Comments
Description
Transcript
BIODEGRADABLE FACADE COMPONENT
BIODEGRADABLE FACADE COMPONENT “A research about enhancing the use of biodegradable materials in the Dutch building envelopes by the industrialisa on of straw as a building material “ GRADUATION THESIS TYRZA ALEXANDRA LIGTHART 4004701 TU DELFT, ARCHITECTURE & THE BUILT ENVIRONMENT FACADE DESIGN DEPARTMENT 25 06 2015 COLOPHON REPORT P5 Master Thesis TITLE Biodegradable façade component, a research about enhancing the use of biodegradable materials in the Dutch building envelopes by the industrialisa on of straw as a building material UNIVERSITY Technical University of Del Faculty of Architecture & the Built Environment Master Building Technology, Façade Design TUTORS Dr. Ing. Tillmann Klein Dr. Ir. Fred A. Veer EXTERNAL EXAMINOR Mw. dr. Marie a E.A. Haffner DATE 25-06-2015 STUDENT Tyrza Alexandra Ligthart Student Number: 4004701 [email protected] 4 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // PREFACE This master thesis is the finalisa on of my master Building Technology at the faculty of Architecture, part of the Technical University Del . The gradua on subject is part of the ‘Façade Design’ track. The goal of this research is to add new scien fic knowledge and technologies for a more sustainable future façade design. The subject is born from my interest in sustainable materials and façade technologies. By looking at solu ons of how biodegradable materials can be implemented in a more industrialised way, the combina on of two interests was established. I would like to thank Dr. Ir. F.A. Veer and Dr. -Ing T. Klein for their guidance and instruc ons during the gradua on process. I would also like to thank P. Hondeveld and R. Borgers for sharing their knowledge and opinions related to the straw industry. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 5 6 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // ABSTRACT The major advantages of using biodegradable materials, is that the energy consump on can be decreased by 20 percent, compared to currently used material. For this reason these materials are used in different industries like in the fashion industry, the furniture industry, as packaging industry and in the building industry. The building industry is the biggest user of energy consump on worldwide. Yet the use of biodegradable materials in the building industry is low. This is a ributable to the limited knowledge of how to implement these materials in the industrialised building industry. The hypothesis in this thesis is that a façade component with a high level of produc on and industrialisa on will solve this limited use of biodegradable materials in the façade industry. By pu ng the focus on one product, in this case straw, the research can be done more in detail. It will focus on exis ng produc on techniques, the func on as a building material, the proper es of the material, and also its shortcomings. Based on recommenda ons and improvements at predetermined criteria, the straw elements are compared to the case study. This will show the possibili es of this material in the façade building industry and to be able to convince the building industry of the poten al of this material in the building industry. The main goal is to enhance the use of straw and other biodegradable materials in the building industry. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 7 8 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // CONTENT PAGE 0 // SUMMARY 10 1 // INTRODUCTION 14 1 // 2 // 3 // 4 // 5 // 6 // INTRODUCTION 1.1 General introduc on 1.2 Research introduc on PROBLEM STATEMENTT 2.1 Main problem statement 2.2 Possible sub-problems GOAL 3.1 Goal 3.2 Final products 3.3 Boundary condi ons 3.4 Hypothesis RESEARCH QUESTION 4.1 Research ques on METHODOLOGY 5.1 Methodology 5.2 Research methods RELEVANCE 6.1 Societal & scien fic relevance 6.2 Relevant research 6.3 Addi on of research 2 // RESEARCH PART I 1 // 2 // 3 // EXISTING FACADES 1.1 The selec on 1.2 proper es RATING 2.1 ra ng proper es 2.2 Product level 2.3 Subdivision product level 2.4 Subdivision level of industrialisa on RELATION MATRICES 3.1 Conclusion product level matrix 3.2 proper es matrix 3.3 System versus material 3.4 Availability & durability 3.5 Products handbook E. Ganatopoulou 3 // RESEARCH PART II 1 // 2 // 3 // 4 // TECHNIQUE EN PRACTICE 1.1 Straw building techniques 1.2 interviews PIM HONDEVELD 2.1 Summary interview P. Hondeveld RENS BORGERS 3.1 Summary interview R. Borgers CATEGORISING ELEMENTS 4.1 Subdivision techniques 4.2 Analysis exis ng straw elements 15 15 15 17 17 18 19 19 19 19 20 22 22 23 23 24 25 25 25 26 PAGE 4 // DESIGN 1 // 2 // 3 // 4 // 5 // 28 CRITERIA 1.1 Criteria 1.2 Criteria explana on 1.3 The assessment RELATION CRITERIA 2.1 Rela on criteria 2.2 Finish layers 2.3 Risks 2.4 Techniques 2.5 Complexity 2.6 Produc on Time 2.7 Building speed 2.8 Psychological & image 2.9 Conslusion criteria DIMENSIONALLY STABLE 3.1 Dimensionally stable FINAL DESIGN 4.1 Dimensions 4.2 Elements 4.3 Realisa on 4.4 Transport 4.5 Final drawings COMPARISON 5.1 Comparison 5.2 disadvantages & advantages 52 53 53 53 57 58 58 58 58 59 59 59 60 61 61 62 62 64 64 65 66 67 67 70 70 71 29 29 30 31 31 32 32 32 34 34 36 38 38 39 5 // CONCLUSION 74 6 // REFLECTION 78 7 // REFERENCES 80 8 // APPENDIX 84 42 1 // 2 // 3 // 4 // 5 // 6 // 7 // 8 // 9 // 43 43 43 44 44 46 46 48 48 50 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // 2 // CONCLUSION RECOMMENDATIONS EXISTING FACADE ELEMENTS MATRIX EXISTING FACADE ELEMENT PRODUCT LEVEL STORY STRUCTURE INTERVIEW INTERVIEW PIM HONDEVELD INTERVIEW RENS BORGERS CALCULATIONS TECHNIQUAL DRAWINGS CASE STUDY DESIGN DETAILS 75 7 86 98 100 104 106 118 127 128 134 // 9 0 // SUMMARY 10 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN Biodegradable materials are becoming more and more popular in several industries. Known by research is the fact that the use of biodegradable materials can reduce the energy consump on and CO2 produc on by 20%. Nowadays, the building industry is s ll responsible for 40% of the energy consump on in Europe and 45% worldwide. One of the key means to reach the goal of emi ng 5085 % less CO2 by 2050, is to reduce the energy consump on in the building industry. Implemen ng biodegradable materials in the building industry can decrease the embodied energy in the building industry. In this thesis the focus is on the composi on of a biodegradable façade component. Biodegradable materials have some features that cause difficul es with the requirements a façade has to offer. Examples of these requirements are biological contamina on, moisture, pest infesta on, maintenance, low tensile strength, interior space quality, fire resistance, tes ng a façade element (cost) and colour limita on. The elimina on of biodegradable materials because of these features, is haphazard reasoning. Currently used façades deal with the same proper es, but one knows how to protect, apply or treat them. Next step is to know how to treat, apply and protect biodegradable materials in order to fulfil the façade requirements. Product level By analysing several exis ng façade elements, an overview of important aspects in the façade industry is created. Important features of biodegradable façades are the high Rc-value, the low embodied energy and the environmental impact. For enhancing the use of these materials they also need to be lightweight, have comparable wall thickness and a higher level of prefabrica on. According to the product level matrix, the level of industrialisa on and produc on is very important. With a high level of industrialisa on and a high product level the biodegradable façade element will be comparable to currently used façade elements. Fig. 0.1.1 establishes the posi on of current biodegradable facades. Most of these facades are realised with cra smanship and commercial materials. One façade is posi oned in the more industrialised corner. However, bio composite (M3) turned out to be less biodegradable than it seems. Chemical addi ons are needed to start the degrada on process. Bio composite is therefore not a biodegradable material but an Oxo-biodegradable plas c. To con nue the research on how to realise a biodegradable façade element, the focus is set on straw as an industrialised building material. The Modcell, which represents straw, has the highest product level of the analysed biodegradable façade CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts Building FIG. 0.1.1 // DEVELOPMENT ON BIODEGRADABLE FACADE ELEMENTS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 11 elements and is to some extension prefabricated. However, to make it comparable it must be improved to fulfil several criteria. Exis ng straw elements do not have the requirements users want, therefore the focus is on the realisa on of a storey high straw façade element, which consist of all façade layers off site and will only need some small adjustments and applica ons on site. This enables to make the switch of a barely used cra smanship biodegradable material to an industrialised biodegradable building material. common ground in different fields, which is of great importance, because if the client is convinced, whether it is the building contractor, architect and/or user, the straw element will contribute to enhance the use of straw as a building material, thus the use of biodegradable materials in the Dutch building envelopes. The known techniques in the straw industry can be categorised in four groups: cra smanship nonself-suppor ve, cra smanship self-suppor ve, prefabricated non-self-suppor ve and prefabricated self-suppor ve (Fig. 0.1.2). The most common way of building with straw is the non-self-suppor ve technique, due to the building permit, the fewer risks and DIY (Do-It-Yourself) possibility. However, if straw will be interes ng for the bigger picture in the building industry, it must fulfil the func on of the structure as well. Otherwise it cannot compete to other insula on materials. Mainly because of the cost and the confidence clients have with the other insula on materials. The proposed straw element in this thesis is an element produced in the factory including sprayed finishing layer, which eliminates the risks like fire resistance, mice, pets, insects and moisture. It will influence the building speed by its completeness and clean building site. Compared to the case study, this is a cheaper solu on, a faster way to build and it will influence the energy consump on during the building process and also during the user phase. The straw element will ensure posi ve 12 // PREFAB SELF-SUPPORTING STRUCTURE NON-SELF-SUPPORTING STRAW GENERAL SELF-SUPPORTING IN-FILL STRAW S STRA BLOCK SYSTEM KREATIVER HOLZBAU POST-AND-BEAM NEBRASKA DIRK SCHRAMER MAGWOOD EXAMPLES If straw also fulfils the suppor ve aspect, it will make straw more a rac ve as a building material, due to the cost for structure and insula on. Other important criteria for a straw façade element are the moisture resistance, the transport, the produc on technique, the produc on me and the building speed. If the straw façade element acts equally or be er within these criteria, it will posi vely influence the confidence of the client and indirectly the image of straw as a building material. CRAFTSMANSHIP NON-SELF-SUPPORTING CUT TECHNIQUE STRAW BLOCK SYSTEM MODCELL FIG. 0.1.2 // CATAGORISING STRAW TECHNIQUES OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN BALA BOX TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 13 1 // INTRODUCTION 14 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // GENERAL INTRODUCTION 1.1 General introduc on This report is a thesis of my gradua on project, within the master Building Technology of the Technical University Del . The gradua on subject is part of by the ‘Façade Design’ track. The goal to this research is to find possibili es to implement biodegradable materials in the industrialized building industry in the Netherlands. 1.2 Research introduc on Biodegradable materials are becoming more and more popular in several industries. The industries where these materials are accepted as common materials are for example the automo ve industry, interior design and packaging industry (Fig. 1.2.1 & 1.2.2). The benefits and posi ve influences that biodegradable materials offer, ensures lower energy consump on compared to other regular used materials. Hence, the use of biodegradable materials is increasing in these industries, unlike to the building industry. The named industries, which are familiar with the use of biodegradable materials, are mostly industries that do not have to deal with strict material requirements, unlike the building industry (Fig. 1.2.3). Next to this, these industries do not have to deal with weather condi ons or have to fulfil a longer life span. Thereby the compostable property of these materials is protected or in other words postponed. The façade in the building industry is constantly exposed to the outside and its influences, like water, cold, sun and snow. The combina on of biodegradable materials and these influences do not go well together, but it is not impossible. Some examples of biodegradable buildings exist, but the percentage is low. Known by research is the fact that the use of biodegradable materials can reduce the energy consump on and CO2 produc on by 20%. The building industry nowadays is s ll responsible for 40% of the energy consump on in Europe and 45% worldwide. One of the key means to reach the goal of emi ng 50-85 % less CO2 by 2050 is to reduce the energy consump on in buildings (ÜrgeVorsatz & Metz, 2009). By the use of biodegradable materials this target may come in reach. (Mohanty, Misra, & Drzal, 2005). (Kempen, 2014) Important to know are the facts why these materials are not applied in the façade industry, does the façade industry not have the techniques to implement these materials and why has this industry not been improved or adjusted for these materials? The degradability of biodegradable FIG. 1.2.1 // BIODEGRADABLE FURNITURE BIODESIGNIN, 2013 FIG. 1.2.2 // FASHION INDUSTRY, BIODEGRADABLE SHOES BAILLY INTERIEURADVIES, 2011 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 1.2.3 // FAÇADE REQUIREMENTS KNAACK, KLEIN, BILOW, & AUER, 2014 // 15 materials can have a large impact in the building industry, the energy needed for the demoli on of biodegradable façades will be negligible to the demoli on of current used façades. On other levels, the biodegradable material cannot compete with other materials yet. Hence, the biodegradable material is seen as a ‘no go’ in the building envelopes (only some examples are known). Research will and is changing these uncertain es. Previous research is done on the availability of these materials, their implementa on manners in the building industry, their proper es and so on. A lot of knowledge is combined in order to be able to con nue improvements of biodegradable materials in the building industry. First we have to summarise the facts that cause the elimina on of biodegradable materials in the building industry. Centuries ago they had the knowledge to build a biodegradable house. Naturally, they had no choice, but due to the industrial revolu on and the new inven ons within the technology, they replaced the old materials. Main reason is the lost knowledge of how to use biodegradable materials. Thereby the inven on in biodegradable materials stopped and nowadays they are not able to pass the requirements for cer fica ons, which has an influence on the faith in these materials as a building material (Borgers, 2015). Next to that, the lifespan of biodegradable materials is rela vely short compared to other materials and biodegradable materials are also more sensi ve to weather condi ons. In Europe, and especially in The Netherlands, the weather condi ons are not op mal to apply these kinds of materials; people should learn how to design with these materials (Borgers, 2015). In addi on, biodegradable materials have some other adverse proper es when working with these materials. (Ganatopoulou, 2014) breathability & hygroscopicity (the property of a substance to absorb or to a ract water from the air) (Ganatopoulou, 2014). Besides the known materials, e.g. hemp, rammed earth, jute, etc., new invented biodegradable materials are wai ng to be implemented in the building industry. With all these new inven ons and growing knowledge, a biodegradable façade component is increasingly conceivable. Important is the assurance that a façade element has to offer, same for a biodegradable one. If a standardized façade element, consis ng out of biodegradable materials can offer this assurance, a lot of counterarguments for these materials can be eliminated. Therefore, research has to be done on how a biodegradable standardized façade element can be accomplished, which is comparable to other exis ng façade elements. Secondly, when can we call a material a biodegradable material? Some important condi ons of biodegradable materials are the renewable resources, the low embodied energy & CO2 emission, the degrada on of the material, thermal & acous c proper es and the 16 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 2 // PROBLEM STATEMENT 2.1 Main problem statement The importance of sustainability is (extensively) increasing in almost every industry. Within the building industry energy neutral buildings appear and ´clean´ energy systems are implemented. The focus of the use of sustainable façade materials is however minimal, while this is fundamental for every building. The contemporary products used in the building industry, provide on the one hand a high life-expectancy and durability along the building’s life-cycle, but on the other hand create a major waste problem when it comes to their disposal (Ganatopoulou, 2014). When biodegradable materials are used, the degrada on of materials occurs naturally, which results in less energy consump on and CO2 (Mohanty et al., 2005). the design process of the Enexis in Zwolle, they considered using bio-composite expanded cork, but the PIR composite had more advantages in their opinion (Geoij, 2014). Due to the lower fire resistance, the life span of 25-30 years that they could not guarantee and the cost for the tes ng they had to do. By these aspects they conclude the bio-composite to be 204% more expensive than a regular brick façade. The PIR was 138% more expensive but s ll affordable for Atelier Pro, also looking at the posi ve environmental impact compared to the reference (Fig. 2.1.1). Summarising this, it leads to the main problem: the limited use of biodegradable materials in the building industry. Within this thesis the focus will be on the integra on of biodegradable materials within the building envelopes. The low energy consump on is one of the mul ple advantages that occur in biodegradable materials, hence it should be applied more in the building industry to fulfil the goal of emi ng 50-85 % less CO2 by 2050. S ll, companies choose for less sustainable op ons, for example Atelier Pro. During FIG. 2.1.1 // ATELIER PRO COMPARISON FACADE POSSIBILITIES GEOIJ, 2014 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 17 2.2 Possible sub-problems As men oned in the research introduc on biodegradable materials also have some adverse proper es when working with these materials, like biological contamina on, moisture, pest infesta on, maintenance, low tensile strength, interior space quality, fire resistance, tes ng a façade element (cost) and colour limita on(Ganatopoulou, 2014; Geoij, 2014). The sub-problems can be linked to the inven on of a façade element consis ng out of biodegradable materials which is suitable for a par cular loca on, for this thesis set to The Netherlands, and which is comparable to the exis ng façade elements. The Netherlands has strict building regula ons making it more difficult to realise a cer ficate biodegradable façade element. 18 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 3 // GOAL 3.1 General goal The General objec ve which is related to the main problem; the limited use of biodegradable materials in the building envelopes can be framed in the following sentence: “Enhance the use of biodegradable materials in the building envelopes”. To reach this goal, sub-objec ves are set which are directly connected to the sub-problems. Men oned is the inven on of a biodegradable façade element. A façade element has a lot of requirements to fulfil, which will ensure the moisture resistance, the fire resistance, the tes ng, and other requirements. Inven ng such a façade element does not mean reinven ng the wheel, but looking into possibili es of replacing materials in exis ng façade elements by biodegradable ones which will direct to a final design of a biodegradable façade component. Next to that, looking into the exis ng biodegradable façade components, how can those be improved to fulfil the requirements and what are the shortcomings. 3.2 Final products The final product will be a proposal of a biodegradable façade element comparable to the most industrialised currently used façade elements. The big difference is the percentage of biodegradable material. The aim is to have an element consis ng out of biodegradable materials for 100 percent, when this is not feasible the aim will decrease to a percentage as high as possible. 3.3 Boundary condi ons Boundary condi ons must be set in order to specify the research direc on, reduce the research field and to be able to examine the thesis during the design part and at the end of the research. The boundaries related to this master thesis can be divided in the following aspects: a. Loca on & quan ty First of all the material specifica on, due to the number of different biodegradable materials it is wise to screen out some (groups of) materials. Important for the biodegradable materials that are suitable for the design part is the quan ty and loca on of the raw material. Quan ty is important to be able to have enough materials to make façade TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN components. The loca on is more a cost aspect. Centuries ago they already build with the materials available within a small radius, that of course due to the lack of transporta on possibili es. But why would you import bamboo from China if you have local materials which are useful as well. S ll, some examples are seen. The brick is a ‘home’ made product in the Netherlands and impossible to circumvent, when crossing the country. The first boundary is set, the material must be surplus or available in large numbers within a radius that must be set. In the Netherlands and surroundings the following materials are available: Mud bricks, earth bags, lime stone, cellulose, recycled paper, flax, hemp, seaweed and straw (Ganatopoulou, 2014). b. Biodegradable material Already men oned is the goal of the percentage biodegradable materials in the façade element. It can be that for several reasons a non-biodegradable material is needed. An example, wood is o en applied in the façade industry but treated to be able to stand the weather condi on. This is done by impregna on or a layer of paint. This results also in annual maintenance. For these problems, the best op on, looking to biodegradability, will be chosen. An op on can be to Platonise the wood, a more sustainable way of protec ng wood (Alblas, 2014). c. Exis ng façade component To make the standardized biodegradable façade component comparable to currently used façade elements, these façade elements will be used as basic principle. Besides, a (high) repe on factor is required to make a success, which is feasible when comparable to contemporary façade elements by produc on technique, way of fixa on and more. Research will be done on the façade components used in the Netherlands. Thereby, the requirements for the biodegradable materials are set by the façade element. d. Climate Requirements for a façade strongly depend on the loca on. The specifica ons of the façade are very important to know which materials are suitable, so is the specifica on of the climate. The research will be focussed on the building envelopes in The // 19 Netherlands, therefore we need to understand the Dutch climate. The Netherlands have a temperate mari me climate with cool summers and moderate winters. Day me temperatures vary from 2°C-6°C in the winter and 17°C-20°C in the summer. With rain during all seasons, hence water resistance is very important. (WEATHER ONLINE, 2014). e. Thickness Also important is the thickness of the standardized façade component. If a biodegradable material has insula on poten al, but it means that the total dimension of the façade will be around 700 mm, the material is not suitable for insula on in the building envelopes. The maximum dimension for the standardized façade component must be set by the original façade component. It is not allowed to deviate too much from the original thickness. The requirements for the Rc-value are changed lately, which cause that some currently used façade systems will not meet this new requirement of 4.5 m2K/W (BRISbouwbesluit-online, 2015) Product level f. Durability Durability is an important factor for Biodegradable materials. Some have a longer life span than others. But to make them saleable they have to be capable to a set serviceability. Within the Enexis project they had to guarantee a life span of 25-30 years (Goeij de, 2012). The final boundary is the minimum life span of 25-30 years for the façade element. 