand and done Nebraska style. With this
technique they stack straw bales and use wood
for window and door openings. With the selfsuppor ve Nebraska technique, four failures by
compressive strength must be taken into account:
en re buckling, local buckling, fracture & shearing
(Fig. 4.1.1)(Mulderij, 2009).
rhetorical ques on is if straw is only use as an
insula on material, does it loose its convic on as a
building material. Pim Hondeveld says “straw only
used as an insula on material is less interes ng. In
terms of price it is not interes ng anymore when it
is only used as a insula on material” (Hondeveld,
2015a).
In the prefabrica on group there exist the same
division, but with other used techniques. The
non-self-suppor ng structures make use of a
wooden panel, which ensure the stability and
s ffness. This panel is later filled with straw bales
and compressed a bit so you get as less openings/
leakages as possible. These panels are some mes
covered with a thin base layer of clay, but mostly
untreated transported to the building site. They
are, just as with the cra smanship techniques, the
clay is added on site, which is labour intensive and
thereby cost a lot of money.
Within the self-suppor ng techniques in the
prefabrica on group several examples can be seen;
one of them the prefabricated version of the Straw
Block System, the second the Bala Box element
and finally the Magwood element. These three
examples differ from each other.
FIG. 4.1.1 // FOUR FAILURES OWN ILLUSTRATION
An example of a more modern variant of a
self-suppor ng straw technique is the Straw
Block System, designed and engineered by Pim
Hondeveld. This system makes use of tonque and
rabbet, he compares this system with the Duplo
of Lego system. The regular used self-suppor ng
system is a stacking normal wooden blocks, if you
press one in the middle the whole wall will come
down. With a wall build out of Duplo blocks, they
interlock and thereby create higher stability and
s ffness (Hondeveld, 2015a).
The non-self-suppor ng system is a technique
where wood is applied for the main structure of
the building. The straw bales are only used as an
insula on material (Minke & Mahlke, 2005). The
48 //
Magwood makes use of a li le amount of cement
in the lime render. Thereby they create a structural
panel, whereby a sandwich construc on is realised,
but by the cement in the outer finish layer the
evapora on func on decrease (Strobouw, 2015b).
This should be taken in mind when designing with
straw, due to splashing rainwater and moisture
damage by cleaning water or unexpected leakage.
Hence, determining the distance between the
ground-level and also the distance between the
bo om layer of straw bales and the finished floor
inside the building is very important.
The Bala Box is also a system where they make
use of a sandwich- construc on, Bala Box says
“Two natural elements, straw and wood make this
prefabricated element for a healthy and efficient
construc on. The pressed straw gives it great
insula on and wood structure” (Bala-Box, 2015).
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
CRAFTSMANSHIP
NON-SELF-SUPPORTING
SELF-SUPPORTING
STRUCTURE
SELF-SUPPORTING
STRAW
GENERAL
NON-SELF-SUPPORTING
PREFAB
STRAW
S
STRA
BLOCK SYSTEM
KREATIVER HOLZBAU
POST-AND-BEAM
NEBRASKA
DIRK SCHRAMER
MAGWOOD
EXAMPLES
IN-FILL
CUT TECHNIQUE
MODCELL
STRAW BLOCK SYSTEM
BALA BOX
FIG. 4.1.2 // CATEGORIZING STRAW TECHNIQUES AND ELEMENTS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 49
The Straw Blocks System of Pim Hondeveld is
compressed straw bale element. The straw Bales,
a er shaping and sawing of the sides, are pu ed
together and compressed (more than in regular
straw bale elements) to an element. The higher
density ensures more stability and the Rc-value is
s ll high. Research is going on to the op misa on
between the density and the Rc-value of the straw
bales. By sawing both sides of the straw bales
the percentage of clay needed for the finishing
is decreased, so less raw material is needed (Fig.
4.1.2) (Hondeveld, 2015a). (Hondeveld, 2015b)
of the faced construc on is 5400 mm by 2650 each
floor. The façade construc on consists of a 100 mm
prefab concrete wall, cavity wall of 100 mm with
80mm Rockwool insula on and facing brickwork
100mm.
4.2
Analysis exis ng straw elements
A case study will show the differences between
these techniques and groups. What is really
the most energy efficient one, which one is the
cheapest, the fastest which one will enhance the use
of the biodegradable straw? Each subdivision will
be analysed. Figure 4.1.2 establishes the first part
of the analysis done on the exis ng straw elements.
The analysis shows for example the percentage of
realised buildings in Holland (Strobouw, 2015a),
the applied finishing layers and the es mated price
per square meter.
The case study will be a typical Dutch Vinex loca on,
an average size and in the Randstad. The Randstad
is chosen for the high percentage of buildings
needed and build every year in the Netherlands.
This because transporta on cost must also be
kept in mind. If the loca on was situated in the
east of The Netherlands, the transporta on cost
will probably be lower because of the loca on of
the grain fields. The main goal of this thesis is, the
enhancing of the use of biodegradable materials in
the façade industry. For enhancing the use of these
materials we have to compare within a loca on
where a lot is and will be build and that is in and
around the Randstad.
Chosen is the “Duingras” residen al building
situated in Hoek van Holland. This building is
completed in April 2015 and thereby it meets
nowadays requirements, which makes it a suitable
building to compare to residen al buildings made
out of straw. The size of the case study is like
average row houses in the Netherlands, dimension
50 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
STRUCTURE
STRAW
FINISHING
RATIO MATERIALS
€/m2 (DIS)ADVANTAGES
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
PERCENTAGE
REALISED IN THE
NETHERLANDS
FIG. 4.2.1 // ANLYSIS STRAW ELEMENTS OWN ILLUSTRATION
// 51
€ 230 exc. BTW inc. man-hours
ADVANTAGES
“Do-it-yoursels” system
Cost-eīecƟve
Less wood
SBS less clay needed
€ 215 exc. BTW inc. man-hours
DISADVANTAGES
Building permit
Dirt building site
Maximum Ňoors
(1-2)
ADVANTAGES
Building permit
Placement elements
Less labour intensive
Applicability limits
€ 290 exc. BTW inc. man-hours
DISADVANTAGES
Only insulaƟon
Dirt building site
No complete
element
75 %
Straw bales
85 %
Straw bales
74 %
Straw bales
ADVANTAGES
Building permit
“Do-it-yoursels”
system
Cost-eīecƟve
10 %
Clay/Lime render
10 %
Clay/Lime render
10 %
Clay/Lime render
DISADVANTAGES
Only insulaƟon
funcƟon
Dirt building site
15 %
Wood
5%
30 //30
Wood
30 //30
60 // 40
16 %
78 // 30
60 // 40
60 // 40
MODCELL
Wood
30 //30
30 //30
20 //20
DIRK SCHRAMER
KREATIVER HOLZBAU
3 of 50 buildings - 6%
CUT TECHNIQUE
NEBRASKA
STRAW BLOCK SYSTEM
PREFAB
NON-SELF-SUPPORTIVE
9 of 50 buildings - 18%
30 //30
IN-FILL
SELF-SUPPORTIVE
36 of 50 buildings - 76%
30 //30
POST
POST-AND
AND -BEAM
BEAM
NON-SELF-SUPPORTIVE
CRAFTSMANSHIP
SELF-SUPPORTIVE
60 // 30
55 // 20
88 %
Straw bales
€ 300 exc. BTW inc. man-hours
ADVANTAGES
Clean building site
Dust-proof
Less raw materials
Less labour intensive
9%
Clay/Lime render
DISADVANTAGES
Building permit
maximum of 2-3
Ňoors
3%
Wood
30 //30
BALA BOX
STRAW BLOCK SYSTEM
20 // 20
30 // 30
0 of 50 buildings - 0%
MAGWOOD
4 // DESIGN
52 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // CRITERIA
1.1
Criteria
For the building industry and for the straw building
industry some main criteria are set. These criteria
are used to evaluate the exis ng façade elements
(Fig. 1.2.1).
1.
Dimensionally stable
2.
Func on straw as a building material
3.
Psychological
4.
Waste material/biodegradable façade
5.
Weight
6.
Water ghtness
7.
Thickness element
8.
Fishing layer
9.
Confidence client
a.
complexity
b.
Risks
c.
Produc on me element
d.
Costs
e.
Dust-proof/clean building site
f.
Technique
g.
Building speed
h.
Image
1.2
Criteria explana on
1.
Dimensionally stable
When building with straw the size of the bales
that will be used must be taken in mind. Due to
the set dimensions the design is limited in sizes. A
window, for example, cannot be closer to a floor
then 360 mm. 360 mm is actually the smallest size
to take in mind. For small spaces loose straw can
put between, but will not have the small density
as the other straw bales and this will become the
weakest link.
and manoeuvrability. (+ = variably, - = not variable)
2.
Func on straw as a building material
82% of the straw buildings in the Netherlands
are non-self-suppor ve (Strobouw, 2015b). In
this situa on it is only used as an insula on
material, which is less interes ng looking at the
price(Hondeveld, 2015). The benefit the material
offers, using it as an insula on material and as the
building structure, must turn to good account. (+ =
mul ple func on, - = one func on)
3.
Psychological
The image and the confidence of the client are
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
related to the psychological aspect. Take in mind
that convincing the building industry will take
me. People will prefer known materials over newmaterials, even it proofs to be be er, more ecofriendly or something else. As long as the examples
stay limited, it will be hard to convince people to
buy a straw building instead of a concrete one.
The psychological effect is hard to es mate, also it
depends which point of view you take. Due to the
goal, the point view will be set from an average
building contractor. (+ = plausible, - = not plausible)
4.
Waste material/biodegradable façade
Straw is a biodegradable material and will not
cause demoli on waste. When designing with
straw no materials must be added that eliminate
the degradability of the material.
(+ = biodegradable/eco-friendly,
- = not biodegradable/eco-friendly)
5.
Weight
Men oned is the weight of an element to improve
the building speed. Straw is a very light weight
building material, which is a huge advantage for the
building industry. This has not only influence to the
weight of the elements but also influence on the
founda on, which can be designed less heavy. (+ =
lightweight materials, - = heavy materials)
6.
Water ghtness
When building with loose straw bales, the building
site should be covered to protect the bales or they
should be covered with a (bases) layer of clay. Next
to that the water ghtness of an element, which
can be done with clay or foil, taken in mind the
vapour openness of the façade construc on. Foil
is applied o en in the façade industry, because it
is available but people must rethink the value of
this material. (+ = water ght on building site,- = not
water ght when supplied on building site)
7.
Thickness element
The elements must be able to place on their side,
in that way they will be comparable to currently
used elements. The comparing is important,
further explained in ‘confidence client’. (+ = normal
thickness, - = thicker than current facades)
// 53
8.
Finishing layer
If straw will be implemented o en, it is important
that there are several ways of finish layers that go
with the current Dutch image, thinking of wood or
different ways or relief in lime render. (+ = mul ple
possibili es of finishing layers, - = one finishing
layer)
9.
Confidence client
The goal is to enhance the use of straw, to implement
in modern buildings of Tom, Dick or Harry. For this
the contractor must know what he buy and has
to belief in the material. Nowadays straw is seen
as a material that has poten al but only for small
individual projects because of the labour intensity,
the lack of knowledge and more. Important is to
make it comparable to other materials used, to show
and convince the building industry for building with
straw as much as possible. The following aspects
will contribute to the confidence of the client. (+ =
average good, - = average poor)
a.
Complexity
The complexity of the element must be comparable
to exis ng elements. In this way people will be able
to place it without extra course or training. It is also
important to keep the process as cheap as possible.
(+ = simple, - = complex)
b.
Risks
Straw is known for some risks, like mice, mould,
pests and fire resistance. These are true when the
material is not protected properly. Lime render is a
biodegradable material which most of me is the
finfish layer of a straw bale. This protects the straw
from mice, pest, moulds and fire (fire resistance
90min, more than minimum requirement)
(Brandveilig.com, 2015). The only risks this material
has is the cracking caused by fric on with wood or
other materials, like you have in houses nowadays.
The difference is that with clay you only need a wet
sponge to swipe and the crack is gone, like cleaning
your wall. (+ = few/normal risks, - = more risks like
self-suppor ve)
c.
Produc on me element
The produc on me is important to the final cost of
an element. This will be higher for prefab elements
than straw bales. But the produc on me should
weigh to building speed and total of man-hours. (+
= easy/quick produc on, - = difficult produc on)
54 //
d.
Costs
The height of the costs is mainly determined by
the labour costs. Therefore, important is to see the
level of difficulty. Some mes companies will pay
more, if it gives more added values. An example, a
straw element will be more expensive, but has the
benefit of a clean building site and easier to place
on site. Costs are important, but also quality and
added values.
(+ = normal/cheap, - = expensive)
e.
Dust-proof/clean building site
A disadvantage of raw straw bales is the mess it
leaves at the building site. With prefab elements a
base layer of clay is added to make it partly moisture
resistant and dust-proof. When covered total it will
be totally moisture resistance and dust-proof. This
will contribute to enhance the use of the materials.
(+ = no dust, - = non dust proof)
f.
Technique
Related to the complexity is the technique used for
the elements, the way it is produced but also the
fixa on needed on site. Which kind of technique is
use and how many me or complexity is included. (+
= easy produc on technique,- = difficult produc on
technique)
g.
Building speed
Already men oned are the costs which are
dependent on several aspects, similarly building
speed. The amount of man-hours for placing
elements and raw straw bales will have big influence
to the total costs. Therefore, a en on should be
paid to aspect like size and weight of the elements.
(+ = fast/good, - = me consuming)
h.
Image
Abovemen oned is related to the image of straw
buildings. The image of eco-friendly, energy
neutral and more also has the nega ve side to
some people. People think it is overrated, a sales
pitch and as a result s ck to regular materials. The
image is also about the nega ve aspects ‘known’
of straw. Even when is proofed to be fire resistant
and not a rac ve to mice, people doubt about the
credibility of the material. (+ = no bad image,- = bad
image)
These criteria are also compared to the opinion of
the two interviewees, in Figure 1.2.2 is established
if they agree or disagree.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 1.2.1 // ASSESSMENT CRITERIA OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 55
H. IMAGE
G. BUILDING SPEED
F. TECHNIQUE
E. DUST-PROOF/CLEAN BS
D. COST
C. PRODUCTION TIME
B. RISKS
A. COMPLEXITY
9. CONFIDENCE CLIENT
8. FINISHING
7. THICKNESS
6. WATER TIGHTNESS
5. WEIGHT
4. WASTE MATERIAL
3. PSYCHOLOGICAL
2. FUNCTION STRAW
1. DIMENSIONALLY STABLE
0. OVERALL RATING
+
DO-IT-YOURSELF
---
++
++
-
+
+
--
+
+
-
-
INCLUDING MAN-HOURS
NON-SELF-SUPPORTING
CRAFTSMANSHIP
+
DO-IT-YOURSELF
----
-
INCLUDING MAN-HOURS
+
++
----
++
++
--
+
---
SELF-SUPPORTING
-
+
+
+
++
--
+
+
+
+
+
o
-
+
NON-SELF-SUPPORTING
PREFAB
-
+
+
+
+
--
++
++
+
+
+
-
+
--
+
SELF-SUPPORTING
++
++
++
++
--
++
+
++
++
+
++
+
---
++
++
+
++
SELF-SUPPORTING
CASE STUDY
CRITERIA
1.Dimensionallystable//
agree
PIMHONDEVELD
Thedimensionsofthebalesaredecisivefor
thedesign.Importanttotakeinmindwhile
designing.
RENSBORGERS
Strawcannotbechosenattheendofthe
designfaseasabuildingmaterial,duetothe
dimensionalstability.Architectmustknow
howtodesignwiththeproduct
2.Functionstraw//
disagree
Implementingstrawonlyasainsulation
materialisuninteresting.Thepriceofstraw
balesistoexpensiveforthat.Also,whynot
useallpossibilitiesthismaterialoffers.
IntheNetherlandsstrawbalesmostofthe
timeareimplementedonlyasaninsulation
material.Requestingaplanningpermissionis
mucheasierinthisway.
3.Psychologically//
agree
Thepsychologicalaspectisalsocausedby
theignoranceandthedisadvantegesknow
forthismaterial.Butunknownisthatthese
disadvantagesarenotthere.
Beforementionedisthepolitics,inthe
Netherlandsthebuildingregulationsstop
thegrowthofstrawasabuildingmaterial
onlybecausetheycannotearnmoneywith
it.
5.Weight//
agree
Strawisalightweightmaterialwhichensure Theweightofstrawisahugebenefit,which
alessheavierfoundation.Sometimes,same shouldbetakenadvantageof.
intheStelteloper,itdoesnotneeda
foundation.
6.Watertight//
disagree
Useabaselayerofclaytoavoidmoistureas Whenyouchoseforworkingwithfoils
muchaspossibleandtheweightof
insteadofclayasawaterbarrier,takein
elements.
mindhowyoushouldapplythis.
9.Confidenceclient//
agree
Duetothelackofknowledgeandbythe
ignoranceofbuildingconstrcutors,itisnot
implementedinthebuildingindustry.
9.BRisks//
agree
YouhavetoensurethestrawwillnotgetwetQualitymustbeexamined.Touseitasa
andwhenworkingwithclayitcancrack.This buildingmaterialyouneedgoodstrawwith
iseasytofuxwithaswipeofawetsponge. holloestaksandagooddensity.
9.CProductiontime//
disagree
Thisprojectcanbedoneinafewweeks,
TheinͲfillandpostͲandͲbeamprojectstakea
whenproductionwillbedoneinlarge
lotoftime,butdonebypeoplethemselve
numbersandusingmachines.theydon'thavetopayformanͲhoursand
theycanputowneffordintheirhouses.
9.DCosts//
agree
Theprebaricatedelementscost250Ͳ275
euro'spersquaremeter
9.EDustͲproof//
agree
Strawcauseadustbuildingsite,toavoidthis Theywanttohaveclosedcleanelements,
asmuchaspossibleyoucouldapplyabase whicharecomparabletoexistingelements.
layerofclayandtoavoiditcompletelyyou
shouldhaveaclosedeleement.
9.GBuildingspeed//
agree
Prefabwillcontributetothebuildingspeed DuringafillͲinstrawbuldingproject,most
ofastrawproject.Theroofwillbethemost timeͲconsumingisplacingthestrawbalesin
timeconsumingelement.
thestructure.Elementswilladvancethe
buildingspeed
9.HImage//
agree
Thecraftsmanshipcausesanimagewhich Theimageofthickwallsisseenasanegative
willnotcontributetoenhancetheuseofthe aspect.Whenthebalesareplacedonthe
slimmersidethethicknessisclosetothe
material.Pimtriestochangethiswitha
tichknessofcurrentwallinthebuilding
moresimpleindustrialisedtechnique.
industry,butasinglewall.
Ignorance,cost,lobbyandpoliticsarethe
maincausesabuildingconstructorisnot
implementingthematerial.Whena
comparableelementismade,thecanbe
convincedofthepossibilitiesofstrawasa
buildingmaterial.
Strawcostonly20euro'spersquaremeter,
butwiththistechnique(inͲfill)peoplemostly
buildtheirselfbecauseofthelabour
intensity.Otherwisethecostsofsucha
projectwillincreasealot.
FIG. 1.2.2 // COMPARING OPNION INTERVIEWEES OWN ILLUSTRATION
56 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1.3
The assessment
The straw elements are tested on the basis of the set
criteria, Fig. 1.3.1 establishes the results. Conclude
can be that the prefab elements are the most
comparable elements. However, the difference
between the straw element and the element from
the case study differs on some important criteria.
For further development and recommenda ons
the focus will be on one element. Due to the fact
that straw can fulfil two func ons as a building
material, this offer big benefits (less material is
needed, cost) and thereby will contribute to the
persuasion of building contractors.
CRAFTSMANSHIP
NON-SELF-SUPPORTING
PREFAB
SELF-SUPPORTING
-
0. OVERALL RATING
1. DIMENSIONALLY STABLE
2. FUNCTION STRAW
3. PSYCHOLOGICAL
----
5. WEIGHT
++
++
--
6. WATER TIGHTNESS
8. FINISHING
-
9. CONFIDENCE CLIENT
A. COMPLEXITY
++
++
B. RISKS
C. PRODUCTION TIME
+
D. COST
DO-IT-YOURSELF
E. DUST-PROOF/CLEAN BS
F. TECHNIQUE
G. BUILDING SPEED
H. IMAGE
---
-
INCLUDING MAN-HOURS
+
++
+
DO-IT-YOURSELF
-
INCLUDING MAN-HOURS
----
SELF-SUPPORTING
+
+
+
+
+
+
+
o
----
+
+
7. THICKNESS
CASE STUDY
NON-SELF-SUPPORTING
-
+
+
+
4. WASTE MATERIAL
For improvement of this element to make it
more equal to elements nowadays, it needs
to be improved on stability of dimensions, the
psychological aspect needs to be improved, the
water ghtness must be ensured before supplying,
the finish layers must be improved/wider range and
finally the confidence of the building contractor
which needs to be increased. The confidence of
the building contractor depends on the following
criteria which needs to be improved to increase
the confidence: the complexity, the risks, the
produc on me, the element needs to be dustproof, the produc on technique must be equal
to current produc on techniques, the building
speed of the elements on site and the image of the
product must be improved.