3.4 Hypotheses The hypothesis of this thesis is about the product level of façade elements. Known is the product level of currently used elements and also known the level of industrialisa on. To shi biodegradable façade elements to the same spot (red in the matrix) as currently used elements, the use of biodegradable materials in the façade industry will be increased (Fig. 3.4.1). The focus must be on how such a biodegradable façade element can be realised. CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts ! Building FIG. 3.4.1 // HYPOTHESE OWN ILLUSTRATION 20 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 21 4 // RESEARCH QUESTION 4.1 Research ques on The research ques on is derived from the problem statement, the limited use of biodegradable materials. Stated is the similarly biodegradable façade element as the ‘missing link’ in the façade industry to enhance the use of biodegradable materials. This leads us to the main research ques on: • How can this biodegradable façade component be produced? -What kind of shape is possible for the material(s)? -What kind of process is suitable for this material? -Which combina on of materials will be most suitable? “How can biodegradable materials form a façade component, which is comparable to currently used façade components, to enhance the use of biodegradable materials in the Dutch building envelopes?” In order to be able to answer the main ques on, sub ques ons must be set. The sub-ques ons are: • What kind of façade elements are used in the Netherlands -What are their characteris cs? -Do they already partly consist out of biodegradable materials? -What are the used techniques? -How are they produced? • What are the criteria for façade elements in The Netherlands? • Which biodegradable materials are already available materials on the market? -Which are already used o en in the building envelopes? -Which biodegradable materials have a lot of poten al for the building industry in the Netherlands? -What is the origin of the material and the availability? -What techniques and elements are used in this industry? • What proper es does a biodegradable material need to func on in the exis ng façade components? -What are the requirements of the layer? -Is it an interior or exterior layer or in between? 22 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 5 // METHODOLOGY 5.1 methodology The methodology of this research will focus on improving exis ng biodegradable façade components to make them comparable for the current building industry and at the same me looking in the exis ng façade industry, which will result in an industrialised biodegradable façade element. To fulfil this research, different types of methods must be used to understand what is already there, what do people miss and/or need and what is possible in the combina on of biodegradable materials and standardized façade components. The research is divided in 3 main parts, research part I, research part II and design (Fig. 5.1.1). Fig. 5.1.2 establishes the analysis approach of research part I, where the focus will be on the analysing of exis ng façade elements, biodegradable ones and non-biodegradable ones. In the second research part the focus will be on one material and the analysing of the techniques used in this specific industry. How do the exis ng elements work, which criteria must they fulfil. Next to that, two interviews will be taken by people from the industry. The design part is about recommenda ons for the exis ng element, the poten als for this industry and the pi alls. In RESEACRH I this part a case study will be chosen to compare the current industry with the proposals for the biodegradable elements. It will also summarise the conclusion of the recommenda ons given, in what condi ons the elements will fulfil the best. The analysis form Research part I will mainly contain of research to biodegradable materials and to exis ng façade components. To see what poten al there is and which exis ng façade elements can be improved into more industrialised and degradable façade elements. Some façade elements already are partly biodegradable and others consist out of nondegradable materials. Both fields will be included in this research, to see the poten al of the used techniques in combina on with biodegradable materials. The aim during this research is to make them 100% biodegradable if feasible. RESEACRH II ExisƟng facade elements Techniques Materials DESIGN Analysing techniques ExisƟng elements Criteria Interviews How fulĮl criteria Recurring problems Case study SoluƟons FIG. 5.1.1 // GLOBAL RESEARCH APPROACH OWN ILLUSTRATION 2. 1. BIODEGRADABLE MATERIALS BIODEGRADABLE MATERIALS EXISTING FACADE COMPONENTS EXISTING FACADE COMPONENTS EXISTING FACADE COMPONENTS BIODEGRADABLE MATERIALS EXISTING FACADE COMPONENTS BIODEGRADABLE MATERIALS Ϭй/K'Z> (EXISTING FACADE COMPONENTS) BIODEGRADABLE MATERIALS ϭϬϬй/K'Z> FIG. 5.1.2 // GLOBAL SCHEME ANALYSIS PHASE, RESEARCH PART I OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 23 5.2 Research methods Literature will be the main research method in this thesis. This includes books, journals, lectures, ar cles and other scien fic publica ons. To find this literature I use the Libraries situated in the Architecture Faculty and the University Library. Next to that, Google Scholar is a big source for related literature. For other informa on as related projects, new invented biodegradable materials and suchlike I will use the internet. CES will also be an informa on source for material proper es, which func on can a material fulfil and which not. 24 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 6 // RELEVANCE 6.1 Societal & scien fic relevance Every year 130 million tonnes of building material is put into circula on, at the same me 16 million tonnes (over a ¼ of new materials) of building waste arises. By making use of renewable and recycled sources the life cycle of building materials can be closed. Biodegradable materials have renewable resources which will be reproduced by nature during life me of the material. (When biodegradable materials will be used, the three main environmental problems; deple on of resources, ecosystem degrada on and harm to human health will decrease (Fig. 6.1.1). (Anink, Boonstra, & Mak, 1996; Dobbelsteen & Alberts, 2005) Figures 6.1.2 & 6.1..3 establish the rela ve importance of building materials for the energy consump on in the building industry. The biggest part of the environmental cost is caused by energy consump on, almost 80% (lifespan of 75 years). But when speaking of office buildings, which have an average life span of 20 years, the environmental cost of energy consump on and building materials is almost equal. To decrease the environmental cost, biodegradable and other sustainable materials must be applied in the building industry. (van den Dobbelsteen & Alberts, 2001) 6.2 Relevant research As men oned in chapter 6, this topic is derived from two previous theses. Their focus was on showing the cons and pros of applying biodegradable materials in the building envelopes and the poten als these materials have in the building industry in The Netherlands. Their theses are fundamentals for my research, to develop biodegradable façade components. Related research or projects in the building industry are the Osirys project and projects of BioBuild. Osirys is a safe, energy-efficient and affordable new eco-innova ve material façade component, which is s ll in the design and development phase (Osirys, 2015). They also want to develop new products for FIG. 6.1.1 // THE POSSIBLE DEGRADATION OF ENVIRONMENTAL PROBLEMS BY BIODEGRADABLE MATERIALS DOBBELSTEEN, 2005 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 25 facades and interior par on, like bio-composite profiles (Osirys, 2013). This new technology is also men oned by BioBuild, showing poten al for extruded biocomposite profiles within the near future (Dzalto, 2014). My thesis exists of two levels (biodegradable materials and façade components) which will merge into one another. Thereby companies like Ecova ve are also related to my research (Ecova ve, 2014). They make products with a lot of poten al for the biodegradable façade industry. These inven ons, which show great similari es to current materials, will be significant to this research. 6.3 Addi on of research Apparently, the current biodegradable façade elements do not fulfil wishes of the industrialized building industry. Thereby the elimina on of these materials stays and the big energy consump on stays as well. By equate the biodegradable façade elements to the current façade elements, looking into a product level of building part, the use of these materials can be enhanced. 26 // FIG. 6.1.2 // SPREADING THE ENVIRONMENTAL COSTS, ASSUMING A USEFUL LIFE OF 75 YEARS DOBBELSTEEN, 2005 FIG. 6.1.3 // ENVIRONMENTAL COST VERSUS USEFUL LIFE TIME DOBBELSTEEN, 2005 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 27 2 // RESEARCH PART I 28 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // EXISTING FAÇADES 1.1 The selec on The analysis of exis ng façades will contribute to knowledge on how to improve façade elements for the use of biodegradable materials and to establish what is currently missing in the façade industry. The purpose of analysing the façade elements is to conclude why we use the façade elements that we use, what the similari es are and benefits of these elements. Façade elements which use a biodegradable material will also be analysed. The same principles for these elements, involving the similari es and what are the benefits, but more important the differences between the two façade groups are men oned in this thesis. When the differences are specified, the missing elements can be pointed. This involves what kind of proper es should be improved, what kind of dimensions an element should have and what level of prefabrica on is needed. Briefly, it is about combining the benefits of currently used biodegradable facades and the benefits of currently used façade elements. Fig. 1.1.1 establishes the chosen elements for this analysis. SYSTEM 1. Name project: Slim fort 4,5 MATERIAL 1. System: ConƟnuous insulaƟon 2. Name project: Norwin SIPS 6,8 Name project: Enexis 2. Name project: Gasontvangst Name project: Modcell 5. Name project: Modcell 3. 4. System: Biocomposite element Name project: Gasontvangst Name project: Library Borne Material: Reed 6. Name project: Eco park Material: Isovlas insulaƟon Material: Straw with wood System: PIR composite facade 4. With the biodegradable elements the purpose is to delve into the way the material is used. For example is it used as an insula on, internal or external material and does it need weather or other protec on and how is it fixed in the element. What is important is the year when the façade elements were first introduced. For this analysis only façade elements realised during the last 10 years are relevant. Material: Straw with lime System: Simple smart connecƟon HSB element 3. The focus within the currently used façade elements will be on the system they use. What is important is the level of prefabrica on and the use of a smart system. Smart defines a newer system than most, a system which is easy to produce or simple to connect on site. With the analysis the goal is to inquire into the way they are produced but also to see if these systems have some poten al or poten al for implemen ng a biodegradable material. 7. Name project: Carriage house Material: Flax, hemp & bioresin Material: Earthbags & papercrete Name project: Seaweed House Name project: OpƟwin wood2wood Material: Seaweed Material: Wood & cork FIG. 1.1.1 // COMPARISON FACADE COMPONENTS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 29 1.2 Proper es To be able to compare the façade elements certain relevant proper es were selected. These proper es are divided into four clusters, general proper es, cost, environmental proper es and proper es related to the prefabrica on level. 1. General proper es Density Thickness element Thickness insula on RC-value Acous c quali es Fire resistance 2. Cost Shadow cost 3. Environment Embodied energy Environmental classifica on Percentage of biodegradable materials 4. Prefabrica on Level of prefabrica on Amount of connec ons on site Not all proper es are equally relevant to both façade groups (material & system). The environmental cluster is more relevant to the material façades and the prefabrica on proper es are more important for ra ng the system façade group. The proper es chosen are based on the movability of an element (thickness, weight, prefabrica on), general proper es to establish whether it is suitable (Density, acous cs and the fire resistance) and various other important factors regarding the environmental impact. The cost is to compare the shadow cost, which mainly explains why regular materials are preferred to biodegradable ones. The shadow cost method is a method to get an overview of the environmental price tag of the materials. This is done by mul ply the equivalent expressed environmental impacts by the shadow cost per environmental impact. 30 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 2 // RATING 2.1 Ra ng proper es These data are organized in a matrix, rated from 1 to 5 so that a clear overview is thereby created. The numbers are also indicated by bubbles and colours. The size of the bubble is related to the number given to the façade element and the colours refer to the clusters of the proper es. The ra ng varies per property, corresponding to the range of the circle, big always indicates the best preforming one and the smallest the poorest. There are five stages: poorest, bad, average, good and excellent. In every property this is translated to specific terms, explained below. Fire resistance The fire resistance is indicated by le ers, A indicates the highest level. Density The lighter the material or element is, the be er the movability on site will be. Hence, the most light weight element is the best rated. Low Light Heavy Thickness element The thickness is also important for the flexibility and movability of the element on site. The ra ng shows that the thicker the element is, the poorer the element will be rated. The same applies to the thickness of the insula on Slim Thick Rc-value Since the current year, January 2015 the requirements for the Rc-Value of a façade have been increased. The façade must have an Rc-value of a minimum of 4.5 m2K/W. Hence every Rc-value below is graded as unacceptable. High Unacceptable Acous c quai es The acous c is overall acceptable, the ra ng only shows the mutual ra ng. High Excellent Poor Shadow cost The shadow cost is scien fic LCA data. LCA stands for “LifeCycleAnalysis”, which is a method for calcula ng the environmental impact of a product from the cradle to the grave. The data is derived from nibe.info. High Embodied energy Only used for the material part, to establish the difference in the embodied energy. Low High Environmental classifica on The environmental classifica on is based on several environmental effects. In total there are 18 effects, including greenhouse effect, human toxicity and stench to men oned just a few (Nibe, 2015). This is indicated by numbers and le ers, for example 1A is the highest classifica on High Low Biodegradable materials Here the level of biodegradable materials is compared. Does the element consist of a high percentage of biodegradable materials or is it just a small amount? All Nothing Low TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 31 Level of prefabrica on Labour intensity is important from the point of view of cost and me in most of building projects. Therefore the level of prefabrica on is indicated. Prefab Craftsmanship Connec on on site The level of prefabrica on and connec on on site is more or less the same. What is most important is the difficulty of connec ng elements on site. This aspect show whether the connec on will be hard or easy to make. Easy Hard 2.2 Product level Next the ra ng of several proper es, the façade elements will also be categorized according to the level of components to see if there are similari es within the groups and if we can conclude whether there are important differences at product level. The product levels are divided into the following categories: material, commercial material, element, sub component, component, building part and building. The product level is plo ed in a matrix against the level of prefabrica on to gain a good overview of the façade elements chosen. What can be seen in Figure 3.1.2 is the separa on between categorizing the material façade elements and the system façade elements. Correla ons can thereby be made within the groups before looking at the façade elements as a whole. 2.3 Subdivision product level To order the façade elements the so called ‘product level’ arrangement can be used. The classifica on of the product level describes a set of building products with a defined lowest and highest boundary. Tillman Klein classified the following product levels (Klein, 2013): • Materials are defined as the base ingredients without any further shaping or treatment such as glass or steel. Composite materials are also included. 32 // • Standard materials are so-called intermediate goods, available in standardised form: Examples are I-beams, tubes, coils, bricks. • A commercial material is shaped for the purpose of a special product or project, such as extruded aluminium profiles for window frames or rubber gaskets designed for a specific purpose. • Elements are assembled from different commercial materials. An insulated glass unit is made of glass panes, aluminium spacers and silicone. • A sub-component is a closed assembly of elements with single func onal purpose, e.g. window frame, sun-shading device, building services component. • Components are described by Eekhout as an “independent func oning building unit….built up from a number of composing elements”. It is assembled “off-site and transported to the site”. A uni sed façade part is an example. • A building part is defined as a collec on of elements and components with iden cal technical main func on, meaning a curtain wall or the primary load-bearing structure of the building. • Building needs no further explana on. Added to the ‘building part’ product level can be, if the product is the separa on between in and outside in its whole. 2.4 subdivision level of industrialisa on In this product level matrix, also a classifica on is made on the level of industrialisa on versus the level of cra smanship. This will give a good overview of the difference between the façade elements. But how are these façade elements assessed? The five points in the matrix show the division for assessing the façade elements: 1. 100 percent of cra smanship, nothing is produced by industrial applica on. 2. Some elements are merged before transported to the site and materials are delivered in standardized materials. 3. Higher amount of industrialisa on, even components are part of this classifica on. S ll a lot of connec ons and finishing’s must take place on site, so cra smanship is needed. 4. Most parts delivered on site are big TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN industrialized elements, consis ng out of (sub) components. Only connec ons between the elements must be done on site. 5. Everything is industrialized, no big connec ons or finishing must be made. This classifica on is actually about a complete house delivered on site. Seen in the descrip on is the rela on of cra smanship and industrialisa on to the classifica on of product levels. The higher the product level and the percentage of these product level, the higher the level of prefabrica on. Prefabrica on depends on the level of processing and industrialisa on. The ra ng per façade element is described on the individual pages. Important to no ce is the part of the elements assessed for this matrix. In the material façade elements, the focus is on the biodegradable part of the elements. In the system façade elements, the focus is on the system and main material. The men oned parts will be highlighted on the individual pages. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 33 3 // RELATION MATRICES 3.1 Conclusion product level matrix The exis ng façade elements are analysed individually. Figure 3.1.1 establishes such an analysis. Looking at the façade product level matrix, one can conclude that most façade elements with a biodegradable material are situated on the le side of the matrix. The level of prefabrica on in these façade elements is either low or completely lacking. In rela on to the systems used nowadays, some examples are shown in the system matrix, which is situated on the right side. increased (Fig.3.1.2). Two of the seven material façade elements are situated on the right, which shows the bio composite façade and a façade element with Isovlas as the insula on material. What are the similari es between those two materials which the other material façade elements do not have? And is this a posi ve or nega ve property? The level of prefabrica on seems to be and is an important factor for the use of a façade element. When we want to enhance the use of biodegradable materials the level of prefabrica on must be Material Nr. 4- Seaweed house Element General discription Product level matrix Seaweed pillows were used as cladding for this holiday house on the Danish island of Læsø by architecture studio Vandkunsten and non-profit organisation Realdania Byg. The Modern Seaweed House revisits the traditional construction method in Læsø, where for many centuries trees were scarce but seaweed has always been abundant on the beaches. At one stage there were hundreds of seaweed-clad houses on the island but now only around 20 remain. The team enlisted Vandkunsten to design a new house that combines the traditional material with twenty-first century construction techniques. Detail Main material Product level Craftsmanship versus industrialisation The seaweed is a raw material. After drying the material it is packed together and the material can be used for the surfacing of the project. The material is also put in the prefabricated element as a loose material. The Seaweed is a material that needs a lot of adjustments on site, done by experts. The only prefabricated about this project is the wall elements insulated with the material, thereby the level of industrilisation is increased. General properties Kg/m3 75 Thickness insulation (mm) 345 Thickness element (mm) 650 Rc value (m2 K / W) 8,6 Seaweed 300mm Battens Roof covering Wooden roofboards Rafters with seaweed insulation 245mm Vapor barrier OSB 12mm Seaweed insulation 100 mm Fire resistant cotton Detail Shadow costs (euro) Initial construction cost (euro) Acoustics (dB) 4 2 2 5 3 4 Level of prefabricaƟon ConnecƟon on site 5 2 Biodegradable materials Shadow cost* 1 Fire resistance 5 Thickness insulaƟon Rc-value AcousƟc 4 kg/m3 Thickness element Environment raƟng 3 ConnecƟon raƟng Overall raƟng Rating property matrix Embodied energy Environmental classiĮcaƟon* System properties 1 Connections on site Most Fire resistance B2 Level of prefabrication Fair amount Product level Yes Function Low Environmental classification FIG. 3.1.1 // ANALYSIS MATERIAL NR. 4 SEAWEED OWN ILLUSTRATION 34 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 3.1.2 // OVERVIEW PRODUCT LEVEL OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 35 S1 M8 M3 IndustrialisaƟon Building parts Components Subcomponents Elements Commercial materials S4 M3 SS6 6 S4 Components Subcomponents Elements Commercial materials Standard materials Materials Building S2 S3 Product level Product level Building M1 1 IndustrialisaƟon Building parts M7 7 M5 CraŌsmanship CraŌsmanship Building parts Components Subcomponents Elements Commercial materials Standard materials Materials Product level Product level 4. Conclusion M2 M2 M8 Standard materials Materials 2. Materials & Systems M6 M1 1 M6 M4 M4 Product level IndustrialisaƟon IndustrialisaƟon Product level Building M7 7 M5 CraŌsmanship CraŌsmanship Building Building parts Components Subcomponents Elements Commercial materials Standard materials Materials Product level Product level M5 CraŌsmanship CraŌsmanship CraŌsmanship CraŌsmanship M4 M1 M1 M6 M2 2 S1 S1 S2 M8 S2 S3 ? S3 IndustrialisaƟon IndustrialisaƟon S6 S4 IndustrialisaƟon IndustrialisaƟon How comes the bio composite scores low, but it is known as a biodegradable façade? Biodegradable in this situa on does not mean it is compostable. Due to the plas c in this façade element it is in need of addi ves to start a chemical reac on, this means that it is an Oxo-biodegradable plas c. Oxobiodegradable is merely an accelerated dissolu on of visible par cles in invisible pollutants. (Nuijsink & Zijlstra, 2010) DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco 4 2 5 Also good, but must be as much as4 possible 3 5 Comes with thickness 1 1 1 5 5 Level of prefabricaƟon ConnecƟon on site Facade elements Embodied energy Environmental classiĮcaƟon Biodegradable materials Straw (with wood or clay) is the only material façade element that scores high in the environmental aspects and has to some extends prefabrica on possibili es. What do these Shadow cost If we take a closer look we can see that the benefits of the le situated material façade elements are mostly the high Rc-value and also they score high on the environment cluster. The high Rc-value comes with the thickness and the density of the elements, which is also why the other elements have lower Rcvalue but are rated higher on thickness and density. Said is by several straw experts that in the coming months all companies must thicken their façade elements to be able to meet the requirements of the future. Seen is with the façade elements rated by one that they already do not meet the requirements of today and thereby are unsuitable for the current façade industry. density, dimensions and connec ons on site. These proper es are the posi ve corresponding proper es between the right material group and the system façade elements. Density (kg/m3) Thickness element Thickness insulaƟon Rc-value AcousƟc quality Fire resistance 3.2 Proper es matrix Figure 3.2.2 shows the overview of the analysis done on the façade elements. First one shows the data, second the ra ng divided from one to five, third and fourth the ra ng translated to bubbles to create a clear overview. To see the similari es and difference between the divisions in the material group, the difference between the le situated elements of the material group & the system façade elements and to see the similari es and difference between the material elements situated at the right and the system façade elements we take a closer look to the matrix (Fig. 3.2.1). The individual ra ng of The Seaweed house is shown in figure 3.1.1, the other individual ra ngs can be found in appendix 1. 