-+
-
++
++
+
+
+
++
--
+
--
-
-
+
+
+
+
+
+
SELF-SUPPORTING
++
++
+
++
---
++
+
++
++
+
++
+
--
++
++
++
++
FIG. 1.3.1 // LACKING CRITERIA OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 57
The goal of the recommenda ons and
improvements of the exis ng straw elements
is to make them more similar to the currently
used façade elements. This should provide the
enhancing of straw as a building material, to bridge
the difference of applica on in these industries
(cra smanship versus industrialisa on).
First, focus will be on the several op ons for
finishing layers in the straw building industry, can
you combine them with clay as a water barrier or
rather with a vapour open foil. These choices bring
different risks, for clay it is the way of transport
to avoid cracking and with foil the life span of
the material in combina on with straw. As Rens
men oned in the interview the quality of these
materials must be considered. If the material is less
vapour open than thought, it can cause moisture in
the straw bales which will decrease the quality and
life span of the straw bales (Borgers, 2015). These
choices will also be realised by different techniques,
which bring different complexi es, building speed
and produc on me. These three aspects will be
assessed by comparing them to the current façade
elements and their complexity, building speed and
produc on me.
2.2
Finish layers
Requirements for the finishing layer are the level of
biodegradable materials, the variable of applica on
possibili es of the material, can it be applied in
advance and the amount of maintenance needed
during the service life. Three materials are o en
applied in this building industry, clay, lime render
and wood. Wood can be applied in combina on
with foil or clay, lime render is most of the me in
combina on with a base layer of clay and when clay
58 //
W
2.1
Rela on criteria
Some of these criteria are related to each other,
summarised in Fig. 2.1.1. Depending on the chosen
finishing layer are the risks that comes with it, but
also the produc on techniques and the building
speed depends on the finishing layer. Indirectly, it
has influence on the complexity and produc on
me. This in total will determine the level of
confidence, the psychological aspect and the image
of the material.
hi
c
wi h te
t h ch
t h ni
e s qu
e es
Įn a
ish re
i n us
g s ed
2 // RELATION CRITERIA
TECHNIQUE
FINISH LAYER
WATERTIGHNESS
DUST-PROOF
BUILDING SPEED
RISKS
COMPLEXITY
PRODUCTION TIME
When good results
CONFIDENCE CLIENT
ApllicaƟon of product
REALISATION
When it works
PSYCHOLOGICAL
PosiƟve inŇuence
IMAGE
FIG. 2.1.1 // RELATION CRITERIA OWN ILLUSTRATION
is used as finishing layer it only consist of clay or
some mes in combina on with straw. Men oned
in the criteria explana on is the possibility of
finishing effects in lime renders and clay. Figures
2.2.1. & 2.2.2 show some examples of how a façade
can vary. Another material used in this industry
is vapour-permeable boards, these or not o en
applied and comparable to vapour-permeable
boards, hence they are involved.
2.3
Risks
The risks that should be taken in mind or must be
avoid are different for each finishing layer. With
foil, as men oned before, it is the life span and
the actual vapour openness. Clay and Lime render
have the disadvantage that it can crack when
transported. A shock-absorbing transporta on is
maybe an opportunity or with clay you can fix the
cracks with a simple swipe of a wet sponge. When
using clay in the exterior as the finishing layer you
have the disadvantage that it must be
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
but on site. With these elements they spray the clay
or lime render on the element, which is faster and
gives a smoother surface as result. If this process
can be done by a machine instead of person on site,
this can yield up to 170 euro’s per square meter
(Capiau, 2015). Foil can be nailed to the elements,
same for the wooden panels.
The produc on technique for the straw elements
is done by a machine adding tonque and rabbet,
cut the sides to make the surface smoother (saving
raw material for the finishing if clay is used), the
elements are pu ed together on a press bed to
form one storey high element. Produc on in higher
numbers will increase the speed and decrease the
cost of such a product.
FIG. 2.2.1 // PINK LIME RENDER, SPIRAL HOUSE RUDI.NET, 2015
FIG. 2.2.2 // CLAY BUILDING WITH RELIËF INSIDE AFRICA CONSULT, 2014
protected from rain. This can be done by protect
it with another material at the bo om to avoid
damage by splashing rain, overhang to protect
from rain and other precipita on. It depends on
the design whether clay as an exterior materials is
suitable or not. The risk with foil is the interrup on
of the moisture transport, which is mainly from
inside to the outside of the building. If it interrupt
the transport from inside to outside it will cause
moisture in the straw bales (Borgers, 2015).
2.4
Techniques
Clay and lime render are in the self-build projects
o en applied by hand and levelled off. However,
there is also a more industrialised technique which
is used with the straw façade elements nowadays
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
2.5
Complexity
Complexity is depending on the amount of
proceedings. For example if the only proceeding
is to add a layer of clay by a spray it will not be
that complex. When applying the foil and wood
more proceedings are needed in different mes,
this will make it more complex than the first
op on, especially when it will be automated. Clay
and plaster can be applied with the same spray
technique but must be done separately.
When choosing wood in combina on with clay as a
barrier, the wood should be applied on site in case
if the clay cracks. When the wood will be applied in
advance, the clay is hard to repair. Special transport
can maybe avoid the cracking of the clay layer
and thereby transpor ng the element in total is
possible.
2.6
Produc on me
The straw block elements can be made quite easy
and does not need me to dry, like concrete walls.
Concrete walls need normally 12 to 24 hours to
dry. However when applied as suppor ve walls
they need longer me to set, up to four weeks
(Maastricht, 2012). The needed me to dry clay
depends on the thickness. A layer of 15 mm does
not need me to dry. When a thicker layer is
applied it can last for days. An example, a layer of
20 mm and a surface of 50m2 (1m3) consist of 200
liter mixing water. To dry this layer it will take you
10 days. This process can be improved when using
// 59
an oven or use a layer of 15 mm, which is possible
when use straw bales with a smoother surface.
2.7
Building speed
The straw façade element must have a high building
speed. A high building speed that is higher than
the situa on nowadays. The case study is a façade
that consist out of three separate layers, two of
them realised on site. By realising a façade element
with a higher product level the building speed will
increase, a empt to realise a prefabricated façade
element as much as possible. In addi on, when only
one layer or small adjustments must be applied on
site it is less me-consuming than in the current
situa on. To convince the building contractors the
product level must be as high as possible.
The four examples show benefits for different
aspects, which will be suitable for different
situa ons. As men oned in the ‘Finishing layer’
important factors are maintenance applicability
in advance and level of biodegradability. The lime
render is weather resistance and biodegradable.
What should be taken in mind are the transport
possibili es, which leads to the cracking risks of
this façade element. Lime render does not have
the ability of being fixed like clay. These problems
do not occur with foil and wood as a finishing layer.
Therefore this combina on is more appropriate
looking at the
risks. Looking into simple solu ons, like place the
façade elements on pallets while transported,
will gain more opportuni es for save transport
of lime render and clay elements. The pallets will
act as shock absorber, which will decrease the
impact on the elements. To reduce the risk even
more a en on should be paid while detailing the
elements.
However, the resistance to mice and insects cannot
be guaranteed. Within the used techniques the
spraying is the most me efficient, especially if both
are clay as a finish layer. Image that this produc on
technique is done in a way a car gets its colour or
how cars get washed (Fig. 2.7.1). The case study
is lacking in this subject. The load bearing prefab
concrete walls must dry for four weeks to gain its
total strength (Maastricht, 2012). Lime render
and clay also need me to dry, but not as much as
concrete. Both can be accelerated by heat up the
space around or in the element. In addi on, the
façade of the case study is also delivered on site
in parts, and the masonry is done brick by brick,
which is me-consuming work. However, this type
of work is done o en and known for years in the
Netherlands that makes it not complex to fulfil this
work for construc on workers. Compared to the
clay finish layer it is more labour intensive, so more
complex. Same for placing the foil onto the straw
element, this must be done with concern to avoid
connec ons between straw and outside.
POSSIBLE FINISHING LAYERS
CLAY FINISH
CASE STUDY
LIME
IME RENDER FINISH
WOOD & CLAY FINISH
WOOD & FOIL FINISH
CONCRETE,
CRETE, INSULATION & MASONRY
M
FINISHING LAYERS
CLAY
LIME RENDER
WOOD & CLAY
WOOD & FOIL
MASONRY
RISKS
CRACKING // RAIN
CRACKING
CRACKING
VAPOUR OPENNESS
GUARENTEE
???
TECHNIQUES
SPRAYING
SPRAYING
NAILING & SPRAYING
NAILING
MOULD & BRICKLAYING
COMPLEXITY
EXCELLENT
GOOD
GOOD
AVERAGE
GOOD
PRODUCTION TIME
AVERAGE
AVERAGE
AVERAGE
EXCELLENT
AVERAGE
BUILDING SPEED
GOOD
GOOD
AVERAGE
ECELLENT
LOW
PRICE PER ELEMENT
€2955
€3315
€3350
€2550
€3950
FIG. 2.9.1 // RELATED CRITERIA COMPARED OWN ILLUSTRATION
60 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 2.7.1// PRODUCTION OF FINISHING LAYERS STRAW ELEMENTS OWN ILLUSTRATION
The concern about foil in combina on with straw
is the permeability of mice and insects. However,
proven is that straw is not that a rac ve for mice
and other pest, but it cannot be guaranteed.
Therefore this op on will be influencing the client
its confidence. Because of the high value of this
confidence, this opportunity is not helping to
enhance the use of straw as a building material.
Lime render and clay are impermeable for mice
and pets
and at the same me fire resistant. On the other
hand, the straw element in combina on with foil
and wood does not need me to dry or other
wai ng me and has for that reason an excellent
produc on me. By its weight is also the lightest
solu on which improves the building speed. All
solu ons have a higher product level compared
to the case study, thus a higher ra ng in building
speed.
2.9
conclusion criteria
The straw element in combina on with render or
with clay and wood are the most suitable for the
first steps into the Dutch building industry. They
can offer more guarantee by the mice, insect and
weather resistance, which are the most important
aspect for elimina ng the straw elements nowadays
in the building industry. For elabora ng the final
design the focus is set on the lime render façade
element, based on the fewer proceedings this
element needs, the relevant appearance and the
less weight of the façade element.
2.8
psychological & image
All men oned criteria affect the confidence of
the client. If the client is convinced of straw as a
building material due to the good results, the
chance of implying increases. Realisa on of straw
buildings in the industrialised building sector will
increase the confidence of the client and other
par es, people need to see it to believe it. A er
realisa on of the straw building it must show the
advantages and limita ons. The impact would be
the posi ve influence on the psychological aspect.
A er the psychological accepta on, the image of
straw as a building material in the bigger picture
will be changed. The big ques on is who will go
first?
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 61
3 // DIMENSIONALLY STABLE
3.1
Dimensionally stable
Previously, the report states that the dimensions
of straw bales are fixed. There are three kinds of
bales small, medium and Jumbo bales. For most
projects the smaller bales are used, because of
the availability, total thickness of the wall, it is
easier to handle on site and employ less ground
surface which all affects the cost (Ernst, 2011). In
current and future projects they want to place the
bales on the side to gain the slimmest straw bale
wall possible (sec on 360 mm wide bale). The
insula on proper es are in this situa on s ll good
and higher than current construc on walls. In the
Straw Block System elements they use a variant of
small straw bales and compress them to gain the
final dimension of 400 x 400 x 400 to 1200 mm
(Hondeveld, 2015).
bale. A perfect bale contains of a balance between
the density, the insula on value and the loading
capacity. This will be feasible when straw will be
applied on a larger scale.
The final design will be based on the chosen case
study. The dimensions of the case study (width
of the building and dimensions and numbers of
windows) and the dimensions of the straw bale
determine the final dimensions of the design.
Figure 3.1.1 & 3.1.2 show the dimensions of the
case study.
As men oned in ‘Research part II’ the common
dimensions of straw bales used are 480x360x800.
There are several variants of this small straw
bale which can be used to gain a higher density
straw bale but keep the same final thickness a er
compressing. The machine is determining, for
future straw building products special machines
can be designed to gain the perfect building straw
600
780
920
1468
1332
1398
1624
451
2700
224
220
2330
5400
920
2339
1084
1255
1004
1400
2330
600 1550
1004
1106 1140
FLOORS/WALLS
DIMENSION
FIG. 3.1.1 // DIMENSIONS CASE STUDY DUIN GRAS OWN ILLUSTRATION
62 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
FIG. 3.1.2 // FLOORPLAN 1:50 A3 FIRST FLOORPLAN CASE STUDY DURA VERMEER, 2015
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 63
4 // FINAL DESIGN
4.1
Dimensions
Conclude from the criteria and research is
that exis ng straw elements do not have the
requirements users want, therefore the focus is
on the realisa on of a storey high straw façade
element, which consist of all layers off site and will
only need some small adjustments and applica ons
on site. This enables to make the switch of a barely
used cra smanship biodegradable material to an
industrialised biodegradable building material.
To determine the dimensions of the total storey
high elements, the length of the straw bale has
to be chosen. By choosing one length for the total
project, complexity will be limited. The width and
height of the straw bales are fixed to 400 mm,
but the length can vary from 400 to 1200. One
has to look for the op mal length for the project,
because the bigger the straw bale the fewer the
proceedings, but the more adjustments for corners
and other excep ons are.
The total width of the ‘Duingras’ residen al is 5400
mm. The ground floor has one window (1550 mm),
one front door (1106 mm) and facing brickwork
(600, 1004 & 1140 mm). The first floor façade has
two windows (2 x 1550 mm) and facing brickwork
(600, 780 & 920 mm). Two aspects that must be
taken in mind are the placement of the windows in
rela on to the interior wall and the total percentage
of wall openings. When straw func ons as the main
structure it cannot have over 50% of openings
(Demey, 2012). For the final design the straw bale
will have a length of 500 mm, based on the total
width of the element (5400 shi s to 5500 mm), the
width of the door (1104 shi s to 1000 mm) and the
width of the windows (1550 shi s to 1500 mm).
The total height of the openings will be a mul ple
of 400 mm. Figure 4.1.1 to 4.1.4 establish the final
elements for the ground floor, the first floor and
the strong wall.
FIG. 4.1.2 // DIMENSIONS STRONG WALL STRAW FACADE ELEMENTS OWN ILLUSTRATION
FIG. 4.1.3 // DIMENSIONS FIRST FLOOR STRAW FACADE ELEMENTS OWN ILLUSTRATION
FIG. 4.1.1 // DIMENSIONS STRAW FACADE ELEMENTS OWN ILLUSTRATION
64 //
FIG. 4.1.4 // DIMENSIONS GROUND FLOOR STRAW FACADE ELEMENTS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
4.2
Elements
To stay as close as possible to the design of the
case study, the roof is designed as a pitched roof
instead of a third total floor. In the last situa on
the straw could be designed self-suppor ve, in the
pitched roof situa on wooden beams will ensure
the structure and the straw only func on as an
insula on material between the wooden beams. It
is a considera on that needs to be made between
cost and op mal use of material. With a pitched
roof less material is used, but the straw loses its
double func on, which makes it less a rac ve
to use it. S ll, straw has other good benefits
compared to currently used insula on materials
in roofs, o en EPS, which for example has a high
embodied energy. (eps 93 MJ/kg, straw 35 MJ/kg)
(Ganatopoulou, 2014)
As men oned before transport is an important
factor, if the elements cannot be safely transported,
the building speed will decrease and indirectly
influence the confidence of the client. As seen in
the details of the design, the lime render and clay
finish are not extended to the edge of the element.
This is convenient for the fixa on of two elements
and also for the protec on of the corners of the
element during transport. A er fixing the elements
the fixa on points and the edges can neatly be
finished. For some points other solu ons are
chosen. For example, established in detail 3 is the
window frame (Fig. 4.2.1). The corner of the lime
render and clay will not damage easily by transport
(not situated at the edge of the element), therefore
this edge is finished with an stainless steel angle
bar to obtain a smooth result.
DETAIL 3
tonque and rabbet
FIG. 4.2.1 // DETAIL 3 REDUCED FROM 1:5 OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 65
4.3
Realisa on
The straw bales used in this project are not shaped
by the farmer. The farmer delivers regular straw
bales with standard dimensions, which will be
compressed to a bale with a higher density. The
high density ensures a stable element and a good
Rc-value at the same me. A er compressing the
element must be adjusted by a sawing-machine
to a tonque and rabbet block (Fig. 4.3.1). This
adjustment contributes to the stability of the total
façade element and to the insula on property.
The split between the elements is in that way
interrupted by the tonque and rabbet.
improve the connec on. Wooden elements are
added to gain a strong and stable façade element
(Fig. 4.3.2 & 4.3.3). Together with the clay and lime
render the element will form a structural plate.
The clay and lime render will be added off site. This
can be done manually or mechanically. If the layer
will be added manually, it will be done horizontally.
This is a huge advantage compared to do it on site.
It is less labour intensive and has less impact on
the human body (Arendonk, 2015). The dry me
can also be decreased when realised in a factory.
Normally this will take about 10 -14 days (with
Dutch climate), but if they will be placed in a room
with a higher temperature and low humidity it will
take less me. Taken into account that one has to
put the best temperature, in that case cracking can
be prevented. A er the elements are complete and
dry they can be transported to the site.
FIG. 4.3.1 // DIMENSIONS STRAW BLOCK
Most blocks have the standard dimension of 400 by
400 by 500mm, but some need special adjustments
(Fig. 4.3.1). These blocks are situated at the
outsides of the element or along the openings in
the element. A er the adjustments the blocks
can easily be a ach to each other without other
connec on material. When all straw blocks are
completed to one element they are compressed to
FIG. 4.3.3 // COMPRESSIONBAR OWN PHOTO
puzzel
FIG. 4.3.2 // PUZZLE TO FINAL ELEMENT OWN ILLUSTRATION
66 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
4.4
Transport
The highest prefabricated straw façade element
is 3278 mm excluding protec on. The elements
will be transported by common used trailers.
Figure 4.4.1 establishes the maximum weight
and dimensions of the load. To ensure the trailer
can transport as much prefabricated elements as
possible the following distribu on is set. In this way
the amount of rides will be limited, which will lower
the cost and has a be er environmental effect.
A straw façade element only weighs about 1815
kg, total load on one trailer will be 14,520 kg. The
elements should be ed up very ght to prevent
the elements from moving by wind, speed or other
external factors.
Elements will be protected during transporta on
by foam along the fragile profiles and with tape
and sheets around the element to avoid damages
during transporta on and moun ng. The elements
can be placed by a moun ng clamp (Fig. 4.4.2). In
this case special rings and/or a achment point are
not required.
FIG. 4.4.1 // TRANSPORT BY TRAILER OWN ILLUSTRATION; RDW, 2012
4.5
Final drawings
To support the theory of building with straw a total
sec on is designed (Fig. 4.5.1 & 4.5.2). The details
will explain the way of realisa on and fixa on (Fig.
4.5.3). The scaled technical drawings are viewed in
appendix 9.
FIG. 4.4.2 // MOUNTING CLAMP FOR WALLS BLEIJ, 2015
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 67
SECTION
FIG. 4.5.1 // OVERVIEW DETAILS AND SECTION
FIG. 4.5.2 // SECTION 1:20 OWN ILLUSTRATION
68 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
DETAIL 1b
DETAIL 2
tonque and rabbet
DETAIL 8
tonque and rabbet
DETAIL 11
tonque and rabbet
FIG. 4.5.3 // DETAILS 1:5 OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 69
5 // COMPARISON
5.1
comparison
For the final comparison the most important factors
are compared: cost, weight of element (movability
on site), building speed on site, maintenance
during service life and the total embodied energy
(Fig. 5.1.1 & 5.1.3). The straw element is less
expensive than the case study’s element, mainly
caused by the price of straw and the cost of manhours needed in the case study’s element. At the
same me the straw façade element save up to
2,0*10^6 MJ of embodied energy, which is equal to
yearly energy consump on of 29 residen al (Demir,
2013). Thinking about the goal of emi ng 50-80%
less CO2 which is men oned in the introduc on,
building with straw can contribute to this goal. In
other residen al and u lity projects EPS is o en
used as an insula on material, mostly in the ground
floors and in the roofs. To make an equa on, if
in the case study EPS was used as an insula on
material it can save up to 3.0*10^7 MJ of energy,
which is equal to the yearly energy consump on
of 428 residen al. Important to men on is that
these days EPS is only allowed to use as a roof and
founda on insula on material, due to its poor fire
resistance (Ligthart, 2015).
LIME
IME RENDER FINISH
COST PER ELEMENT
WEIGHT
Figure 5.1.2 shows the product level and the level
of industrialisa on of the elements. The product
level of the straw elements is building part, which
is higher than the product levels of the other
element. Besides, the building element and its
weight ensure a higher speed of realising water ght
buildings on site. The value of the building speed is
high, some mes building contractor prefer a more
expensive but a more complete façade element
over a cheaper façade construc on that takes more
me to fix and create on site. However the straw
façade element needs some finishing touches
on site a er fix the elements to create a smooth
surface inside and outside. S ll, a higher product
level is present. The clay can form a complete
surface with the clay applied off site. By making it
wet the clay is adjustable and will connect to the
new layer of clay. The lime render is not adjustable
a er drying. Therefore this material is covered
along the sides with an angle bar. A er placing the
elements, lime render can be added between the
two angle bars (Detail 2, Fig. 4.5.3). In this way the
façade can form a well finished façade.