2 1 1 4 5 4 2 5 2 4 4 5 2 2 5 3 4 1 5 1 4 5 5 1 2 5 2 4 2 5 3 4 1 3 1 5 4 3 4 3 3 1 2 1 5 4 5 1 3 1 5 5 1 4 3 1 1 1 5 3 1 2 5 3 4 1 3 4 5 4 4 1 3 5 3 4 5 5 2 3 2 3 5 4 3 1 3 4 4 3 4 2 4 3 5 4 4 5 3 2 5 3 4 1 2 5 5 5 2 2 5 3 4 1 1 5 5 FIG. 3.2.1 // CONCLUSION MATRIX OWN ILLUSTRATION Men oned before are the missing elements in the biodegradable façade elements. The benefits that the right material façade elements have, which are needed for the improvement of the other façade elements, are mainly the level of prefabrica on. By increasing the level of prefabrica on some other aspects are important, for example 36 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 3.2.2 // PROPERTY MATRIX OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 37 ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork Facade elements ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthebags 8. Cork Facade elements 2 4 3 5 1 1 3 4 5 4 1 3 5 1 5 4 2 5 2 1 2 5 1 1 400 240 160 65,3 1100 1400 300 240 60 54,3 495 165 250 650 75 120 400 65,3 400 492 268,5 73 500 2 2 3 3 5 1 5 5 2 2 1 1 392 304 226 210 50 1000 140 140 345 392 400 420 5 5 4 2 4 5 1 4 5 5 4 5 3 3 2 3 4 3 3 3 2 3 5 5 - 9,8 - 6,48 - - 9,5 7,8 39 3,68 31 36,5 6,5 6,69 - 8,6 - B2 - 9,8 4,5 B2 55 6> 4 4 4 5 1 1 1 4 4 4 4 4 B2 B2 - B1 E Poor C B2 B2 55 9,85 B2 Density (kg/m3) Thickness element Thickness insulaƟon Rc-value AcousƟc quality Fire resistance 446,5 Shadow cost 3 5 3 5 1 1 3 4 5 5 2 3 5 1 5 5 2 2 5 Low Low Low Average Low Low Low Low 1 2 5 3 3 3 1 1 3 1 2 3 3C 2C 1A 2B - - 3A 3A - 3C 2C 2B 4 4 4 2 4 4 4 5 Most Most Most Few Most Most Most All Embodied energy Environmental classiĮcaƟon Biodegradable materials 2 - 7,42 3,53 2,28 - - 1,96 4,3 - - 4,65 4,28 5 5 4 1 5 1 3 1 1 5 4 4 5 5 4 3 Excellent None Excellent None Good Minimum Poor Good Poor Average Poor Fair am. Excellent Good Fair am. Level of prefabricaƟon ConnecƟon on site Good 3 4 2 3 4 3 3 3 3 2 2 4 5 5 3 4 4 3 4 4 3 4 4 Overall raƟng Environment raƟng ConnecƟon raƟng 3 5 5 4 5 2 3 4 2 4 1 1 3 4 2 2 3 3 5 1 5 5 5 4 2 4 5 1 4 5 1 3 5 5 2 1 5 5 4 5 2 1 1 2 1 5 2 1 3 3 2 3 4 4 4 4 5 1 1 1 3 3 4 4 4 4 4 3 2 3 5 5 Density (kg/m3) Thickness element Thickness insulaƟon Rc-value AcousƟc quality Fire resistance 1 Shadow cost 1 1 3 4 3 2 5 3 2 1 2 2 5 5 5 3 5 5 5 5 1 2 5 3 3 3 1 1 3 1 2 3 4 4 4 2 4 4 4 5 Embodied energy Environmental classiĮcaƟon Biodegradable materials 5 5 4 1 5 1 3 1 1 5 4 4 5 5 4 3 ϱ ϭ Ϯ ϯ ϰ WŽŽƌ 'ŽŽĚ Ύ&ŽƌƚŚŝƐŝŶĨŽƌŵĂƟŽŶŶŝďĞ͘ŝŶĨŽŝƐƵƐĞĚĂƐĂŶŝŶĚŝĐĂƚŽƌĨŽƌƚŚĞƐĞƉƌŽƉĞƌƟĞƐ ΎΎDĂŝŶůLJƌĞƚƌŝĞǀĞĚĨƌŽŵ͗'ĂŶĂƚŽƉŽƵůŽƵ͕͘;ϮϬϭϰͿ͘ ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork Facade elements ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork Facade elements Level of prefabricaƟon ConnecƟon on site 3.4 Availability & durability What is also important is the durability of the materials. When we look at Eleni’s handbook we can see that all of the materials score below average on durability (except for UV-radia on). How can we improve the nega ve aspects to be able to design a prefabricated biodegradable façade element which will last for over 20 years? The scope is set on the façade elements used in the Netherlands, not insignificant is the availability of the materials. Eleni rated all materials posi ve on availability, with straw, flax and papercrete as the most available materials. (Ganatopoulou, 2014) 38 // Tensile strenght Biocomposite ^ƚƌĂǁ &ůĂdž;ďŝŽĐŽŵƉŽƐŝƚĞͿ ^ĞĂǁĞĞĚ /ƐŽǀůĂƐ Seaweed Reet facade Isovlas Ϭ͕ϬϭͲϬ͕ϬϮDWĂ ϮϬϬͲϰϬϬDWĂ ϭ͕ϰϳĞͲϮDƉĂ ConnecƟon possibility ^ůŝŵĨŽƌƚƐLJƐƚĞŵ High density parts Earthbags & papercrete ŽŵƉƌĞƐƐŝǀĞƐƚƌĞŶŐŚƚ W^ Ϭ͕ϴͲϭDWĂ Straw Biocomposite ^ƚƌĂǁ ŽŵƉŽƐŝƚĞ ,ĞŵƉ ĂƌƚŚ WĂƉĞƌĐƌĞƚĞ Seaweed Reet facade Isovlas Ϭ͕ϭϲͲϬ͕ϰϴDWĂ ϭϯϴͲϮϬϳDWĂ Ϭ͕ϰϲͲϯ͕ϬϬDWĂ Ϯ͕ϬͲϱ͕ϬDWĂ Ϭ͕ϴϰͲϮ͕ϯϲDWĂ Earthbags & papercrete ^ŝŵŝůĂƌƚŽW^ ŽƌŬ Ϭ͕ϱϰͲϮDWĂ DƵƐŚƌŽŽŵ Ϭ͕ϰϵͲϭ͕ϴDWĂ Cork water resistand EŽƌǁŝŶƐLJƐƚĞŵ PrefabricaƟon Mushroommaterial Light weight look to the smaller components which we can implement, due to the fact that biodegradable materials cannot replace the material on its own. For the Slimfort system, cork and mushroom material is also compared. Known for mushroom material is that it is comparable to EPS, therefore this material can maybe replace the EPS in this system. Cork is also a good candidate, but this is heavier than mushroom material and EPS. This is only to show that not every biodegradable material is unsuitable. Fiber Compressive strenght Formability Light weight dĞŶƐŝůĞƐƚƌĞŶŐŚƚ 'ůĂƐƐĮďĞƌ ϭĞϯͲϮĞϯDWĂ Straw Compressive strenght The proper es of the materials are compared to the material used in the system. When it is in the same range it can be answered as suitable, otherwise it is not. One can see that all (except for bio composite) cannot meet the important requirement. To use parts of the system in a biodegradable façade element we need to ŽŵƉŽƐŝƚĞƐLJƐƚĞŵ Light weight 3.3 system versus material The systems are analysed for increasing knowledge about how the systems are applied and how they work. How can we use this informa on to increase the use of biodegradable materials in the façade elements? The first step is to see which requirements the materials need to replace the material in the system façade element. The main three elements are divided in several requirements, shown in Figure 3.3.1. For this analysis we only need the material itself, therefore they the main materials used are listed in the façade elements. Straw Biocomposite Seaweed Reet facade Isovlas Earthbags & papercrete FIG. 3.3.1 // SYSTEMS WITH BIODEGRADABLE MATERIALS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 3.5 Products handbook Eleni As men oned above, in the product level matrix a clear division can be established, not only between the two material groups but also between the material and the system group. To make the biodegradable materials more suitable for the façade market, they must be more equally posi oned compared to the system façade elements (Figure 3.1.2). The more the element is posi oned in the bo om right the be er chance of success. To support these result, the most developed (higher product level, higher level of industrialisa on) products form Eleni’s thesis are picked and placed in the same matrix as the façade elements. The products chosen are shown in Fig 3.5.1. The products ra ed as building product level are eliminated, because they are not buildings in total as a product level, see criteria on page 32 and 33. The set criteria for posi oning the products are apparently different from Eleni’s thesis, hence the product are shi ed to different posi ons to meet this review (Fig. 3.4.2). Established in Figure 3.4.3 is how the product coincides with the analysed products. Conclude can be that the groups coincides with material 1 and material 8 are most developed on product level and industrialisa on. Figure 4.2.6: Products level for sheep-wool products Figure 4.2.4: Products level for earthen products Figure 4.2.7: Products level for wood-fiber products Figure 4.2.5: Products level for straw products FIG. 3.5.1 // CHOSEN MATERIALS HANDBOOK ELENI GANOTOPOULOU GANOTOPOULOU, 2014 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 39 To have more profound results in the end of the research, the focus must be on one material. The ques on is which of the two groups has the most poten al? The one more developed on industrialisa on, the other more developed on product level. Can one say it is easier to improve the industrialisa on, due to the fact it is less depending on the proper es of the material? improvement of straw as a prefabricated material is less complex but the percentage of chance to succeed is also higher. Therefore this material has the most poten al and will be research further on. Straw has a big poten al which is derived from the fact that straw (with wood or clay is the only façade element that scores high in all the environmental aspects, it has the highest product level of the le material group (component) and has to some extend prefabrica on possibili es (Fig. 3.4.4). S ll, the prefabrica on is at a poor level due to the fact that some ac ons must be fulfilled on site to finish the façade as a whole. Building with straw is also becoming more and more popular and is on the right track of being accepted as a building material. For the other biodegradable materials the steps that must be made to upgrade to a prefabricated element are more complex (Fig. 3.4.4). Of course there is poten al as well in these materials, but the result will probably be around the same percentage of prefabrica on that straw already has. The Product level CraŌsmanship IndustrialisaƟon Materials Standard materials Commercial materials 1 Elements 2 Subcomponents Components Building parts 3 4 5 6 8 7 9 Building FIG. 3.4.2 // SHIFTING OF PRODUCTS ELENI GANOTOPOULOU OWN ILLUSTRATION 40 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN Product level CraŌsmanship IndustrialisaƟon M5 Materials M7 M7 M4 Standard materials M6 Commercial materials Elements M1 Subcomponents M2 Components M3 SM 6 3 S6 Building parts Building FIG. 3.4.3 // PRODUCTS ELENI COINCIDE WITH FACADE ELEMENTS OWN ILLUSTRATION Product level CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts Building FIG. 3.4.4 // CONCLUSION FURTHER RESEARCH OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 41 3 // RESEARCH PART II 42 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // TECHNIQUES IN PRACTICE 1.1 Straw building techniques The techniques used for building with straw vary by country. The countries which are mainly familiar with straw are Germany, Austria, England, France, Belgium, Canada and the Netherlands. Shown in the table below is an overview of techniques related to the country. (Strobouw, 2015b) In the Netherlands they decide by project which technique is the most suitable for the design (Strobouw, 2015b). Thereby, a lot of me is wasted during the design phase of a building, because the chosen technique decides the final outcome of the design. Due to the fixed dimensions of straw bales and the possibili es or limita ons the material offers. (Borgers, 2015) In the Netherlands they decide by project which technique is the most suitable for the project (Strobouw, 2015b). Thereby, a lot of me is wasted during the design phase of a building, because the chosen technique decides the final outcome of the design. Due to the fixed dimensions of straw bales and the possibili es or limita ons the material offers. (Borgers, 2015) To establish an idea about how straw can act as a building product, some proper es are summarised below. (Strobouw, 2015b; Minke, 2005) -Straw bales superfluous products from agriculture. It is therefore available and cheap. -Straw is a 100% organic material. -A straw bale wall is free of toxic substances. -Dimensions: ca. 480 x 360 x 800 mm -Weight straw bale 15-20 kg -Processing into walls is simple and safe. Straw bale construc on is therefore suitable for DIY. -Depending on the design, it is possible to build in short me. The finishing and detailing determine the required amount of work and thus to a large extent the cost. -The heat insula on is excellent (Rc> 7m2K / W). -The acous c proper es are good (Rw 55 dBA). -The plastered straw bales are excellent fire resistant (> B90). -During demoli on, no harmful substances are released. A er demoli on, only materials which are easy to process or reusable remain. -Straw bales cost around €15 per cubic meter. -Straw bales walls can last for over 100 years, if applied with good finish layers (Fig 1.1.1.). 1.2 Interviews To gain knowledge about the prac cal experiences two interviews are taken. The first interview is taken with Pim Hondeveld, the cofounder of Straw Block Elements, which is a more industrialised straw element compared to the way Rens Borgers builds with straw bales. This contrast is good to compare the different thoughts about the industrialisa on of this product as a building material. The results of these interviews and the introduc ons of the interviewee can be read on the next pages. For the full interview see appendix 5 & 6. FIG. 1.1.1 // TIMELINE STRAW BALE BUILDINGS, RETRIEVED FROM Minke, 2005; OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 43 2 // PIM HONDEVELD 2.1 Summary interview P. Hondeveld Pim Hondeveld is the co-founder of the Straw Block System, a building system which forms straw bales into a block with tonque and rabbet (Fig. 2.1.2). Thereby, the strength of the structure increases. Pim par cipated in a workshop for straw buildings and thought of how to improve the industry, hence the inven on of a more industrialized straw bale block. Most people build a straw bale house with raw straw bales and want to keep the industry like that, but that does not guarantee the quality of straw as a building material. He compares this industry to toys for children. When he was young you had wooden blocks to build a house, one push and the wall will collapse. His system is more comparable to Lego, with the snap-in construc on you cannot push one block out of the wall, which results in a stringer structure (Fig. 2.1.1). FIG. 2.1.1 // STRAW2 BLOCKS AS LEGO OWN ILLUSTRATION With this system it is important to determine the density of the bales. With the rated density you can calculate the amount of pressure the bale needs for op mized quality. Two guys from the TU Eindhoven are researching the op mal density of a straw bale, in order to deliver quality. The density is important for the RC-value and the load bearing capacity. Straw is in most projects only used as an insula on material, which is regre able because of the price and the capabili es the material has. Straw is produced in the Netherlands and thereby has the benefit that it is available in the surrounding area and does not need a lot of transport. Also the clay and lime render are available in the Netherlands and are natural products. The straw blocks are also cut smooth and thereby saves clay and lime render. This system only use two cen metres on both sides FIG. 2.1.2 // LINKED IN PROFILE PIM HONDEVELD LINKED IN, 2015 44 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN in contrast to the conven onal building techniques where they use more. Clay is not usually applied at the exterior because of the weather condi ons in the Netherlands, but in this project it is. Taken into account are the inwardly inclined walls and distance to the ground. Damage occurred by splashing rain, which can be fixed with a simple wipe of a wet sponge. This is also done inside where cracks occur, caused by fric on. You can compare it to cleaning your house, which cannot be done in current house interiors. Straw block is also applicable as a story high element, but not done yet. According to Pim this is caused by the fears and ignorance of people. O en men oned is the inadequate fire resistance, that it is a rac ve for mice and other pets and the price of the material. People think it is a cheap material, like three or four euros per bale and you can get it shaped as a block for that price. Thereby it a racts people with low budget, who in the end cannot pay it. Pim men ons that it is 23-30% cheaper than conven onal (straw) building industry, but people expect it cheaper than that. Due to those aspects, people choose currently used materials over straw products. What people do not know is the me they save, which can save money in the end. ‘The Steltloper’ for example could be built in a few weeks. The founda on only exists out of old round founda ons, crushed rubble and shells on top. Other material used is steel for the bo om part of the façade, thereby the clay will be protected from groundwater. zero to few adjustments, renewable resource and light weight. However, moisture is something that should be taken into account while construc ng. When the bale will be finished with a layer of clay, the percentage of moisture must be around 10%. A fact which cause fear to people to work with this material, but with a total closed element this aspect can be eliminated. Next to that, years ago people said wood carpentry cannot be done in this climate, but we learned how to deal with it because of the gained knowledge. Ignorance plays a big part for choosing known materials. Straw buildings are characterised by the lime render and clay finish, which does not show connec on seams. When using finished elements the final look should be taken into account. You can choose to use only a base layer of clay and add one later, use a wet sponge to maybe fix the seam or use another finish material like wood. The wet sponge technique can only be applied with pure clay, not in combina on with cement or lime plaster. Finally, important to men on is the designing of the building. When building with straw you have to take this into account while designing. The dimensions of the bales vary from 35 to 40 cen metres wide by 105 or 210 cen metres long. Making fi ng elements is not that hard, but avoid them as much as possible. In the design phase a en on should be paid at the connec ons, especially the connec ons with the frames. A more difficult part of making this building, and also in other straw buildings, is the roof. Pim chose to realise one the most difficult designs to show the possibili es straw as a building material. The roof could also be done in prefab so the roof would be easier to realise and take less me. According to Pim prefab will also contribute to change the image of straw and thereby enhance the use of the material. To convince the tradi onal building industry we need comparable elements, which have same criteria’s as currently used elements like dust-proof and ensuring a clean building site. Besides, straw shows benefits which currently materials do not, like low energy consump on, TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 45 3 // RENS BORGERS 3.1 Summary interview R. Borgers Rens worked for twenty years in the building industry (Fig. 3.1.1). He no ced the amount of spilled materials and quit this building industry. By his interest and involvement in nature, he preferred eco-friendly materials. Eco-friendly means to Rens the amount of energy needed to produce a material and threat the material respec ul, the less adjustments and transport the be er. Important is the involvement of the people, to build their own house and to know the origin of the material. According to Rens, one of the most important aspects to choose materials like straw. The technique used by Rens is a Post-and-Beam method, due to the lack of requests of selfsuppor ve straw projects. Arranging construc ons permits for self-suppor ve straw buildings is also harder than for projects where it is only applied as an insula on material. Rens says this is also caused by the building regula ons in the Netherlands, which is guided by some big families and stop this industry. Probably, because they cannot make money of it, or even lose money with it. Some projects show this is unjus fied. For example the Maison Feuile e in Montargis in France, built in 1921, which is lately renovated. When taking of some lime render, the building constructers found the straw bales totally intact a er almost 100 years. Rens mostly work with lime hemp, due its be er connec on capacity and the quality guarantee. Building with raw straw bales can cause poor connec ons and the quality of the bales is ranging and o en poor. Important are the length of the stalk and the sec on of the stalk. That is the reason bales are expensive if you want quality and thereby people lose their interest. Money is an important factor in the building industry, with a prefabricated element the labour intensiveness will decrease and thereby the price of realizing a straw building. The characterising of the straw building industry will change when industrialising it and also the amount eco-friendly materials according to Rens. He is afraid for green-washing and what will remains of the pure product when implemented in big building projects. Clay as exterior and interior finish will be 46 // FIG. 3.1.1 // LINKED IN PROFILE RENS BORGERS LINKED IN, 2015 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN difficult when applying it in advance. An op on can be to use foil in combina on with wood finish like they did in Amsterdam IJburg II. When applying foils in your element take into account you use a vapour permeable one. According to Rens, membranes will silt in a while caused by fine dust, which in the end cause big problems. 9 to 10 months of a year people produce more moisture inside a building than outside. Thereby, moisture transport will take place from in to outside most of the year. If the membranes cannot allow the moisture to pass through, accumula on of fluid will occur in the straw, which can cause serious consequences. Another disadvantage for people to eliminate straw as a building material is the thickness of the wall. But in the end straw can be applied in the slimmest way and s ll have a high Rc-value. The thickness of the wall is in that situa on comparable to a cavity wall, but has a be er insula ng property which saves money during the use phase. But before introducing new materials into the building market a lot of test should be done. In the Netherlands these test cost a lot of money and are not representa ve to what the material can really offer. In England they test the building before with small test like in the Netherlands, but they also test it a er finishing the project. This shows a good impression of the behaviour of the complete design. A lime hemp project in England was tested this way and showed be er results than tested the other way, up to 36%. With the lime hemp Rens makes blocks which have the same look as limestone, which is used o en in the building industry nowadays (Fig. 3.1.2 & 3.1.3). If this can be done with straw, making a comparable element, it will make a difference in the straw building industry, it will open doors. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 3.1.2 // LIME HEMP BRICKS COMPARABLE TO LIME STONE ATTENTUS, 2012 FIG. 3.1.3 // LIMESTONES HUZINK, 2009 // 47 4 // CATEGORISING ELEMENTS 4.1 Subdivision techniques Shown before is the subdivision of cra smanship versus prefabrica on (Fig. 4.1.2). Within these groups, as you can understand, is also a subdivision, which is for both groups the same. Important ques on within this industry is if you are building as non-self-suppor ng structure or as a selfsuppor ng structure? The first examples of straw buildings are mostly self-suppor ng structures made by hand and done Nebraska style. With this technique they stack straw bales and use wood for window and door openings. With the selfsuppor ve Nebraska technique, four failures by compressive strength must be taken into account: en re buckling, local buckling, fracture & shearing (Fig. 4.1.1)(Mulderij, 2009). rhetorical ques on is if straw is only use as an insula on material, does it loose its convic on as a building material. Pim Hondeveld says “straw only used as an insula on material is less interes ng. In terms of price it is not interes ng anymore when it is only used as a insula on material” (Hondeveld, 2015a). In the prefabrica on group there exist the same division, but with other used techniques. The non-self-suppor ng structures make use of a wooden panel, which ensure the stability and s ffness. This panel is later filled with straw bales and compressed a bit so you get as less openings/ leakages as possible. These panels are some mes covered with a thin base layer of clay, but mostly untreated transported to the building site. They are, just as with the cra smanship techniques, the clay is added on site, which is labour intensive and thereby cost a lot of money. Within the self-suppor ng techniques in the prefabrica on group several examples can be seen; one of them the prefabricated version of the Straw Block System, the second the Bala Box element and finally the Magwood element. These three examples differ from each other. FIG. 4.1.1 // FOUR FAILURES OWN ILLUSTRATION An example of a more modern variant of a self-suppor ng straw technique is the Straw Block System, designed and engineered by Pim Hondeveld. This system makes use of tonque and rabbet, he compares this system with the Duplo of Lego system. The regular used self-suppor ng system is a stacking normal wooden blocks, if you press one in the middle the whole wall will come down. With a wall build out of Duplo blocks, they interlock and thereby create higher stability and s ffness (Hondeveld, 2015a). The non-self-suppor ng system is a technique where wood is applied for the main structure of the building. The straw bales are only used as an insula on material (Minke & Mahlke, 2005). The 48 // Magwood makes use of a li le amount of cement in the lime render. Thereby they create a structural panel, whereby a sandwich construc on is realised, but by the cement in the outer finish layer the evapora on func on decrease (Strobouw, 2015b). This should be taken in mind when designing with straw, due to splashing rainwater and moisture damage by cleaning water or unexpected leakage. Hence, determining the distance between the ground-level and also the distance between the bo om layer of straw bales and the finished floor inside the building is very important. The Bala Box is also a system where they make use of a sandwich- construc on, Bala Box says “Two natural elements, straw and wood make this prefabricated element for a healthy and efficient construc on. The pressed straw gives it great insula on and wood structure” (Bala-Box, 2015). TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN CRAFTSMANSHIP NON-SELF-SUPPORTING SELF-SUPPORTING STRUCTURE SELF-SUPPORTING STRAW GENERAL NON-SELF-SUPPORTING PREFAB STRAW S STRA BLOCK SYSTEM KREATIVER HOLZBAU POST-AND-BEAM NEBRASKA DIRK SCHRAMER MAGWOOD EXAMPLES IN-FILL CUT TECHNIQUE MODCELL STRAW BLOCK SYSTEM BALA BOX FIG. 4.1.2 // CATEGORIZING STRAW TECHNIQUES AND ELEMENTS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 49 The Straw Blocks System of Pim Hondeveld is compressed straw bale element. The straw Bales, a er shaping and sawing of the sides, are pu ed together and compressed (more than in regular straw bale elements) to an element. The higher density ensures more stability and the Rc-value is s ll high. Research is going on to the op misa on between the density and the Rc-value of the straw bales. By sawing both sides of the straw bales the percentage of clay needed for the finishing is decreased, so less raw material is needed (Fig. 4.1.2) (Hondeveld, 2015a). (Hondeveld, 2015b) of the faced construc on is 5400 mm by 2650 each floor. The façade construc on consists of a 100 mm prefab concrete wall, cavity wall of 100 mm with 80mm Rockwool insula on and facing brickwork 100mm. 4.2 Analysis exis ng straw elements A case study will show the differences between these techniques and groups. What is really the most energy efficient one, which one is the cheapest, the fastest which one will enhance the use of the biodegradable straw? Each subdivision will be analysed. Figure 4.1.2 establishes the first part of the analysis done on the exis ng straw elements. The analysis shows for example the percentage of realised buildings in Holland (Strobouw, 2015a), the applied finishing layers and the es mated price per square meter. The case study will be a typical Dutch Vinex loca on, an average size and in the Randstad. The Randstad is chosen for the high percentage of buildings needed and build every year in the Netherlands. This because transporta on cost must also be kept in mind. If the loca on was situated in the east of The Netherlands, the transporta on cost will probably be lower because of the loca on of the grain fields. The main goal of this thesis is, the enhancing of the use of biodegradable materials in the façade industry. For enhancing the use of these materials we have to compare within a loca on where a lot is and will be build and that is in and around the Randstad. Chosen is the “Duingras” residen al building situated in Hoek van Holland. This building is completed in April 2015 and thereby it meets nowadays requirements, which makes it a suitable building to compare to residen al buildings made out of straw. The size of the case study is like average row houses in the Netherlands, dimension 50 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN STRUCTURE STRAW FINISHING RATIO MATERIALS €/m2 (DIS)ADVANTAGES TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN PERCENTAGE REALISED IN THE NETHERLANDS FIG. 4.2.1 // ANLYSIS STRAW ELEMENTS OWN ILLUSTRATION // 51 € 230 exc. BTW inc. man-hours ADVANTAGES “Do-it-yoursels” system Cost-eīecƟve Less wood SBS less clay needed € 215 exc. BTW inc. man-hours DISADVANTAGES Building permit Dirt building site Maximum Ňoors (1-2) ADVANTAGES Building permit Placement elements Less labour intensive Applicability limits € 290 exc. BTW inc. man-hours DISADVANTAGES Only insulaƟon Dirt building site No complete element 75 % Straw bales 85 % Straw bales 74 % Straw bales ADVANTAGES Building permit “Do-it-yoursels” system Cost-eīecƟve 10 % Clay/Lime render 10 % Clay/Lime render 10 % Clay/Lime render DISADVANTAGES Only insulaƟon funcƟon Dirt building site 15 % Wood 5% 30 //30 Wood 30 //30 60 // 40 16 % 78 // 30 60 // 40 60 // 40 MODCELL Wood 30 //30 30 //30 20 //20 DIRK SCHRAMER KREATIVER HOLZBAU 3 of 50 buildings - 6% CUT TECHNIQUE NEBRASKA STRAW BLOCK SYSTEM PREFAB NON-SELF-SUPPORTIVE 9 of 50 buildings - 18% 30 //30 IN-FILL SELF-SUPPORTIVE 36 of 50 buildings - 76% 30 //30 POST POST-AND AND -BEAM BEAM NON-SELF-SUPPORTIVE CRAFTSMANSHIP SELF-SUPPORTIVE 60 // 30 55 // 20 88 % Straw bales € 300 exc. BTW inc. man-hours ADVANTAGES Clean building site Dust-proof Less raw materials Less labour intensive 9% Clay/Lime render DISADVANTAGES Building permit maximum of 2-3 Ňoors 3% Wood 30 //30 BALA BOX STRAW BLOCK SYSTEM 20 // 20 30 // 30 0 of 50 buildings - 0% MAGWOOD 4 // DESIGN 52 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // CRITERIA 1.1 Criteria For the building industry and for the straw building industry some main criteria are set. These criteria are used to evaluate the exis ng façade elements (Fig. 1.2.1). 