CONCRETE,
CRETE, INSULATION & MASONRY
M
€3315
98,6 KG/M2
€3950
240 (ONLY CONCRETE) - 420 KG/M2
++
+
++
EMBODIED ENERGY
1277 MJ/m2
1598 MJ/m2
ONE FACADE
4,7*10^4 MJ
5,0*10^4 MJ
ONE HOUSE
9,4*10^4 MJ
10*10^4 MJ
ONE ROW
4,7*10^5 MJ
5,0*10^5 MJ
ONE BLOCK
1,9*10^6 MJ
2,1*10^6 MJ
ONE DISTRICT
3,0*10^7 MJ
3,2*10^7 MJ
BUILDING SPEED
MAINTENANCE
COST ONE DISTRICT
€4,3 MILLION
INC. INSTALLING
€5,1 MILLION
5.2
disadvantages & advantages
FIG. 5.1.1 // COMPARING CASE STUDY TO STRAW ELEMENTS OWN ILLUSTRATION
70 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
A disadvantage of building with straw is the
availability of straw. Study says that this material is
in surplus in the Netherlands and the surroundings
(Ganatopoulou, 2014). What one should take into
account is the availability of biological straw and
the purpose for it nowadays. For non-biological
straw it is allowed to protect it with pes cide ll
5 days before harvest (Arendonk, 2015). In this
way the wall will be less toxic free compared to
biological straw. In Germany and France the straw
is more surplus then in the Netherlands, plausible
that the straw to build will mainly come from that
area. In addi on straw is harvested annually. When
building with straw, planning of buying straw and
the storage of it is an important aspect. Farmers
and buyers close deals before the straw is even
planted. As seen in the details the wall of the straw
block building is 440 mm thick, which is 140 mm
more than the original wall thickness, although
the Rc-value is way higher and will fulfil future
requirements. Whereas the Case study just fulfil
the currently set building requirements. However,
some advantages of building with straw are not
included in the comparison. These advantages
will decrease the total cost of a building project.
By the weight of the total house, However, some
advantages of building with straw are not included
in the comparison. These advantages will decrease
the total cost of a building project. By the weight
of the total house, the founda on can be designed
for example they only used road debris, which
are placed as the base structure directly on top
of the ground (Fig. 5.2.1). In this design they use
straw also as an insula on material in the ground
floor. With these floors the possibility of ven la on
underneath must be present. The user will no ce
some advantages compared to the case study. By
the good insula on property of these walls, the
energy consump on of the user will decrease and
thereby the energy bill as well. The plaster layers
ensure a slower heat and cold transmission through
the wall (Redac e-Renova eprofs, 2015). In the
end this will also contribute to the total energy
consump on in the building industry. Finally, an
aspect that also contributes to the lower energy
consump on at the end of life is the degrada on of
the building, one of the main huge advantages of
biodegradable materials.
FIG. 5.2.1 // SECTION ‘DE STELTLOPER’ HONDEVELD, 2015
Product level
CraŌsmanship
IndustrialisaƟon
Materials
CASE STUDY
Standard materials
Commercial materials
Elements
Subcomponents
Components
STRAW ELEMENTS
Building parts
Building
in an easier and slimmer way. In ‘The Steltloper’
FIG. 5.1.2 // PRODUCT LEVEL ELEMENTS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 71
CASE STUDY // CONCRETE- ROCKWOOL- FACING BRICKWORK
1 // TITLE
ESTIMATED COST/ELEMENT
€ 3950
EMBODIED ENERGY
100.000 MJ
WALL THICKNESS
300 MM
RC-VALUE
4,5 m2K/W
FINISHING LAYER
FACING BRICKWORK
FIG. 5.1.3 // FLYER CASE STUDY VERSUS STRAW BLOCK BUILDING OWN ILLUSTRATION
72 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
STRAW BUILDING // LIME RENDER- STRAW- CLAY
ESTIMATED COST/ELEMENT
€ 3315
EMBODIED ENERGY
94.000 MJ (6000 MJ = monthly energy use of one family)
WALL THICKNESS
440 MM
RC-VALUE
8,0 m2K/W
FINISHING LAYER
LIME RENDER
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 73
5 // CONCLUSION
74 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // CONCLUSION
The proper es of biodegradable materials, and
their possibili es of shapes and behavior in facades,
have been inves gated in literature. However,
research on the applica on of biodegradable
materials to facade elements, is currently lacking.
This thesis therefore focused on the contribu on of
biodegradable materials to facade elements, which
should enhance the use in the building industry,
to decrease the energy use of the big energy
consumer. The research ques on of this thesis is:
“How can biodegradable materials form a façade
component, which is comparable to currently
used façade components, to enhance the use of
biodegradable materials in the Dutch building
envelopes?”
The hypothesis of this thesis is about the importance
of the industrialisa on level and the product level
of a façade element. This hypothesis is based on
research to several exis ng façade elements. It
brings out the high level of industrialisa on and
product level of currently used facades. Unlike
the other analysed facades, those are realised
with cra smanship and raw materials. The rate of
applica on is a contribu ng factor. Provided that a
material is applied more o en, one can afford to
invest in more industrialised ways of applica on.
Product level
It is also a ma er of supply and demand, if the
demand increases developers can afford a more
expensive way of produc on processes. But
without the more industrialised produc on process
the demand will not increase, generally. Due to the
importance of cost in the building industry one
will not invest before being sure of success. This
thesis focused a er the exis ng façade analysis
on straw as a building material. Research is done
to the possibili es of straw, the issues in the
straw industry and the comparability to exis ng
techniques, produc ons and elements.
Within the straw industry DIY is very popular.
People love to build their own house with their
bare hands, but this causes a bad image for straw as
industrialised building material. Some companies
produce more industrialised straw elements such as
Modcell, Straw Block System and Bala Box. Modcell
is not self-suppor ve and thereby will only fulfil the
task of an insula on material in the façade. With
the self-suppor ve elements the finishing layer is
applied on site for several reasons. The lack of the
self-suppor ve property and the lack of a finishing
layer cause the ‘element’ product level, which will
not contribute to enhance the use of straw as a
building material (Fig. 5.1.1)
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
!
Building
FIG. 5.1.1 // HYPOTHESIS OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 75
An interim conclusion is the need of straw as a selfsuppor ve material, which as a facade element will
also consist of a finish layer. If straw will only fulfil the
insula on func on it is less interes ng compared
to other currently used insula on materials in the
building industry. This is due to the cost and the
confidence clients have in the other insula on
materials. If straw also fulfil the structural func on
it will contribute to the a rac on of straw as a
building material, because of the cost for structure
and insula on. Other important criteria for a
straw façade element are the moisture resistance,
transport, produc on technique, produc on me
and building speed. If the straw façade element
acts equally or be er within these criteria, it will
posi vely influence the confidence of the client,
and indirectly the image of straw as a building
material.
The proposed straw element in this thesis is an
element produced in the factory, including finishing
layers, which eliminates the risks of fire resistance,
mice, pets, insects and moisture. Exis ng straw
elements do not have the requirements users
want. Therefore, the focus of the design was on the
realisa on of a storey high straw façade element,
which consist of all layers off site. The facade
elements will only require some small adjustments
and applica ons on site. This enables to make the
switch of a barely used cra smanship biodegradable
material to an industrialised biodegradable building
material. It will posi vely influence the building
speed by its completeness and the guarantee of
a clean building site. Compared to the case study
‘Duingras’, this is also a cheaper solu on, it is faster
to build on site and it will posi vely influence the
energy consump on during the building process
and during the user phase. The straw element will
ensure posi ve common ground in different fields.
This is of great importance, because if the client is
convinced, whether it is the building contractor,
the architect and/or the user, the straw element
will contribute to enhance the use of straw as a
building material, thus the use of biodegradable
materials in the Dutch building envelopes.
76 //
Although this study focussed on straw, it should be
kept in mind that other biodegradable materials
also need research focussed on increasing the
industrialisa on and produc on level. The research
of straw as an industrialised building material
is too specific to reflect on the applica on of
biodegradable materials in general. For example we
can propose that the tonque and rabbet method
is applicable for other structural biodegradable
materials, like material 7 earth bags and paper
create. However, the proper es of these materials
are slightly different from straw. For example, straw
can form a storey high façade element due to its low
weight. Earth bags have a density of 1400 kg/m3,
while compressed straw has a density of 120 kg/
m3. Specific and individual research is needed for
each material to establish the specific possibili es
of how these materials can be applied in an
industrialised way. In that case, it will be possible
for those materials to contribute to the enhancing
of biodegradable materials in the Dutch and other
building industries.
This thesis answered the ques on of how
biodegradable materials can form a façade
element, which will contribute by the enhancing
of these materials. Straw can be created to an
industrialised building part façade element, which
is at the same or higher level as the currently used
façade system elements. The design establishes
how this could be applied in the building industry.
As the hypothesis shows, the industrialisa on
factor of this straw façade element will contribute
to the enhancing of the use of straw as a building
material. Important factor is the comparability to
other common used façade elements. For other
biodegradable materials it can only be stated that
their industrialisa on factor must be increased and
a comparable façade element must be designed.
As stated above, individual and specific research is
required for those materials.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
2 // RECOMMENDATIONS
This thesis focussed on the possibili es of
industrialising straw as a building material to
contribute to the enhancing of biodegradable
materials in the Dutch building envelopes. Straw
is not the only biodegradable material which can
par cipate in the building industry. In addi on not
all important men oned aspects are researched.
This will lead to the following recommenda ons for
further research rela ng to this thesis.
5.
Perfect straw block
Finally, a research focussed on the perfect straw
bale. The perfect straw bale contains of a balance
between load capacity, high density and insula on
value. Together with how this bale can be less
dimensionally stable and how we can offer the
quality of (biological) straw.
This will contribute to increase straw as a building
material in projects. In addi on the balance
between density, load capacity and
1.
Other biodegradable materials.
Straw is chosen by its higher level of industrialisa on
and product level, but other materials also have
the possibility of industrialisa on and thereby
contribu ng to the enhancing of biodegradable
materials in the building envelopes. Further
research can be done for example to seaweed,
papercreate or earthbags.
2.
New biodegradable materials
In addi on to the exis ng materials, which are
implemented in individual projects, also new
materials are wai ng to be implemented in
the building industry. An example is mushroom
materials, which are used nowadays as a packaging
material, like EPS. EPS in used in the building
industry and has a lot of matching features.
Ongoing research focusses on the proper es of
this material, but as this thesis shows knowledge
of the proper es is not enough to enhance the use
of these materials. Research should also focus on
the implementa on possibili es for increasing the
industrialisa on level of these materials.
3.
Cer fica on
Biodegradable materials are some mes rejected
by ungrounded arguments. This has to do, inter
alia, with the Na onal Building Degree. Research
must focus on the cer fica on problems within
this material group. This has also to do with the so
called ‘Sustainability war’. Without the cer fica on,
implemen ng of biodegradable materials is
impossible.
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 77
6 // REFLECTION
78 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Within the Façade Design department of the
Faculty of Architecture the topic of this thesis is
about the enhancing of biodegradable materials
in the Dutch building envelopes. The hypothesis
shows the importance of the industrialisa on
and product level of a façade, the higher the
industrialisa on and the product level the greater
chance of implementa on in the building industry
(Fig. 5.1.1.).
The thesis is divided in three main chapters,
Research part I, Research part II and Design. The
research part I was focussed on the analysis of
exis ng façade elements (Fig.6.1.2). Within the
first analysis the focus was at the proper es, the
product level and the level of industrialisa on of
these façade elements. Goal of this first analysis was
to answer the ques ons why do we use the façade
elements that we use, which aspects are different
from the biodegradable façade elements and which
aspects are the most important to keep in mind
for the design part of this thesis? The subsequent
research was also based on this analysis. In the
product level matrix could be established the most
developed materials and elements.
The above men oned analyses were very important
to know what is needed to improve straw as a
building material. With these analysis criteria
could be defined and elaborated, to test several
variants. With these set criteria all problems and
solu ons could be described and explained, to
eventually come up with the most op mal straw
elements to contribute in the building industry.
The self-suppor ve straw façade element has
a ‘building part’ product level and a high level
of industrialisa on possibili es, which consist
out of clay and lime render finish. Compared to
the case study this is cheaper, consists of less
embodied energy, has a higher building speed and
is economically profitable for the user.
Due to me management and the scope of the
thesis it was hard to determine to what level the
final proposal had to be designed. Some important
aspects were not researched, which make it harder
to conclude. Those aspects were o en too broad
to involve in the research of this thesis. This is
solved by realis c assump ons and checking other
researches.
The second research analysis was focussed on straw
as a building material. What kinds of techniques
are used and what type of elements already exist?
They are compared to see which is mainly used and
why. A lot of informa on is won by taken interviews,
this was very helpful to an cipate the needs and
opinions according to experts.
2.
1.
BIODEGRADABLE
MATERIALS
BIODEGRADABLE
MATERIALS
EXISTING FACADE
COMPONENTS
EXISTING FACADE
COMPONENTS
EXISTING FACADE
COMPONENTS
BIODEGRADABLE
MATERIALS
EXISTING FACADE
COMPONENTS
BIODEGRADABLE
MATERIALS
Ϭй/K'Z>
(EXISTING FACADE
COMPONENTS)
BIODEGRADABLE
MATERIALS
ϭϬϬй/K'Z>
FIG. 6.1.2 // GLOBAL SCHEME ANALYSIS PHASE, RESEARCH PART I OWN ILLUSTRATION
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 79
7 // REFERENCES
80 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Alblas. (2014). Verduurzamen. Retrieved 9-05-2015, from h p://www.alblashout.nl/verduurzamen.
php?menu=bewerkingen
Amorim. (2014). Expanded Insula on Corkboard, decoupling layer for window frames and core. In S. A.
Amorim Isolamentos (Ed.).
Anink, D., Boonstra, C., & Mak, J. (1996). Handbook of sustainable building.
Arendonk, M. (2015, 18-05-2015). [feedback dra thesis].
A entus. (2012). Kalkhennepblokken van isohemp. Retrieved 15-05-2015, from h p://www.a entus.
be/catalogus/hennepisola e/isohemp-hennep-blokken/
Bala-Box. (2015). Bala Box is. Retrieved 21-04, 2015, from h p://bala-box.com/los-bloques/?lang=en
Bailly-interieuradvies. (2011). Er groeit een boom uit je schoen. Retrieved from h p://baillyinterieuradvies.blogspot.nl/
Beentjes, W. G. M. (2000). Meetresultaten Rieten dak te Hierden (11 januari 2000 ed.). Utrecht: LBP,
Lichtveld Buis & partners BV.
BioDesignIn. (2013). Biodegradable Coconut fibre chair (12-06-2013 ed.).
Blackburn, R. S. (2005). Biodegradable and sustainable fibres: Elsevier.
Bleij, v. d. (2015). Speciale klem. Retrieved 18-06-2015, 2015, from h p://www.vanderblij.nl/hijsen/
mechanische-klemmen/speciale-klem/
Borgers, R. (2015, 16-04-2015) Building with straw - Rens Borgers/Interviewer: T. Ligthart.
Boxtel, R. v. (1995). Handboek Gevelisola e. ‘s-Hertogenbosch: Landelijke Specialisten Gevel-Isola e.
Brandveilig.com. (2015). Een huis van stro, dat brandt toch snel? Retrieved 23-04, 2015, from h p://
www.brandveilig.com/onderwerpen/een-huis-van-stro-dat-brandt-toch-snel-42264
BRISbouwbesluit-online. (2015). Ar kel 5.3 Thermische isola e. Retrieved 03-03-2015, from h p://
www.bouwbesluitonline.nl/Inhoud/docs/wet/bb2012_nvt/ar kelsgewijs/hfd5/afd5-1/art5-3
Capiau, H. (2015, 30-04-2015). [price e mate clay and lime render].
Carfrae, J., Goodhew, S., Dewilde, P., Li lewood, J., & Walker, P. (2009). Detailing the effec ve use of r
ainscreen cladding to protect straw bale walls in combina on with hygroscopic, breathable
finishes. Detail Design in Architecture, 8, 99-108.
CemPlaat. (1999). Isoleren met Vlasgoed voor een gezond binnenklimaat. In C. BV (Ed.),
h p://www.nbd-online.nl/frame.html?page=Vlasgoed%20folder.pdf& tle=VLASGOED%20
isola eplaten.
Demey, R. (2012). Strobalenbouw - Load Bearing/Nebraska s jl. Retrieved 29-04-2015, from
h p:// ecobouwadvies.be/ecologische-bouwmaterialen/ecologische-isola ematerialen/
strobalenbouw/load-bearing/
Demir, A. (2013). ENERGIEVERBRUIK VAN HUISHOUDENS GEPEILD. 26.
Dobbelsteen, A. v. d., & Alberts, K. (2005). Bouwmaterialen, milieu & gezondheid. Amsterdam: WEKA.
Doorn van, H. J. O. (2014). KOMO a est met productcer ficaat: SKH.
Dzalto, J. (2014, 19-03-2014). [Manufacturing with bio-composites].
Ecova ve. (2014). Building Insula on. Retrieved 29-11-2014, 2014, from h p://www.ecova vedesign.
com/products-and-applica ons/insula on/
Ernst, J. (2011). Stobalen en leembouw - Workshop Mergelven: Studio EcoSouvenir.
Ganatopoulou, E. (2014). Biodegradable materials, a research and design handbook, enhanching the
use of biodegradable materials on building envelopes in the Netherlands. TU Del , Del .
Geoij, A. d. (2014, 11-11-2014). [BT-Series].
Goeij de, A. (2012, 06-11-2012). Deel2. Enexis regiokantoren: op zoek naar een intelligente gevel.
Retrieved from h p://www.atelierpro.nl/nl/blog/59/deel-2-enexis-regiokantoren-op-zoek-naareen-intelligente-gevel#.VQBgfvnF8wB
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 81
Hall, K. (2008). The Green Building Bible: Essen al informa on to help you make your home, buildings
and outdoor areas less harmful to the environment, the community and your family: Green
Building Press.
Hart, K. Dream Green Homes, Your Source for Alterna ve Home Plans. Carriage House. Retrieved 2402-2015, 2015, from h p://www.dreamgreenhomes.com/plans/carriagehouse.htm
Hondeveld, P. (2015a, 16-04-2015) Building with straw - Pim Hondeveld/Interviewer: T. Ligthart.
Hondeveld, P. (2015b). Straw Block Systems. Retrieved 18-04, 2015, from h p://www.
strawblockssystems.nl/nl/strawblocks.html
Huzink. (2009). Bouwmaterialen sier- bestra ngen. In img35-kalkzandsteen.jpg (Ed.).
Inside-Africa-Consult. (2014). Mudsgum earth home, Cameroon.
IsoBouw. (2013). EPS-isola esystemen van ISoBouw: De beste milieupresta es! In I. s. BV (Ed.).
IsoBouw. (2015). Slimfort. Retrieved 27-02-2015, from h p://www.isobouw.nl/nl/94/product/slimfort.
aspx
IsoBouw, & Fischer. (2015). Fischer SmartLight. In I. S. BV (Ed.).
Isovlas. (2013). Dakelementen. In I. O. BV (Ed.), h p://www.isovlas.nl/wp-content/uploads/2013/01/
Isovlas.nl-brochure-dakelementen.pdf.
Kempen, S. (2014, 16-12-2014). [sustainable computa onal design ].
Kibert, C. J. (2005). Sustainable Construc on, green building design and delivery. New Jersey: Wiley.
Klein, T. (2013). Integral Facade Construc on. Ro erdam: Design: Sirene Ontwerpers. doi: h p://dx. doi.
org/10.7480/a% 2Bbe. vol3. diss3.
Knaack, U., Klein, T., Bilow, M., & Auer, T. (2014). Façades: principles of construc on: Birkhäuser.
Kuijper, R., & Oonk, T. (2013). Bouwen met stro. (Bachelor), Hogeschool van Arnhem en Nijmegen.
Retrieved from h p://hbo-kennisbank.nl/nl/page/hborecord.view/?uploadId=han%3Aoai%3Are
pository.samenmaken.nl%3Asmpid%3A16083
Ligthart, E. (2015). [Case study insula on material].
Luible, A., Henderson, R., Fernandez-Solla, I., Karanouh, A., Perino, M., Ri er, V., Loonen, R., . . . Böke, J.
(2014). Facade 2014 - Conference on Building Envelopes, Adap ve Building Enevelopes. Luzern.
Maastricht, A. (2012). Betonstort voor de a2-tunnel. Retrieved 8-5-2015, 2015, from h p://www.
a2maastricht.nl/nl/themas/links-themapaginas/een-bouwkuip-drie-technieken/betonstortvoor-de-a2-tunnel.aspx
Minke, G., & Mahlke, F. (2005). Building with straw: design and technology of a sustainable architecture:
Birkhauser.
Modcell. (2015). United Kingdom Patent No. GB2457891B. modcell.com: Modcell.
Mohanty, A., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources:
opportuni es and challenges in the green materials world. Journal of Polymers and the
Environment, 10(1-2), 19-26.
Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites: CRC
Press.
Mulderij, A., Bus, B., & Tulp, D. (2009). Strobalenbouw in Nederland. TU Eindhoven, Eindhoven.
Retrieved from h ps://www.scribd.com/doc/10209571/Strobalenbouw-in-Nederland#page=9
NeptuTherm. Bauphysikalische Eigenscha en. Retrieved 27-02-2015, 2015, from h p://www.
neptutherm.com/index.php?besondere-eigenscha en
Nibe. (2015). Nibe, Nederlands ins tuut voor bouwbiologie en ecologie. Retrieved 17-02, 2015, from
h p://www.nibe.info/nl/members
Norwin. SIPS Bouwsysteem. Retrieved 16-02-2015, from h p://norwin.nl/producten/sipsbouwsysteem/
Nuijsink, C., & Zijlstra, E. (2010). PM Product en Materiaal, bioplas c. AWM, 35, 52 -57.
82 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Osirys. (2013). Industrial Stakeholder Panel.
Osirys. (2015). Osirys Project. Retrieved 3-1-2015, 2015, from h p://www.osirysproject.eu/home
Pro, A. (2013). enexis building.
RDW. (2012). Overzicht maten en gewichten in Nederland (pp. 3-5): RDW.
Sgouropoulou, E. (2013). Possibili es of applying biodegradable materials in solid building envelopes in
the Netherlands. TU Del , Del .
Strobouw. (2015a). Projecten binnenland. Retrieved 28-04-2015, from h p://strobouw.nl/Projecten/
Binnenland/
Strobouw. (2015b). Technieken. Retrieved 23-03, 2015, from h p://strobouw.nl/Technieken/
Algemeen/
Ürge-Vorsatz, D., & Metz, B. (2009). Energy efficiency: how far does it get us in controlling climate
change? Energy Efficiency, 2(2), 87-94.
van den Dobbelsteen, A., & Alberts, K. (2001). Milieueffecten van bouwmaterialen: duurzaam omgaan
met grondstoffen: Publika eburo Bouwkunde.
VIBE. Isoleren met hennepwol. Retrieved 26-02, 2015, from h p://www.deskundig-isoleren.be/
hennepwol.html
Vlasgoed. (2005). Vlasgoed isola eplaten. Retrieved 03-03-2015, from h p://www.nbd-online.
nl/#product/43179-0/0/0/VLASGOED_isola eplaten/html
Vosschemie. BIO-HARS STANDAARD SET A+B. In V. B. BVBA (Ed.).
WEATHER ONLINE. (2014). Climate of the world, the Netherlands. Retrieved 10-12-2014, 2014, from
h p://www.weatheronline.co.uk/reports/climate/The-Netherlands.htm
Woolley, T., & Kimmins, S. (2000). Green Building Handbook: Volume 2: A Guide to Building Products
and Their Impact on the Environment. London: E&FN Spon.
Woolley, T., Kimmins, S., Harrison, R., & Harrison, P. (2002). Green Building Handbook: Volume 1: A
Guide to Building Products and Their Impact on the Environment. London: E&FN Spon
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 83
8 // APPENDIX
84 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
1 // CONTENT
1 //
Exis ng façade elements
2 //
Matrices exis ng façade element
3 //
Product level story
4 //
Structure interview
5 //
Interview Pim Hondeveld
(Hondeveld, 2015)
6 //
Interview Rens Borgers
(Borgers, 2015)
7 //
Calcula ons
8 //
Techniqual drawings case study
(Dura Vermeer, 2015)
9 //
Design details
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
// 85
Environment raƟng
4
Overall raƟng
3
Rating property matrix
ConnecƟon raƟng
1
General discription
Thickness element
1
Thickness insulaƟon
1
Rc-value
5
Timber base rail
Straw 420 mm
Lime 30 mm
AcousƟc
5
Fire resistance
4
2
Shadow cost*
Main material
Embodied energy
5
Environmental classiĮcaƟon*
3
5
4
Level of prefabricaƟon
This traditional element of Modcell is in combination with lime. This
ensures the resistance for pesticides and the moisture resistance.
Biodegradable materials
Detail
kg/m3
ModCell® is a sustainable, prefabricated straw bale cladding panel,
designed for use in residential, educational, retail and commercial
buildings.
This innovative system creates buildings with thermal performance
up to three times higher than the current UK Building Regulations
requirement.
ConnecƟon on site
Element
Material Nr. 1- Modcell with lime cladding
The rating of the Modcell is between the two
aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized
by a high percentage by hand. Only the compression of the bales is done by a machine.
The product level of the Modcell
element is component, because the
element has multiple functions (insulation, load bearing structure).
420
500
9,85
4,28
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
2B
Low
Embodied energy
Environmental classification
Yes
Craftsmanship needed
Average
B2
Fire resistance
Level of prefabrication
All
50 - 55
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro) 64,20
446,5
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
1 //
4
Overall raƟng
3
Thickness element
1
kg/m3
2
Rating property matrix
Thickness insulaƟon
1
4
Rc-value
Render system
40mm Wood fibre
Straw insulation
12mm Timbervent
400mm “I” studs
15mm OSB3 VCL
AcousƟc
5
Fire resistance
4
2
5
Embodied energy
25x50mm Service batten
Cladding spacer
Wooden cladding
Main material
This traditional element of Modcell is in combination with
waterresitant foil and wood claading. This element is less
no later.
Shadow cost*
Detail
ConnecƟon raƟng
General discription
Environmental classiĮcaƟon*
2
4
Biodegradable materials
Detail
Environment raƟng
ModCell® is a sustainable, prefabricated straw bale cladding panel, designed for use in residential, educational,
retail and commercial buildings.
This innovative system creates buildings with thermal
performance up to three times higher than the current UK
Building Regulations requirement.
4
Level of prefabricaƟon
Element
Material Nr.2 - Modcell with wood cladding
ConnecƟon on site
The rating of the Modcell is between the two
aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized
by a high percentage by hand. Only the compression of the bales is done by a machine.
The product level of the Modcell
element is component. The element
has multiple functions (insulation,
load bearing structure).
400
492
6>
4,65
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
2C
Low
Embodied energy
Environmental classification
No
Craftsmanship needed
Average
B2
Fire resistance
Level of prefabrication
Most
50 - 55
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro) 64,20
268,5
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
3
3
Overall raƟng
Environment raƟng
Rating property matrix
ConnecƟon raƟng
5
General discription
Thickness element
2
Thickness insulaƟon
2
5
Rc-value
Bioresin 4 mm
AcousƟc
3
Fire resistance
4
Shadow cost*
1
5
Embodied energy
Hemp insulation 392 mm
Rubber, thermal break
1
Environmental classiĮcaƟon*
Main material
Ook hier geldt dat het systeem vooral interessant is omdat
er geheel kant en klare elementen die uit één stuk bestaan
op de bouwplaats geleverd en simpel geplaatst kunnen
worden.
4
Biodegradable materials
Detail
kg/m3
Gastontvangst is een van de eerste gebouwen met een
biocomposieten gevel. Het principe is het zelfde als bij het
Enexis porject alleen zijn de materialen die worden
gebruikt anders. Hier wordt een biohars in combinatie
met vlas als buitenschil gebruikt en hennepvezels als
isoltie materiaal.
5
Level of prefabricaƟon
Element
Material Nr. 3 - Gasontvangst, biocomposite facade elements
ConnecƟon on site
Craftsmanship versus industrialisation
392
400
9,8
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
3C
Low
Embodied energy
Environmental classification
No
Craftsmanship needed
Excellent
B2
Fire resistance
Level of prefabrication
Most
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro)
Shadow costs (euro)
65,3
Kg/m3
General properties
The biocompostie facade element is a The biocomposite element is a high industrialized
building part product. The facade
element. the level of prefabrication is high and the
element is the total barrier between in use of craftmanship is little to not present.
and outside whitout any other additions.
Product level
Product level matrix
4
3
Rating property matrix
Overall raƟng
5
1
Rafters with seaweed
insulation 245mm
Vapor barrier
OSB 12mm
Seaweed insulation
100 mm
Fire resistant cotton
Battens
Roof covering
Wooden roofboards
Seaweed 300mm
5
Thickness insulaƟon
Rc-value
2
4
AcousƟc
Fire resistance
2
2
Shadow cost*
Detail
ConnecƟon raƟng
Main material
5
Embodied energy
Detail
Environment raƟng
General discription
kg/m3
Thickness element
Seaweed pillows were used as cladding for this holiday house on the
Danish island of Læsø by architecture studio Vandkunsten and
non-profit organisation Realdania Byg. The Modern Seaweed House
revisits the traditional construction method in Læsø, where for many
centuries trees were scarce but seaweed has always been abundant
on the beaches. At one stage there were hundreds of seaweed-clad
houses on the island but now only around 20 remain. The team
enlisted Vandkunsten to design a new house that combines the
traditional material with twenty-first century construction techniques.
3
4
Environmental classiĮcaƟon*
Biodegradable materials
Element
Material Nr. 4- Seaweed house
1
Level of prefabricaƟon
ConnecƟon on site
The Seaweed is a material that needs a lot of
adjustments on site, done by experts. The only
prefabricated about this project is the wall
elements insulated with the material, thereby the
level of industrilisation is increased.
The seaweed is a raw material. After
drying the material it is packed
together and the material can be used
for the surfacing of the project. The
material is also put in the prefabricated element as a loose material.
650
8,6
Thickness element (mm)
Rc value (m2 K / W)
Yes
Low
Product level
Function
Environmental classification
Fair amount
B2
Level of prefabrication
Fire resistance
Connections on site
System properties
Acoustics (dB)
Initial construction cost (euro)
Most
345
Thickness insulation (mm)
Shadow costs (euro)
75
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
2
Overall raƟng
3
Rating property matrix
ConnecƟon raƟng
3
Thickness element
1
Thickness insulaƟon
5
4
Rietpakket 280mm
Hsb element
AcousƟc
3
Fire resistance
4
3
Shadow cost*
Detail
Environment raƟng
Stalen kolom
12mm berken multiplexx
Embodied energy
3
1
Environmental classiĮcaƟon*
Main material
2
Biodegradable materials
Detail
kg/m3
General discription
Rc-value
De bibliotheek van het Kulturhus in Borne heeft een gevelbekleding
van riet. Om problemen met brand en vandalisme te voorkomen is
een schroefdakconstructie toegepast. Het riet is rechtstreeks op de
achterconstructie bevestigd, zonder rietlatten. Bij een traditionele
rietdak zuigt de ruimte tussen riet en latten zuurstof aan en dat
betekent extra brandgevaar. Het rietpakket in Borne krijgt bovendien een behandeling met brandvertragend impregneermiddel. De
ronde gevel van de bibliotheek heeft geen dragende gebouwfunctie. Zo slank mogelijke stalen kokerkolommen op onderlinge afstand
van 1,40 m vormen de constructie voor de gevelbekleding. De
houtskeletbouwelementen op de kolommen dienen – net als in een
schroefdakconstructie – als achterconstructie voor het rietpakket.
1
Level of prefabricaƟon
Element
Material Nr. 5 - Library Borne, Reet facade
ConnecƟon on site
The level of industrialisation is poor. The reet
arrives at the site almost the same as it is removed
from the land, it only collacted and chopped. Due
to this fact the reet is situated in the top left corner
of the product level matrix.
The reet is a classified in the material
product level. The only operation
done in advance is the chopping of
the ends. The finishing and equalization of the reet is done on site, after
fixing the reet to the surface.
140
495
6,5
4,30
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
3A
Average
Embodied energy
Environmental classification
Yes
Craftsmanship needed
Poor
B2
Fire resistance
Level of prefabrication
Few
36,5
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro) 96,50
165
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
3
Overall raƟng
3
5
Thickness element
4
Thickness insulaƟon
5
1
1
3
Thermo-hemp 140 mm
AcousƟc
Rating property matrix
ConnecƟon raƟng
Plato facade
Isovlas 140 mm
Battens
Fire resistance
Detail
Environment raƟng
Main material
Shadow cost*
5
Embodied energy
5
Environmental classiĮcaƟon*
1
4
Biodegradable materials
Detail
kg/m3
General discription
Rc-value
Voor iedere ontwikkelfase van het project gelden uitgangspunten
die zijn gericht op duurzaamheid, geïnspireerd op het principe van
Cradle to Cradle. Bij het Huis van de Duurzaamheid, dat voor educatieve doeleinden wordt gebruikt, is gewerkt volgens de GPR-Gebouw. De gemiddelde score voor de verschillende onderdelen –
Energie, Milieu, Gezondheid, Gebruikskwaliteit en Toekomstwaarde –
ligt hoog: ruim boven de 9. Bij de bouw van het kantoor en de voertuigenstalling was het tijdelijke aspect meer bepalend. Hierbij was
het de bedoeling bebouwing te plaatsen die precies de verwachte
exploitatietijd meegaat, zodat na gebruik niet iets waardevols hoeft
te worden afgebroken. Bouwen voor een beperkte tijd is echter nog
een gevoelig discussiepunt in de duurzame sector.
3
Level of prefabricaƟon
Element
Material Nr. 6 - Ecopark (Hemp &) Isovlas insulation
ConnecƟon on site
Craftsmanship versus industrialisation
240
3,68
1,96
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
3A
Low
Embodied energy
Environmental classification
No
Craftsmanship needed
Average
C
Fire resistance
Level of prefabrication
Most
Biodegradable materials
Material properties
Acoustics (dB)
39
140
Thickness insulation (mm)
Initial construction cost (euro)
165
Kg/m3
General properties
The Isovlas is rated as a commercial
The Isovlas is hard to assess, by the level of prefabmaterial. Eleni’s handbook rates the
rication versus the level of connections on site.
Thereby, the Isovlas is rated as an average product.
flaxinsulation as an element, but the
product does not show multiple
materials and is comaprable to an
insulated glass unit, one material with
just one function.
Product level
Product level matrix
4
Overall raƟng
2
ConnecƟon raƟng
Rating property matrix
Environment raƟng
1
Thickness element
1
Thickness insulaƟon
1
5
Steal bar
AcousƟc
3
Fire resistance
1
2
Shadow cost*
Earth bags
Papercrete cement
Embodied energy
5
3
Environmental classiĮcaƟon*
Main material
4
Biodegradable materials
Detail
kg/m3
General discription
Rc-value
Papercrete is a fairly new ingredient in the natural building world. It
is basically re-pulped paper fiber with portland cement or clay
and/or other dirt added. When cement is added, this material is not
as "green" as would be ideal, but the relatively small amount of
cement is perhaps a reasonable tradeoff for what papercrete can
offer. I have had a fair amount of experience with this stuff, and I
would say that is has some remarkable properties. Care must be
taken to utilize it properly, or you could be courting disaster. I am
acquainted with both Eric Patterson and Mike McCain, who independently "invented" papercrete (they called it "padobe" and
"fibrous cement") and they have both contributed considerably to
the machinery to make it and the ways of using it for building.
1
Level of prefabricaƟon
Element
Material Nr. 7 - Carriage house, earthbags & papercrete
ConnecƟon on site
Craftsmanship versus industrialisation
1000
1100
9,5
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Low
Embodied energy
Environmental classification
Yes
Craftsmanship needed
Poor
Depends on & water
Fire resistance
Level of prefabrication
Most
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro)
Shadow costs (euro)
1400
Kg/m3
General properties
The earth and papercrete can be
As mentioned in the product level these are all raw
defined as a raw material product. But materials, no prefabrication and no indutrilisation.
the earth on itself will not stay in line. This product is totally realised by craftmanship.
The bags, which ensure the form of
the earth and makes the stacking
technique possible, is not a raw
material.
Product level
Product level matrix
4
Overall raƟng
4
4
kg/m3
ConnecƟon raƟng
3
Rating property matrix
Thickness element
Thickness insulaƟon
5
Rc-value
4
Cork
4
1
Fire resistance
Balsa wood
Cork
Tripple glazing
AcousƟc
Shadow cost*
3
Main material
Embodied energy
5
Environmental classiĮcaƟon*
3
4
Biodegradable materials
Detail
Environment raƟng
General discription
5
Level of prefabricaƟon
This system is similar to the alu2wood system of Optiwin and comparable to regular wooden window frames, except for an additional
third layer of cork insulation in the middle of the frame. The benefits
of the wood2wood system are enhanced by the increased insulation
in the window frame and window sash.
ConnecƟon on site
Element
Material Nr. 8 - Expanded Cork in wooden window frame
The rating of the Modcell is between the two
aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized
by a high percentage by hand. Only the compression of the bales is done by a machine.
The product level of the Modcell
element is component, because the
element has multiple functions (insulation, load bearing structure).
240
6,48
Thickness element (mm)
Rc value (m2 K / W)
Low
Embodied energy
Environmental classification
No
Craftsmanship needed
Good
E (EU)
Fire resistance
Level of prefabrication
Most
Biodegradable materials
Material properties
Acoustics (dB)
Initial construction cost (euro)
Excellent
50
Thickness insulation (mm)
Shadow costs (euro)
160
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
nog vervangen
Overall raƟng
3
2
ConnecƟon raƟng
Rating property matrix
Environment raƟng
5
General discription
Thickness element
2
Thickness insulaƟon
3
2
Rc-value
Battens
Style
AcousƟc
3
5
4
Shadow cost*
Cladding material
EPS high density
EPS
Fire resistance
Main material
De beugels maken bovendien een zeer eenvoudige en snelle plaatsing van de isolatieplaten mogelijk. Hetzelfde geldt voor het stelwerk. Deze kan dankzij de uitgekiende samenstelling van de beugels
door één persoon kinderlijk simpel gerealiseerd worden.
Environmental classiĮcaƟon*
3
Biodegradable materials
Embodied energy
Detail
kg/m3
SlimFort® is een compleet nieuw isolatiesysteem voor gevels die
met esthetische beplating worden afgewerkt. Deze gepatenteerde
innovatie onderscheidt zich door de toepassing van de geïntegreerde beugels. Dankzij deze beugels ontstaat er een doorlopende
isolatielaag zonder onderbrekingen met houten latten.
1
Level of prefabricaƟon
Element
System Nr. 1 - Slimfort insulation system 4,5
3
ConnecƟon on site
This product consist out of components which are
easily to connect on site and produced in a industrial way. The level of craftmanship is low and
thereby the product is rated higher then the
Modcell but lower then the composite products.
210
400
4,5
1,37
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
2B
Insulation
Function
Environmental classification
Subcomponent
Product level
Poor
D
Fire resistance
Level of prefabrication
Fair amount
Connections on site
System properties
Acoustics (dB)
Initial construction cost (euro) 11,90
73
Kg/m3
General properties
Craftsmanship versus industrialisation
Slimfort is a product with an insulation function but it also has a connection function. Together with the
battens this is a component.
Product level matrix
Product level
Overall raƟng
4
4
ConnecƟon raƟng
Rating property matrix
Environment raƟng
4
Thickness element
4
3
Structural fiberboard
Fixation elementen
EPS
Cladding
Structural fiberboard
Rc-value
4
AcousƟc
2
Fire resistance
4
3
Shadow cost*
Main material
Environmental classiĮcaƟon*
5
Biodegradable materials
Embodied energy
Detail
kg/m3
General discription
Thickness insulaƟon
SIPS (Structual InsulatedPanel System is als EPS-prefab bouwsysteem
geconcipieerd en bestaat uit een constructief sandwitchelement met
EPS-isolatiekern kern met aan de binnen- en buitenkant een
constructieve watervaste plaat. EPS en dekplaten worden volvlaks
met elkaar verlijmd waardoor een bouwelement met unieke eigenschappen ontstaat. Het element kan worden voorzien van geschaafd
vurenhouten ribben of verstijvers.
SIPS is de optimale ruwbouwmethode voor nieuwbouw woningen.
SIPS elementen worden projectgericht geproduceerd en zijn
daarmee als complete ruwbouwset een goed alternatief voor de
traditionele skeletbouw methode voor nieuwbouw woningen. Het
gewicht van een SIPS-woning bedraagt slechts 25 tot 30% van een
traditionele stenen woning. Door de droge bouwmethode ontstaat
tijdens de bouw vrijwel geen bouwvocht wat veel voordelen geeft
tijdens de afbouw.
4
Level of prefabricaƟon
Element
System Nr. 2 - Norwin SIPS 6,8 element
4
ConnecƟon on site
The Norwinel element is a component with a
simple connection system a site. Also the loose
materials which for together this element are
produced in a industrial way. Higher industrial
level compared to the Slimfort element.
The Norwin element is a component
product. The product has an insulation function but is also a rigid
element for fixing cladding an interior
finishing.