1. Dimensionally stable 2. Func on straw as a building material 3. Psychological 4. Waste material/biodegradable façade 5. Weight 6. Water ghtness 7. Thickness element 8. Fishing layer 9. Confidence client a. complexity b. Risks c. Produc on me element d. Costs e. Dust-proof/clean building site f. Technique g. Building speed h. Image 1.2 Criteria explana on 1. Dimensionally stable When building with straw the size of the bales that will be used must be taken in mind. Due to the set dimensions the design is limited in sizes. A window, for example, cannot be closer to a floor then 360 mm. 360 mm is actually the smallest size to take in mind. For small spaces loose straw can put between, but will not have the small density as the other straw bales and this will become the weakest link. and manoeuvrability. (+ = variably, - = not variable) 2. Func on straw as a building material 82% of the straw buildings in the Netherlands are non-self-suppor ve (Strobouw, 2015b). In this situa on it is only used as an insula on material, which is less interes ng looking at the price(Hondeveld, 2015). The benefit the material offers, using it as an insula on material and as the building structure, must turn to good account. (+ = mul ple func on, - = one func on) 3. Psychological The image and the confidence of the client are TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN related to the psychological aspect. Take in mind that convincing the building industry will take me. People will prefer known materials over newmaterials, even it proofs to be be er, more ecofriendly or something else. As long as the examples stay limited, it will be hard to convince people to buy a straw building instead of a concrete one. The psychological effect is hard to es mate, also it depends which point of view you take. Due to the goal, the point view will be set from an average building contractor. (+ = plausible, - = not plausible) 4. Waste material/biodegradable façade Straw is a biodegradable material and will not cause demoli on waste. When designing with straw no materials must be added that eliminate the degradability of the material. (+ = biodegradable/eco-friendly, - = not biodegradable/eco-friendly) 5. Weight Men oned is the weight of an element to improve the building speed. Straw is a very light weight building material, which is a huge advantage for the building industry. This has not only influence to the weight of the elements but also influence on the founda on, which can be designed less heavy. (+ = lightweight materials, - = heavy materials) 6. Water ghtness When building with loose straw bales, the building site should be covered to protect the bales or they should be covered with a (bases) layer of clay. Next to that the water ghtness of an element, which can be done with clay or foil, taken in mind the vapour openness of the façade construc on. Foil is applied o en in the façade industry, because it is available but people must rethink the value of this material. (+ = water ght on building site,- = not water ght when supplied on building site) 7. Thickness element The elements must be able to place on their side, in that way they will be comparable to currently used elements. The comparing is important, further explained in ‘confidence client’. (+ = normal thickness, - = thicker than current facades) // 53 8. Finishing layer If straw will be implemented o en, it is important that there are several ways of finish layers that go with the current Dutch image, thinking of wood or different ways or relief in lime render. (+ = mul ple possibili es of finishing layers, - = one finishing layer) 9. Confidence client The goal is to enhance the use of straw, to implement in modern buildings of Tom, Dick or Harry. For this the contractor must know what he buy and has to belief in the material. Nowadays straw is seen as a material that has poten al but only for small individual projects because of the labour intensity, the lack of knowledge and more. Important is to make it comparable to other materials used, to show and convince the building industry for building with straw as much as possible. The following aspects will contribute to the confidence of the client. (+ = average good, - = average poor) a. Complexity The complexity of the element must be comparable to exis ng elements. In this way people will be able to place it without extra course or training. It is also important to keep the process as cheap as possible. (+ = simple, - = complex) b. Risks Straw is known for some risks, like mice, mould, pests and fire resistance. These are true when the material is not protected properly. Lime render is a biodegradable material which most of me is the finfish layer of a straw bale. This protects the straw from mice, pest, moulds and fire (fire resistance 90min, more than minimum requirement) (Brandveilig.com, 2015). The only risks this material has is the cracking caused by fric on with wood or other materials, like you have in houses nowadays. The difference is that with clay you only need a wet sponge to swipe and the crack is gone, like cleaning your wall. (+ = few/normal risks, - = more risks like self-suppor ve) c. Produc on me element The produc on me is important to the final cost of an element. This will be higher for prefab elements than straw bales. But the produc on me should weigh to building speed and total of man-hours. (+ = easy/quick produc on, - = difficult produc on) 54 // d. Costs The height of the costs is mainly determined by the labour costs. Therefore, important is to see the level of difficulty. Some mes companies will pay more, if it gives more added values. An example, a straw element will be more expensive, but has the benefit of a clean building site and easier to place on site. Costs are important, but also quality and added values. (+ = normal/cheap, - = expensive) e. Dust-proof/clean building site A disadvantage of raw straw bales is the mess it leaves at the building site. With prefab elements a base layer of clay is added to make it partly moisture resistant and dust-proof. When covered total it will be totally moisture resistance and dust-proof. This will contribute to enhance the use of the materials. (+ = no dust, - = non dust proof) f. Technique Related to the complexity is the technique used for the elements, the way it is produced but also the fixa on needed on site. Which kind of technique is use and how many me or complexity is included. (+ = easy produc on technique,- = difficult produc on technique) g. Building speed Already men oned are the costs which are dependent on several aspects, similarly building speed. The amount of man-hours for placing elements and raw straw bales will have big influence to the total costs. Therefore, a en on should be paid to aspect like size and weight of the elements. (+ = fast/good, - = me consuming) h. Image Abovemen oned is related to the image of straw buildings. The image of eco-friendly, energy neutral and more also has the nega ve side to some people. People think it is overrated, a sales pitch and as a result s ck to regular materials. The image is also about the nega ve aspects ‘known’ of straw. Even when is proofed to be fire resistant and not a rac ve to mice, people doubt about the credibility of the material. (+ = no bad image,- = bad image) These criteria are also compared to the opinion of the two interviewees, in Figure 1.2.2 is established if they agree or disagree. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 1.2.1 // ASSESSMENT CRITERIA OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 55 H. IMAGE G. BUILDING SPEED F. TECHNIQUE E. DUST-PROOF/CLEAN BS D. COST C. PRODUCTION TIME B. RISKS A. COMPLEXITY 9. CONFIDENCE CLIENT 8. FINISHING 7. THICKNESS 6. WATER TIGHTNESS 5. WEIGHT 4. WASTE MATERIAL 3. PSYCHOLOGICAL 2. FUNCTION STRAW 1. DIMENSIONALLY STABLE 0. OVERALL RATING + DO-IT-YOURSELF --- ++ ++ - + + -- + + - - INCLUDING MAN-HOURS NON-SELF-SUPPORTING CRAFTSMANSHIP + DO-IT-YOURSELF ---- - INCLUDING MAN-HOURS + ++ ---- ++ ++ -- + --- SELF-SUPPORTING - + + + ++ -- + + + + + o - + NON-SELF-SUPPORTING PREFAB - + + + + -- ++ ++ + + + - + -- + SELF-SUPPORTING ++ ++ ++ ++ -- ++ + ++ ++ + ++ + --- ++ ++ + ++ SELF-SUPPORTING CASE STUDY CRITERIA 1.Dimensionallystable// agree PIMHONDEVELD Thedimensionsofthebalesaredecisivefor thedesign.Importanttotakeinmindwhile designing. RENSBORGERS Strawcannotbechosenattheendofthe designfaseasabuildingmaterial,duetothe dimensionalstability.Architectmustknow howtodesignwiththeproduct 2.Functionstraw// disagree Implementingstrawonlyasainsulation materialisuninteresting.Thepriceofstraw balesistoexpensiveforthat.Also,whynot useallpossibilitiesthismaterialoffers. IntheNetherlandsstrawbalesmostofthe timeareimplementedonlyasaninsulation material.Requestingaplanningpermissionis mucheasierinthisway. 3.Psychologically// agree Thepsychologicalaspectisalsocausedby theignoranceandthedisadvantegesknow forthismaterial.Butunknownisthatthese disadvantagesarenotthere. Beforementionedisthepolitics,inthe Netherlandsthebuildingregulationsstop thegrowthofstrawasabuildingmaterial onlybecausetheycannotearnmoneywith it. 5.Weight// agree Strawisalightweightmaterialwhichensure Theweightofstrawisahugebenefit,which alessheavierfoundation.Sometimes,same shouldbetakenadvantageof. intheStelteloper,itdoesnotneeda foundation. 6.Watertight// disagree Useabaselayerofclaytoavoidmoistureas Whenyouchoseforworkingwithfoils muchaspossibleandtheweightof insteadofclayasawaterbarrier,takein elements. mindhowyoushouldapplythis. 9.Confidenceclient// agree Duetothelackofknowledgeandbythe ignoranceofbuildingconstrcutors,itisnot implementedinthebuildingindustry. 9.BRisks// agree YouhavetoensurethestrawwillnotgetwetQualitymustbeexamined.Touseitasa andwhenworkingwithclayitcancrack.This buildingmaterialyouneedgoodstrawwith iseasytofuxwithaswipeofawetsponge. holloestaksandagooddensity. 9.CProductiontime// disagree Thisprojectcanbedoneinafewweeks, TheinͲfillandpostͲandͲbeamprojectstakea whenproductionwillbedoneinlarge lotoftime,butdonebypeoplethemselve numbersandusingmachines.theydon'thavetopayformanͲhoursand theycanputowneffordintheirhouses. 9.DCosts// agree Theprebaricatedelementscost250Ͳ275 euro'spersquaremeter 9.EDustͲproof// agree Strawcauseadustbuildingsite,toavoidthis Theywanttohaveclosedcleanelements, asmuchaspossibleyoucouldapplyabase whicharecomparabletoexistingelements. layerofclayandtoavoiditcompletelyyou shouldhaveaclosedeleement. 9.GBuildingspeed// agree Prefabwillcontributetothebuildingspeed DuringafillͲinstrawbuldingproject,most ofastrawproject.Theroofwillbethemost timeͲconsumingisplacingthestrawbalesin timeconsumingelement. thestructure.Elementswilladvancethe buildingspeed 9.HImage// agree Thecraftsmanshipcausesanimagewhich Theimageofthickwallsisseenasanegative willnotcontributetoenhancetheuseofthe aspect.Whenthebalesareplacedonthe slimmersidethethicknessisclosetothe material.Pimtriestochangethiswitha tichknessofcurrentwallinthebuilding moresimpleindustrialisedtechnique. industry,butasinglewall. Ignorance,cost,lobbyandpoliticsarethe maincausesabuildingconstructorisnot implementingthematerial.Whena comparableelementismade,thecanbe convincedofthepossibilitiesofstrawasa buildingmaterial. Strawcostonly20euro'spersquaremeter, butwiththistechnique(inͲfill)peoplemostly buildtheirselfbecauseofthelabour intensity.Otherwisethecostsofsucha projectwillincreasealot. FIG. 1.2.2 // COMPARING OPNION INTERVIEWEES OWN ILLUSTRATION 56 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1.3 The assessment The straw elements are tested on the basis of the set criteria, Fig. 1.3.1 establishes the results. Conclude can be that the prefab elements are the most comparable elements. However, the difference between the straw element and the element from the case study differs on some important criteria. For further development and recommenda ons the focus will be on one element. Due to the fact that straw can fulfil two func ons as a building material, this offer big benefits (less material is needed, cost) and thereby will contribute to the persuasion of building contractors. CRAFTSMANSHIP NON-SELF-SUPPORTING PREFAB SELF-SUPPORTING - 0. OVERALL RATING 1. DIMENSIONALLY STABLE 2. FUNCTION STRAW 3. PSYCHOLOGICAL ---- 5. WEIGHT ++ ++ -- 6. WATER TIGHTNESS 8. FINISHING - 9. CONFIDENCE CLIENT A. COMPLEXITY ++ ++ B. RISKS C. PRODUCTION TIME + D. COST DO-IT-YOURSELF E. DUST-PROOF/CLEAN BS F. TECHNIQUE G. BUILDING SPEED H. IMAGE --- - INCLUDING MAN-HOURS + ++ + DO-IT-YOURSELF - INCLUDING MAN-HOURS ---- SELF-SUPPORTING + + + + + + + o ---- + + 7. THICKNESS CASE STUDY NON-SELF-SUPPORTING - + + + 4. WASTE MATERIAL For improvement of this element to make it more equal to elements nowadays, it needs to be improved on stability of dimensions, the psychological aspect needs to be improved, the water ghtness must be ensured before supplying, the finish layers must be improved/wider range and finally the confidence of the building contractor which needs to be increased. The confidence of the building contractor depends on the following criteria which needs to be improved to increase the confidence: the complexity, the risks, the produc on me, the element needs to be dustproof, the produc on technique must be equal to current produc on techniques, the building speed of the elements on site and the image of the product must be improved. -+ - ++ ++ + + + ++ -- + -- - - + + + + + + SELF-SUPPORTING ++ ++ + ++ --- ++ + ++ ++ + ++ + -- ++ ++ ++ ++ FIG. 1.3.1 // LACKING CRITERIA OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 57 The goal of the recommenda ons and improvements of the exis ng straw elements is to make them more similar to the currently used façade elements. This should provide the enhancing of straw as a building material, to bridge the difference of applica on in these industries (cra smanship versus industrialisa on). First, focus will be on the several op ons for finishing layers in the straw building industry, can you combine them with clay as a water barrier or rather with a vapour open foil. These choices bring different risks, for clay it is the way of transport to avoid cracking and with foil the life span of the material in combina on with straw. As Rens men oned in the interview the quality of these materials must be considered. If the material is less vapour open than thought, it can cause moisture in the straw bales which will decrease the quality and life span of the straw bales (Borgers, 2015). These choices will also be realised by different techniques, which bring different complexi es, building speed and produc on me. These three aspects will be assessed by comparing them to the current façade elements and their complexity, building speed and produc on me. 2.2 Finish layers Requirements for the finishing layer are the level of biodegradable materials, the variable of applica on possibili es of the material, can it be applied in advance and the amount of maintenance needed during the service life. Three materials are o en applied in this building industry, clay, lime render and wood. Wood can be applied in combina on with foil or clay, lime render is most of the me in combina on with a base layer of clay and when clay 58 // W 2.1 Rela on criteria Some of these criteria are related to each other, summarised in Fig. 2.1.1. Depending on the chosen finishing layer are the risks that comes with it, but also the produc on techniques and the building speed depends on the finishing layer. Indirectly, it has influence on the complexity and produc on me. This in total will determine the level of confidence, the psychological aspect and the image of the material. hi c wi h te t h ch t h ni e s qu e es Įn a ish re i n us g s ed 2 // RELATION CRITERIA TECHNIQUE FINISH LAYER WATERTIGHNESS DUST-PROOF BUILDING SPEED RISKS COMPLEXITY PRODUCTION TIME When good results CONFIDENCE CLIENT ApllicaƟon of product REALISATION When it works PSYCHOLOGICAL PosiƟve inŇuence IMAGE FIG. 2.1.1 // RELATION CRITERIA OWN ILLUSTRATION is used as finishing layer it only consist of clay or some mes in combina on with straw. Men oned in the criteria explana on is the possibility of finishing effects in lime renders and clay. Figures 2.2.1. & 2.2.2 show some examples of how a façade can vary. Another material used in this industry is vapour-permeable boards, these or not o en applied and comparable to vapour-permeable boards, hence they are involved. 2.3 Risks The risks that should be taken in mind or must be avoid are different for each finishing layer. With foil, as men oned before, it is the life span and the actual vapour openness. Clay and Lime render have the disadvantage that it can crack when transported. A shock-absorbing transporta on is maybe an opportunity or with clay you can fix the cracks with a simple swipe of a wet sponge. When using clay in the exterior as the finishing layer you have the disadvantage that it must be TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN but on site. With these elements they spray the clay or lime render on the element, which is faster and gives a smoother surface as result. If this process can be done by a machine instead of person on site, this can yield up to 170 euro’s per square meter (Capiau, 2015). Foil can be nailed to the elements, same for the wooden panels. The produc on technique for the straw elements is done by a machine adding tonque and rabbet, cut the sides to make the surface smoother (saving raw material for the finishing if clay is used), the elements are pu ed together on a press bed to form one storey high element. Produc on in higher numbers will increase the speed and decrease the cost of such a product. FIG. 2.2.1 // PINK LIME RENDER, SPIRAL HOUSE RUDI.NET, 2015 FIG. 2.2.2 // CLAY BUILDING WITH RELIËF INSIDE AFRICA CONSULT, 2014 protected from rain. This can be done by protect it with another material at the bo om to avoid damage by splashing rain, overhang to protect from rain and other precipita on. It depends on the design whether clay as an exterior materials is suitable or not. The risk with foil is the interrup on of the moisture transport, which is mainly from inside to the outside of the building. If it interrupt the transport from inside to outside it will cause moisture in the straw bales (Borgers, 2015). 2.4 Techniques Clay and lime render are in the self-build projects o en applied by hand and levelled off. However, there is also a more industrialised technique which is used with the straw façade elements nowadays TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 2.5 Complexity Complexity is depending on the amount of proceedings. For example if the only proceeding is to add a layer of clay by a spray it will not be that complex. When applying the foil and wood more proceedings are needed in different mes, this will make it more complex than the first op on, especially when it will be automated. Clay and plaster can be applied with the same spray technique but must be done separately. When choosing wood in combina on with clay as a barrier, the wood should be applied on site in case if the clay cracks. When the wood will be applied in advance, the clay is hard to repair. Special transport can maybe avoid the cracking of the clay layer and thereby transpor ng the element in total is possible. 2.6 Produc on me The straw block elements can be made quite easy and does not need me to dry, like concrete walls. Concrete walls need normally 12 to 24 hours to dry. However when applied as suppor ve walls they need longer me to set, up to four weeks (Maastricht, 2012). The needed me to dry clay depends on the thickness. A layer of 15 mm does not need me to dry. When a thicker layer is applied it can last for days. An example, a layer of 20 mm and a surface of 50m2 (1m3) consist of 200 liter mixing water. To dry this layer it will take you 10 days. This process can be improved when using // 59 an oven or use a layer of 15 mm, which is possible when use straw bales with a smoother surface. 2.7 Building speed The straw façade element must have a high building speed. A high building speed that is higher than the situa on nowadays. The case study is a façade that consist out of three separate layers, two of them realised on site. By realising a façade element with a higher product level the building speed will increase, a empt to realise a prefabricated façade element as much as possible. In addi on, when only one layer or small adjustments must be applied on site it is less me-consuming than in the current situa on. To convince the building contractors the product level must be as high as possible. The four examples show benefits for different aspects, which will be suitable for different situa ons. As men oned in the ‘Finishing layer’ important factors are maintenance applicability in advance and level of biodegradability. The lime render is weather resistance and biodegradable. What should be taken in mind are the transport possibili es, which leads to the cracking risks of this façade element. Lime render does not have the ability of being fixed like clay. These problems do not occur with foil and wood as a finishing layer. Therefore this combina on is more appropriate looking at the risks. Looking into simple solu ons, like place the façade elements on pallets while transported, will gain more opportuni es for save transport of lime render and clay elements. The pallets will act as shock absorber, which will decrease the impact on the elements. To reduce the risk even more a en on should be paid while detailing the elements. However, the resistance to mice and insects cannot be guaranteed. Within the used techniques the spraying is the most me efficient, especially if both are clay as a finish layer. Image that this produc on technique is done in a way a car gets its colour or how cars get washed (Fig. 2.7.1). The case study is lacking in this subject. The load bearing prefab concrete walls must dry for four weeks to gain its total strength (Maastricht, 2012). Lime render and clay also need me to dry, but not as much as concrete. Both can be accelerated by heat up the space around or in the element. In addi on, the façade of the case study is also delivered on site in parts, and the masonry is done brick by brick, which is me-consuming work. However, this type of work is done o en and known for years in the Netherlands that makes it not complex to fulfil this work for construc on workers. Compared to the clay finish layer it is more labour intensive, so more complex. Same for placing the foil onto the straw element, this must be done with concern to avoid connec ons between straw and outside. POSSIBLE FINISHING LAYERS CLAY FINISH CASE STUDY LIME IME RENDER FINISH WOOD & CLAY FINISH WOOD & FOIL FINISH CONCRETE, CRETE, INSULATION & MASONRY M FINISHING LAYERS CLAY LIME RENDER WOOD & CLAY WOOD & FOIL MASONRY RISKS CRACKING // RAIN CRACKING CRACKING VAPOUR OPENNESS GUARENTEE ??? TECHNIQUES SPRAYING SPRAYING NAILING & SPRAYING NAILING MOULD & BRICKLAYING COMPLEXITY EXCELLENT GOOD GOOD AVERAGE GOOD PRODUCTION TIME AVERAGE AVERAGE AVERAGE EXCELLENT AVERAGE BUILDING SPEED GOOD GOOD AVERAGE ECELLENT LOW PRICE PER ELEMENT €2955 €3315 €3350 €2550 €3950 FIG. 2.9.1 // RELATED CRITERIA COMPARED OWN ILLUSTRATION 60 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 2.7.1// PRODUCTION OF FINISHING LAYERS STRAW ELEMENTS OWN ILLUSTRATION The concern about foil in combina on with straw is the permeability of mice and insects. However, proven is that straw is not that a rac ve for mice and other pest, but it cannot be guaranteed. Therefore this op on will be influencing the client its confidence. Because of the high value of this confidence, this opportunity is not helping to enhance the use of straw as a building material. Lime render and clay are impermeable for mice and pets and at the same me fire resistant. On the other hand, the straw element in combina on with foil and wood does not need me to dry or other wai ng me and has for that reason an excellent produc on me. By its weight is also the lightest solu on which improves the building speed. All solu ons have a higher product level compared to the case study, thus a higher ra ng in building speed. 