250
6,69
3,53
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
1A
Insulation component
Function
Environmental classification
Component
Good
Minimum
Product level
Level of prefabrication
Fire resistance
Connections on site
System properties
Acoustics (dB)
31
226
Thickness insulation (mm)
Initial construction cost (euro)
120
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
Overall raƟng
4
5
3
kg/m3
5
Thickness insulaƟon
2
Bioresin & Flax
Hemp
Rc-value
5
AcousƟc
3
Fire resistance
4
1
Shadow cost*
Main material
De gevel elementen zijn in zijn geheel makkelijk te plaatsen op de
subcinstructie waardoor tijdens de bouw een gebouw snel kan
worden omsloten.
Thickness element
Rating property matrix
Environment raƟng
General discription
Environmental classiĮcaƟon*
2
Biodegradable materials
Embodied energy
Detail
ConnecƟon raƟng
Vanuit de gevels prijkt een nieuwe technologie. De vormentaal van
de sculpturale gevels is geïnspireerd op een kunstwerk van de
Delftse kunstenaar Jan Schoonhoven. De vorm maakt de gevels
zonwerend, maar garandeert tegelijk voldoende daglicht en
uitzicht. De gevel gaat het opwarming door directe zoninstraling
tegen.
5
Level of prefabricaƟon
Element
System Nr. 3 - Enexis PIR composite
5
ConnecƟon on site
The Pir composite element is, like the biocomposite, a high industrialized element. the level of
prefabrication is high and the use of craftmanship
is little to not present. This results in bottom right
position in the matrix.
The Enexis composite facade element
is defined as a building part. Due to
the fact that it seperates the inside
and the outside whitout any further
additions like the biocomposite
facade element.
300
304
7,8
7,42
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
Shadow costs (euro)
2C
Complete element
Function
Environmental classification
Building part
Product level
Excellent
B2?
Fire resistance
Level of prefabrication
Almost none
Connections on site
System properties
Acoustics (dB)
Initial construction cost (euro) 19,18
54,3
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
Overall raƟng
3
5
2
kg/m3
5
Thickness insulaƟon
2
5
Rc-value
Bioresin 4 mm
AcousƟc
3
Fire resistance
4
Shadow cost*
1
Embodied energy
Hemp insulation 392 mm
Rubber, thermal break
1
Environmental classiĮcaƟon*
Main material
Ook hier geldt dat het systeem vooral interessant is omdat
er geheel kant en klare elementen die uit één stuk bestaan
op de bouwplaats geleverd en simpel geplaatst kunnen
worden.
Thickness element
Rating property matrix
Environment raƟng
General discription
Biodegradable materials
Detail
ConnecƟon raƟng
Gastontvangst is een van de eerste gebouwen met een
biocomposieten gevel. Het principe is het zelfde als bij het
Enexis porject alleen zijn de materialen die worden
gebruikt anders. Hier wordt een biohars in combinatie
met vlas als buitenschil gebruikt en hennepvezels als
isoltie materiaal.
5
Level of prefabricaƟon
Element
System Nr. 4 - Gasontvangst, biocomposite facade elements
5
ConnecƟon on site
The biocomposite element is a high industrialized
element. the level of prefabrication is high and the
use of craftmanship is low. As seen on the picture,
they have to put in the lasered flax, before bioresin
will flow into the element.
The biocompostie facade element is a
building part product. The facade
element is the total barrier between in
and outside whitout any other additions.
392
400
9,8
Thickness insulation (mm)
Thickness element (mm)
Rc value (m2 K / W)
3C
Complete element
Function
Environmental classification
Building part
Product level
Excellent
B2
Fire resistance
Level of prefabrication
Almost none
Connections on site
System properties
Acoustics (dB)
Initial construction cost (euro)
Shadow costs (euro)
65,3
Kg/m3
General properties
Craftsmanship versus industrialisation
Product level
Product level matrix
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthebags
8. Cork
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
Level of prefabricaƟon
ConnecƟon on site
Embodied energy
Environmental classiĮcaƟon
Biodegradable materials
Shadow cost
Facade elements
Density (kg/m3)
Thickness element
Thickness insulaƟon
Rc-value
AcousƟc quality
Fire resistance
2 //
446,5
500
420
9,85
55
B2
4,28
Low
2B
All
Good
268,5
492
400
6>
55
B2
4,65
Low
2C
Most
Good
65,3
400
392
9,8
-
B2
-
Low
3C
Most
Excellent
75
650
345
8,6
-
B2
-
Low
-
Most
Fair am.
165
495
140
6,5
36,5
B2
4,3
Average
3A
Few
Poor
60
240
140
3,68
39
C
1,96
Low
3A
Most
Average
1400
1100
1000
9,5
-
Poor
-
Low
-
Most
Poor
160
240
50
6,48
-
E
-
Low
-
Most
Good
73
400
210
4,5
-
B1
2,28
2B
Poor
120
250
226
6,69
31
-
3,53
1A
Good Minimum
54,3
300
304
7,8
-
B2
7,42
2C
Excellent None
65,3
400
392
9,8
-
B2
-
3C
Excellent None
1
1
1
5
5
4
2
5
3
5
4
2
1
1
4
5
4
2
5
2
4
4
5
2
2
5
3
4
1
5
1
4
5
5
1
2
5
2
4
2
5
3
4
1
3
1
5
4
3
4
3
3
1
2
1
5
4
5
1
3
1
5
5
1
4
3
1
1
1
5
3
1
2
5
3
4
1
3
4
5
4
4
1
3
5
3
4
5
5
2
3
2
3
5
4
3
1
3
4
4
3
4
2
4
3
5
4
4
5
3
2
5
3
4
1
2
5
5
5
2
2
5
3
4
1
1
5
5
Fair am.
Facade elements
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
4
3
4
3
3
3
4
3
2
3
3
2
4
4
4
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
3
2
4
4
4
5
3
5
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
Level of prefabricaƟon
ConnecƟon on site
Embodied energy
Environmental classiĮcaƟon
Biodegradable materials
Shadow cost
Density (kg/m3)
Thickness element
Thickness insulaƟon
Rc-value
AcousƟc quality
Fire resistance
Overall raƟng
Environment raƟng
ConnecƟon raƟng
3
Facade elements
1
1
1
5
5
4
2
5
3
5
4
2
1
1
4
5
4
2
5
2
4
4
5
2
2
5
3
4
1
5
1
4
5
5
1
2
5
2
4
2
5
3
4
1
3
1
5
4
3
4
3
3
1
2
1
5
4
5
1
3
1
5
5
1
4
3
1
1
1
5
3
1
2
5
3
4
1
3
4
5
4
4
1
3
5
3
4
5
5
2
3
2
3
5
4
3
1
3
4
4
3
4
2
4
3
5
4
4
5
3
2
5
3
4
1
2
5
5
5
2
2
5
3
4
1
1
5
5
Facade elements
DĂƚĞƌŝĂů
1. Straw + lime
2. Straw + wood
3. Biocomposite
4. Seaweed
5. Reet facade
6. Isovlas
7. Earthbags
8. Cork
^LJƐƚĞŵƐ
1. Slimfort 4,5
2. Norwin 6,8
3. Enexis
4. Nabasco
ϱ
'ŽŽĚ
ϰ
ϯ
Ϯ
ϭ
WŽŽƌ
Ύ&ŽƌƚŚŝƐŝŶĨŽƌŵĂƟŽŶŶŝďĞ͘ŝŶĨŽŝƐƵƐĞĚĂƐĂŶŝŶĚŝĐĂƚŽƌĨŽƌƚŚĞƐĞƉƌŽƉĞƌƟĞƐ
ΎΎDĂŝŶůLJƌĞƚƌŝĞǀĞĚĨƌŽŵ͗'ĂŶĂƚŽƉŽƵůŽƵ͕͘;ϮϬϭϰͿ͘
3 //
Product level
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
M6
Commercial materials
M8
Elements
M1
1
Subcomponents
M2
Components
M3
Building parts
Building
Materials
Standard materials
Commercial materials
Elements
Subcomponents
S1
Components
S3
S2
S6 S4
Building parts
Building
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
S1
Components
S3
S2
S4
M3
SS6
6 S4
Building parts
Building
Product level
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
7
M4
Standard materials
M6
Commercial materials
M8
Elements
M1
1
Subcomponents
M2
S1
Components
S3
S2
+
S4
M3
S63 S4
S6
Building parts
Building
M5
Materials
M7
7
M4
Standard materials
M6
Commercial materials
M8
Elements
M1
1
Subcomponents
M2
Components
!
Building parts
Building
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
Building
!
Product level
CraŌsmanship
IndustrialisaƟon
Materials
Standard materials
Commercial materials
1
Elements
2
Subcomponents
3
Components
4
5
6
8
Building parts
7
9
Building
Materials
Standard materials
Commercial materials
1
Elements
2
Subcomponents
3
Components
4
5
6
8
Building parts
7
9
Building
Materials
Standard materials
Commercial materials
1
Elements
2
Subcomponents
Components
Building parts
Building
3
4
5
6
8
7
9
Product level
CraŌsmanship
IndustrialisaƟon
M5
Materials
M7
M7
M4
Standard materials
M6
Commercial materials
Elements
M1
Subcomponents
M2
Components
M3 SM
6 3 S6
Building parts
Building
M5
Materials
M7
7
M4
Standard materials
Commercial materials
M6
M8
Elements
Subcomponents
M1
1
M2
Components
Building parts
Building
!
4 //
Algemeenengebruiktetechnieken
1. Waaromheeftugekozenvoorbouwenmetstro?Wasditvanwegeeenpassie,deuitstraling
vanhetproduct,ecologischeredenenofeenanderereden?
2. Vanwatvoorstrobouwtechniekenmaaktuzoalgebruik?Enwaaromkiestuvoordeze
methoden(voorͲennadelen?)?zoalsstrawblocks
a. Wordtditalvaaktoegepastinnederlandalstechniek?
b. Watvoorgrotenadelentijdensdebouwlooptuzoaltegenaan?
c. Hoeveeltijdneemteengemiddeldprojectmetdezetechniekin?
d. Voorwatvoorelementen(fundering,waterdichtheid,etc)gebruiktunogmilieu
onvriendelijkeproducten
e. Watzijndekostenvanzoeendergelijkproject?
f. Waargaatdemeestetijdinzittentijdenszoeenproject?
3. Kiesthijvooralvoorprefabofpostenbeamtechnieken?Watzijnzijargumentendaarvoor?
a. Heeftuweleensstrobouwprojectengedaanvanmeerdantweeverdiepingen?
i. Watwasdegebruiktetechniek?Etc.
ii. Ofisereenbepaalderedenwaaromernietgekozenwordtvoor
‘hoogbouw’projecten?(doortechniek,geenvraagnaar?)
4. Waarombouwtumetstro?Ennietmeteenvandeandereecologischematerialendie
gebruiktkunnenwordenzoalsaarde,zeegrasenalleenmethout?
5. Watzijndegrootstevoordelendienietalgemeenbekendzijn,zoalsembodiedenergy,
beschikbaarheidvanhetmaterial,etc?
6. Watzijnnaastdevoordelendieditmateriaalbiedtdegrootstenadelen,waardoorerzo
weinigmetstrowordtgebouwd.
a. Ziterookeenmaximalemaataandestrobalen?Ofwordtdatnubepaalddoorde
machinediewordtgebruiktenzoudenverdiepingshogestrobalenintheoriemogelijk
zijn?
7. Hoezoudenwehetbestemetdezenadelenomkunnengaan?
8. HetvochtgehalteinNederlandisooknietoptimaalvoordestrobouw,kuntumisschien
concluderendatnederlandvanwegedeweerstomstandighedennietdemeestidealeplekis
omstrobouwtelatengroeienalsbouwmethode?Zojawaarom,zoneewaaromwel
geschikt?
Industrialisatie
9. Watdenktuisdebelangrijkstefactorvoorhetverkiezenvanandereminderecologische
materialenindebouwbovenecologischematerialen?
a. Hoezoudenweditkunnenaanpakken/verbeteren?
10. Nahetzienvanmijnconclusies,denktudatmethetverhogenvandeinsutrialisatiedatook
hetgebruikvanstroindegevelbouwtoezalnemen?Enwaarom?
11. Denkudathetmogelijkisomhetpercentageecologische/bioafbreekbarematerialen
hetzelfdetehoudenalsindeelmentennuentegelijkertijddeprefabricatietoetelaten
nemen?Ofdenktudaterteveelopofferingenmoetenwordengedaanvanecologische
materialen?(doorbevestigingsmethode,afwerkingslaagetc.)
12. Hetgeenwatnuvooralopdebouwplaatsgebeurtishetplaatsenvandeelmentenende
afwerkingslaagvanleemopsuiten.Opwelkemanierzoudenwedeafwerklaagalkunnen
toepassenindefabriekentocheenzelfdemooieafwerklaagkunnencreeëreninhet
uiteindelijkeresultaat.Isleemdanweldegeschikteafwerklaagofzouditnietmogelijkzijn
metleem.
13. Waarzittendekansen,puntenvanverbeteringentegenslagenindestrobouwincombinatie
methetverhogenvandeindustrialisatie?
14. Zijnerookkansenenpuntenvanverbeteringindestrobouwdienietzozeergelijkgelinkt
kunnenwordenmethetverhogenvandeindustrialisatie?
15. Staandemensenindestrobouwopenvoorindustrialisatievanditproductofzoudenzijhet
lieveralseenambachtwillenblijvenhoudenentoepassen?Endeeltudezemening?
16. Nogbelangrijkerisdetraditionelebouwklaarvoorhetverhogenvandetoepassingvanstro
inprojecten?
a. Watzijndebelangrijksteaspectenomdebouwlangzaamtelatenwennenaandit
materiaal?
b. Hoekunnenwijervoorzorgendatzijhetmeerzullenzienalseenproductgelijkaan
hedendaagsetoegepasteproducten?
17. Watzijnbelangrijkeontwerpingrepenomrekeningmeetehoudenindestrobouw?Zoals,
volgorde,elementendienietsamengaanmetstrobouwofelementenwaarjenietonderuit
komtalsjebouwtmetstro.
18. Watvindtubelangrijkeitemsdienutevindenzijninstrobouwtechniekendieabsoluutniet
verlorenzoudenmogengaandoorindustrialisatie?Welkeookmeegenomenzoudenmoeten
wordentijdensmijnontwerpproces?Quauiterlijk,leemgebruik.
Strawblocksystemextravragen
19. Watmaaktuwsysteemefficientertijdenseenbouwprocesdananderestrobouwtechnieken
a. Vergelijkendmetpostenbeamtechniek
b. VegelijkendmetModcell(prefabricatietechniek)
20. Watvoorverbeterpunten/knelpuntenzijnerwaarutegenaanlooptmetuwproduct?
21. Zouditproductookingroteformatenkunnenwordengeleverd,verdiepingshoog?
a. Metafwerklaagzodatdeindustrialisatietoeneemt?
b. Metverwerktebevestigingsmethode?
c. Ofbijvoorbeeldeenblockdieeenpuzzelstukvormtmeteenbepaaldehoutenvloer,
waardoordezeconnectieookmakkelijkkanplaatsvinden.
d. Hoevindtdezeconnectienuplaats?Ofwordthetniettoegepastbijprojectenmet
meerdanéénverdieping?
Terafsluiting
22. Alsunueennegatiefpuntmoestaanwijzenindestrobouwinnederlandwatisdanhet
eerstewatinuwopkomt,waardoorwehetnietzoudenmoetentoepassen?
23. Enwatzouutegendehuidigegroteaannemerswillenzeggenomhunovertehalenomstro
toetepasseninbvutiliteitsbouwofdewatgroterebouwprojecten?
5 //
InterviewPimHonderveld–interviewerTyrzaLigthart
Watvoorreactieskreeguwanneerumeergeïndustrialiseerdgingkijkennaardestrobouw,kreegu
daarnegatievereactiesopvanmensendiestrobouwmeeralseenambachtzien?
Dekleinebouwersdiezeggenallemaaljaditishet.Voorhenisdatnatuurlijkookprachtigwantze
kopenhetelementbijmijenhetiszelfopdebouwplaatsaanbrengenendestukadoorlatenkomen
enjekuntafbouwen.Datisnogeenbeetjedatambachtelijkeendaarmoetjejuistvanafomdathet
geenkwaliteitoplevert.Alsikkijknaarhoedeconventionelestrobouwgedaanwordt,eenbeetjedie
balenertussenstoppenenopvullenmetstrojadanhaaljegeenrcwaarde,datzeggenzewel
allemaal,eenrcwaardevan7,5/8datmoetikeerstmaareenszienwanneerjedaarmeteen
infraroodcameraopschijnt.
Wantwatzeopdebouwbeurszeidenoverdiestrobouwelementenisdatzeallemaaleenrcwaarde
zoudenhebbenvanminimaal8.
7,5/8denkenwij,ditprojectheefteenRCͲwaardevan7,5.
Datbehaaltudoordathetnogmeeropelkaargedruktis,dedichtheidvanhetstroproduct?
Hetmoetookniettedichtzijnwantdanneemtdercwaardeaf.Wanneerjeeenpartijstrohebtdan
moetjeeigenlijkeerstdedichtheidbepalenvanhetmateriaalendankunjezeggenhoeveelprocent
moetenwedatdoordrukkenzodatwedeidealewaardekunnenbereiken,daarmoetenwenaartoe.
Wantdeleverancierdrukthetdeenekeerdichterinelkaardandevolgendekeer.
EndatiswaardietweejongensvandeTUEindhovennuookonderzoeknaardoen?
Ja,wantdanhebjeeenkwaliteitsproduct,uniformgewordenproductendaarmoetjenaartoe.Dat
doejemetbetonenasfaltook.Zoalsdatnuisdaargajeookeerstkijkenwatishetvochtgehalte
welkedichtheidhebbenweenwatishetruwemateriaal.
MaardanwelgefocustopdeselfͲsupportingstrobouw?
Ja,wantpostandbeamdatisvrijdragend
Waarbijhetalleenalsisolatiemateriaalwordtgebruikt.
Ja,datwillenwijduseigenlijkniet.Wijwillenalleenelementenkunnenleverendiedeverdiepingkan
dragenengajenatuurlijkhoogdeluchtindanmoetjetochbouwenmethoutskelet.
Maardannietinzelfdragendstrotoch?
Nee,danhebjehetstropuuralleenalsisolatiemateriaalendanwordthetalsbouwmateriaal
minderinteressant,quaprijsisdatdanalnietinteressant.Maareigenlijkwiliknogeenstapjeverder
datwanneerjemeerderewoningenhebtwijdemobieleproductieuitoefenen.Hetiseensysteem
watjeeigenlijkoveralopdewereldzoukunnenneerzetten.Daarwaarhetgraanisgajemetje
machineheen,vanhetrestmateriaalvanhetvoedselgajijhuizenvanbouwen.Ja,simpelerekan
nietendanvoldoejeaanbasisbehoefte,watteeteneneenhuishebben.Hoesimpelkanhetzijn.
Maarsomsdenkjedatistesimpel,daardoorgeloofjehetnietengajedusjegeldernietin
investeren.
Datmensendenkenwaarzithetaddertjeonderhetgras?
Ja,wantdiebankendiewillendatalleszoveelmogelijkkost,geldlenenenprocentenontvangenen
jaditiszosimpelditgroeitinjeeigenachtertuin,wegaanermetdemachinenaartoe,dienuinde
werkplaatsstaat,diekanjeineencontainerzettenendanrijdenwenaardeplektoe.Eigenlijkzou
hetzomoetenzijndatwemetdiemachinenaarGroningengaanwanneerdeoogstisendangaan
wegewoonelementenmaken.Nieteersttransportvanhotnaarher,wantnubenjedirectopde
plek.Dieboerslaathetstroopennugajijmetjetweecontainersdaarheen,zetjedaarneerenga
jeelementenmaken.Energiezuinigerkanniet.
Waaromhebtuineersteinstantiegekozenvoordestrobouw?Wasdatvanwegeeenpassie,washet
deuitstralingvanhetproductomdoordeecologischevoordelenwathetproductheeftofeenandere
reden?
Ikbenuitermategeïnteresseerdinstro,ikbeneenboerenjongendusikbenermeeopgegroeid.De
interessewaserennaeenworkshoptehebbengedaanbijeenvandeconventionelestrobouwers
hadikzoietsvan,alsditbouwenmetstroisdanwordtheteigenlijknooitwat.Ja,danblijfthet
eigenlijkeenbeetjedatambachtelijkeopkleineschaal.Hetheeftdangewooneenbepaaldimagoen
datwerktnujuisttegenonshebikhetgevoelendaarmoetjevanafendaarprobeerikeenbeetje
vanaftekomendooreengoedproductneertezetten.Daargaathetom,debasismoetgewoon
goedzijnenwezittennogsteedstebouwenmetstrobalenenterwijlweeigenlijknaareenperfect
bloktoemoeten.Alsjenaarvroegerkijkt,toenikkindwas,haddenwehoutenblokkendiejekon
stapelen,wanneerjedaarmeteenvingertegenaanduwtvalthetzoom.Nuhebbenweduplovan
legoendaarmoetenwenaartoe.Duploisstro,strodatwesupersnelverwerken,pasklaarmakenen
vlakis.Wantalsjenukijktnaarruwestrobalenwatdiedanweernietnodighebbenomhetenigszins
aftewerken.Zezijnteruwenkostteveelleeminafwerking.
Wantomdatdezegladderzijnkosthetookminderleeminafwerking.
Ja,jegebruiktaltijdminderleem,dusmindergrondstoffen.Alswehierkijken,danhebbenwe2cm
leemaandebinnenkanten2cmleemaandebuitenkantdanhebbenwedus4cmleem.Alswedat
vergelijkenmetdeconventionelebouwdanhebbenweeenmetselsteen,datiseigenlijkookleem,
datisal10cm,danpratenweovereenenkelewand.Doejedatdubbeldanpraatjeover20cm.
Vaakisdatgeenleemmaargoed,danishetkalkzandsteen.Enwijmakeneigenlijkeengebouwmet4
cmleem.
Enaandebuitenkantisdatwelincombinatiemetkalk?
Nee,ikbeneigenwijsikdachtikgadatgewoonproberen.Iedereenzegtdatkanniet,jehebthet
leemaandebuitenkant.
Inverbandmetdeweersomstandigheden.
Ikhebwelnaarbinnenwijkendewandengemaaktdusslagwerkershebbenereigenlijkweinigvatop.
Hetstaatnueenjaarenalsjehierrondkijktdanheefthetalleenschadegehaddooropspattend
watervanhetterrasentoenishetwatuitgespoeld.Maarvoorderestziejeheelweinig.
Enisdatdanweermakkelijkterepareren?
Jameteenspons.
Eennattespons?
Ja,alsjebijvoorbeeldnaardiescheurtjeskijktenikpakeennattesponsdanwrijfikereenbeetje
overheenendanishetscheurtjeweerdicht.Hetblijftleemerzitgeencementin.Hetislucht
gedroogd.
Ikziedaarookindebeurteenschakelaarzittenendatisnietgevaarlijkincombinatiemethetnat
dichtenvandescheur?
Nee
Wantdiezittendaartediepvoorofdiezijnbeveiligddoorbuizen?
Dieziteigenlijkindatstro.
Datisweleenvoudigdatalsjeeenbeschadiginghebtjehetkanoplossendooralleeneennatte
spons.Netalsofjejemuurschoonmaakt.Devolgendevraaggaatoverdetechniekwaaruzoal
gebruikvanmaakt,datisdannatuurlijkdeselfͲsupportingtechniekendandeStrawBlockSystem
watuzelfontwikkeldheeft.HoevaakwordtditaltoegepastinNederland?Isdithetenigevoorbeeld
waternutevindenis?
Wezijnnumeteenpaardingenbezig,wehebbenwelwatgeprofileerdeblokkengeleverd,in
NijmegeneninNieuwVennephebbenwegeleverd,maardatzijnalleennogmaarblokkendusniet
verwerktineenelement.Wehebbenwelwatelementenstaan,vanverdiepingshoogte2,70enwe
zijnmetheelveeldingenbezig,maarechtopdrachten.Zezittenerwelaantekomen,maarhetis
nogwelmoeizaam.
Enaanwatvoorreactiesmerkjedandatmoeizaamgaat?Watzijnderedenenwaardoormensen
tochafzeggen?
Ikzeidaareerdervandatimago,maarstroheeftookhetimagovaneengoedkoopmateriaal.
Endatishetniet?
Hetiswel25Ͳ30%goedkoperdandeconventionelebouwenookdandeconventionelestrobouw,
maarmensendiedenken,jaeenstrobaaltjedatkostdrieofviereuroendaarkrijgikwelblokken
voorbijStrawblocksystem,maarzoishetniet.Wijpasseneenbewerkingtoeenweontwikkelen
machinesenconcepten,maarhetheeftgewooneenbepaaltimagoenhettrektmensenaandieheel
weinigtebestedenhebbenendiedanheelgraagmetstrowillenbouwen,omdatzedenkendathee
goedkoopisendatisdannietzo.30%denkenwijgoedkopertezijndandeconventionelebouwen
deconventionelestrobouw.Puuralsjekijktnaardecompleteschil,danzitjeindeconventionele
bouwrondde€300/m2afgewerktenal.
Enalsjemetditsysteembouwt,hoeveelzitjedan?
Ongeveer€250Ͳ275/m2.Dusdatscheeltaanzienlijkenjehebteenenkelewand.
Zijnerookgrotenadelenwaarjetegenaankanlopentijdenszoeenprojectwaardoordatmensen
misschienafschrikt?
Demeestediekomenmetbrand,muizen,ongedierte.
Maardatisnietzowanneerhetafgewerktismetleem.
Alonzeelementendiewordenafgewerktmeteengrondlaagleem.
Alsuzegtdatdeeerdergenoemdenadelennietvantoepassingzijnisdatnietgenoegomdemensen
teovertuigen?
Ikhebhetgevoeldathettocheenbepaaldeangst,onwetendheiddatzedenkenvanjaalsiksteen
neembenikzeker.
Ja,omdatNederlandvoor90%gebouwdisuitsteenhebbenzedaarnatuurlijkeenbeeldbij.Alswe
bijvoorbeeldkijkennaarhetwerk,hoeveeltijdgaaterdaninzoeendergelijkprojectzitten?En
vergelijkendmetdeconventionelebouwisdatdanminder,meerofvergelijkbaar?
Ditishetprototype,dusdieheeftveeltijdgekostendemachinesdiewenuhebbendiehaddenwe
toennogniet.Wehebbendaarechtgeïmproviseerdmetmobilezaagmachinesdusdatheeftwel
behoorlijkwattijdgekost.Alsikterugkijk,wewerkteertweedagenindeweekaanenhetheefteen
halfjaargeduurd.Dusikzegmaardriemaandenheeftditgeduurd.Maarditzoujemeteenpaar
wekenkunnenbouwen,mitswedaaropingerichtzijnenhetzouseriematiggebeuren,wanthet
geeftgeenfunderingenplaatstalenberanding.
Maarhetheeftnietdirectcontactmetdegrondneemikaan?
Neestaatbovendegrond.
Enwaarstaatdatdanop?
Opwegfundering,gebrokenpuinendaneenlaagschelpenop.
Watvoorandereelementengebruiktunogdiemilieuonvriendelijkzijn?
Staal,maarikvindstaalhelemaalnietzoeenzwaremileubelastereigenlijk.
Maaralsjeeengebouwgaatmakenvanstaaldan...
Jaoké,maardatisnatuurlijkietsanders.
Maarugebruiktkleinestalenelementeninditprototype,waargebruiktudezedan?Wanterzitten
nietbijvoorbeeldstalenpinnenindeblokkenverwerktomzebijelkaartehouden?
Nee,wehebbenalleenmessingenengroeven,dushetzelfdesysteemalseenvloerplankdatkunnen
weookindeblokkenaanbrengenenzogrijpthetinelkaar.
Watisnuhetmeesttijdrovendeelementtijdenszoeendergelijkbouwproces?Isdathetplaatsenvan
dieblokkenofisdatdeafwerklaagaanbrengen?
Hetdakaanbrengendatwasbijdeze,maardatkunjenatuurlijkookinprefabdoen,wijhebbendus
eigenlijkgekozenvoorhetmoeilijkstegebouwtjedatjekuntmaken,omtelatenzien;alsjeditkunt
bouwenmetstrodankunjeallesbouwenmetstro.
Enalshetbijvoorbeeldeenkubusvormhadengeenmoeilijkevormenzouhebbenwatisdathet
meesttijdrovendeelement?
Ja,hetdak,zoisditdakook,datisgewoonambachtelijkdiehoutensingelseropaanbrengen.
Ja,devolgendevraaghebbenweeigenlijkookaleenbeetjebesprokendatiswaaromuvoorprefab
ofpostͲbeamtechniekenkiestenwatzijndeargumentendaarvoor?Maarubentheterduseigenlijk
meeeensdatwemeernaarindustrialisatiemoetenomookvanhetimagoaftekomen?
Ja,wemoetenvanhetimagoaf,maardatnietalleen,wantwiljeechtprofessioneelditindemarkt
zettendanmoetjegewoonduurzaamheidleveren.Jaduurzaamheiddaarwordiksomseenbeetje
bangvanwantiedereennoemtallesduurzaam,maarwemoetengewoonzorgendatweeen
natuurlijkproduct,cradletocradleennoemmaarop.Hetisnoggoedkoperdaneenconventioneel
gebouwdgebouweneengebouwiseenwareenergieengrondstoffengrootgebruikerendaar
moetenwevanaf.Ditiseenhernieuwbaregrondstofgroeitditjaarweer,brengtvoedsel.Vanmorgen
lasikweerindekrantdatweandersmetonzegrondmoetenomgaanwanneerweaanheteten
willenblijven.Daarwerdzelfsingenoemddatwemeergraanmoetenverbouwenomdatdatgoedis
voordegrond.
Enwaarombouwtumetstroennietmeteenanderecologischverantwoordproductzoalszeegrasof
grond,komtdatdatookweervoortuitdatuvaneenboerderijvandaankomtdoordatjedaaral
meerbekendmeewas?
Datheeftmisschienmeermethetnostalgischeplaatjetemaken,datgraandatvindikgeweldig
mooi.AlsikinDenemarkenbenenikrijddaarbovenindejuttelandenenjezietdaardielanderijen
enjekijktdaarzoopdehoofdzee,datisgeweldigmooi.DatzouinNederland,wanneerwekijken
nabij30jaargeledenbestondNederlandvooreenkwartuitgraanveldenendatheeftzichdelaatste
jarentotaalverplaatstnaargrasenmais.Hetisallemaalgroen,landschappelijkzietheternietuiten
voordebiodiversiteitishetooknietzogunstigendaarvoorzouhetookandersmoeten.Omdatwe
degrondgewoonuitputtenopdezemanier.Ermoetveelmeerteeltwisselingkomenenhetzou
landschappelijkeenverfraaiingzijnenvoorNederlandbelanghebben.
Watzijndegrootstevoordelendienietalgemeenbekendzijnvanstrobouw,zowetenwe
bijvoorbeelddathetingrotehoeveelhedenbeschikbaarisengeenanderebestemmingheeft,het
heefteenlaagenergieinhoud,watzijnnouvoordelenzoalsdebiodiversiteitdieunetnoemde,die
nietalgemeenbekendzijn?
Kijkomtoteenproducttekomenheefthetheelweinigenergienodigendatvindikhetsimpele,het
eenvoudigeensoberevanhetmateriaal,debewerkingenzijneigenlijknul.Hetvraagtzoweinigen
datvindikhetprachtigeeraan.Maarhetisgeenhightecheniedereenwilhightech.Kijkooknaar
bedrijvendiehightechontwikkelenenhetisallemaalbioͲenergiecentralesdieworden
ondergedompeldinsubsidiesenalsjekijktwatervanterechtkomtdatisheelweinig.Diedraaien
eenpaarjaarendanisdesubsidiebedrijfooktezielen.
Maarovereenpaarjaarkanhightechookbetekenzosimpelengoedkoopmogelijk,enzoustroook
eenhightechmateriaalkunnenzijn.
Nee,maarkijkdepolitiekwildathightechookgraagkijkdaarkunnenzijzichzelfmeeprofileren.
Zietudatdanalseennadeelvanstrobouwdathetniethightechisofishetmeereigenlijkeennadeel
vanmensenenhoezijzichwillenafspiegelenomdatdatvoorgeschoteldwordtalswatgoedis?Want
watzijnnoudegrootstenadelenwaaromditmateriaalnietgebruiktwordtnaasthet
geitenwollensokkenimago,watzijndefeitjesoverbouwenmetstrowatnadelenzijn?
Ja,ikzouzogeennadeelkunnennoemen,hetislicht,weinigintransportquamilieubelasting,jekunt
erheelveelvanmeenemenvanstro,hethuisislichtdusjekuntookminderefunderingtoepassen.
Wezijnookalbezigmeteengebouwtjeofeensoortwoonbootachtigidee,wanthetdrijft.
Enmetdeluchtvochtigheidbouwendatzietunietalseennadeel,datjedaarheelergrekeningmee
moethouden?Datdeluchtvochtigheidvandiestrobalenpreciesgoedmoetzijn?
Noupreciesgoed,kijkhetkanwelevenwatvochtigerwordendatisnietzoeenprobleem,maarhet
moetwelrondde10%zitten.Hetkanwelnaar20of25&.
Maardatmoetdanwelweerzakkenvoordathetafgewerktwordt?
Ikdenkdatweookeenbeetje,jaikwilnietzeggenbangwordengemaaktmaar,iedereenbegint
overongedierteenschimmelsenbrandendattochiedereendenktvandankiesiktochvoorsteen.
DatzeidenweooktoendeeerstehoutskeletbouwhuizeninNederlandkwamen,maarjadatisniet
geschiktvooronsklimaat,hetisookmindergeschiktvooronsklimaat,datisgewoonzoenalsje
bijvoorbeeld,naardehoutenhuizeninZwitserlanddiegewoonzonderbehandelingworden
gebouwd,diestaanaleenpaareeuwenenalsjediedanslooptdanzietdathouternogperfectuit.
Ineenlandklimaatgaatdatnatuurlijkwelietslangermeedaninonsvochtigeklimaat,maarde
houtskeletbouwinNederlandistochookwelbehoorlijktoegenomen.Ja,ikdenkdatheelveel
onwetendheidmeespeeltenhetzekerevoorhetonzekerekiezen.
Watzoudenwedaardaneigenlijkaankunnenenmoetendoendatdieonwetendheidwegneemt?
Wanterisgenoeginformatieopinternettevindendatjebijvoorbeeldgeenlasthebtvanmuizen,dat
jegeenlasthebtvanditnadeelendatnadeel,maartochkiezenmensenerdannietvoor.
Ja,ikbenookbeziggeweestmetiemandomhetinRuslandteverkopen,endiezeggenookvaneen
ruskrijgjeooknietzomaarineenhuisvanstroenalsjebijvoorbeeldkijktnaarAfrikaanselanden
daarisstroenleemhoofdmateriaalendiewillenzichjuistnunetzogaanbouwenzoalswijal50jaar
aandegangzijn.Wijzijnnutoeaanecologischbouwenendaarwillenzejuisteigenlijkeenhuisvan
steenenbeton.
Denktudathetverhogenvandeindustrialisatiezouhelpenbijhetverhogenvanhetgebruikvan
stro?Omdatmensenhetdanookmeerkunnenvergelijkenmetdeelementendienugebruiktworden
doordathetzelfdeuiterlijk,formaatoftoepassingheeftopdebouwplaats?
Nietvoordezelfbouwersdiewillenlekkerslepenmetdiegewonestrobalenenzelfsjouwenendie
willenditniet.Jemerktookdatmensendiehetvaakzelfdoendiebestellenbijonsalleenmaar
blokken,dusgeenelementen.Wantzewillenzelfaandegangzewillenmetdathoutendieblokken
slepen,zewillenstukengewoondatzelfdoen.Ikdenkdatwezekerindeprofessionelekant,dat
noemikdekleinereaannemersmaarookwelgrotereaannemers,datwanneerjemetelementen
komt,jehebteenschonebouwplaats,jehebteenstofvrijebouwplaatsmetelementendekwaliteitis
aanzienlijkbetertenopzichtevandeconventionelebouw.Jelevertgewooneengoedproduct.
Watdenkudatnunogeennadeelis,alsjebijvoorbeeldkijktnaardeModcellelementen,dieleveren
zevaakzonderleemlaagopdebouwplaats.
Modcellgebruiktgewonestrobaleninzijnelementen,daarisnietsaanafgewerkt.Datzijngewoon
ruwebalenineenhoutenframe.
Datvindtuniks?
Nee,datvindikniks.
Wantikdenkdusdatereensoortvanelementzoumoetenkomenwaarookdeafwerklaagalopzit
enwaarjenietnogeentoplaagopdebouwplaatszoumoetendoen,wantikdenkdatdatheelveel
mensenzienalstijdrovendenarbeidsintensief.
Jemoeteenelementvanstromakennetalsdatjemetdeautodoordewasstraatrijdtgaatdat
elementookdoordiewasstraatenzitereengrondlaagleemop.Zozieikheteenbeetjevoorme.Je
kunthetheleprocesookstapelenmetblokkendaarbenikookwelmeebezigmaardatkunje
robotiserenweer,jewerktineenbepaaldstramienhopblokmaken,hopstapelenendewasstraat
in,leemerop,klaar.Maardankomjewelineenfabriekterechteneigenlijkwiliktochdatmobieleer
inhebben.Datjehetoveralkunttoepassen,tweeofdriecontainersrichtinghetgraanenelementen
maken.
Zoujeeensoortvanloopbandproductieprocesineencontainermoetenontwerpendiejenaarde
bouwplaatszoumoetenkunnenrijdenendaardeelementenmoetenkunnenmaken.
Ja
Ja,wantwatnatuurlijkweleennadeeliswatikhierbijvoorbeeldzie,jezietnergenseenscheidingslijn
vanelementen,zoalsjedatnuheelvaakhebtmetgebouwenisdatjedenadenzietvanhet
plaatmateriaalendatishetvoordeelvanzoiets,datjediemooieafwerkinghebt.
Datisookmetalhetlaagleemerop.
Ja,dangajedatwelkrijgenbijelementen,endatismisschienweleennadeel,ofiniedergeval
mindermooi.
Endaarnaastdiestukadoordiewilgraagniettedrogeleemhebbenenkijkwanneerjeeenelement
maaktenhetstaatdrieofvierwekenineenheledrogeruimtejadanisdatnietlekkeromdielaager
optebrengendanmoetjedatweereenbeetjebevochtigen.Jewilteigenlijkhetliefstdathele
proceszelfindehandhouden.
Maarzoujenietwanneerjetweeelementenhebtdiejealleenmetschroevenopdebouwplaatshoeft
tebevestigeneneensponsoverdenaadvanhetleemtrekkenwaardoorjegeennaadmeerziet?
Waaromziejenueennaadomdatzevaakmetcementwerken.Enjacementgeeftgewooneen
scheur.Datkunjenietdichtpoetsenmeteenspons.
Maarmetleemzoudatwelkunnen.
Metleemwel,wanneerjedusdeelementengekoppeldhebtenjezoueenbakjemetleemhebben
eneensponsdiejeoverdenaadhaalt,endanbrengjededeklaagaandatzoubestkunnen.
Enkalkmetleem,kanjedatookmeteensponsjeafwerkenofkanjedatnietmeteensponsje
afwerken?
Nee,datluktnietwantdatwordthard.Leemwordtookwelhardmaarhydraulischekalkenkalk
wordttochharderdanleem.Wantdatheeftookeenhogeredichtheidwantdaardoormoetjeook
weereigenlijkwanneerjehydraulischekalkaandebuitenkantgebruiktmetkalkmoetjeaande
binnenkanteigenlijkcompenserendooreendikkelaagleemoptebrengenomdateenbeetjein
balanstehouden.Ookvoortransportenvochtendiebuitenlaagdichterisdatdaarvochttegenaan
gaatstuwen.
Dusjezoueigenlijkalsjemetelementenwerktdekansdatjehetdanmooiafgewerktkrijgtmetleem
ofkalkdanblijfjewaarschijnlijkaltijdnadenzienalsjehethelemaalprefabmaakt?Duswezouden
misschiennaarandereafwerklagenmoetenkijken.
Ja,ikvinddithetbeste,dithebikgewoonmetleemgedaanmaarhoutisnatuurlijkperfect.Datvind
ikeenvandebestebekledingeneigenlijkaandebuitenkant.Ofzoalsdiehoutensingelsdieophet
dakzittenmaardiekanjeookheelgoedalsgevelbekledinggebruiken.DatziejeinEngelanden
Zwitserlandheelveel.
Maartochmensendiemetstrobouwenkiezenaltijdvooreenafwerklaagvanleemdanwelin
combinatiemetkalk.
Ja,ikvindhoutheelmooiaandebuitenkant.Ofeenbeetjeeencombinatie.
Wantdanziejenietpersedaterstroaandebinnenkantistoegepast.
Nee,maareigenlijkzoudenweeentransparantietsmoetenhebben.Wehebbenwelietsgeprobeerd
methoutlijm,dandichthijhetstrowelafmaardathetstrowelzichtbaarblijft.Datvindikmooi.
Ja,dathebjewelinanderelandendaarhebikookeenvoorbeeldvanmetplasticgolfplaat,maardat
magdannatuurlijkinNederlandweerniet.Maardatbedoeltueigenlijk,datjezietdaterstroals
bouwmateriaalwordtgebruikt?
Ja,datvindikmooi.
Ja,datsnapikwel.Waarzittendekansenofpuntenvanverbeteringpreciesindestrobouw,zouden
erbijvoorbeeldookgrotereblokkenmoetenwordengemaaktdandaternuzijn?Ofzoudatdanweer
tezwaarworden.
Grotereblokkenofgrotereelementen?
inrichten.Ja,vandeenekantwilikhetsimpelinrichtenenvandeanderekantwilikindustrialiseren
dusdatiseenbeetjetegenstrijdig.
Ermoetgewoongekekenwordennaarhoediecombinatiemogelijkisdenkik.