2.9 conclusion criteria The straw element in combina on with render or with clay and wood are the most suitable for the first steps into the Dutch building industry. They can offer more guarantee by the mice, insect and weather resistance, which are the most important aspect for elimina ng the straw elements nowadays in the building industry. For elabora ng the final design the focus is set on the lime render façade element, based on the fewer proceedings this element needs, the relevant appearance and the less weight of the façade element. 2.8 psychological & image All men oned criteria affect the confidence of the client. If the client is convinced of straw as a building material due to the good results, the chance of implying increases. Realisa on of straw buildings in the industrialised building sector will increase the confidence of the client and other par es, people need to see it to believe it. A er realisa on of the straw building it must show the advantages and limita ons. The impact would be the posi ve influence on the psychological aspect. A er the psychological accepta on, the image of straw as a building material in the bigger picture will be changed. The big ques on is who will go first? TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 61 3 // DIMENSIONALLY STABLE 3.1 Dimensionally stable Previously, the report states that the dimensions of straw bales are fixed. There are three kinds of bales small, medium and Jumbo bales. For most projects the smaller bales are used, because of the availability, total thickness of the wall, it is easier to handle on site and employ less ground surface which all affects the cost (Ernst, 2011). In current and future projects they want to place the bales on the side to gain the slimmest straw bale wall possible (sec on 360 mm wide bale). The insula on proper es are in this situa on s ll good and higher than current construc on walls. In the Straw Block System elements they use a variant of small straw bales and compress them to gain the final dimension of 400 x 400 x 400 to 1200 mm (Hondeveld, 2015). bale. A perfect bale contains of a balance between the density, the insula on value and the loading capacity. This will be feasible when straw will be applied on a larger scale. The final design will be based on the chosen case study. The dimensions of the case study (width of the building and dimensions and numbers of windows) and the dimensions of the straw bale determine the final dimensions of the design. Figure 3.1.1 & 3.1.2 show the dimensions of the case study. As men oned in ‘Research part II’ the common dimensions of straw bales used are 480x360x800. There are several variants of this small straw bale which can be used to gain a higher density straw bale but keep the same final thickness a er compressing. The machine is determining, for future straw building products special machines can be designed to gain the perfect building straw 600 780 920 1468 1332 1398 1624 451 2700 224 220 2330 5400 920 2339 1084 1255 1004 1400 2330 600 1550 1004 1106 1140 FLOORS/WALLS DIMENSION FIG. 3.1.1 // DIMENSIONS CASE STUDY DUIN GRAS OWN ILLUSTRATION 62 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN FIG. 3.1.2 // FLOORPLAN 1:50 A3 FIRST FLOORPLAN CASE STUDY DURA VERMEER, 2015 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 63 4 // FINAL DESIGN 4.1 Dimensions Conclude from the criteria and research is that exis ng straw elements do not have the requirements users want, therefore the focus is on the realisa on of a storey high straw façade element, which consist of all layers off site and will only need some small adjustments and applica ons on site. This enables to make the switch of a barely used cra smanship biodegradable material to an industrialised biodegradable building material. To determine the dimensions of the total storey high elements, the length of the straw bale has to be chosen. By choosing one length for the total project, complexity will be limited. The width and height of the straw bales are fixed to 400 mm, but the length can vary from 400 to 1200. One has to look for the op mal length for the project, because the bigger the straw bale the fewer the proceedings, but the more adjustments for corners and other excep ons are. The total width of the ‘Duingras’ residen al is 5400 mm. The ground floor has one window (1550 mm), one front door (1106 mm) and facing brickwork (600, 1004 & 1140 mm). The first floor façade has two windows (2 x 1550 mm) and facing brickwork (600, 780 & 920 mm). Two aspects that must be taken in mind are the placement of the windows in rela on to the interior wall and the total percentage of wall openings. When straw func ons as the main structure it cannot have over 50% of openings (Demey, 2012). For the final design the straw bale will have a length of 500 mm, based on the total width of the element (5400 shi s to 5500 mm), the width of the door (1104 shi s to 1000 mm) and the width of the windows (1550 shi s to 1500 mm). The total height of the openings will be a mul ple of 400 mm. Figure 4.1.1 to 4.1.4 establish the final elements for the ground floor, the first floor and the strong wall. FIG. 4.1.2 // DIMENSIONS STRONG WALL STRAW FACADE ELEMENTS OWN ILLUSTRATION FIG. 4.1.3 // DIMENSIONS FIRST FLOOR STRAW FACADE ELEMENTS OWN ILLUSTRATION FIG. 4.1.1 // DIMENSIONS STRAW FACADE ELEMENTS OWN ILLUSTRATION 64 // FIG. 4.1.4 // DIMENSIONS GROUND FLOOR STRAW FACADE ELEMENTS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 4.2 Elements To stay as close as possible to the design of the case study, the roof is designed as a pitched roof instead of a third total floor. In the last situa on the straw could be designed self-suppor ve, in the pitched roof situa on wooden beams will ensure the structure and the straw only func on as an insula on material between the wooden beams. It is a considera on that needs to be made between cost and op mal use of material. With a pitched roof less material is used, but the straw loses its double func on, which makes it less a rac ve to use it. S ll, straw has other good benefits compared to currently used insula on materials in roofs, o en EPS, which for example has a high embodied energy. (eps 93 MJ/kg, straw 35 MJ/kg) (Ganatopoulou, 2014) As men oned before transport is an important factor, if the elements cannot be safely transported, the building speed will decrease and indirectly influence the confidence of the client. As seen in the details of the design, the lime render and clay finish are not extended to the edge of the element. This is convenient for the fixa on of two elements and also for the protec on of the corners of the element during transport. A er fixing the elements the fixa on points and the edges can neatly be finished. For some points other solu ons are chosen. For example, established in detail 3 is the window frame (Fig. 4.2.1). The corner of the lime render and clay will not damage easily by transport (not situated at the edge of the element), therefore this edge is finished with an stainless steel angle bar to obtain a smooth result. DETAIL 3 tonque and rabbet FIG. 4.2.1 // DETAIL 3 REDUCED FROM 1:5 OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 65 4.3 Realisa on The straw bales used in this project are not shaped by the farmer. The farmer delivers regular straw bales with standard dimensions, which will be compressed to a bale with a higher density. The high density ensures a stable element and a good Rc-value at the same me. A er compressing the element must be adjusted by a sawing-machine to a tonque and rabbet block (Fig. 4.3.1). This adjustment contributes to the stability of the total façade element and to the insula on property. The split between the elements is in that way interrupted by the tonque and rabbet. improve the connec on. Wooden elements are added to gain a strong and stable façade element (Fig. 4.3.2 & 4.3.3). Together with the clay and lime render the element will form a structural plate. The clay and lime render will be added off site. This can be done manually or mechanically. If the layer will be added manually, it will be done horizontally. This is a huge advantage compared to do it on site. It is less labour intensive and has less impact on the human body (Arendonk, 2015). The dry me can also be decreased when realised in a factory. Normally this will take about 10 -14 days (with Dutch climate), but if they will be placed in a room with a higher temperature and low humidity it will take less me. Taken into account that one has to put the best temperature, in that case cracking can be prevented. A er the elements are complete and dry they can be transported to the site. FIG. 4.3.1 // DIMENSIONS STRAW BLOCK Most blocks have the standard dimension of 400 by 400 by 500mm, but some need special adjustments (Fig. 4.3.1). These blocks are situated at the outsides of the element or along the openings in the element. A er the adjustments the blocks can easily be a ach to each other without other connec on material. When all straw blocks are completed to one element they are compressed to FIG. 4.3.3 // COMPRESSIONBAR OWN PHOTO puzzel FIG. 4.3.2 // PUZZLE TO FINAL ELEMENT OWN ILLUSTRATION 66 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 4.4 Transport The highest prefabricated straw façade element is 3278 mm excluding protec on. The elements will be transported by common used trailers. Figure 4.4.1 establishes the maximum weight and dimensions of the load. To ensure the trailer can transport as much prefabricated elements as possible the following distribu on is set. In this way the amount of rides will be limited, which will lower the cost and has a be er environmental effect. A straw façade element only weighs about 1815 kg, total load on one trailer will be 14,520 kg. The elements should be ed up very ght to prevent the elements from moving by wind, speed or other external factors. Elements will be protected during transporta on by foam along the fragile profiles and with tape and sheets around the element to avoid damages during transporta on and moun ng. The elements can be placed by a moun ng clamp (Fig. 4.4.2). In this case special rings and/or a achment point are not required. FIG. 4.4.1 // TRANSPORT BY TRAILER OWN ILLUSTRATION; RDW, 2012 4.5 Final drawings To support the theory of building with straw a total sec on is designed (Fig. 4.5.1 & 4.5.2). The details will explain the way of realisa on and fixa on (Fig. 4.5.3). The scaled technical drawings are viewed in appendix 9. FIG. 4.4.2 // MOUNTING CLAMP FOR WALLS BLEIJ, 2015 TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 67 SECTION FIG. 4.5.1 // OVERVIEW DETAILS AND SECTION FIG. 4.5.2 // SECTION 1:20 OWN ILLUSTRATION 68 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN DETAIL 1b DETAIL 2 tonque and rabbet DETAIL 8 tonque and rabbet DETAIL 11 tonque and rabbet FIG. 4.5.3 // DETAILS 1:5 OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 69 5 // COMPARISON 5.1 comparison For the final comparison the most important factors are compared: cost, weight of element (movability on site), building speed on site, maintenance during service life and the total embodied energy (Fig. 5.1.1 & 5.1.3). The straw element is less expensive than the case study’s element, mainly caused by the price of straw and the cost of manhours needed in the case study’s element. At the same me the straw façade element save up to 2,0*10^6 MJ of embodied energy, which is equal to yearly energy consump on of 29 residen al (Demir, 2013). Thinking about the goal of emi ng 50-80% less CO2 which is men oned in the introduc on, building with straw can contribute to this goal. In other residen al and u lity projects EPS is o en used as an insula on material, mostly in the ground floors and in the roofs. To make an equa on, if in the case study EPS was used as an insula on material it can save up to 3.0*10^7 MJ of energy, which is equal to the yearly energy consump on of 428 residen al. Important to men on is that these days EPS is only allowed to use as a roof and founda on insula on material, due to its poor fire resistance (Ligthart, 2015). LIME IME RENDER FINISH COST PER ELEMENT WEIGHT Figure 5.1.2 shows the product level and the level of industrialisa on of the elements. The product level of the straw elements is building part, which is higher than the product levels of the other element. Besides, the building element and its weight ensure a higher speed of realising water ght buildings on site. The value of the building speed is high, some mes building contractor prefer a more expensive but a more complete façade element over a cheaper façade construc on that takes more me to fix and create on site. However the straw façade element needs some finishing touches on site a er fix the elements to create a smooth surface inside and outside. S ll, a higher product level is present. The clay can form a complete surface with the clay applied off site. By making it wet the clay is adjustable and will connect to the new layer of clay. The lime render is not adjustable a er drying. Therefore this material is covered along the sides with an angle bar. A er placing the elements, lime render can be added between the two angle bars (Detail 2, Fig. 4.5.3). In this way the façade can form a well finished façade. CONCRETE, CRETE, INSULATION & MASONRY M €3315 98,6 KG/M2 €3950 240 (ONLY CONCRETE) - 420 KG/M2 ++ + ++ EMBODIED ENERGY 1277 MJ/m2 1598 MJ/m2 ONE FACADE 4,7*10^4 MJ 5,0*10^4 MJ ONE HOUSE 9,4*10^4 MJ 10*10^4 MJ ONE ROW 4,7*10^5 MJ 5,0*10^5 MJ ONE BLOCK 1,9*10^6 MJ 2,1*10^6 MJ ONE DISTRICT 3,0*10^7 MJ 3,2*10^7 MJ BUILDING SPEED MAINTENANCE COST ONE DISTRICT €4,3 MILLION INC. INSTALLING €5,1 MILLION 5.2 disadvantages & advantages FIG. 5.1.1 // COMPARING CASE STUDY TO STRAW ELEMENTS OWN ILLUSTRATION 70 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN A disadvantage of building with straw is the availability of straw. Study says that this material is in surplus in the Netherlands and the surroundings (Ganatopoulou, 2014). What one should take into account is the availability of biological straw and the purpose for it nowadays. For non-biological straw it is allowed to protect it with pes cide ll 5 days before harvest (Arendonk, 2015). In this way the wall will be less toxic free compared to biological straw. In Germany and France the straw is more surplus then in the Netherlands, plausible that the straw to build will mainly come from that area. In addi on straw is harvested annually. When building with straw, planning of buying straw and the storage of it is an important aspect. Farmers and buyers close deals before the straw is even planted. As seen in the details the wall of the straw block building is 440 mm thick, which is 140 mm more than the original wall thickness, although the Rc-value is way higher and will fulfil future requirements. Whereas the Case study just fulfil the currently set building requirements. However, some advantages of building with straw are not included in the comparison. These advantages will decrease the total cost of a building project. By the weight of the total house, However, some advantages of building with straw are not included in the comparison. These advantages will decrease the total cost of a building project. By the weight of the total house, the founda on can be designed for example they only used road debris, which are placed as the base structure directly on top of the ground (Fig. 5.2.1). In this design they use straw also as an insula on material in the ground floor. With these floors the possibility of ven la on underneath must be present. The user will no ce some advantages compared to the case study. By the good insula on property of these walls, the energy consump on of the user will decrease and thereby the energy bill as well. The plaster layers ensure a slower heat and cold transmission through the wall (Redac e-Renova eprofs, 2015). In the end this will also contribute to the total energy consump on in the building industry. Finally, an aspect that also contributes to the lower energy consump on at the end of life is the degrada on of the building, one of the main huge advantages of biodegradable materials. FIG. 5.2.1 // SECTION ‘DE STELTLOPER’ HONDEVELD, 2015 Product level CraŌsmanship IndustrialisaƟon Materials CASE STUDY Standard materials Commercial materials Elements Subcomponents Components STRAW ELEMENTS Building parts Building in an easier and slimmer way. In ‘The Steltloper’ FIG. 5.1.2 // PRODUCT LEVEL ELEMENTS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 71 CASE STUDY // CONCRETE- ROCKWOOL- FACING BRICKWORK 1 // TITLE ESTIMATED COST/ELEMENT € 3950 EMBODIED ENERGY 100.000 MJ WALL THICKNESS 300 MM RC-VALUE 4,5 m2K/W FINISHING LAYER FACING BRICKWORK FIG. 5.1.3 // FLYER CASE STUDY VERSUS STRAW BLOCK BUILDING OWN ILLUSTRATION 72 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN STRAW BUILDING // LIME RENDER- STRAW- CLAY ESTIMATED COST/ELEMENT € 3315 EMBODIED ENERGY 94.000 MJ (6000 MJ = monthly energy use of one family) WALL THICKNESS 440 MM RC-VALUE 8,0 m2K/W FINISHING LAYER LIME RENDER TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 73 5 // CONCLUSION 74 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // CONCLUSION The proper es of biodegradable materials, and their possibili es of shapes and behavior in facades, have been inves gated in literature. However, research on the applica on of biodegradable materials to facade elements, is currently lacking. This thesis therefore focused on the contribu on of biodegradable materials to facade elements, which should enhance the use in the building industry, to decrease the energy use of the big energy consumer. The research ques on of this thesis is: “How can biodegradable materials form a façade component, which is comparable to currently used façade components, to enhance the use of biodegradable materials in the Dutch building envelopes?” The hypothesis of this thesis is about the importance of the industrialisa on level and the product level of a façade element. This hypothesis is based on research to several exis ng façade elements. It brings out the high level of industrialisa on and product level of currently used facades. Unlike the other analysed facades, those are realised with cra smanship and raw materials. The rate of applica on is a contribu ng factor. Provided that a material is applied more o en, one can afford to invest in more industrialised ways of applica on. Product level It is also a ma er of supply and demand, if the demand increases developers can afford a more expensive way of produc on processes. But without the more industrialised produc on process the demand will not increase, generally. Due to the importance of cost in the building industry one will not invest before being sure of success. This thesis focused a er the exis ng façade analysis on straw as a building material. Research is done to the possibili es of straw, the issues in the straw industry and the comparability to exis ng techniques, produc ons and elements. Within the straw industry DIY is very popular. People love to build their own house with their bare hands, but this causes a bad image for straw as industrialised building material. Some companies produce more industrialised straw elements such as Modcell, Straw Block System and Bala Box. Modcell is not self-suppor ve and thereby will only fulfil the task of an insula on material in the façade. With the self-suppor ve elements the finishing layer is applied on site for several reasons. The lack of the self-suppor ve property and the lack of a finishing layer cause the ‘element’ product level, which will not contribute to enhance the use of straw as a building material (Fig. 5.1.1) CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts ! Building FIG. 5.1.1 // HYPOTHESIS OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 75 An interim conclusion is the need of straw as a selfsuppor ve material, which as a facade element will also consist of a finish layer. If straw will only fulfil the insula on func on it is less interes ng compared to other currently used insula on materials in the building industry. This is due to the cost and the confidence clients have in the other insula on materials. If straw also fulfil the structural func on it will contribute to the a rac on of straw as a building material, because of the cost for structure and insula on. Other important criteria for a straw façade element are the moisture resistance, transport, produc on technique, produc on me and building speed. If the straw façade element acts equally or be er within these criteria, it will posi vely influence the confidence of the client, and indirectly the image of straw as a building material. The proposed straw element in this thesis is an element produced in the factory, including finishing layers, which eliminates the risks of fire resistance, mice, pets, insects and moisture. Exis ng straw elements do not have the requirements users want. Therefore, the focus of the design was on the realisa on of a storey high straw façade element, which consist of all layers off site. The facade elements will only require some small adjustments and applica ons on site. This enables to make the switch of a barely used cra smanship biodegradable material to an industrialised biodegradable building material. It will posi vely influence the building speed by its completeness and the guarantee of a clean building site. Compared to the case study ‘Duingras’, this is also a cheaper solu on, it is faster to build on site and it will posi vely influence the energy consump on during the building process and during the user phase. The straw element will ensure posi ve common ground in different fields. This is of great importance, because if the client is convinced, whether it is the building contractor, the architect and/or the user, the straw element will contribute to enhance the use of straw as a building material, thus the use of biodegradable materials in the Dutch building envelopes. 76 // Although this study focussed on straw, it should be kept in mind that other biodegradable materials also need research focussed on increasing the industrialisa on and produc on level. The research of straw as an industrialised building material is too specific to reflect on the applica on of biodegradable materials in general. For example we can propose that the tonque and rabbet method is applicable for other structural biodegradable materials, like material 7 earth bags and paper create. However, the proper es of these materials are slightly different from straw. For example, straw can form a storey high façade element due to its low weight. Earth bags have a density of 1400 kg/m3, while compressed straw has a density of 120 kg/ m3. Specific and individual research is needed for each material to establish the specific possibili es of how these materials can be applied in an industrialised way. In that case, it will be possible for those materials to contribute to the enhancing of biodegradable materials in the Dutch and other building industries. This thesis answered the ques on of how biodegradable materials can form a façade element, which will contribute by the enhancing of these materials. Straw can be created to an industrialised building part façade element, which is at the same or higher level as the currently used façade system elements. The design establishes how this could be applied in the building industry. As the hypothesis shows, the industrialisa on factor of this straw façade element will contribute to the enhancing of the use of straw as a building material. Important factor is the comparability to other common used façade elements. For other biodegradable materials it can only be stated that their industrialisa on factor must be increased and a comparable façade element must be designed. As stated above, individual and specific research is required for those materials. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 2 // RECOMMENDATIONS This thesis focussed on the possibili es of industrialising straw as a building material to contribute to the enhancing of biodegradable materials in the Dutch building envelopes. Straw is not the only biodegradable material which can par cipate in the building industry. In addi on not all important men oned aspects are researched. This will lead to the following recommenda ons for further research rela ng to this thesis. 5. Perfect straw block Finally, a research focussed on the perfect straw bale. The perfect straw bale contains of a balance between load capacity, high density and insula on value. Together with how this bale can be less dimensionally stable and how we can offer the quality of (biological) straw. This will contribute to increase straw as a building material in projects. In addi on the balance between density, load capacity and 1. Other biodegradable materials. Straw is chosen by its higher level of industrialisa on and product level, but other materials also have the possibility of industrialisa on and thereby contribu ng to the enhancing of biodegradable materials in the building envelopes. Further research can be done for example to seaweed, papercreate or earthbags. 2. New biodegradable materials In addi on to the exis ng materials, which are implemented in individual projects, also new materials are wai ng to be implemented in the building industry. An example is mushroom materials, which are used nowadays as a packaging material, like EPS. EPS in used in the building industry and has a lot of matching features. Ongoing research focusses on the proper es of this material, but as this thesis shows knowledge of the proper es is not enough to enhance the use of these materials. Research should also focus on the implementa on possibili es for increasing the industrialisa on level of these materials. 3. Cer fica on Biodegradable materials are some mes rejected by ungrounded arguments. This has to do, inter alia, with the Na onal Building Degree. Research must focus on the cer fica on problems within this material group. This has also to do with the so called ‘Sustainability war’. Without the cer fica on, implemen ng of biodegradable materials is impossible. TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 77 6 // REFLECTION 78 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN Within the Façade Design department of the Faculty of Architecture the topic of this thesis is about the enhancing of biodegradable materials in the Dutch building envelopes. The hypothesis shows the importance of the industrialisa on and product level of a façade, the higher the industrialisa on and the product level the greater chance of implementa on in the building industry (Fig. 5.1.1.). The thesis is divided in three main chapters, Research part I, Research part II and Design. The research part I was focussed on the analysis of exis ng façade elements (Fig.6.1.2). Within the first analysis the focus was at the proper es, the product level and the level of industrialisa on of these façade elements. Goal of this first analysis was to answer the ques ons why do we use the façade elements that we use, which aspects are different from the biodegradable façade elements and which aspects are the most important to keep in mind for the design part of this thesis? The subsequent research was also based on this analysis. In the product level matrix could be established the most developed materials and elements. The above men oned analyses were very important to know what is needed to improve straw as a building material. With these analysis criteria could be defined and elaborated, to test several variants. With these set criteria all problems and solu ons could be described and explained, to eventually come up with the most op mal straw elements to contribute in the building industry. The self-suppor ve straw façade element has a ‘building part’ product level and a high level of industrialisa on possibili es, which consist out of clay and lime render finish. Compared to the case study this is cheaper, consists of less embodied energy, has a higher building speed and is economically profitable for the user. Due to me management and the scope of the thesis it was hard to determine to what level the final proposal had to be designed. Some important aspects were not researched, which make it harder to conclude. Those aspects were o en too broad to involve in the research of this thesis. This is solved by realis c assump ons and checking other researches. The second research analysis was focussed on straw as a building material. What kinds of techniques are used and what type of elements already exist? They are compared to see which is mainly used and why. A lot of informa on is won by taken interviews, this was very helpful to an cipate the needs and opinions according to experts. 2. 1. BIODEGRADABLE MATERIALS BIODEGRADABLE MATERIALS EXISTING FACADE COMPONENTS EXISTING FACADE COMPONENTS EXISTING FACADE COMPONENTS BIODEGRADABLE MATERIALS EXISTING FACADE COMPONENTS BIODEGRADABLE MATERIALS Ϭй/K'Z> (EXISTING FACADE COMPONENTS) BIODEGRADABLE MATERIALS ϭϬϬй/K'Z> FIG. 6.1.2 // GLOBAL SCHEME ANALYSIS PHASE, RESEARCH PART I OWN ILLUSTRATION TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 79 7 // REFERENCES 80 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN Alblas. (2014). Verduurzamen. Retrieved 9-05-2015, from h p://www.alblashout.nl/verduurzamen. php?menu=bewerkingen Amorim. (2014). Expanded Insula on Corkboard, decoupling layer for window frames and core. In S. A. Amorim Isolamentos (Ed.). Anink, D., Boonstra, C., & Mak, J. (1996). Handbook of sustainable building. Arendonk, M. (2015, 18-05-2015). [feedback dra thesis]. A entus. (2012). Kalkhennepblokken van isohemp. Retrieved 15-05-2015, from h p://www.a entus. be/catalogus/hennepisola e/isohemp-hennep-blokken/ Bala-Box. (2015). Bala Box is. Retrieved 21-04, 2015, from h p://bala-box.com/los-bloques/?lang=en Bailly-interieuradvies. (2011). Er groeit een boom uit je schoen. Retrieved from h p://baillyinterieuradvies.blogspot.nl/ Beentjes, W. G. M. (2000). Meetresultaten Rieten dak te Hierden (11 januari 2000 ed.). Utrecht: LBP, Lichtveld Buis & partners BV. BioDesignIn. (2013). Biodegradable Coconut fibre chair (12-06-2013 ed.). Blackburn, R. S. (2005). Biodegradable and sustainable fibres: Elsevier. Bleij, v. d. (2015). Speciale klem. Retrieved 18-06-2015, 2015, from h p://www.vanderblij.nl/hijsen/ mechanische-klemmen/speciale-klem/ Borgers, R. (2015, 16-04-2015) Building with straw - Rens Borgers/Interviewer: T. Ligthart. Boxtel, R. v. (1995). Handboek Gevelisola e. ‘s-Hertogenbosch: Landelijke Specialisten Gevel-Isola e. Brandveilig.com. (2015). Een huis van stro, dat brandt toch snel? Retrieved 23-04, 2015, from h p:// www.brandveilig.com/onderwerpen/een-huis-van-stro-dat-brandt-toch-snel-42264 BRISbouwbesluit-online. (2015). Ar kel 5.3 Thermische isola e. Retrieved 03-03-2015, from h p:// www.bouwbesluitonline.nl/Inhoud/docs/wet/bb2012_nvt/ar kelsgewijs/hfd5/afd5-1/art5-3 Capiau, H. (2015, 30-04-2015). [price e mate clay and lime render]. Carfrae, J., Goodhew, S., Dewilde, P., Li lewood, J., & Walker, P. (2009). Detailing the effec ve use of r ainscreen cladding to protect straw bale walls in combina on with hygroscopic, breathable finishes. Detail Design in Architecture, 8, 99-108. CemPlaat. (1999). Isoleren met Vlasgoed voor een gezond binnenklimaat. In C. BV (Ed.), h p://www.nbd-online.nl/frame.html?page=Vlasgoed%20folder.pdf& tle=VLASGOED%20 isola eplaten. Demey, R. (2012). Strobalenbouw - Load Bearing/Nebraska s jl. Retrieved 29-04-2015, from h p:// ecobouwadvies.be/ecologische-bouwmaterialen/ecologische-isola ematerialen/ strobalenbouw/load-bearing/ Demir, A. (2013). ENERGIEVERBRUIK VAN HUISHOUDENS GEPEILD. 26. Dobbelsteen, A. v. d., & Alberts, K. (2005). Bouwmaterialen, milieu & gezondheid. Amsterdam: WEKA. Doorn van, H. J. O. (2014). KOMO a est met productcer ficaat: SKH. Dzalto, J. (2014, 19-03-2014). [Manufacturing with bio-composites]. Ecova ve. (2014). Building Insula on. Retrieved 29-11-2014, 2014, from h p://www.ecova vedesign. com/products-and-applica ons/insula on/ Ernst, J. (2011). Stobalen en leembouw - Workshop Mergelven: Studio EcoSouvenir. Ganatopoulou, E. (2014). Biodegradable materials, a research and design handbook, enhanching the use of biodegradable materials on building envelopes in the Netherlands. TU Del , Del . Geoij, A. d. (2014, 11-11-2014). [BT-Series]. Goeij de, A. (2012, 06-11-2012). Deel2. Enexis regiokantoren: op zoek naar een intelligente gevel. Retrieved from h p://www.atelierpro.nl/nl/blog/59/deel-2-enexis-regiokantoren-op-zoek-naareen-intelligente-gevel#.VQBgfvnF8wB TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 81 Hall, K. (2008). The Green Building Bible: Essen al informa on to help you make your home, buildings and outdoor areas less harmful to the environment, the community and your family: Green Building Press. Hart, K. Dream Green Homes, Your Source for Alterna ve Home Plans. Carriage House. Retrieved 2402-2015, 2015, from h p://www.dreamgreenhomes.com/plans/carriagehouse.htm Hondeveld, P. (2015a, 16-04-2015) Building with straw - Pim Hondeveld/Interviewer: T. Ligthart. Hondeveld, P. (2015b). Straw Block Systems. Retrieved 18-04, 2015, from h p://www. strawblockssystems.nl/nl/strawblocks.html Huzink. (2009). Bouwmaterialen sier- bestra ngen. In img35-kalkzandsteen.jpg (Ed.). Inside-Africa-Consult. (2014). Mudsgum earth home, Cameroon. IsoBouw. (2013). EPS-isola esystemen van ISoBouw: De beste milieupresta es! In I. s. BV (Ed.). IsoBouw. (2015). Slimfort. Retrieved 27-02-2015, from h p://www.isobouw.nl/nl/94/product/slimfort. aspx IsoBouw, & Fischer. (2015). Fischer SmartLight. In I. S. BV (Ed.). Isovlas. (2013). Dakelementen. In I. O. BV (Ed.), h p://www.isovlas.nl/wp-content/uploads/2013/01/ Isovlas.nl-brochure-dakelementen.pdf. Kempen, S. (2014, 16-12-2014). [sustainable computa onal design ]. Kibert, C. J. (2005). Sustainable Construc on, green building design and delivery. New Jersey: Wiley. Klein, T. (2013). Integral Facade Construc on. Ro erdam: Design: Sirene Ontwerpers. doi: h p://dx. doi. org/10.7480/a% 2Bbe. vol3. diss3. Knaack, U., Klein, T., Bilow, M., & Auer, T. (2014). Façades: principles of construc on: Birkhäuser. Kuijper, R., & Oonk, T. (2013). Bouwen met stro. (Bachelor), Hogeschool van Arnhem en Nijmegen. Retrieved from h p://hbo-kennisbank.nl/nl/page/hborecord.view/?uploadId=han%3Aoai%3Are pository.samenmaken.nl%3Asmpid%3A16083 Ligthart, E. (2015). [Case study insula on material]. Luible, A., Henderson, R., Fernandez-Solla, I., Karanouh, A., Perino, M., Ri er, V., Loonen, R., . . . Böke, J. (2014). Facade 2014 - Conference on Building Envelopes, Adap ve Building Enevelopes. Luzern. Maastricht, A. (2012). Betonstort voor de a2-tunnel. Retrieved 8-5-2015, 2015, from h p://www. a2maastricht.nl/nl/themas/links-themapaginas/een-bouwkuip-drie-technieken/betonstortvoor-de-a2-tunnel.aspx Minke, G., & Mahlke, F. (2005). Building with straw: design and technology of a sustainable architecture: Birkhauser. Modcell. (2015). United Kingdom Patent No. GB2457891B. modcell.com: Modcell. Mohanty, A., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportuni es and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26. Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites: CRC Press. Mulderij, A., Bus, B., & Tulp, D. (2009). Strobalenbouw in Nederland. TU Eindhoven, Eindhoven. Retrieved from h ps://www.scribd.com/doc/10209571/Strobalenbouw-in-Nederland#page=9 NeptuTherm. Bauphysikalische Eigenscha en. Retrieved 27-02-2015, 2015, from h p://www. neptutherm.com/index.php?besondere-eigenscha en Nibe. (2015). Nibe, Nederlands ins tuut voor bouwbiologie en ecologie. Retrieved 17-02, 2015, from h p://www.nibe.info/nl/members Norwin. SIPS Bouwsysteem. Retrieved 16-02-2015, from h p://norwin.nl/producten/sipsbouwsysteem/ Nuijsink, C., & Zijlstra, E. (2010). PM Product en Materiaal, bioplas c. AWM, 35, 52 -57. 82 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN Osirys. (2013). Industrial Stakeholder Panel. Osirys. (2015). Osirys Project. Retrieved 3-1-2015, 2015, from h p://www.osirysproject.eu/home Pro, A. (2013). enexis building. RDW. (2012). Overzicht maten en gewichten in Nederland (pp. 3-5): RDW. Sgouropoulou, E. (2013). Possibili es of applying biodegradable materials in solid building envelopes in the Netherlands. TU Del , Del . Strobouw. (2015a). Projecten binnenland. Retrieved 28-04-2015, from h p://strobouw.nl/Projecten/ Binnenland/ Strobouw. (2015b). Technieken. Retrieved 23-03, 2015, from h p://strobouw.nl/Technieken/ Algemeen/ Ürge-Vorsatz, D., & Metz, B. (2009). Energy efficiency: how far does it get us in controlling climate change? Energy Efficiency, 2(2), 87-94. van den Dobbelsteen, A., & Alberts, K. (2001). Milieueffecten van bouwmaterialen: duurzaam omgaan met grondstoffen: Publika eburo Bouwkunde. VIBE. Isoleren met hennepwol. Retrieved 26-02, 2015, from h p://www.deskundig-isoleren.be/ hennepwol.html Vlasgoed. (2005). Vlasgoed isola eplaten. Retrieved 03-03-2015, from h p://www.nbd-online. nl/#product/43179-0/0/0/VLASGOED_isola eplaten/html Vosschemie. BIO-HARS STANDAARD SET A+B. In V. B. BVBA (Ed.). WEATHER ONLINE. (2014). Climate of the world, the Netherlands. Retrieved 10-12-2014, 2014, from h p://www.weatheronline.co.uk/reports/climate/The-Netherlands.htm Woolley, T., & Kimmins, S. (2000). Green Building Handbook: Volume 2: A Guide to Building Products and Their Impact on the Environment. London: E&FN Spon. Woolley, T., Kimmins, S., Harrison, R., & Harrison, P. (2002). Green Building Handbook: Volume 1: A Guide to Building Products and Their Impact on the Environment. London: E&FN Spon TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 83 8 // APPENDIX 84 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN 1 // CONTENT 1 // Exis ng façade elements 2 // Matrices exis ng façade element 3 // Product level story 4 // Structure interview 5 // Interview Pim Hondeveld (Hondeveld, 2015) 6 // Interview Rens Borgers (Borgers, 2015) 7 // Calcula ons 8 // Techniqual drawings case study (Dura Vermeer, 2015) 9 // Design details TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN // 85 Environment raƟng 4 Overall raƟng 3 Rating property matrix ConnecƟon raƟng 1 General discription Thickness element 1 Thickness insulaƟon 1 Rc-value 5 Timber base rail Straw 420 mm Lime 30 mm AcousƟc 5 Fire resistance 4 2 Shadow cost* Main material Embodied energy 5 Environmental classiĮcaƟon* 3 5 4 Level of prefabricaƟon This traditional element of Modcell is in combination with lime. This ensures the resistance for pesticides and the moisture resistance. Biodegradable materials Detail kg/m3 ModCell® is a sustainable, prefabricated straw bale cladding panel, designed for use in residential, educational, retail and commercial buildings. This innovative system creates buildings with thermal performance up to three times higher than the current UK Building Regulations requirement. ConnecƟon on site Element Material Nr. 1- Modcell with lime cladding The rating of the Modcell is between the two aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized by a high percentage by hand. Only the compression of the bales is done by a machine. The product level of the Modcell element is component, because the element has multiple functions (insulation, load bearing structure). 420 500 9,85 4,28 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 2B Low Embodied energy Environmental classification Yes Craftsmanship needed Average B2 Fire resistance Level of prefabrication All 50 - 55 Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) 64,20 446,5 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix 1 // 4 Overall raƟng 3 Thickness element 1 kg/m3 2 Rating property matrix Thickness insulaƟon 1 4 Rc-value Render system 40mm Wood fibre Straw insulation 12mm Timbervent 400mm “I” studs 15mm OSB3 VCL AcousƟc 5 Fire resistance 4 2 5 Embodied energy 25x50mm Service batten Cladding spacer Wooden cladding Main material This traditional element of Modcell is in combination with waterresitant foil and wood claading. This element is less no later. Shadow cost* Detail ConnecƟon raƟng General discription Environmental classiĮcaƟon* 2 4 Biodegradable materials Detail Environment raƟng ModCell® is a sustainable, prefabricated straw bale cladding panel, designed for use in residential, educational, retail and commercial buildings. This innovative system creates buildings with thermal performance up to three times higher than the current UK Building Regulations requirement. 4 Level of prefabricaƟon Element Material Nr.2 - Modcell with wood cladding ConnecƟon on site The rating of the Modcell is between the two aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized by a high percentage by hand. Only the compression of the bales is done by a machine. The product level of the Modcell element is component. The element has multiple functions (insulation, load bearing structure). 400 492 6> 4,65 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 2C Low Embodied energy Environmental classification No Craftsmanship needed Average B2 Fire resistance Level of prefabrication Most 50 - 55 Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) 64,20 268,5 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix 3 3 Overall raƟng Environment raƟng Rating property matrix ConnecƟon raƟng 5 General discription Thickness element 2 Thickness insulaƟon 2 5 Rc-value Bioresin 4 mm AcousƟc 3 Fire resistance 4 Shadow cost* 1 5 Embodied energy Hemp insulation 392 mm Rubber, thermal break 1 Environmental classiĮcaƟon* Main material Ook hier geldt dat het systeem vooral interessant is omdat er geheel kant en klare elementen die uit één stuk bestaan op de bouwplaats geleverd en simpel geplaatst kunnen worden. 4 Biodegradable materials Detail kg/m3 Gastontvangst is een van de eerste gebouwen met een biocomposieten gevel. Het principe is het zelfde als bij het Enexis porject alleen zijn de materialen die worden gebruikt anders. Hier wordt een biohars in combinatie met vlas als buitenschil gebruikt en hennepvezels als isoltie materiaal. 5 Level of prefabricaƟon Element Material Nr. 3 - Gasontvangst, biocomposite facade elements ConnecƟon on site Craftsmanship versus industrialisation 392 400 9,8 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) 3C Low Embodied energy Environmental classification No Craftsmanship needed Excellent B2 Fire resistance Level of prefabrication Most Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) Shadow costs (euro) 65,3 Kg/m3 General properties The biocompostie facade element is a The biocomposite element is a high industrialized building part product. The facade element. the level of prefabrication is high and the element is the total barrier between in use of craftmanship is little to not present. and outside whitout any other additions. Product level Product level matrix 4 3 Rating property matrix Overall raƟng 5 1 Rafters with seaweed insulation 245mm Vapor barrier OSB 12mm Seaweed insulation 100 mm Fire resistant cotton Battens Roof covering Wooden roofboards Seaweed 300mm 5 Thickness insulaƟon Rc-value 2 4 AcousƟc Fire resistance 2 2 Shadow cost* Detail ConnecƟon raƟng Main material 5 Embodied energy Detail Environment raƟng General discription kg/m3 Thickness element Seaweed pillows were used as cladding for this holiday house on the Danish island of Læsø by architecture studio Vandkunsten and non-profit organisation Realdania Byg. The Modern Seaweed House revisits the traditional construction method in Læsø, where for many centuries trees were scarce but seaweed has always been abundant on the beaches. At one stage there were hundreds of seaweed-clad houses on the island but now only around 20 remain. The team enlisted Vandkunsten to design a new house that combines the traditional material with twenty-first century construction techniques. 3 4 Environmental classiĮcaƟon* Biodegradable materials Element Material Nr. 4- Seaweed house 1 Level of prefabricaƟon ConnecƟon on site The Seaweed is a material that needs a lot of adjustments on site, done by experts. The only prefabricated about this project is the wall elements insulated with the material, thereby the level of industrilisation is increased. The seaweed is a raw material. After drying the material it is packed together and the material can be used for the surfacing of the project. The material is also put in the prefabricated element as a loose material. 650 8,6 Thickness element (mm) Rc value (m2 K / W) Yes Low Product level Function Environmental classification Fair amount B2 Level of prefabrication Fire resistance Connections on site System properties Acoustics (dB) Initial construction cost (euro) Most 345 Thickness insulation (mm) Shadow costs (euro) 75 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix 2 Overall raƟng 3 Rating property matrix ConnecƟon raƟng 3 Thickness element 1 Thickness insulaƟon 5 4 Rietpakket 280mm Hsb element AcousƟc 3 Fire resistance 4 3 Shadow cost* Detail Environment raƟng Stalen kolom 12mm berken multiplexx Embodied energy 3 1 Environmental classiĮcaƟon* Main material 2 Biodegradable materials Detail kg/m3 General discription Rc-value De bibliotheek van het Kulturhus in Borne heeft een gevelbekleding van riet. Om problemen met brand en vandalisme te voorkomen is een schroefdakconstructie toegepast. Het riet is rechtstreeks op de achterconstructie bevestigd, zonder rietlatten. Bij een traditionele rietdak zuigt de ruimte tussen riet en latten zuurstof aan en dat betekent extra brandgevaar. Het rietpakket in Borne krijgt bovendien een behandeling met brandvertragend impregneermiddel. De ronde gevel van de bibliotheek heeft geen dragende gebouwfunctie. Zo slank mogelijke stalen kokerkolommen op onderlinge afstand van 1,40 m vormen de constructie voor de gevelbekleding. De houtskeletbouwelementen op de kolommen dienen – net als in een schroefdakconstructie – als achterconstructie voor het rietpakket. 1 Level of prefabricaƟon Element Material Nr. 5 - Library Borne, Reet facade ConnecƟon on site The level of industrialisation is poor. The reet arrives at the site almost the same as it is removed from the land, it only collacted and chopped. Due to this fact the reet is situated in the top left corner of the product level matrix. The reet is a classified in the material product level. The only operation done in advance is the chopping of the ends. The finishing and equalization of the reet is done on site, after fixing the reet to the surface. 140 495 6,5 4,30 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 3A Average Embodied energy Environmental classification Yes Craftsmanship needed Poor B2 Fire resistance Level of prefabrication Few 36,5 Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) 96,50 165 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix 3 Overall raƟng 3 5 Thickness element 4 Thickness insulaƟon 5 1 1 3 Thermo-hemp 140 mm AcousƟc Rating property matrix ConnecƟon raƟng Plato facade Isovlas 140 mm Battens Fire resistance Detail Environment raƟng Main material Shadow cost* 5 Embodied energy 5 Environmental classiĮcaƟon* 1 4 Biodegradable materials Detail kg/m3 General discription Rc-value Voor iedere ontwikkelfase van het project gelden uitgangspunten die zijn gericht op duurzaamheid, geïnspireerd op het principe van Cradle to Cradle. Bij het Huis van de Duurzaamheid, dat voor educatieve doeleinden wordt gebruikt, is gewerkt volgens de GPR-Gebouw. De gemiddelde score voor de verschillende onderdelen – Energie, Milieu, Gezondheid, Gebruikskwaliteit en Toekomstwaarde – ligt hoog: ruim boven de 9. Bij de bouw van het kantoor en de voertuigenstalling was het tijdelijke aspect meer bepalend. Hierbij was het de bedoeling bebouwing te plaatsen die precies de verwachte exploitatietijd meegaat, zodat na gebruik niet iets waardevols hoeft te worden afgebroken. Bouwen voor een beperkte tijd is echter nog een gevoelig discussiepunt in de duurzame sector. 3 Level of prefabricaƟon Element Material Nr. 6 - Ecopark (Hemp &) Isovlas insulation ConnecƟon on site Craftsmanship versus industrialisation 240 3,68 1,96 Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 3A Low Embodied energy Environmental classification No Craftsmanship needed Average C Fire resistance Level of prefabrication Most Biodegradable materials Material properties Acoustics (dB) 39 140 Thickness insulation (mm) Initial construction cost (euro) 165 Kg/m3 General properties The Isovlas is rated as a commercial The Isovlas is hard to assess, by the level of prefabmaterial. Eleni’s handbook rates the rication versus the level of connections on site. Thereby, the Isovlas is rated as an average product. flaxinsulation as an element, but the product does not show multiple materials and is comaprable to an insulated glass unit, one material with just one function. Product level Product level matrix 4 Overall raƟng 2 ConnecƟon raƟng Rating property matrix Environment raƟng 1 Thickness element 1 Thickness insulaƟon 1 5 Steal bar AcousƟc 3 Fire resistance 1 2 Shadow cost* Earth bags Papercrete cement Embodied energy 5 3 Environmental classiĮcaƟon* Main material 4 Biodegradable materials Detail kg/m3 General discription Rc-value Papercrete is a fairly new ingredient in the natural building world. It is basically re-pulped paper fiber with portland cement or clay and/or other dirt added. When cement is added, this material is not as "green" as would be ideal, but the relatively small amount of cement is perhaps a reasonable tradeoff for what papercrete can offer. I have had a fair amount of experience with this stuff, and I would say that is has some remarkable properties. Care must be taken to utilize it properly, or you could be courting disaster. I am acquainted with both Eric Patterson and Mike McCain, who independently "invented" papercrete (they called it "padobe" and "fibrous cement") and they have both contributed considerably to the machinery to make it and the ways of using it for building. 