Nee,wantindustrialiserendatheeftookeenbepaaltimagoendatkrijgjedanookweerdanwerkje
eigenlijk,hoegroterjedeblokkenweergaatmakenenhoegroterjeweermetjeelementengaat
makendanhebjebijvoorbeeldalweerééngevel,éénpaneel,datgaatopéénvrachtwagen,maar
datwillenwijdusookniet.Wijwillenwelhandzamepanelenmakendie.
Datjeeigenlijkookgeenmachinesnodighebtomdeelemententeplaatsen,ofdatmaaktdanweer
nietuit?
Ja,eenkraantjeomtestellenhebjetochnodig,maarhetwordtallemaalzofabrieksmatigendatwil
ikeigenlijkniet,ikwilwelindustrialiserenmaarnietineenfabriek.Wantdankrijgenweweerdatdie
fabriekinhetmiddenvanhetlandkomttestaanendatmoetdanoveralnaartoe.Wezittennuin
eenovergangsfasevoormijngevoelmaarikdenkdatweernaartoemoetendatwedatbewijsvan
sprekeninheelEuropazoukunnendoen,wijdoenonzemachinenaardieregiometdetafeltwee
containersgaannaardieregio,verkoopikaandieregiowantwijontwikkelenenbouwenook
machines,wijzijnnietalleenbouwers.Maarwedoendienaardieregioennaardeplaatselijke
aannemerweerindieregiowantikmoetdatzelfnietwillen,ikwilalleenmijnmachineaanhem
verkopen.Endankanhijmetmijnconceptdaarindieregioaandeslag.Datzouzelfswereldwijd
kunnendoen.Benjevanheelveelgesleepvanafenbetrokkenmensen,inderegio,datisleven
volgensmij.Datisnatuurlijkgeenkeihardebusinessmaarikdenkdatwedaarweleenbeetjevanaf
moethetmoetwat...
Misschienisdiestapnogwelgroteromdetraditionelebouwdaarvanaftekrijgendandestrobouw
erintekrijgen.
Ja,datzalwelzozijnja.
Watzijnbelangrijkeontwerpingrepen,waarrekeningmeemoetwordengehoudenindestrobouw?
Bijvoorbeeldisereenbepaaldevolgorde,natuurlijkmoeteersthetstroendanhetleemdatis
duidelijk,maarzijnerdingendiemindervoordehandliggen?
Eigenlijkzoujehetgebouweenbeetjeaanmoetenpassenaandematenvanhetblok.
Dushetelementmoetmaatgevendworden?
Ja.Wantkijkiederblokdatuiteennormaleperskomt,jajehebtwelverschillendetypes.Jehebter
eendiemaakt35enjehebtereendiemaakt40.Duswanneerjealle,wanthierzittendeblokken
noghorizontaalmaarwehaddeneigenlijkinonshoofdombijdevolgendedeblokkenverticaalte
plaatsen.Dusjeneemtjediktemaat35,daarzittendetouwtjesaande35kant.Duseenelementdie
wedanmakendiewordenéénmetervijfoftweemetertien.
Maarjezouookwelwataanpassingenaanmoetenkunnenblijvendoen,zodatmensenookhun
eigeninvloederopkunnenuitoefenen.
JezoubijvoorbeeldeenStrawBlockelementverdiepingshoogkunnenmakenwaardoorheteigenlijk
albijnaeenelementis.
Vanéénblokzegmaar,jaerbestaanjumbobalendusdatdoenzealwel,danhebjeblokkenvan
tweemeter.Hetisnatuurlijkwelzohoemindervoegenhoebeter.Wantdevoegishetkwetsbare
aspect.Devoegenvandeblokken,datzijndezwakkeschakels.
Enalsjegroteelementenhebtdatdraagtnatuurlijkookweerbijaanhetverhogenvande
industrialisatiedenkik,alsjekleineelementjeshebtdiejeallemaalmoetplaatsenopdebouwplaats
isnietechtefficiënt.
Ja,nouwanneerjegroteblokkenwiltgaanmakendatgebeurtookwelmaardangroteplatenvoor
binnenwanden,datisheeleenmooiproducttrouwens.
Datzijnvandiestropanelen
Ja(naambedrijf)diemaaktplaatmateriaalvanstromaarmeteenheledichtepersingdusde
isolatiewaardeisnietzohoogmaarvoorbinnenwandenisdatweleenheelmooielement.
Denktudatdemensenindestrobouwopenstaanvoorindustrialisatie?Dievraaghebbenweal
gehad,menseninhetalgemeenwaarschijnlijkdusnietdieditnualalsambachttoepassen,maaru
deeltdiemeningniet?Uzouhetbetervindenalshetingrootformaatzoudenwordentoegepasten
erdaarvoordusindustrialisatienodigis,datzietuwelalseentoekomst?
Ja,wemoetenmensendiehetverwerkenoverdestreeptrekkenenvoorwatikalgenoemdhebis
gewooneenbouwplaatseneenstofvrijebouwplaatsergbealngrijk.Wantalsjekijktnaarde
verwerkingvanstroopdebouwplaatsenerzoueenArbokomenkijkennoudankunjedetentwel
dichtdoeninéénkeer.Enzekeralszedannogmetslijptolkomenenaanhetslijpenzijnofaanhet
zagen,datmoetjeeigenlijknietwillenvindikzelfhoor.
Maarmetuwproducthebjedatdanookopdebouwplaatsofisdatdanminder?
Alswijonzeelementenaanleveren,jawantonzeelementenhebbenweookinUtrechtgehad,ik
bedoeldiehebbenwedaarookneergezet,datgeeftweleenbeetjemaarwanneerdegrondlaag
leemeropzouzittenbenjeeigenlijkookstofvrijenalenigszinstegenvochtbeschermd.Wanthet
regenternietmeerhelemaalin.Ikdenkdatwedaargewoonnaartoemoetenwillenwebouwen
metstroopeenhogerplanbrengen,zekerinEuropadanmoetenwetoenaarditsoortelementen.
Endatisookdemanieromdetraditionelebouwklaartestomenvoorbouwenmetstro?
Ja,wantdeaannemers,wehebbenheelveelreactiesgehadvanaannemersookopdebeursin
Utrecht,enzekerdekleineaannemersendaarzouhetookprachtigvoorzijnwijmakenelementen
weleverendieaandekleineaannemereniedereeninNederlandwileigenlijkalmetzeplaatselijke
aannemerwerken,waarommoetenwedehelestadenlandafreizenommaartegaanbouwen.Dat
istochvandegekke?TerwijlweinRotterdamnetzulkegoedemensenhebbenzittenalshieren
elementennaarRotterdamtransportereneneenplaatselijkeaannemerdiegaatdaarmeebouwen
datistochperfect?Jemoetiedereenhetgunnenendanbenjeokinderegiogoedbezigwantdan
krijgjejuistweerbetrokkenmensen.Zomoetjeeigenlijkbouwenvindik,mensenerbijbetrekken
dathetinderegioblijftdathetinjeomgevingblijftdanheeftiedereenwatenkanjehetzosimpel
Hetisnietzomoeilijkompasblokkentemaken.Maarproberenzoveelmogelijknaardiemaatvan
35of40tekomen.40isheelgunstig,waaromomdatdatrichtingeenplaatmaatgaat.
Enwatvindtubelangrijkeonderwerpendienutevindenzijnindestrobouwdienietverlorenzouden
mogengaanaandeindustrialisatie?Isdatbijvoorbeeldhetuiterlijkvanhetgebouwwathetnuvaak
heeftofhetleemgebruikvanleemaandebuitenkantofzijnermisschienandereelementendiejenu
vaakzietindestrobouwdienietverlorenzoudenmogengaandoorindustrialisatie?
Ja,ikhoudzelfwelvaneenbeetjestrak,datisditniet,organischevormenkunnenookmooizijn.
Maaruvindtweldatheteenbeetjedemodernekantopmaggaan?
Vanmijmaghetookeenwakoduikerzijn,misschienzegtjedatiets?Zoeenrechthoekigeduiker?
Nee,datzegtmijniets.
Daarkanjeookheleprachtigeelementenvanmakeninstro,methetfrontzegmaarhelemaalglas
engewoonelementendiejeaanelkaarkuntstellenkunjehetgebouwnetzogrootmakenalsdatje
zelfwilt.Datkanookheelmooizijnendanopeenpaarpalen,jadezekanjeookoppalenzetten,zo
hebikhemeigenlijkookontworpen,daaromheethijookdesteltloper,maardegemeentezateen
beetjemetdehoogte,ikdachtnouikganietmoeilijkdoen,ikgahemwelopdegrondzetten.
Ja,wantmensenkunnenditontwerpalsbasisaanvragenendankunnenjullieopdebouwplaatshet
zelfdenogeenkeerproduceren.
Ja,datkunnenwezegmaaralsbouwpakketaanleveren.
IsdatookwatuwsysteemefficiëntermaakttijdenshetbouwprocesdandepostͲandͲbeam
techniekenofanderetechnieken?Doordatjeditalsbouwpakketkanaanleverenendeblokkenals
eensoortvanDuploblokkentestapelenzijn?Maaktdathetefficiënterdanmetstrobalenbouwendie
ookzelfdragendzijn?
Constructiefwordthetveelsterkerdoordatdeblokkeninelkaargrijpen,dathadikalverklaardmet
hetblokeruitkunnendrukken.Datiswatinelkaargrijpt,datziejeookmetdiegrotelegoblokken
daarduwjenietzomaareenblokjeuitenalsjedaarechteenmuurvanbouwt,datstaatgewoonen
hetisvlak.
Dusqualeemopspuitenishetefficiënter?
Veelefficiënter.
Neemtminderleeminbeslag?
Spaartleemuit,alleenmaarvoordelenenwatikalzeimindervoegen.Duswanneerjeookdie
messingengroefdieerinverwerktzitten,methetoogopdelekkeninjeisolatie.
Wantdiewegmaakjelanger?
Ja,enhetdruktveelmeerinelkaar.Ja,hetheeftmeercontactvlakenhetissterker.Grijptinelkaar.
Zijnerooknogknelpuntenofverbeterpuntendieubinnenuweigenproductziet?
Nouja,hierwel.Vorigekeerhebbenwehiereenwarmtemeetingoplatendoenzietergeweldiguit,
alleendeaansluitingbijdekozijnendatmoetbeter.Maardatisindeconventionelebouwookzo.
Aangrijpingenbijramenendeurendatzijndepuntenwaaraandachtaanbesteedmoetworden.
Maaropzichdebijdrageaanstookkosten,jekuntjevoorstellenhetmateriaaldruktzichzelfinelkaar
endezekoepelooktoenwedezeeropgelegdhebben,hebbenwehemineenpaarwekeniederedag
paarcentimetermeteenliertjenaarbenedengetrokkentotdathetgeheelnog20centimeternaar
benedenisgegaan.Hetheeftzichzelf,hetmateriaalverdichtdoorhetgewicht,hetverdichtzichzelf.
Dushetdruktookallekierenenvoegendicht.Alleendieramenendiedeurendatisdanweereen
andermateriaal,daarkrijgjediedichtheidnounetnietendankrijgjedaarlekken.
Terafsluitingalsuéénnegatiefdingmoetzeggenoverstrobouwwaaromwehetnietzoudenmoeten
gebruiken,watzoudatdanzijninéénwoordoféénzin?
Hetmoetnietnatworden.Dankrijgjeeenzooi,eenkliederboel.Datvindikhelemaalniksdathet
helemaalzeiknatisgewordenjadatistreurig.
Dusjemoetgoedomgaanmethetproduct.
Ja,endaarommoetjejuistnaarprefabgaandoen,datjeheelsnelbent.Eigenlijkmoetjemethet
dakbeginnen,jemoeteigenlijkalandersbouwen.
DaaromdoenzeooktochheelvaakdatpostͲandͲbeamtechniekomdatjedanaleendakmaaktmet
houtskeletendankanjediebalenereenbeetjetussenplaatsen?Watzouutegendehuidigegrote
aannemerswillenzeggenomhunovertehalenommetstrotebouweninéénzinoféénwoord?
Hetiseencradletocradleproductwatikookalgezegdheb,dehuidigebouwdaardatiseenware
energieengrondstofverbruikerwemoetennaarcradletocradleproductenenditisecht
duurzaamheidzondermeerprijs.Ditisgoedkoopenikdenkdatwezokunnenoverlevenalswedit
wereldwijdzoudentoepassenjadanhebjeeenheleanderewereld.
6 //
InterviewRensBorgersͲinterviewerTyrzaLigthart
Waaromhebtugekozenvoorbouwenmetstroisditvanwegeeenpassie,deuitstralingvanhet
product,deecologischeeigenschappenofmisschieneenheelanderereden?
Hetiseenpersoonlijkevoorkeur,ikbenaltijdzoveelmogelijkbetrokkengeweestbijdenatuur,ik
hebinderegulierebouwgewerktvoor20jaarenikhebhetaltijdeengroteverspillinggevonden
echtwaar.Danhebikhetnognieteensoverdewerkelijkeverspillingdiealdiematerialen
meegevendeelgevoelsmatigendeelsgajejeerinverdiepenenwordtheteenbewustekeuzeen
kiesjetochvoorhetmeestecologischemateriaalenecologischevoormijwilzeggenhoeveelkost
hetquaenergieomhettemaken,hoekanjehetmateriaalopeenrespectvollemaniermetje
materiaalomgaan.
Ubedoeltvoordebewerkingendiedemeestematerialenondergaan?
Hetismeereengevoelsdingetje,hetkomtnunietuitdefabriek,hetkomtbijdeboervandaan,en
alsikhetgoeddoedankomthetbijmijnbuurmanboervandaan.
Wanttransportvindtuookeenbelangrijkefactor?
Ja,hetheeftookdiesympathiedatjeweetwaarhetvandaankomtendatjeweetdathet5km
verderopisgeproduceerd.Duseenbeetjediemenselijkekantdatisookbelangrijk.Datzijn
motivatiesomtekiezenvoorditsoortmaterialen.
Vanwatvoorstrobouwtechniekenmaaktugebruik?IsdatalleenpostͲandͲbeamͲtechniekofheeftu
ookselfͲsupportingtechniekentoegepast?
Nee,dathebiknietgedaan.
Enwaaromniet?
Omdatikdaargeenopdrachtenvoorzijn.Danzoujezelfeenprojectmoetenontwikkelen,ergens
eenschuurtjebouwenbijvoorbeeld,maargeenwoningmetbouwvergunning.Diezijnerbijmijniet
zodirectbinnengekomen.
Maaralleenomdatzenietbinnenzijngekomenofomdathetnietkan/voorkeurheeft?
Nee,ikzouhetheelgraagwillen.
WatvoorgrotenadelentijdenszoeenpostͲandͲbeamstrobouwprojectlooptuzoaltegenaan?
Bouwtechnischgeziendeaansluitingen,zoalskozijnendak,datvindikeenheelgrootnadeelvan
stro.Endiehebikopgelost,enzokwamkalkhennepookinbeeld,meteenandermateriaal.Ineerste
instantiegingiksamenwerkenenkwamikmetkalkhennepaan,omdieaansluitingenteverbeteren.
KalkhennepheeftdaneenhogereRcͲwaardeofwatzorgtervoordatditmateriaalweldeze
aansluitingengoedkandichten?
Kalkhennepenstrozittennatuurlijkindezelfdeecologischereeks,maarkalkhennepheeftdannet
eenbeterehechting,maarheeftdezelfdevochtregulering,zelfdedampopenheidenhetisnatuurlijk
perfectaantesmerenendoorditmateriaalneemtdekwaliteitvanhetstroenormtoe.
Maarubouwtnuallesmetkalkhennep,dusuvervangtlieverstrodoorkalkhennep?
Ja,ikbenondertussenmeermetkalkhennepaanhetwerken.Kalkhennepiseigenlijkgewoonbeter
danstro.Datheefttemakenmetdeaansluitingen,dedetailsookmethettotaleresultaat.Bijstro
moetjekijkenishetstrovanditjaar,ofvanvorigjaar,ishetvochtigofnietvochtig,erzittenheel
veelkwaliteitsverschilleninstrobalen.Alsjeechtopzoekmoetnaargoedstrodatisbestlastig,
vooralalsjevoorechtbiologischstrowiltgaan.Daarnaastiseraankwaliteitsstroeentekort,dat
heefttemakenmetgrondsoorten,wegaansteedskorterehalmenkrijgen.Ikbenopzoeknaar
strobalenmetlekkerelangehalmendiegoedholzijn,duseigenlijkbenikopzoeknaarlucht.Hetis
gewooneenverpakkingvanlucht.Duswehebbenveelmodernestrorassen,boerendiesteeds
korterehalmenwillenhebbenenhetsoortgraan.Ookwordendestrobalenvakeringroterematen
verkocht,deJumbopakketten,endatisindepostͲandͲbeamtechniekzoalswedienutoepassen
nietmeerhanteerbaar.Endanooknoghetfeitdatdebiologischeboereenverplichtingheeftom
biologischteboeren,daarzitookeenkringloopjeinbijdeboerenonderling.Datzorgtervoordatde
strobalen,dieikiniedergevalzouwillengebruikensteedsbeperkterwordt.Dusjemoetheelergje
bestdoen.Eneenanderefactorwatooknogmeespeelt,isdatdemachinesdetochalkortehalmen
verkortafsnijden.Kijkmaareensineenstrobaal,datzijnbijnaallemaalkortestukjesenvaakooknog
plattestukjesstro.Aankortenplatstrohebikniets.
Dusjezoueigenlijkeenspeciaalsoortstromoetenlatengroeidatbeterbruikbaarisvoordebouwen
tegelijkertijdookbruikbaarisvoorvoedsel?
Ja,ikhebhier6balenstrogekochtbijeenbiologischeboerendanmoetjenualgaankopen,maarik
weetnietwatdekwaliteitdaarvanis.
Watbetaaltuvoorzoeenbiologischestrobaal?
Ikbetaalvoorregulierstroviadehandel120europerton,datzijnkleinebaaltjesmetdejuiste
dichtheidenRcͲwaardeenconstantgeperstis.Ookhetperceelgrootteisvanbelang.Wanthoe
groterhetperceelhoecontanterdepersendichtheidvandestrobaal.Bijeenkleinperceelgaatde
machinevastweleenkeerlangsderandenlangsderanden,zekerindebiologischebouw,zullen
meergrassengroeiendatmaaktnietuit,maarvervolgensishetwelvervelendwantdiegrassen
komenookinhetstro.Enwaargraszit,zitgeenstroenikbenopzoeknaardiehollepijpjes.Daarom
komthetstrovaakuitGroningen,DenemarkenofDuitsland.
Endanhebjedathettransportweeromdehoekkomtkijken.
Datverhoogtdeprijsweerendeverkrijgbaarheiddoormijnzoektochtnaarkwaliteit,vandaarook
die140europerton,ikvinddateenhoopgeld.Wantalsjedatomrekentnaarm2danzitjeop
ongeveer20eurodevierkantemeter.
Ikbennietzothuisindeprijzenquabouwmaterialenmaarisdatvergelijkbaarmetdeconventionele
bouw?
Hetisnogweleengoedeprijs,maarhetzouomlaagmoeten
Enalsdeprijsdaalt,wordthetookweeraantrekkelijkervoormensendiehetnognietgebruikenom
hetdanweltoetepassen.
Ja,datisaltijdwatmenheteerstevraagt‘watkosthetdan?’.Enstroopzich,hetbasismateriaal,is
goedbetaalbaar.
Watzijndekostenvanzoprojecttotaal?Alsjeeenwoningvan1laagmetstrozoumaken.
Noualsjeuitgaatvan200eurodevierkantemeter,dandoejehetgoed.Alsjekijktnaarde
traditionelebouw,enmetseltmetkalkzandsteen,danzitjevaakaande180eurodevierkante
meter.Duswatdatbetreftkanhijhetwelaan,maarhetzouwelmeehelpenals,Adekwaliteitvan
hetstrobeterzouzijnenBdeprijszouzakken.Maarikdenkdathetalleenmaarzalstijgenomdat
hetminderteverkrijgenis.
Komtdatdanookdoordatmensennietwetenwatzeermeeaanmoetenopdebouw?Endatjedaar
specialistenvoormoetinhuren?
Nee,omdathetarbeidsintensiefisdiepostͲandͲbeammethode.
Dusalshetmeergeïndustrialiseerdzoukunnenwordenzoudatookbeterzijnvoordeprijsvan
bouwenmetstro?
Ja,ikdenkhetwel.Hetisallemaalarbeid
Demeestetijdtijdenszoeenprojectgaatookzitteninhetplaatsenvandiestrobalentussende
constructie?
Ja
Watzijndeargumentendatuvoorzoeenpostandbeamtechniekkiestennietvoorbijvoorbeeldeen
Modcellelement?Numoethetmisschienuiteenanderlandkomenmaarisdatdanookomdatude
ambachtͲkantmooiervindt?