1 Level of prefabricaƟon Element Material Nr. 7 - Carriage house, earthbags & papercrete ConnecƟon on site Craftsmanship versus industrialisation 1000 1100 9,5 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Low Embodied energy Environmental classification Yes Craftsmanship needed Poor Depends on & water Fire resistance Level of prefabrication Most Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) Shadow costs (euro) 1400 Kg/m3 General properties The earth and papercrete can be As mentioned in the product level these are all raw defined as a raw material product. But materials, no prefabrication and no indutrilisation. the earth on itself will not stay in line. This product is totally realised by craftmanship. The bags, which ensure the form of the earth and makes the stacking technique possible, is not a raw material. Product level Product level matrix 4 Overall raƟng 4 4 kg/m3 ConnecƟon raƟng 3 Rating property matrix Thickness element Thickness insulaƟon 5 Rc-value 4 Cork 4 1 Fire resistance Balsa wood Cork Tripple glazing AcousƟc Shadow cost* 3 Main material Embodied energy 5 Environmental classiĮcaƟon* 3 4 Biodegradable materials Detail Environment raƟng General discription 5 Level of prefabricaƟon This system is similar to the alu2wood system of Optiwin and comparable to regular wooden window frames, except for an additional third layer of cork insulation in the middle of the frame. The benefits of the wood2wood system are enhanced by the increased insulation in the window frame and window sash. ConnecƟon on site Element Material Nr. 8 - Expanded Cork in wooden window frame The rating of the Modcell is between the two aspects. The Modcell element has a level of prefabrication but the prefabricated element is realized by a high percentage by hand. Only the compression of the bales is done by a machine. The product level of the Modcell element is component, because the element has multiple functions (insulation, load bearing structure). 240 6,48 Thickness element (mm) Rc value (m2 K / W) Low Embodied energy Environmental classification No Craftsmanship needed Good E (EU) Fire resistance Level of prefabrication Most Biodegradable materials Material properties Acoustics (dB) Initial construction cost (euro) Excellent 50 Thickness insulation (mm) Shadow costs (euro) 160 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix nog vervangen Overall raƟng 3 2 ConnecƟon raƟng Rating property matrix Environment raƟng 5 General discription Thickness element 2 Thickness insulaƟon 3 2 Rc-value Battens Style AcousƟc 3 5 4 Shadow cost* Cladding material EPS high density EPS Fire resistance Main material De beugels maken bovendien een zeer eenvoudige en snelle plaatsing van de isolatieplaten mogelijk. Hetzelfde geldt voor het stelwerk. Deze kan dankzij de uitgekiende samenstelling van de beugels door één persoon kinderlijk simpel gerealiseerd worden. Environmental classiĮcaƟon* 3 Biodegradable materials Embodied energy Detail kg/m3 SlimFort® is een compleet nieuw isolatiesysteem voor gevels die met esthetische beplating worden afgewerkt. Deze gepatenteerde innovatie onderscheidt zich door de toepassing van de geïntegreerde beugels. Dankzij deze beugels ontstaat er een doorlopende isolatielaag zonder onderbrekingen met houten latten. 1 Level of prefabricaƟon Element System Nr. 1 - Slimfort insulation system 4,5 3 ConnecƟon on site This product consist out of components which are easily to connect on site and produced in a industrial way. The level of craftmanship is low and thereby the product is rated higher then the Modcell but lower then the composite products. 210 400 4,5 1,37 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 2B Insulation Function Environmental classification Subcomponent Product level Poor D Fire resistance Level of prefabrication Fair amount Connections on site System properties Acoustics (dB) Initial construction cost (euro) 11,90 73 Kg/m3 General properties Craftsmanship versus industrialisation Slimfort is a product with an insulation function but it also has a connection function. Together with the battens this is a component. Product level matrix Product level Overall raƟng 4 4 ConnecƟon raƟng Rating property matrix Environment raƟng 4 Thickness element 4 3 Structural fiberboard Fixation elementen EPS Cladding Structural fiberboard Rc-value 4 AcousƟc 2 Fire resistance 4 3 Shadow cost* Main material Environmental classiĮcaƟon* 5 Biodegradable materials Embodied energy Detail kg/m3 General discription Thickness insulaƟon SIPS (Structual InsulatedPanel System is als EPS-prefab bouwsysteem geconcipieerd en bestaat uit een constructief sandwitchelement met EPS-isolatiekern kern met aan de binnen- en buitenkant een constructieve watervaste plaat. EPS en dekplaten worden volvlaks met elkaar verlijmd waardoor een bouwelement met unieke eigenschappen ontstaat. Het element kan worden voorzien van geschaafd vurenhouten ribben of verstijvers. SIPS is de optimale ruwbouwmethode voor nieuwbouw woningen. SIPS elementen worden projectgericht geproduceerd en zijn daarmee als complete ruwbouwset een goed alternatief voor de traditionele skeletbouw methode voor nieuwbouw woningen. Het gewicht van een SIPS-woning bedraagt slechts 25 tot 30% van een traditionele stenen woning. Door de droge bouwmethode ontstaat tijdens de bouw vrijwel geen bouwvocht wat veel voordelen geeft tijdens de afbouw. 4 Level of prefabricaƟon Element System Nr. 2 - Norwin SIPS 6,8 element 4 ConnecƟon on site The Norwinel element is a component with a simple connection system a site. Also the loose materials which for together this element are produced in a industrial way. Higher industrial level compared to the Slimfort element. The Norwin element is a component product. The product has an insulation function but is also a rigid element for fixing cladding an interior finishing. 250 6,69 3,53 Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 1A Insulation component Function Environmental classification Component Good Minimum Product level Level of prefabrication Fire resistance Connections on site System properties Acoustics (dB) 31 226 Thickness insulation (mm) Initial construction cost (euro) 120 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix Overall raƟng 4 5 3 kg/m3 5 Thickness insulaƟon 2 Bioresin & Flax Hemp Rc-value 5 AcousƟc 3 Fire resistance 4 1 Shadow cost* Main material De gevel elementen zijn in zijn geheel makkelijk te plaatsen op de subcinstructie waardoor tijdens de bouw een gebouw snel kan worden omsloten. Thickness element Rating property matrix Environment raƟng General discription Environmental classiĮcaƟon* 2 Biodegradable materials Embodied energy Detail ConnecƟon raƟng Vanuit de gevels prijkt een nieuwe technologie. De vormentaal van de sculpturale gevels is geïnspireerd op een kunstwerk van de Delftse kunstenaar Jan Schoonhoven. De vorm maakt de gevels zonwerend, maar garandeert tegelijk voldoende daglicht en uitzicht. De gevel gaat het opwarming door directe zoninstraling tegen. 5 Level of prefabricaƟon Element System Nr. 3 - Enexis PIR composite 5 ConnecƟon on site The Pir composite element is, like the biocomposite, a high industrialized element. the level of prefabrication is high and the use of craftmanship is little to not present. This results in bottom right position in the matrix. The Enexis composite facade element is defined as a building part. Due to the fact that it seperates the inside and the outside whitout any further additions like the biocomposite facade element. 300 304 7,8 7,42 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) Shadow costs (euro) 2C Complete element Function Environmental classification Building part Product level Excellent B2? Fire resistance Level of prefabrication Almost none Connections on site System properties Acoustics (dB) Initial construction cost (euro) 19,18 54,3 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix Overall raƟng 3 5 2 kg/m3 5 Thickness insulaƟon 2 5 Rc-value Bioresin 4 mm AcousƟc 3 Fire resistance 4 Shadow cost* 1 Embodied energy Hemp insulation 392 mm Rubber, thermal break 1 Environmental classiĮcaƟon* Main material Ook hier geldt dat het systeem vooral interessant is omdat er geheel kant en klare elementen die uit één stuk bestaan op de bouwplaats geleverd en simpel geplaatst kunnen worden. Thickness element Rating property matrix Environment raƟng General discription Biodegradable materials Detail ConnecƟon raƟng Gastontvangst is een van de eerste gebouwen met een biocomposieten gevel. Het principe is het zelfde als bij het Enexis porject alleen zijn de materialen die worden gebruikt anders. Hier wordt een biohars in combinatie met vlas als buitenschil gebruikt en hennepvezels als isoltie materiaal. 5 Level of prefabricaƟon Element System Nr. 4 - Gasontvangst, biocomposite facade elements 5 ConnecƟon on site The biocomposite element is a high industrialized element. the level of prefabrication is high and the use of craftmanship is low. As seen on the picture, they have to put in the lasered flax, before bioresin will flow into the element. The biocompostie facade element is a building part product. The facade element is the total barrier between in and outside whitout any other additions. 392 400 9,8 Thickness insulation (mm) Thickness element (mm) Rc value (m2 K / W) 3C Complete element Function Environmental classification Building part Product level Excellent B2 Fire resistance Level of prefabrication Almost none Connections on site System properties Acoustics (dB) Initial construction cost (euro) Shadow costs (euro) 65,3 Kg/m3 General properties Craftsmanship versus industrialisation Product level Product level matrix DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthebags 8. Cork ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco Level of prefabricaƟon ConnecƟon on site Embodied energy Environmental classiĮcaƟon Biodegradable materials Shadow cost Facade elements Density (kg/m3) Thickness element Thickness insulaƟon Rc-value AcousƟc quality Fire resistance 2 // 446,5 500 420 9,85 55 B2 4,28 Low 2B All Good 268,5 492 400 6> 55 B2 4,65 Low 2C Most Good 65,3 400 392 9,8 - B2 - Low 3C Most Excellent 75 650 345 8,6 - B2 - Low - Most Fair am. 165 495 140 6,5 36,5 B2 4,3 Average 3A Few Poor 60 240 140 3,68 39 C 1,96 Low 3A Most Average 1400 1100 1000 9,5 - Poor - Low - Most Poor 160 240 50 6,48 - E - Low - Most Good 73 400 210 4,5 - B1 2,28 2B Poor 120 250 226 6,69 31 - 3,53 1A Good Minimum 54,3 300 304 7,8 - B2 7,42 2C Excellent None 65,3 400 392 9,8 - B2 - 3C Excellent None 1 1 1 5 5 4 2 5 3 5 4 2 1 1 4 5 4 2 5 2 4 4 5 2 2 5 3 4 1 5 1 4 5 5 1 2 5 2 4 2 5 3 4 1 3 1 5 4 3 4 3 3 1 2 1 5 4 5 1 3 1 5 5 1 4 3 1 1 1 5 3 1 2 5 3 4 1 3 4 5 4 4 1 3 5 3 4 5 5 2 3 2 3 5 4 3 1 3 4 4 3 4 2 4 3 5 4 4 5 3 2 5 3 4 1 2 5 5 5 2 2 5 3 4 1 1 5 5 Fair am. Facade elements DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco 4 3 4 3 3 3 4 3 2 3 3 2 4 4 4 DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork 3 2 4 4 4 5 3 5 ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco Level of prefabricaƟon ConnecƟon on site Embodied energy Environmental classiĮcaƟon Biodegradable materials Shadow cost Density (kg/m3) Thickness element Thickness insulaƟon Rc-value AcousƟc quality Fire resistance Overall raƟng Environment raƟng ConnecƟon raƟng 3 Facade elements 1 1 1 5 5 4 2 5 3 5 4 2 1 1 4 5 4 2 5 2 4 4 5 2 2 5 3 4 1 5 1 4 5 5 1 2 5 2 4 2 5 3 4 1 3 1 5 4 3 4 3 3 1 2 1 5 4 5 1 3 1 5 5 1 4 3 1 1 1 5 3 1 2 5 3 4 1 3 4 5 4 4 1 3 5 3 4 5 5 2 3 2 3 5 4 3 1 3 4 4 3 4 2 4 3 5 4 4 5 3 2 5 3 4 1 2 5 5 5 2 2 5 3 4 1 1 5 5 Facade elements DĂƚĞƌŝĂů 1. Straw + lime 2. Straw + wood 3. Biocomposite 4. Seaweed 5. Reet facade 6. Isovlas 7. Earthbags 8. Cork ^LJƐƚĞŵƐ 1. Slimfort 4,5 2. Norwin 6,8 3. Enexis 4. Nabasco ϱ 'ŽŽĚ ϰ ϯ Ϯ ϭ WŽŽƌ Ύ&ŽƌƚŚŝƐŝŶĨŽƌŵĂƟŽŶŶŝďĞ͘ŝŶĨŽŝƐƵƐĞĚĂƐĂŶŝŶĚŝĐĂƚŽƌĨŽƌƚŚĞƐĞƉƌŽƉĞƌƟĞƐ ΎΎDĂŝŶůLJƌĞƚƌŝĞǀĞĚĨƌŽŵ͗'ĂŶĂƚŽƉŽƵůŽƵ͕͘;ϮϬϭϰͿ͘ 3 // Product level CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials M6 Commercial materials M8 Elements M1 1 Subcomponents M2 Components M3 Building parts Building Materials Standard materials Commercial materials Elements Subcomponents S1 Components S3 S2 S6 S4 Building parts Building M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 S1 Components S3 S2 S4 M3 SS6 6 S4 Building parts Building Product level CraŌsmanship IndustrialisaƟon M5 Materials M7 7 M4 Standard materials M6 Commercial materials M8 Elements M1 1 Subcomponents M2 S1 Components S3 S2 + S4 M3 S63 S4 S6 Building parts Building M5 Materials M7 7 M4 Standard materials M6 Commercial materials M8 Elements M1 1 Subcomponents M2 Components ! Building parts Building M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts Building ! Product level CraŌsmanship IndustrialisaƟon Materials Standard materials Commercial materials 1 Elements 2 Subcomponents 3 Components 4 5 6 8 Building parts 7 9 Building Materials Standard materials Commercial materials 1 Elements 2 Subcomponents 3 Components 4 5 6 8 Building parts 7 9 Building Materials Standard materials Commercial materials 1 Elements 2 Subcomponents Components Building parts Building 3 4 5 6 8 7 9 Product level CraŌsmanship IndustrialisaƟon M5 Materials M7 M7 M4 Standard materials M6 Commercial materials Elements M1 Subcomponents M2 Components M3 SM 6 3 S6 Building parts Building M5 Materials M7 7 M4 Standard materials Commercial materials M6 M8 Elements Subcomponents M1 1 M2 Components Building parts Building ! 4 // Algemeenengebruiktetechnieken 1. Waaromheeftugekozenvoorbouwenmetstro?Wasditvanwegeeenpassie,deuitstraling vanhetproduct,ecologischeredenenofeenanderereden? 2. Vanwatvoorstrobouwtechniekenmaaktuzoalgebruik?Enwaaromkiestuvoordeze methoden(voorͲennadelen?)?zoalsstrawblocks a. Wordtditalvaaktoegepastinnederlandalstechniek? b. Watvoorgrotenadelentijdensdebouwlooptuzoaltegenaan? c. Hoeveeltijdneemteengemiddeldprojectmetdezetechniekin? d. Voorwatvoorelementen(fundering,waterdichtheid,etc)gebruiktunogmilieu onvriendelijkeproducten e. Watzijndekostenvanzoeendergelijkproject? f. Waargaatdemeestetijdinzittentijdenszoeenproject? 3. Kiesthijvooralvoorprefabofpostenbeamtechnieken?Watzijnzijargumentendaarvoor? a. Heeftuweleensstrobouwprojectengedaanvanmeerdantweeverdiepingen? i. Watwasdegebruiktetechniek?Etc. ii. Ofisereenbepaalderedenwaaromernietgekozenwordtvoor ‘hoogbouw’projecten?(doortechniek,geenvraagnaar?) 4. Waarombouwtumetstro?Ennietmeteenvandeandereecologischematerialendie gebruiktkunnenwordenzoalsaarde,zeegrasenalleenmethout? 5. Watzijndegrootstevoordelendienietalgemeenbekendzijn,zoalsembodiedenergy, beschikbaarheidvanhetmaterial,etc? 6. Watzijnnaastdevoordelendieditmateriaalbiedtdegrootstenadelen,waardoorerzo weinigmetstrowordtgebouwd. a. Ziterookeenmaximalemaataandestrobalen?Ofwordtdatnubepaalddoorde machinediewordtgebruiktenzoudenverdiepingshogestrobalenintheoriemogelijk zijn? 7. Hoezoudenwehetbestemetdezenadelenomkunnengaan? 8. HetvochtgehalteinNederlandisooknietoptimaalvoordestrobouw,kuntumisschien concluderendatnederlandvanwegedeweerstomstandighedennietdemeestidealeplekis omstrobouwtelatengroeienalsbouwmethode?Zojawaarom,zoneewaaromwel geschikt? Industrialisatie 9. Watdenktuisdebelangrijkstefactorvoorhetverkiezenvanandereminderecologische materialenindebouwbovenecologischematerialen? a. Hoezoudenweditkunnenaanpakken/verbeteren? 10. Nahetzienvanmijnconclusies,denktudatmethetverhogenvandeinsutrialisatiedatook hetgebruikvanstroindegevelbouwtoezalnemen?Enwaarom? 11. Denkudathetmogelijkisomhetpercentageecologische/bioafbreekbarematerialen hetzelfdetehoudenalsindeelmentennuentegelijkertijddeprefabricatietoetelaten nemen?Ofdenktudaterteveelopofferingenmoetenwordengedaanvanecologische materialen?(doorbevestigingsmethode,afwerkingslaagetc.) 12. Hetgeenwatnuvooralopdebouwplaatsgebeurtishetplaatsenvandeelmentenende afwerkingslaagvanleemopsuiten.Opwelkemanierzoudenwedeafwerklaagalkunnen toepassenindefabriekentocheenzelfdemooieafwerklaagkunnencreeëreninhet uiteindelijkeresultaat.Isleemdanweldegeschikteafwerklaagofzouditnietmogelijkzijn metleem. 13. Waarzittendekansen,puntenvanverbeteringentegenslagenindestrobouwincombinatie methetverhogenvandeindustrialisatie? 14. Zijnerookkansenenpuntenvanverbeteringindestrobouwdienietzozeergelijkgelinkt kunnenwordenmethetverhogenvandeindustrialisatie? 15. Staandemensenindestrobouwopenvoorindustrialisatievanditproductofzoudenzijhet lieveralseenambachtwillenblijvenhoudenentoepassen?Endeeltudezemening? 16. Nogbelangrijkerisdetraditionelebouwklaarvoorhetverhogenvandetoepassingvanstro inprojecten? a. Watzijndebelangrijksteaspectenomdebouwlangzaamtelatenwennenaandit materiaal? b. Hoekunnenwijervoorzorgendatzijhetmeerzullenzienalseenproductgelijkaan hedendaagsetoegepasteproducten? 17. Watzijnbelangrijkeontwerpingrepenomrekeningmeetehoudenindestrobouw?Zoals, volgorde,elementendienietsamengaanmetstrobouwofelementenwaarjenietonderuit komtalsjebouwtmetstro. 18. Watvindtubelangrijkeitemsdienutevindenzijninstrobouwtechniekendieabsoluutniet verlorenzoudenmogengaandoorindustrialisatie?Welkeookmeegenomenzoudenmoeten wordentijdensmijnontwerpproces?Quauiterlijk,leemgebruik. Strawblocksystemextravragen 19. Watmaaktuwsysteemefficientertijdenseenbouwprocesdananderestrobouwtechnieken a. Vergelijkendmetpostenbeamtechniek b. VegelijkendmetModcell(prefabricatietechniek) 20. Watvoorverbeterpunten/knelpuntenzijnerwaarutegenaanlooptmetuwproduct? 21. Zouditproductookingroteformatenkunnenwordengeleverd,verdiepingshoog? a. Metafwerklaagzodatdeindustrialisatietoeneemt? b. Metverwerktebevestigingsmethode? c. Ofbijvoorbeeldeenblockdieeenpuzzelstukvormtmeteenbepaaldehoutenvloer, waardoordezeconnectieookmakkelijkkanplaatsvinden. d. Hoevindtdezeconnectienuplaats?Ofwordthetniettoegepastbijprojectenmet meerdanéénverdieping? Terafsluiting 22. Alsunueennegatiefpuntmoestaanwijzenindestrobouwinnederlandwatisdanhet eerstewatinuwopkomt,waardoorwehetnietzoudenmoetentoepassen? 23. Enwatzouutegendehuidigegroteaannemerswillenzeggenomhunovertehalenomstro toetepasseninbvutiliteitsbouwofdewatgroterebouwprojecten? 5 // InterviewPimHonderveld–interviewerTyrzaLigthart Watvoorreactieskreeguwanneerumeergeïndustrialiseerdgingkijkennaardestrobouw,kreegu daarnegatievereactiesopvanmensendiestrobouwmeeralseenambachtzien? Dekleinebouwersdiezeggenallemaaljaditishet.Voorhenisdatnatuurlijkookprachtigwantze kopenhetelementbijmijenhetiszelfopdebouwplaatsaanbrengenendestukadoorlatenkomen enjekuntafbouwen.Datisnogeenbeetjedatambachtelijkeendaarmoetjejuistvanafomdathet geenkwaliteitoplevert.Alsikkijknaarhoedeconventionelestrobouwgedaanwordt,eenbeetjedie balenertussenstoppenenopvullenmetstrojadanhaaljegeenrcwaarde,datzeggenzewel allemaal,eenrcwaardevan7,5/8datmoetikeerstmaareenszienwanneerjedaarmeteen infraroodcameraopschijnt. Wantwatzeopdebouwbeurszeidenoverdiestrobouwelementenisdatzeallemaaleenrcwaarde zoudenhebbenvanminimaal8. 7,5/8denkenwij,ditprojectheefteenRCͲwaardevan7,5. Datbehaaltudoordathetnogmeeropelkaargedruktis,dedichtheidvanhetstroproduct? Hetmoetookniettedichtzijnwantdanneemtdercwaardeaf.Wanneerjeeenpartijstrohebtdan moetjeeigenlijkeerstdedichtheidbepalenvanhetmateriaalendankunjezeggenhoeveelprocent moetenwedatdoordrukkenzodatwedeidealewaardekunnenbereiken,daarmoetenwenaartoe. Wantdeleverancierdrukthetdeenekeerdichterinelkaardandevolgendekeer. EndatiswaardietweejongensvandeTUEindhovennuookonderzoeknaardoen? Ja,wantdanhebjeeenkwaliteitsproduct,uniformgewordenproductendaarmoetjenaartoe.Dat doejemetbetonenasfaltook.Zoalsdatnuisdaargajeookeerstkijkenwatishetvochtgehalte welkedichtheidhebbenweenwatishetruwemateriaal. MaardanwelgefocustopdeselfͲsupportingstrobouw? Ja,wantpostandbeamdatisvrijdragend Waarbijhetalleenalsisolatiemateriaalwordtgebruikt. Ja,datwillenwijduseigenlijkniet.Wijwillenalleenelementenkunnenleverendiedeverdiepingkan dragenengajenatuurlijkhoogdeluchtindanmoetjetochbouwenmethoutskelet. Maardannietinzelfdragendstrotoch? Nee,danhebjehetstropuuralleenalsisolatiemateriaalendanwordthetalsbouwmateriaal minderinteressant,quaprijsisdatdanalnietinteressant.Maareigenlijkwiliknogeenstapjeverder datwanneerjemeerderewoningenhebtwijdemobieleproductieuitoefenen.Hetiseensysteem watjeeigenlijkoveralopdewereldzoukunnenneerzetten.Daarwaarhetgraanisgajemetje machineheen,vanhetrestmateriaalvanhetvoedselgajijhuizenvanbouwen.Ja,simpelerekan nietendanvoldoejeaanbasisbehoefte,watteeteneneenhuishebben.Hoesimpelkanhetzijn. Maarsomsdenkjedatistesimpel,daardoorgeloofjehetnietengajedusjegeldernietin investeren. Datmensendenkenwaarzithetaddertjeonderhetgras? Ja,wantdiebankendiewillendatalleszoveelmogelijkkost,geldlenenenprocentenontvangenen jaditiszosimpelditgroeitinjeeigenachtertuin,wegaanermetdemachinenaartoe,dienuinde werkplaatsstaat,diekanjeineencontainerzettenendanrijdenwenaardeplektoe.Eigenlijkzou hetzomoetenzijndatwemetdiemachinenaarGroningengaanwanneerdeoogstisendangaan wegewoonelementenmaken.Nieteersttransportvanhotnaarher,wantnubenjedirectopde plek.Dieboerslaathetstroopennugajijmetjetweecontainersdaarheen,zetjedaarneerenga jeelementenmaken.Energiezuinigerkanniet. Waaromhebtuineersteinstantiegekozenvoordestrobouw?Wasdatvanwegeeenpassie,washet deuitstralingvanhetproductomdoordeecologischevoordelenwathetproductheeftofeenandere reden? Ikbenuitermategeïnteresseerdinstro,ikbeneenboerenjongendusikbenermeeopgegroeid.De interessewaserennaeenworkshoptehebbengedaanbijeenvandeconventionelestrobouwers hadikzoietsvan,alsditbouwenmetstroisdanwordtheteigenlijknooitwat.Ja,danblijfthet eigenlijkeenbeetjedatambachtelijkeopkleineschaal.Hetheeftdangewooneenbepaaldimagoen datwerktnujuisttegenonshebikhetgevoelendaarmoetjevanafendaarprobeerikeenbeetje vanaftekomendooreengoedproductneertezetten.Daargaathetom,debasismoetgewoon goedzijnenwezittennogsteedstebouwenmetstrobalenenterwijlweeigenlijknaareenperfect bloktoemoeten.Alsjenaarvroegerkijkt,toenikkindwas,haddenwehoutenblokkendiejekon stapelen,wanneerjedaarmeteenvingertegenaanduwtvalthetzoom.Nuhebbenweduplovan legoendaarmoetenwenaartoe.Duploisstro,strodatwesupersnelverwerken,pasklaarmakenen vlakis.Wantalsjenukijktnaarruwestrobalenwatdiedanweernietnodighebbenomhetenigszins aftewerken.Zezijnteruwenkostteveelleeminafwerking. Wantomdatdezegladderzijnkosthetookminderleeminafwerking. Ja,jegebruiktaltijdminderleem,dusmindergrondstoffen.Alswehierkijken,danhebbenwe2cm leemaandebinnenkanten2cmleemaandebuitenkantdanhebbenwedus4cmleem.Alswedat vergelijkenmetdeconventionelebouwdanhebbenweeenmetselsteen,datiseigenlijkookleem, datisal10cm,danpratenweovereenenkelewand.Doejedatdubbeldanpraatjeover20cm. Vaakisdatgeenleemmaargoed,danishetkalkzandsteen.Enwijmakeneigenlijkeengebouwmet4 cmleem. Enaandebuitenkantisdatwelincombinatiemetkalk? Nee,ikbeneigenwijsikdachtikgadatgewoonproberen.Iedereenzegtdatkanniet,jehebthet leemaandebuitenkant. Inverbandmetdeweersomstandigheden. Ikhebwelnaarbinnenwijkendewandengemaaktdusslagwerkershebbenereigenlijkweinigvatop. Hetstaatnueenjaarenalsjehierrondkijktdanheefthetalleenschadegehaddooropspattend watervanhetterrasentoenishetwatuitgespoeld.Maarvoorderestziejeheelweinig. Enisdatdanweermakkelijkterepareren? Jameteenspons. Eennattespons? Ja,alsjebijvoorbeeldnaardiescheurtjeskijktenikpakeennattesponsdanwrijfikereenbeetje overheenendanishetscheurtjeweerdicht.Hetblijftleemerzitgeencementin.Hetislucht gedroogd. Ikziedaarookindebeurteenschakelaarzittenendatisnietgevaarlijkincombinatiemethetnat dichtenvandescheur? Nee Wantdiezittendaartediepvoorofdiezijnbeveiligddoorbuizen? Dieziteigenlijkindatstro. Datisweleenvoudigdatalsjeeenbeschadiginghebtjehetkanoplossendooralleeneennatte spons.Netalsofjejemuurschoonmaakt.Devolgendevraaggaatoverdetechniekwaaruzoal gebruikvanmaakt,datisdannatuurlijkdeselfͲsupportingtechniekendandeStrawBlockSystem watuzelfontwikkeldheeft.HoevaakwordtditaltoegepastinNederland?Isdithetenigevoorbeeld waternutevindenis? Wezijnnumeteenpaardingenbezig,wehebbenwelwatgeprofileerdeblokkengeleverd,in NijmegeneninNieuwVennephebbenwegeleverd,maardatzijnalleennogmaarblokkendusniet verwerktineenelement.Wehebbenwelwatelementenstaan,vanverdiepingshoogte2,70enwe zijnmetheelveeldingenbezig,maarechtopdrachten.Zezittenerwelaantekomen,maarhetis nogwelmoeizaam. Enaanwatvoorreactiesmerkjedandatmoeizaamgaat?Watzijnderedenenwaardoormensen tochafzeggen? Ikzeidaareerdervandatimago,maarstroheeftookhetimagovaneengoedkoopmateriaal. Endatishetniet? Hetiswel25Ͳ30%goedkoperdandeconventionelebouwenookdandeconventionelestrobouw, maarmensendiedenken,jaeenstrobaaltjedatkostdrieofviereuroendaarkrijgikwelblokken voorbijStrawblocksystem,maarzoishetniet.Wijpasseneenbewerkingtoeenweontwikkelen machinesenconcepten,maarhetheeftgewooneenbepaaltimagoenhettrektmensenaandieheel weinigtebestedenhebbenendiedanheelgraagmetstrowillenbouwen,omdatzedenkendathee goedkoopisendatisdannietzo.30%denkenwijgoedkopertezijndandeconventionelebouwen deconventionelestrobouw.Puuralsjekijktnaardecompleteschil,danzitjeindeconventionele bouwrondde€300/m2afgewerktenal. Enalsjemetditsysteembouwt,hoeveelzitjedan? Ongeveer€250Ͳ275/m2.Dusdatscheeltaanzienlijkenjehebteenenkelewand. Zijnerookgrotenadelenwaarjetegenaankanlopentijdenszoeenprojectwaardoordatmensen misschienafschrikt? Demeestediekomenmetbrand,muizen,ongedierte. Maardatisnietzowanneerhetafgewerktismetleem. Alonzeelementendiewordenafgewerktmeteengrondlaagleem. Alsuzegtdatdeeerdergenoemdenadelennietvantoepassingzijnisdatnietgenoegomdemensen teovertuigen? Ikhebhetgevoeldathettocheenbepaaldeangst,onwetendheiddatzedenkenvanjaalsiksteen neembenikzeker. Ja,omdatNederlandvoor90%gebouwdisuitsteenhebbenzedaarnatuurlijkeenbeeldbij.Alswe bijvoorbeeldkijkennaarhetwerk,hoeveeltijdgaaterdaninzoeendergelijkprojectzitten?En vergelijkendmetdeconventionelebouwisdatdanminder,meerofvergelijkbaar? Ditishetprototype,dusdieheeftveeltijdgekostendemachinesdiewenuhebbendiehaddenwe toennogniet.Wehebbendaarechtgeïmproviseerdmetmobilezaagmachinesdusdatheeftwel behoorlijkwattijdgekost.Alsikterugkijk,wewerkteertweedagenindeweekaanenhetheefteen halfjaargeduurd.Dusikzegmaardriemaandenheeftditgeduurd.Maarditzoujemeteenpaar wekenkunnenbouwen,mitswedaaropingerichtzijnenhetzouseriematiggebeuren,wanthet geeftgeenfunderingenplaatstalenberanding. Maarhetheeftnietdirectcontactmetdegrondneemikaan? Neestaatbovendegrond. Enwaarstaatdatdanop? Opwegfundering,gebrokenpuinendaneenlaagschelpenop. Watvoorandereelementengebruiktunogdiemilieuonvriendelijkzijn? Staal,maarikvindstaalhelemaalnietzoeenzwaremileubelastereigenlijk. Maaralsjeeengebouwgaatmakenvanstaaldan... Jaoké,maardatisnatuurlijkietsanders. Maarugebruiktkleinestalenelementeninditprototype,waargebruiktudezedan?Wanterzitten nietbijvoorbeeldstalenpinnenindeblokkenverwerktomzebijelkaartehouden? Nee,wehebbenalleenmessingenengroeven,dushetzelfdesysteemalseenvloerplankdatkunnen weookindeblokkenaanbrengenenzogrijpthetinelkaar. Watisnuhetmeesttijdrovendeelementtijdenszoeendergelijkbouwproces?Isdathetplaatsenvan dieblokkenofisdatdeafwerklaagaanbrengen? Hetdakaanbrengendatwasbijdeze,maardatkunjenatuurlijkookinprefabdoen,wijhebbendus