Ook,jazeker.Datisééndingmaarmooier,daareetjegeenbroodmee.Watikwelbelangrijkvindik
vindhetfeitdatmensenzelfmeekunnenbouwen,datiseenheelgrotedoelgroepvandepostͲandͲ
beammethode.Diewillengraagookzelfmeewerken,endiebetrokkenheiddiejedaarmeecreëert
ook,doorhetzelftehebbenmeegebouwdaandewoning,datisookheelbelangrijkvoorbewoners.
Ikdenknietdatjehetmoetenvervangen,datiemandkankiezen.Erzijndoelgroepenwaarbijjekan
zeggenwegaaneenhelewijkuitdegrondstappenofeenwoningwaarbijdebewonerszelfmee
gaanbouwen.
Geïndustrialiseerdwilooknietzeggendathetinplaatsvanis,maarhetisdenkwelnodigvoorde
traditionelebouwinhetalgemeen.Zodatzijeenvergelijkbaarelementhebbenzoalszedatnu
kennen,anderszieikzedatnietgebruiken.Netalsmetdiekalkhennepblokkendienuquauiterlijkop
kalkzandsteenblokkenlijken,daarvanwetenzeopdebouwhoezediemoetentoepassen.
Erzijnnogzoweinigmensendiezeggenalsarchitect‘okéwegaanhetmetstrodoen’,enalsdat
prefabzouzijndanzoudenzemisschienwelzeggenookwekunnenhetookzodoen!Endangaater
eendeurtjeopen,wanthetbegintalbijhetontwerp.
Jekuntnietietsontwerpenendankijkenwatvoormateriaalerbijpast,alsjevoorstrowiltkiezen
zoujejeontwerpdaaropmoetenaanpassenzoalsdatnugaat.
DieModcellheeftnatuurlijkbepaaldeafmetingen,daargajeeengebouwmeemaken.Alsjegaat
ontwerpendangajeookkijkenhoegaikmetdatmateriaalom.Alsjeeengoedearchitectbentenje
gaatookaanhetstrowerkenmethoutskeletbouwzoalspostͲandͲbeamofmetModcell,maarikben
datnogniettegengekomen.Datheefttemakenmetdeonwetendheid.ModcellkomtuitEngeland,
ikweetnieteensofdatalgebruiktisinNederland.
JaietssoortgelijksisalgebruiktineengrachtenpandinAmsterdam.
Oh,jadie.
Jadatzijnookprefabelementenendandrieofvierverdiepingenhoog.Hebtuweleenmeerdere
verdiepingengedaanofalleenéénlaags?
Neealleenmaarlaagbouw.
Wantdatisookwel,jezietalleenmaareenoftweelaagsvoorbeelden.EninNederlandhebje
natuurlijk,derijtjeshuizen,datisbijnaaltijd3woninglagen.Alsjehetgebruikvanstrowiltverhogen
zouhetooktoepasbaarmoetenzijnindewoningbouw.EnhetvoorbeeldinAmsterdamisookgedaan
metfolieenhoutinplaatsvanleem.Endaarzittenvolgensmijookweernadelenaan.Hetzoudan
weeraantrekkelijkerzijnvoormuizenombijvoorbeeldtegaanzitten,endoordatfoliekunnenzewel
heenbijten.
WatzedaarinAmsterdamhebbengedaaniseendampopenfolieaandebuitenkantenaande
binnenkanthebbenzehemafgeleemd.Endatisheelgevaarlijkemethode.
Waaromisdatgevaarlijk.
Wehebbenhetoverdampopenbouwenindenatuurwilallesgelijkmaken,dusallesinbalans.En
datisookmetvocht.9tot10maandenperjaarproducerenwijmeervochtinhuisdanbuiten.Duser
vindtbijnaaltijdeenvochttransportplaatsvanbinnennaarbuiten.Enalsjedandampopen
materialenhebtzoalsstroofleemdanzaldiedamptransportvanbinnennaarbuitengaanenalsdan
ineensdatfolietegenkomtdangaatdatinhetstrozitten.Maarikneemaandatzedaarover
nagedachthebbenendatheteendampopenfolieis.Maardampopenfolie,dieblijkenovereen
aantaljaarminderdampopentezijndandatwijnuzeggen,denkik.Diemembraampjesdatslibt
gewoondichtonderanderedoorfijnstofendanhooptdatvochtzichop.Ikprobeerzominmogelijk
membraampjestoetepassenhoemooidieverhalenookzijn.
Wantwaaromdenktudatzehiernietgewooneenafwerklaagvanleemenkalkhebbentoegepast?
Wantdatheefttochnietpersenadelen?
Hetiswelwatzwaarderenlaterzijnzepasdieleemlaaggaanaanbrengen,enkanmijvoorstellendat
alsjedatgaattransporterendatdatbreekt,kraktoftezwaaris.Ikprobeeraltijdzodampopen
mogelijktebouwen.
Enwaarombouwtumetstroofkalkhennepennietmeteenandereecologischmateriaalzoals
zeegras,aardeofietsdergelijks?Isdatookvanwegepassieofvanwegenadelenvandeze
materialen?
Zeegraskenikniet.
DatwordtvooralinDenemarkengedaan,tenminstevroeger.EenvoorbeeldishetSeeweedhousein
Denemarkenwaarbijhetalsgevelbekleding,isolatiemateriaalenalspaneelwordttoegepastaande
binnenkant.
Ohdatzalikeenseenkeerbestuderen.Enisdittraditioneelook?
Nouvoordegevelbekledingheefteenpersoonallemaaltouwtjesomhetmateriaalmoetenbinden
handmatigmaardegevelwandenmetisolatiematerialenzijninzijngeheelvanuitdefabrieknaarde
bouwplaatsgetransporteerd.Dushetiseensoortvancombinatie.
Mensenhebbenaltijdgebouwdmetdematerialendievoorhandenliggen.Janetalsmetstro,zo
logischwanthetwasoveral.Ooknuerzijnbalenwaarnietechteenanderebestemmingvooris.
Isdatookmetkalkhennepzo?
Nee,kalkhennepisweerietsnieuws.En,maardatismeerpuurfilosofisch,inmijnogenkomende
materialenopdemomentenwanneerwezenodighebben.Zoalsnumetkalkhennep.Maarde
anderematerialenbeniknietmeebekendenhebiknietonderzocht.
Enwatzijndegrootstevoordelendienietalgemeenbekendzijnvanbouwenmetstro?
Nouikkenalleendevooroordelendiemensenhebben,endatzijnfeitelijknadelen.Maarnadelen
dieblijkenjuistvoordelentezijn.
Zoals?
Bijvoorbeelddatdemurendikzijn.Ja,datistochmooidikwordenenallemurenmoetendik
worden.Enhetblijktdatalsjestroopzijnkantgaatplaatsendatdercwaardenogsteedshoogisen
dankomjeopeendiktevan36cm.Dankomjealheeldichtindebuurtvaneenmodernespouw
muur.
Omweerterugtekomenookophetvochtgehalte,waarombouwenwijeigenlijkinNederlandmet
stroalswijzoeenvochtigklimaathebben?IsNederlandweleengeschiktlandommetditmateriaal
tebouwen?BijpostͲandͲbeamtechniekzetjeeerstdeheleconstructieneermetdakzodathetniet
natwordt,maaralsjebijvoorbeeldzoalsalsPimbouwtzoujeperseeenzonnigedag,weekof
langereperiodemoetenhebbenomtebouwen.ZoujekunnenconcluderendatNederlandmisschien
nietheelgeschiktisvoorbouwenmetstro?Ofhoezoudenwemetdezeweersomstandighedenom
moetengaan?Ofermoetmisschieneenelementkomendatalhelemaalkanenklaarafgewerktis.
Alsjemetelementenwerkthebjedaarhelemaalgeenlastvan.Jainderdaadzorgendatjedakeral
opzit,datscheeltaleenheleboelenjekannatuurlijkaltijdmaatregelentreffen.Ikziegeen
belemmeringenvoorbouwenmetstroinNederland.Ophetmomentdatjehemdichthebten
gestuukthebtishetwatmijbetreftgewoon100%betrouwbaarenbestandtegenonsklimaat.Endat
heeftdegeschiedenisookweluitgewezen.HetoudstestrohuisinFrankrijk,NoordͲFrankrijk,dus
vergelijkbaarmethetklimaathierstaatsinds1923.
Dathebiktoevalligvandaaggelezen,eneentijdbalkjevangemaakt.
Hetisonlangsgerestaureerdensommigeplekkenstucerafgehaaldenhetstrobleeknogprimain
orde.
Datisookeenvooroordeelvanmensen,datalsietsbioafbreekbaarisdathetnietlangmeegaat.Dat
meteenhuisjeerbijvoorbeeldmaartienjaarinkanwonen.
Datisookeenvooroordeeldatnietklopt,mitsgoedbehandeld.
Watdenktudatdebelangrijkstefactorisvanhetverkiezenvanhedendaagsegebruiktematerialen
bovenbioafbreekbarematerialenindebouw?
Geld,politieklobby.Leeshetboekmaardeduurzaamheidsoorlogendeonbekendheiddatspeelt
ookzekermee.Tyrzaikhebpasmeteenregulierebouwhandelaargesprokengewoonvaneengrote
bouwketen,wantbijhenwildeikeenshopaanshopwinkelmaken.Danhuurikdaareenruimteen
danhebikinloopwieweetwatervankomt.Enhijzegtjohdatmoetjehelemaalnietdoen,wantin
hetbouwbesluitwordtbepaaldwaaraandebouwmaterialenmoetenvoldoen.Bouwbesluitdat
wordtfeitelijkbepaalddoordegrotejongensindebouwhandel.
Duszewillenhelemaalnietdatstroalsbouwmateriaalwordtgeaccepteerd?
Nee,datzijndeUnideckenenandereendaarzittenmaareenpaarfamiliesachterendatzijnniet
mijnwoordenhè.
Wiltudaarmeezeggendatzijdattegenhoudendatstrogecertificeerdisomdatzijdaargeengeld
meekunnenverdienen?
Ja.
Oké,daarhebiknooitovernagedacht.
Datzitzoinelkaarendatblijftvoorlopigookwelzo.Enalsik,endaarmeekomenweweeropjouw
onderwerp.Alsikineenbouwmateriaaleenelementwilmakendanmoetikzoverschrikkelijkdiepin
debuideltasten,10,25misschienwel50duizendeuroneerleggen.Enwathebikdan,danhebikeen
paarrapporten.Metdiepaarrapportenhebiknogmaareengedeeltelijkeweergavevande
werkelijkheid.AlsjeiemandinAfrikaonzeIQtestvoorlegtdanscoortdiewaanzinnig.Infeitendoen
wedatookmetstroenkalkhennep,diegaanwetestendatisallanggedaan,zekermetstro.Maar
dietestenzeggenfeitelijkeigenlijkniks.AlsikinEngelandhebbenzeookeenbouwbesluiteneisen
voormateriaalendergelijken.Maarwatzedaarnaastnogdoen,endaarpleitikheelergvoor,isdat
zehethelegebouwtesten.Zeverwarmenhet,doen24uurlangdedeurdichtenhoeishetdanna
24uur?Ishetdan16graden,14graden,12gradenofishetnogsteeds20graden?Datisook
onlangsgedaanmeteenwinkelvanMarkenSpencerdaarhebbenzenaeenjaardietestgedaanen
watblijktdan,zehebbendaarkalkhennepindegevel,hadookstrokunnenzijn,datgebouw
presteertopallefronten36%beterdanzebedachthadden,ikkanereenpaarprocentnaastzitten.
Beduidendbeterdandatdeeisenwaren.Danzeggenzedatkomtdoordeluchtdichtheidvande
kalkhennep,jaammehoela,hetiseensamenspelvanluchtdichtheid,dusdenaadlozeaansluiting,de
dampopenheid,vochtregulatie,defaseveranderingendatallessamendathetmateriaalzogoed
presenteert.Endanzouik50.000euroneerleggenvooreentest,watbeduidendmindereenbeeld
geeft.Danhebikveellievereengebruikerdiezegtwauw,hierbenikgezondmijnkinderenzijnvan
hunastmaaf.Wewonenhiernuzeswekenenmijnkindheeftnoggeenpufjegehad.Ende
thermostaatstaatop19gradenentochvoelenwijonslekker.Hettestenvanmaterialenpuuromte
voldoenaanbepaaldeeisenjadatmoetjegaandoenalsjeindustrieelwiltgaanbouwenendan
moetjeaantonenvankijkeensblablablabla...Alsikgaprefabricerendankomhetineenfabriekje,
dangaathettransporteroverheenenjadankomtereenmerknaampjeop.Ikzoudaneerstkijken
naarwatikwil,hetmaaktnatuurlijkweleenwegvrijvooreengroteretoepassing,grootschalige
toepassingmaarhetgeeftmijniethetbeeldwatikfeitelijkwilhebbenvanhetproduct.
Maarlosvandiecertificatieenhoedatwordtgetestdenktuweldathetverhogenvande
industrialisatiezalbijdragenaandeverhogingvanhettoepassingvanditproduct?
Ikdenkhetwel,maarhetisallemaalzostrowerdnatuurlijknadetweedewereldoorlogookwel
toegepast,stroplatenwerdenertoengeperst.Dusinmijnogenishetaltijddenood,desituatieofde
geschiedenisdieditbepaaldenikgahetnatuurlijkfantastischvindenalsstromeertoegepastzou
worden,maarikbennogaltijdheelergbeduchtvoorgreenwash.Watblijfterfeitelijkovervanzo
eenproduct,enwatisdannogdeecologischewaarde?
Denktudathetpercentageecologischematerialenafzalnemennaarmatedeindustrialisatietoe
neemt?Doordatweaanpassingenmoetendoen,ofopofferingenomeengeprefabriceerdelement
mogelijktemaken?
Datdenkikwelja.Jegaatmetdemachinenaarjouwstrotoeendanweetjeookwatjehebt,op
momentdatjehetmoettransporterenendatgaatnaarjeprefabelement.Maarwiegaatde
kwaliteitindegatenhouden?Ikbenabsoluutniettegenhoor,maarjemoethetheelkritischblijven
volgendathetproductwatjeuiteindelijkopdebouwkrijgt,hoeecologisch,misschienhebbenzeer
welwatopgedaanomdebrandwerendheidteverhogen,weetjijveel.Ikwildatgewoonweten,dat
moetjegoedindegatenhouden.Ikbenaltijdheelergbeduchtvoorvercommercialisering,maardat
gaanwetochmeemaken,wegaantochmeemakeninhetecologischbouwen,iedereenisgroen,elke
aannemerwerktmetgroenbeton,groenglaserzijnzoveelmaterialendiegroengewassenworden.
Hetinteresseerthungeenros,zemoetengewoongeldverdienen.Enmetindustrialisatiemoetje
daarheelbeduchtopzijn.
Alsikzelfdenkoverhoezoeenelementeruitzoumoetenzien,zitikbijvoorbeeldwelmetdenaaddie
jealtijdzitwaardeelementenofplaatmaterialenopelkaaraansluiten.Nuindestrobouwhebjeeen
helemooieegaleafwerking,denktudathetmogelijkisomeenprefabelementtemakenwaarbijje
ookdiezelfdeuitstralingbehoudt?
Ja,denkhetwel.
Waarhetleemlaagdanalopdeelementenzit?
Nee,datmoetgetransporteerdworden,waardoordatheeftuiterstematenheeftendankrijgje
altijdeenaansluitingwaarjeietsoverheenmoetendoen.Elkenaaddiekomteenkeertevoorschijn.
Diekanjebenadrukken,jekunthemverdoezelen,ikweetniethoeergdatis.
Waarzittenvolgensudepuntenvanverbeteringindestrobouw?
Indeaansluitingen.
Aansluitingenbijdekozijnenenz.?
Jaendekwaliteitvanhetstro.Aansluitingenookinhetstucwerk,stucwerkaansluitingopde
waterslagen,daarvaltookeenheleboelinteverbeteren.
Denktudatdetraditionelebouwklaarisvoorgeprefabriceerdestrobouw?
Jahoor,ikdenkhetwel.Alsiknaareentraditionelebouwergaenikkommetelementendiezezo
kunneninbouwenalszegewendzijn,dankandatwel.
Watzijnbelangrijkeontwerpingrepenomrekeningmeetehoudenalsjeeenstrobouwprojectdoet?
Volgordevanelementen,ofmaterialendienietsamenkunnengaanofmaterialendieiniedergeval
nodigzijnbijhetbouwenmetstro?
Injeontwerpmoetjealtijdzorgendathetstrovoldoendehoogvanhetmaaiveldafkomt.
Tegenwaterdaterintrekt?
Precies,enjemoetzorgendatjestucwerk,jegevelafwerkingopstroafstemmen.Dusjeontwerpis
daarinbelangrijkenerzalheelgoedoverlegdmoetenwordenmetpartijenwaarmeesamengewerkt
wordt.Jezoubijvoorkeurjehartophartmaarvanjestijlenmoetenaanpassenopdematenvande
matenvandestrobalenofandersom.Maarhoeeerderjeindatprocesbent,enjezoudushalf
geprefabriceerdestrobalenvanhetlandkunnenhalen,dusdatjeeenlijstjehebtikmoetzoveel
balenvan1,10en200balenvan80cmnodig,datheeftallemaaltemakenmetgoedevoorbereiding.
Deelsontwerpdatdatgoedis,deelsgoedoverlegmetanderepartijenendeelsvoorbereiding.En
hetheeftooktemakenmetlulligedetails,rekeninghoudenmetmatenvandestrobalen,denkaan
datraam,daarkanjegeenstrobaaltussenproppen.
Enwatvindtueengedeeltevandestrobouwwatnietverlorenzoumogengaanaande
industrialisatievanditproduct?Misschienietsvanuiterlijk,ofgaathetvoorumeeromhettoepassen
vanhetmateriaal?Maaktnietuitofjehetmateriaalwelofnietziet,ofdathetdieambachtelijke
uitstralingheeft?
Nouweetjewatvoormijheelbelangrijkis,iswatikzie,endatklinktheelzweverig,maaraandacht
enliefde.Alsjedatnouisdoetdankrijgjeeen100%goedgebouw.Endankanjeontwerpheellullig
zijn,maardemogelijkheidgevenaanmensenomzelfmeetebouwenaanhunhuisisveel
belangrijkerofopzijnminsterbijbetrokkentezijn.Datvindenzeprachtig.Maarzedrukkendeprijs
eenbeetje,wanthetisnatuurlijkzodatwijmetaldiewoonwijkenallesuithandengevenenwe
kiezeneenhuisvaneentekeningenzijnerhelemaalnietbijbetrokken.
Endenktudatstroenkalkhenneptecombinerenzijningeïndustrialiseerdeelementen?Zodatdie
aansluitingenbeterkankrijgen?
Nee,datdenkikniet,alsjestrogoedtoepastnetalsbijModcelldansluitdathoutgewoonnetjes
aan.
Alsuéénnegatiefpuntmoetaanwijzenvoorhetniettoepassenvanstroindebouwindustriewatzou
datdanzijn?
Datismisschiennogweldekwaliteitvanhetstro,hetfeitdaterslechteontwerpenworden
gemaakt,oheentjemaarhè?
Wathetmeestbelangrijkenadeelis.
Slechtontwerp,hetfeitdatmensennietwetenwaarzehetoverhebben.
Enwatisdanhetmeestpositieveelementindestrobouw,waaromwehetzekerzoudenmoeten
toepassen?Omgroteaannemersovertehalenommetstrotebouwen?
Hetfeitdathetgewoonzovanhetlandkomt,dathetzominmogelijkbewerkingenheeftondergaan.
Datsnaptiedereenwel.
0,13Ͳ70
3
16,8
92,1Ͳ102
Wood
Straw
Brick
Rockwool
EPS
total:
5,14m3
0,6155
3,9783
Volumestrawelement(m3)(determinedbycaddrawings)
0,555
Price(€/m2) (Hondeveld,2015;Ligthart,2015;Capiau,2015)
Limerender/clay
75(clay)95(limerender)
Concreteelement
350
Wood
950(€/m3)
Straw
37.50
9,82Ͳ10,9
Concrete
total:
1800
15Ͳ21
15Ͳ40
120
700
2400
1815,66kg
430,85 >
497,29 >
98,6kg/m2
23,40kg/m2
27,00kg/m2
Totalweightstrawelement(kg)
887,52 >
48,19kg/m2
1022,5
383,5
191,8
1597,8MJ/m2
EmbodiedEnergyCasestudyEPSinsteadofRockwool
Concret
240*6=
1440
Brickwork
180*3=
540
EPS
16*93=
1488
3468MJ/m2
EmbodiedEnergyCasestudy
Concret
170,4*6=
Brickwork
127,8*3=
Rockwool
11,4*16,8=
EmbodiedEnergyStrawelementLimefinish
Clay/Limerender
48,2*3=
144,57
wood
23,4*8=
187,2
Straw
27*35=
945
1276,8MJ/m2
1600
3
1Ͳ1,3
Limerender/clay
Density(kg/m3) (Granatoupoulou2014;CESedupack,2014;Hondeveld,2015;boxtel,1995)
EmbodiedenergyMJ/kg (Granatoupoulou2014;CESedupack,2014)
Data&calculationelements
7 //
7 //
8
134 //
TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN
Fly UP