eigenlijkgekozenvoorhetmoeilijkstegebouwtjedatjekuntmaken,omtelatenzien;alsjeditkunt bouwenmetstrodankunjeallesbouwenmetstro. Enalshetbijvoorbeeldeenkubusvormhadengeenmoeilijkevormenzouhebbenwatisdathet meesttijdrovendeelement? Ja,hetdak,zoisditdakook,datisgewoonambachtelijkdiehoutensingelseropaanbrengen. Ja,devolgendevraaghebbenweeigenlijkookaleenbeetjebesprokendatiswaaromuvoorprefab ofpostͲbeamtechniekenkiestenwatzijndeargumentendaarvoor?Maarubentheterduseigenlijk meeeensdatwemeernaarindustrialisatiemoetenomookvanhetimagoaftekomen? Ja,wemoetenvanhetimagoaf,maardatnietalleen,wantwiljeechtprofessioneelditindemarkt zettendanmoetjegewoonduurzaamheidleveren.Jaduurzaamheiddaarwordiksomseenbeetje bangvanwantiedereennoemtallesduurzaam,maarwemoetengewoonzorgendatweeen natuurlijkproduct,cradletocradleennoemmaarop.Hetisnoggoedkoperdaneenconventioneel gebouwdgebouweneengebouwiseenwareenergieengrondstoffengrootgebruikerendaar moetenwevanaf.Ditiseenhernieuwbaregrondstofgroeitditjaarweer,brengtvoedsel.Vanmorgen lasikweerindekrantdatweandersmetonzegrondmoetenomgaanwanneerweaanheteten willenblijven.Daarwerdzelfsingenoemddatwemeergraanmoetenverbouwenomdatdatgoedis voordegrond. Enwaarombouwtumetstroennietmeteenanderecologischverantwoordproductzoalszeegrasof grond,komtdatdatookweervoortuitdatuvaneenboerderijvandaankomtdoordatjedaaral meerbekendmeewas? Datheeftmisschienmeermethetnostalgischeplaatjetemaken,datgraandatvindikgeweldig mooi.AlsikinDenemarkenbenenikrijddaarbovenindejuttelandenenjezietdaardielanderijen enjekijktdaarzoopdehoofdzee,datisgeweldigmooi.DatzouinNederland,wanneerwekijken nabij30jaargeledenbestondNederlandvooreenkwartuitgraanveldenendatheeftzichdelaatste jarentotaalverplaatstnaargrasenmais.Hetisallemaalgroen,landschappelijkzietheternietuiten voordebiodiversiteitishetooknietzogunstigendaarvoorzouhetookandersmoeten.Omdatwe degrondgewoonuitputtenopdezemanier.Ermoetveelmeerteeltwisselingkomenenhetzou landschappelijkeenverfraaiingzijnenvoorNederlandbelanghebben. Watzijndegrootstevoordelendienietalgemeenbekendzijnvanstrobouw,zowetenwe bijvoorbeelddathetingrotehoeveelhedenbeschikbaarisengeenanderebestemmingheeft,het heefteenlaagenergieinhoud,watzijnnouvoordelenzoalsdebiodiversiteitdieunetnoemde,die nietalgemeenbekendzijn? Kijkomtoteenproducttekomenheefthetheelweinigenergienodigendatvindikhetsimpele,het eenvoudigeensoberevanhetmateriaal,debewerkingenzijneigenlijknul.Hetvraagtzoweinigen datvindikhetprachtigeeraan.Maarhetisgeenhightecheniedereenwilhightech.Kijkooknaar bedrijvendiehightechontwikkelenenhetisallemaalbioͲenergiecentralesdieworden ondergedompeldinsubsidiesenalsjekijktwatervanterechtkomtdatisheelweinig.Diedraaien eenpaarjaarendanisdesubsidiebedrijfooktezielen. Maarovereenpaarjaarkanhightechookbetekenzosimpelengoedkoopmogelijk,enzoustroook eenhightechmateriaalkunnenzijn. Nee,maarkijkdepolitiekwildathightechookgraagkijkdaarkunnenzijzichzelfmeeprofileren. Zietudatdanalseennadeelvanstrobouwdathetniethightechisofishetmeereigenlijkeennadeel vanmensenenhoezijzichwillenafspiegelenomdatdatvoorgeschoteldwordtalswatgoedis?Want watzijnnoudegrootstenadelenwaaromditmateriaalnietgebruiktwordtnaasthet geitenwollensokkenimago,watzijndefeitjesoverbouwenmetstrowatnadelenzijn? Ja,ikzouzogeennadeelkunnennoemen,hetislicht,weinigintransportquamilieubelasting,jekunt erheelveelvanmeenemenvanstro,hethuisislichtdusjekuntookminderefunderingtoepassen. Wezijnookalbezigmeteengebouwtjeofeensoortwoonbootachtigidee,wanthetdrijft. Enmetdeluchtvochtigheidbouwendatzietunietalseennadeel,datjedaarheelergrekeningmee moethouden?Datdeluchtvochtigheidvandiestrobalenpreciesgoedmoetzijn? Noupreciesgoed,kijkhetkanwelevenwatvochtigerwordendatisnietzoeenprobleem,maarhet moetwelrondde10%zitten.Hetkanwelnaar20of25&. Maardatmoetdanwelweerzakkenvoordathetafgewerktwordt? Ikdenkdatweookeenbeetje,jaikwilnietzeggenbangwordengemaaktmaar,iedereenbegint overongedierteenschimmelsenbrandendattochiedereendenktvandankiesiktochvoorsteen. DatzeidenweooktoendeeerstehoutskeletbouwhuizeninNederlandkwamen,maarjadatisniet geschiktvooronsklimaat,hetisookmindergeschiktvooronsklimaat,datisgewoonzoenalsje bijvoorbeeld,naardehoutenhuizeninZwitserlanddiegewoonzonderbehandelingworden gebouwd,diestaanaleenpaareeuwenenalsjediedanslooptdanzietdathouternogperfectuit. Ineenlandklimaatgaatdatnatuurlijkwelietslangermeedaninonsvochtigeklimaat,maarde houtskeletbouwinNederlandistochookwelbehoorlijktoegenomen.Ja,ikdenkdatheelveel onwetendheidmeespeeltenhetzekerevoorhetonzekerekiezen. Watzoudenwedaardaneigenlijkaankunnenenmoetendoendatdieonwetendheidwegneemt? Wanterisgenoeginformatieopinternettevindendatjebijvoorbeeldgeenlasthebtvanmuizen,dat jegeenlasthebtvanditnadeelendatnadeel,maartochkiezenmensenerdannietvoor. Ja,ikbenookbeziggeweestmetiemandomhetinRuslandteverkopen,endiezeggenookvaneen ruskrijgjeooknietzomaarineenhuisvanstroenalsjebijvoorbeeldkijktnaarAfrikaanselanden daarisstroenleemhoofdmateriaalendiewillenzichjuistnunetzogaanbouwenzoalswijal50jaar aandegangzijn.Wijzijnnutoeaanecologischbouwenendaarwillenzejuisteigenlijkeenhuisvan steenenbeton. Denktudathetverhogenvandeindustrialisatiezouhelpenbijhetverhogenvanhetgebruikvan stro?Omdatmensenhetdanookmeerkunnenvergelijkenmetdeelementendienugebruiktworden doordathetzelfdeuiterlijk,formaatoftoepassingheeftopdebouwplaats? Nietvoordezelfbouwersdiewillenlekkerslepenmetdiegewonestrobalenenzelfsjouwenendie willenditniet.Jemerktookdatmensendiehetvaakzelfdoendiebestellenbijonsalleenmaar blokken,dusgeenelementen.Wantzewillenzelfaandegangzewillenmetdathoutendieblokken slepen,zewillenstukengewoondatzelfdoen.Ikdenkdatwezekerindeprofessionelekant,dat noemikdekleinereaannemersmaarookwelgrotereaannemers,datwanneerjemetelementen komt,jehebteenschonebouwplaats,jehebteenstofvrijebouwplaatsmetelementendekwaliteitis aanzienlijkbetertenopzichtevandeconventionelebouw.Jelevertgewooneengoedproduct. Watdenkudatnunogeennadeelis,alsjebijvoorbeeldkijktnaardeModcellelementen,dieleveren zevaakzonderleemlaagopdebouwplaats. Modcellgebruiktgewonestrobaleninzijnelementen,daarisnietsaanafgewerkt.Datzijngewoon ruwebalenineenhoutenframe. Datvindtuniks? Nee,datvindikniks. Wantikdenkdusdatereensoortvanelementzoumoetenkomenwaarookdeafwerklaagalopzit enwaarjenietnogeentoplaagopdebouwplaatszoumoetendoen,wantikdenkdatdatheelveel mensenzienalstijdrovendenarbeidsintensief. Jemoeteenelementvanstromakennetalsdatjemetdeautodoordewasstraatrijdtgaatdat elementookdoordiewasstraatenzitereengrondlaagleemop.Zozieikheteenbeetjevoorme.Je kunthetheleprocesookstapelenmetblokkendaarbenikookwelmeebezigmaardatkunje robotiserenweer,jewerktineenbepaaldstramienhopblokmaken,hopstapelenendewasstraat in,leemerop,klaar.Maardankomjewelineenfabriekterechteneigenlijkwiliktochdatmobieleer inhebben.Datjehetoveralkunttoepassen,tweeofdriecontainersrichtinghetgraanenelementen maken. Zoujeeensoortvanloopbandproductieprocesineencontainermoetenontwerpendiejenaarde bouwplaatszoumoetenkunnenrijdenendaardeelementenmoetenkunnenmaken. Ja Ja,wantwatnatuurlijkweleennadeeliswatikhierbijvoorbeeldzie,jezietnergenseenscheidingslijn vanelementen,zoalsjedatnuheelvaakhebtmetgebouwenisdatjedenadenzietvanhet plaatmateriaalendatishetvoordeelvanzoiets,datjediemooieafwerkinghebt. Datisookmetalhetlaagleemerop. Ja,dangajedatwelkrijgenbijelementen,endatismisschienweleennadeel,ofiniedergeval mindermooi. Endaarnaastdiestukadoordiewilgraagniettedrogeleemhebbenenkijkwanneerjeeenelement maaktenhetstaatdrieofvierwekenineenheledrogeruimtejadanisdatnietlekkeromdielaager optebrengendanmoetjedatweereenbeetjebevochtigen.Jewilteigenlijkhetliefstdathele proceszelfindehandhouden. Maarzoujenietwanneerjetweeelementenhebtdiejealleenmetschroevenopdebouwplaatshoeft tebevestigeneneensponsoverdenaadvanhetleemtrekkenwaardoorjegeennaadmeerziet? Waaromziejenueennaadomdatzevaakmetcementwerken.Enjacementgeeftgewooneen scheur.Datkunjenietdichtpoetsenmeteenspons. Maarmetleemzoudatwelkunnen. Metleemwel,wanneerjedusdeelementengekoppeldhebtenjezoueenbakjemetleemhebben eneensponsdiejeoverdenaadhaalt,endanbrengjededeklaagaandatzoubestkunnen. Enkalkmetleem,kanjedatookmeteensponsjeafwerkenofkanjedatnietmeteensponsje afwerken? Nee,datluktnietwantdatwordthard.Leemwordtookwelhardmaarhydraulischekalkenkalk wordttochharderdanleem.Wantdatheeftookeenhogeredichtheidwantdaardoormoetjeook weereigenlijkwanneerjehydraulischekalkaandebuitenkantgebruiktmetkalkmoetjeaande binnenkanteigenlijkcompenserendooreendikkelaagleemoptebrengenomdateenbeetjein balanstehouden.Ookvoortransportenvochtendiebuitenlaagdichterisdatdaarvochttegenaan gaatstuwen. Dusjezoueigenlijkalsjemetelementenwerktdekansdatjehetdanmooiafgewerktkrijgtmetleem ofkalkdanblijfjewaarschijnlijkaltijdnadenzienalsjehethelemaalprefabmaakt?Duswezouden misschiennaarandereafwerklagenmoetenkijken. Ja,ikvinddithetbeste,dithebikgewoonmetleemgedaanmaarhoutisnatuurlijkperfect.Datvind ikeenvandebestebekledingeneigenlijkaandebuitenkant.Ofzoalsdiehoutensingelsdieophet dakzittenmaardiekanjeookheelgoedalsgevelbekledinggebruiken.DatziejeinEngelanden Zwitserlandheelveel. Maartochmensendiemetstrobouwenkiezenaltijdvooreenafwerklaagvanleemdanwelin combinatiemetkalk. Ja,ikvindhoutheelmooiaandebuitenkant.Ofeenbeetjeeencombinatie. Wantdanziejenietpersedaterstroaandebinnenkantistoegepast. Nee,maareigenlijkzoudenweeentransparantietsmoetenhebben.Wehebbenwelietsgeprobeerd methoutlijm,dandichthijhetstrowelafmaardathetstrowelzichtbaarblijft.Datvindikmooi. Ja,dathebjewelinanderelandendaarhebikookeenvoorbeeldvanmetplasticgolfplaat,maardat magdannatuurlijkinNederlandweerniet.Maardatbedoeltueigenlijk,datjezietdaterstroals bouwmateriaalwordtgebruikt? Ja,datvindikmooi. Ja,datsnapikwel.Waarzittendekansenofpuntenvanverbeteringpreciesindestrobouw,zouden erbijvoorbeeldookgrotereblokkenmoetenwordengemaaktdandaternuzijn?Ofzoudatdanweer tezwaarworden. Grotereblokkenofgrotereelementen? inrichten.Ja,vandeenekantwilikhetsimpelinrichtenenvandeanderekantwilikindustrialiseren dusdatiseenbeetjetegenstrijdig. Ermoetgewoongekekenwordennaarhoediecombinatiemogelijkisdenkik. Nee,wantindustrialiserendatheeftookeenbepaaltimagoendatkrijgjedanookweerdanwerkje eigenlijk,hoegroterjedeblokkenweergaatmakenenhoegroterjeweermetjeelementengaat makendanhebjebijvoorbeeldalweerééngevel,éénpaneel,datgaatopéénvrachtwagen,maar datwillenwijdusookniet.Wijwillenwelhandzamepanelenmakendie. Datjeeigenlijkookgeenmachinesnodighebtomdeelemententeplaatsen,ofdatmaaktdanweer nietuit? Ja,eenkraantjeomtestellenhebjetochnodig,maarhetwordtallemaalzofabrieksmatigendatwil ikeigenlijkniet,ikwilwelindustrialiserenmaarnietineenfabriek.Wantdankrijgenweweerdatdie fabriekinhetmiddenvanhetlandkomttestaanendatmoetdanoveralnaartoe.Wezittennuin eenovergangsfasevoormijngevoelmaarikdenkdatweernaartoemoetendatwedatbewijsvan sprekeninheelEuropazoukunnendoen,wijdoenonzemachinenaardieregiometdetafeltwee containersgaannaardieregio,verkoopikaandieregiowantwijontwikkelenenbouwenook machines,wijzijnnietalleenbouwers.Maarwedoendienaardieregioennaardeplaatselijke aannemerweerindieregiowantikmoetdatzelfnietwillen,ikwilalleenmijnmachineaanhem verkopen.Endankanhijmetmijnconceptdaarindieregioaandeslag.Datzouzelfswereldwijd kunnendoen.Benjevanheelveelgesleepvanafenbetrokkenmensen,inderegio,datisleven volgensmij.Datisnatuurlijkgeenkeihardebusinessmaarikdenkdatwedaarweleenbeetjevanaf moethetmoetwat... Misschienisdiestapnogwelgroteromdetraditionelebouwdaarvanaftekrijgendandestrobouw erintekrijgen. Ja,datzalwelzozijnja. Watzijnbelangrijkeontwerpingrepen,waarrekeningmeemoetwordengehoudenindestrobouw? Bijvoorbeeldisereenbepaaldevolgorde,natuurlijkmoeteersthetstroendanhetleemdatis duidelijk,maarzijnerdingendiemindervoordehandliggen? Eigenlijkzoujehetgebouweenbeetjeaanmoetenpassenaandematenvanhetblok. Dushetelementmoetmaatgevendworden? Ja.Wantkijkiederblokdatuiteennormaleperskomt,jajehebtwelverschillendetypes.Jehebter eendiemaakt35enjehebtereendiemaakt40.Duswanneerjealle,wanthierzittendeblokken noghorizontaalmaarwehaddeneigenlijkinonshoofdombijdevolgendedeblokkenverticaalte plaatsen.Dusjeneemtjediktemaat35,daarzittendetouwtjesaande35kant.Duseenelementdie wedanmakendiewordenéénmetervijfoftweemetertien. Maarjezouookwelwataanpassingenaanmoetenkunnenblijvendoen,zodatmensenookhun eigeninvloederopkunnenuitoefenen. JezoubijvoorbeeldeenStrawBlockelementverdiepingshoogkunnenmakenwaardoorheteigenlijk albijnaeenelementis. Vanéénblokzegmaar,jaerbestaanjumbobalendusdatdoenzealwel,danhebjeblokkenvan tweemeter.Hetisnatuurlijkwelzohoemindervoegenhoebeter.Wantdevoegishetkwetsbare aspect.Devoegenvandeblokken,datzijndezwakkeschakels. Enalsjegroteelementenhebtdatdraagtnatuurlijkookweerbijaanhetverhogenvande industrialisatiedenkik,alsjekleineelementjeshebtdiejeallemaalmoetplaatsenopdebouwplaats isnietechtefficiënt. Ja,nouwanneerjegroteblokkenwiltgaanmakendatgebeurtookwelmaardangroteplatenvoor binnenwanden,datisheeleenmooiproducttrouwens. Datzijnvandiestropanelen Ja(naambedrijf)diemaaktplaatmateriaalvanstromaarmeteenheledichtepersingdusde isolatiewaardeisnietzohoogmaarvoorbinnenwandenisdatweleenheelmooielement. Denktudatdemensenindestrobouwopenstaanvoorindustrialisatie?Dievraaghebbenweal gehad,menseninhetalgemeenwaarschijnlijkdusnietdieditnualalsambachttoepassen,maaru deeltdiemeningniet?Uzouhetbetervindenalshetingrootformaatzoudenwordentoegepasten erdaarvoordusindustrialisatienodigis,datzietuwelalseentoekomst? Ja,wemoetenmensendiehetverwerkenoverdestreeptrekkenenvoorwatikalgenoemdhebis gewooneenbouwplaatseneenstofvrijebouwplaatsergbealngrijk.Wantalsjekijktnaarde verwerkingvanstroopdebouwplaatsenerzoueenArbokomenkijkennoudankunjedetentwel dichtdoeninéénkeer.Enzekeralszedannogmetslijptolkomenenaanhetslijpenzijnofaanhet zagen,datmoetjeeigenlijknietwillenvindikzelfhoor. Maarmetuwproducthebjedatdanookopdebouwplaatsofisdatdanminder? Alswijonzeelementenaanleveren,jawantonzeelementenhebbenweookinUtrechtgehad,ik bedoeldiehebbenwedaarookneergezet,datgeeftweleenbeetjemaarwanneerdegrondlaag leemeropzouzittenbenjeeigenlijkookstofvrijenalenigszinstegenvochtbeschermd.Wanthet regenternietmeerhelemaalin.Ikdenkdatwedaargewoonnaartoemoetenwillenwebouwen metstroopeenhogerplanbrengen,zekerinEuropadanmoetenwetoenaarditsoortelementen. Endatisookdemanieromdetraditionelebouwklaartestomenvoorbouwenmetstro? Ja,wantdeaannemers,wehebbenheelveelreactiesgehadvanaannemersookopdebeursin Utrecht,enzekerdekleineaannemersendaarzouhetookprachtigvoorzijnwijmakenelementen weleverendieaandekleineaannemereniedereeninNederlandwileigenlijkalmetzeplaatselijke aannemerwerken,waarommoetenwedehelestadenlandafreizenommaartegaanbouwen.Dat istochvandegekke?TerwijlweinRotterdamnetzulkegoedemensenhebbenzittenalshieren elementennaarRotterdamtransportereneneenplaatselijkeaannemerdiegaatdaarmeebouwen datistochperfect?Jemoetiedereenhetgunnenendanbenjeokinderegiogoedbezigwantdan krijgjejuistweerbetrokkenmensen.Zomoetjeeigenlijkbouwenvindik,mensenerbijbetrekken dathetinderegioblijftdathetinjeomgevingblijftdanheeftiedereenwatenkanjehetzosimpel Hetisnietzomoeilijkompasblokkentemaken.Maarproberenzoveelmogelijknaardiemaatvan 35of40tekomen.40isheelgunstig,waaromomdatdatrichtingeenplaatmaatgaat. Enwatvindtubelangrijkeonderwerpendienutevindenzijnindestrobouwdienietverlorenzouden mogengaanaandeindustrialisatie?Isdatbijvoorbeeldhetuiterlijkvanhetgebouwwathetnuvaak heeftofhetleemgebruikvanleemaandebuitenkantofzijnermisschienandereelementendiejenu vaakzietindestrobouwdienietverlorenzoudenmogengaandoorindustrialisatie? Ja,ikhoudzelfwelvaneenbeetjestrak,datisditniet,organischevormenkunnenookmooizijn. Maaruvindtweldatheteenbeetjedemodernekantopmaggaan? Vanmijmaghetookeenwakoduikerzijn,misschienzegtjedatiets?Zoeenrechthoekigeduiker? Nee,datzegtmijniets. Daarkanjeookheleprachtigeelementenvanmakeninstro,methetfrontzegmaarhelemaalglas engewoonelementendiejeaanelkaarkuntstellenkunjehetgebouwnetzogrootmakenalsdatje zelfwilt.Datkanookheelmooizijnendanopeenpaarpalen,jadezekanjeookoppalenzetten,zo hebikhemeigenlijkookontworpen,daaromheethijookdesteltloper,maardegemeentezateen beetjemetdehoogte,ikdachtnouikganietmoeilijkdoen,ikgahemwelopdegrondzetten. Ja,wantmensenkunnenditontwerpalsbasisaanvragenendankunnenjullieopdebouwplaatshet zelfdenogeenkeerproduceren. Ja,datkunnenwezegmaaralsbouwpakketaanleveren. IsdatookwatuwsysteemefficiëntermaakttijdenshetbouwprocesdandepostͲandͲbeam techniekenofanderetechnieken?Doordatjeditalsbouwpakketkanaanleverenendeblokkenals eensoortvanDuploblokkentestapelenzijn?Maaktdathetefficiënterdanmetstrobalenbouwendie ookzelfdragendzijn? Constructiefwordthetveelsterkerdoordatdeblokkeninelkaargrijpen,dathadikalverklaardmet hetblokeruitkunnendrukken.Datiswatinelkaargrijpt,datziejeookmetdiegrotelegoblokken daarduwjenietzomaareenblokjeuitenalsjedaarechteenmuurvanbouwt,datstaatgewoonen hetisvlak. Dusqualeemopspuitenishetefficiënter? Veelefficiënter. Neemtminderleeminbeslag? Spaartleemuit,alleenmaarvoordelenenwatikalzeimindervoegen.Duswanneerjeookdie messingengroefdieerinverwerktzitten,methetoogopdelekkeninjeisolatie. Wantdiewegmaakjelanger? Ja,enhetdruktveelmeerinelkaar.Ja,hetheeftmeercontactvlakenhetissterker.Grijptinelkaar. Zijnerooknogknelpuntenofverbeterpuntendieubinnenuweigenproductziet? Nouja,hierwel.Vorigekeerhebbenwehiereenwarmtemeetingoplatendoenzietergeweldiguit, alleendeaansluitingbijdekozijnendatmoetbeter.Maardatisindeconventionelebouwookzo. Aangrijpingenbijramenendeurendatzijndepuntenwaaraandachtaanbesteedmoetworden. Maaropzichdebijdrageaanstookkosten,jekuntjevoorstellenhetmateriaaldruktzichzelfinelkaar endezekoepelooktoenwedezeeropgelegdhebben,hebbenwehemineenpaarwekeniederedag paarcentimetermeteenliertjenaarbenedengetrokkentotdathetgeheelnog20centimeternaar benedenisgegaan.Hetheeftzichzelf,hetmateriaalverdichtdoorhetgewicht,hetverdichtzichzelf. Dushetdruktookallekierenenvoegendicht.Alleendieramenendiedeurendatisdanweereen andermateriaal,daarkrijgjediedichtheidnounetnietendankrijgjedaarlekken. Terafsluitingalsuéénnegatiefdingmoetzeggenoverstrobouwwaaromwehetnietzoudenmoeten gebruiken,watzoudatdanzijninéénwoordoféénzin? Hetmoetnietnatworden.Dankrijgjeeenzooi,eenkliederboel.Datvindikhelemaalniksdathet helemaalzeiknatisgewordenjadatistreurig. Dusjemoetgoedomgaanmethetproduct. Ja,endaarommoetjejuistnaarprefabgaandoen,datjeheelsnelbent.Eigenlijkmoetjemethet dakbeginnen,jemoeteigenlijkalandersbouwen. DaaromdoenzeooktochheelvaakdatpostͲandͲbeamtechniekomdatjedanaleendakmaaktmet houtskeletendankanjediebalenereenbeetjetussenplaatsen?Watzouutegendehuidigegrote aannemerswillenzeggenomhunovertehalenommetstrotebouweninéénzinoféénwoord? Hetiseencradletocradleproductwatikookalgezegdheb,dehuidigebouwdaardatiseenware energieengrondstofverbruikerwemoetennaarcradletocradleproductenenditisecht duurzaamheidzondermeerprijs.Ditisgoedkoopenikdenkdatwezokunnenoverlevenalswedit wereldwijdzoudentoepassenjadanhebjeeenheleanderewereld. 6 // InterviewRensBorgersͲinterviewerTyrzaLigthart Waaromhebtugekozenvoorbouwenmetstroisditvanwegeeenpassie,deuitstralingvanhet product,deecologischeeigenschappenofmisschieneenheelanderereden? Hetiseenpersoonlijkevoorkeur,ikbenaltijdzoveelmogelijkbetrokkengeweestbijdenatuur,ik hebinderegulierebouwgewerktvoor20jaarenikhebhetaltijdeengroteverspillinggevonden echtwaar.Danhebikhetnognieteensoverdewerkelijkeverspillingdiealdiematerialen meegevendeelgevoelsmatigendeelsgajejeerinverdiepenenwordtheteenbewustekeuzeen kiesjetochvoorhetmeestecologischemateriaalenecologischevoormijwilzeggenhoeveelkost hetquaenergieomhettemaken,hoekanjehetmateriaalopeenrespectvollemaniermetje materiaalomgaan. Ubedoeltvoordebewerkingendiedemeestematerialenondergaan? Hetismeereengevoelsdingetje,hetkomtnunietuitdefabriek,hetkomtbijdeboervandaan,en alsikhetgoeddoedankomthetbijmijnbuurmanboervandaan. Wanttransportvindtuookeenbelangrijkefactor? Ja,hetheeftookdiesympathiedatjeweetwaarhetvandaankomtendatjeweetdathet5km verderopisgeproduceerd.Duseenbeetjediemenselijkekantdatisookbelangrijk.Datzijn motivatiesomtekiezenvoorditsoortmaterialen. Vanwatvoorstrobouwtechniekenmaaktugebruik?IsdatalleenpostͲandͲbeamͲtechniekofheeftu ookselfͲsupportingtechniekentoegepast? Nee,dathebiknietgedaan. Enwaaromniet? Omdatikdaargeenopdrachtenvoorzijn.Danzoujezelfeenprojectmoetenontwikkelen,ergens eenschuurtjebouwenbijvoorbeeld,maargeenwoningmetbouwvergunning.Diezijnerbijmijniet zodirectbinnengekomen. Maaralleenomdatzenietbinnenzijngekomenofomdathetnietkan/voorkeurheeft? Nee,ikzouhetheelgraagwillen. WatvoorgrotenadelentijdenszoeenpostͲandͲbeamstrobouwprojectlooptuzoaltegenaan? Bouwtechnischgeziendeaansluitingen,zoalskozijnendak,datvindikeenheelgrootnadeelvan stro.Endiehebikopgelost,enzokwamkalkhennepookinbeeld,meteenandermateriaal.Ineerste instantiegingiksamenwerkenenkwamikmetkalkhennepaan,omdieaansluitingenteverbeteren. KalkhennepheeftdaneenhogereRcͲwaardeofwatzorgtervoordatditmateriaalweldeze aansluitingengoedkandichten? Kalkhennepenstrozittennatuurlijkindezelfdeecologischereeks,maarkalkhennepheeftdannet eenbeterehechting,maarheeftdezelfdevochtregulering,zelfdedampopenheidenhetisnatuurlijk perfectaantesmerenendoorditmateriaalneemtdekwaliteitvanhetstroenormtoe. Maarubouwtnuallesmetkalkhennep,dusuvervangtlieverstrodoorkalkhennep? Ja,ikbenondertussenmeermetkalkhennepaanhetwerken.Kalkhennepiseigenlijkgewoonbeter danstro.Datheefttemakenmetdeaansluitingen,dedetailsookmethettotaleresultaat.Bijstro moetjekijkenishetstrovanditjaar,ofvanvorigjaar,ishetvochtigofnietvochtig,erzittenheel veelkwaliteitsverschilleninstrobalen.Alsjeechtopzoekmoetnaargoedstrodatisbestlastig, vooralalsjevoorechtbiologischstrowiltgaan.Daarnaastiseraankwaliteitsstroeentekort,dat heefttemakenmetgrondsoorten,wegaansteedskorterehalmenkrijgen.Ikbenopzoeknaar strobalenmetlekkerelangehalmendiegoedholzijn,duseigenlijkbenikopzoeknaarlucht.Hetis gewooneenverpakkingvanlucht.Duswehebbenveelmodernestrorassen,boerendiesteeds korterehalmenwillenhebbenenhetsoortgraan.Ookwordendestrobalenvakeringroterematen verkocht,deJumbopakketten,endatisindepostͲandͲbeamtechniekzoalswedienutoepassen nietmeerhanteerbaar.Endanooknoghetfeitdatdebiologischeboereenverplichtingheeftom biologischteboeren,daarzitookeenkringloopjeinbijdeboerenonderling.Datzorgtervoordatde strobalen,dieikiniedergevalzouwillengebruikensteedsbeperkterwordt.Dusjemoetheelergje bestdoen.Eneenanderefactorwatooknogmeespeelt,isdatdemachinesdetochalkortehalmen verkortafsnijden.Kijkmaareensineenstrobaal,datzijnbijnaallemaalkortestukjesenvaakooknog plattestukjesstro.Aankortenplatstrohebikniets. Dusjezoueigenlijkeenspeciaalsoortstromoetenlatengroeidatbeterbruikbaarisvoordebouwen tegelijkertijdookbruikbaarisvoorvoedsel? Ja,ikhebhier6balenstrogekochtbijeenbiologischeboerendanmoetjenualgaankopen,maarik weetnietwatdekwaliteitdaarvanis. Watbetaaltuvoorzoeenbiologischestrobaal? Ikbetaalvoorregulierstroviadehandel120europerton,datzijnkleinebaaltjesmetdejuiste dichtheidenRcͲwaardeenconstantgeperstis.Ookhetperceelgrootteisvanbelang.Wanthoe groterhetperceelhoecontanterdepersendichtheidvandestrobaal.Bijeenkleinperceelgaatde machinevastweleenkeerlangsderandenlangsderanden,zekerindebiologischebouw,zullen meergrassengroeiendatmaaktnietuit,maarvervolgensishetwelvervelendwantdiegrassen komenookinhetstro.Enwaargraszit,zitgeenstroenikbenopzoeknaardiehollepijpjes.Daarom komthetstrovaakuitGroningen,DenemarkenofDuitsland. Endanhebjedathettransportweeromdehoekkomtkijken. Datverhoogtdeprijsweerendeverkrijgbaarheiddoormijnzoektochtnaarkwaliteit,vandaarook die140europerton,ikvinddateenhoopgeld.Wantalsjedatomrekentnaarm2danzitjeop ongeveer20eurodevierkantemeter. Ikbennietzothuisindeprijzenquabouwmaterialenmaarisdatvergelijkbaarmetdeconventionele bouw? Hetisnogweleengoedeprijs,maarhetzouomlaagmoeten Enalsdeprijsdaalt,wordthetookweeraantrekkelijkervoormensendiehetnognietgebruikenom hetdanweltoetepassen. Ja,datisaltijdwatmenheteerstevraagt‘watkosthetdan?’.Enstroopzich,hetbasismateriaal,is goedbetaalbaar. Watzijndekostenvanzoprojecttotaal?Alsjeeenwoningvan1laagmetstrozoumaken. Noualsjeuitgaatvan200eurodevierkantemeter,dandoejehetgoed.Alsjekijktnaarde traditionelebouw,enmetseltmetkalkzandsteen,danzitjevaakaande180eurodevierkante meter.Duswatdatbetreftkanhijhetwelaan,maarhetzouwelmeehelpenals,Adekwaliteitvan hetstrobeterzouzijnenBdeprijszouzakken.Maarikdenkdathetalleenmaarzalstijgenomdat hetminderteverkrijgenis. Komtdatdanookdoordatmensennietwetenwatzeermeeaanmoetenopdebouw?Endatjedaar specialistenvoormoetinhuren? Nee,omdathetarbeidsintensiefisdiepostͲandͲbeammethode. Dusalshetmeergeïndustrialiseerdzoukunnenwordenzoudatookbeterzijnvoordeprijsvan bouwenmetstro? Ja,ikdenkhetwel.Hetisallemaalarbeid Demeestetijdtijdenszoeenprojectgaatookzitteninhetplaatsenvandiestrobalentussende constructie? Ja Watzijndeargumentendatuvoorzoeenpostandbeamtechniekkiestennietvoorbijvoorbeeldeen Modcellelement?Numoethetmisschienuiteenanderlandkomenmaarisdatdanookomdatude ambachtͲkantmooiervindt? Ook,jazeker.Datisééndingmaarmooier,daareetjegeenbroodmee.Watikwelbelangrijkvindik vindhetfeitdatmensenzelfmeekunnenbouwen,datiseenheelgrotedoelgroepvandepostͲandͲ beammethode.Diewillengraagookzelfmeewerken,endiebetrokkenheiddiejedaarmeecreëert ook,doorhetzelftehebbenmeegebouwdaandewoning,datisookheelbelangrijkvoorbewoners. Ikdenknietdatjehetmoetenvervangen,datiemandkankiezen.Erzijndoelgroepenwaarbijjekan zeggenwegaaneenhelewijkuitdegrondstappenofeenwoningwaarbijdebewonerszelfmee gaanbouwen. Geïndustrialiseerdwilooknietzeggendathetinplaatsvanis,maarhetisdenkwelnodigvoorde traditionelebouwinhetalgemeen.Zodatzijeenvergelijkbaarelementhebbenzoalszedatnu kennen,anderszieikzedatnietgebruiken.Netalsmetdiekalkhennepblokkendienuquauiterlijkop kalkzandsteenblokkenlijken,daarvanwetenzeopdebouwhoezediemoetentoepassen. Erzijnnogzoweinigmensendiezeggenalsarchitect‘okéwegaanhetmetstrodoen’,enalsdat prefabzouzijndanzoudenzemisschienwelzeggenookwekunnenhetookzodoen!Endangaater eendeurtjeopen,wanthetbegintalbijhetontwerp. Jekuntnietietsontwerpenendankijkenwatvoormateriaalerbijpast,alsjevoorstrowiltkiezen zoujejeontwerpdaaropmoetenaanpassenzoalsdatnugaat. DieModcellheeftnatuurlijkbepaaldeafmetingen,daargajeeengebouwmeemaken.Alsjegaat ontwerpendangajeookkijkenhoegaikmetdatmateriaalom.Alsjeeengoedearchitectbentenje gaatookaanhetstrowerkenmethoutskeletbouwzoalspostͲandͲbeamofmetModcell,maarikben datnogniettegengekomen.Datheefttemakenmetdeonwetendheid.ModcellkomtuitEngeland, ikweetnieteensofdatalgebruiktisinNederland. JaietssoortgelijksisalgebruiktineengrachtenpandinAmsterdam. Oh,jadie. Jadatzijnookprefabelementenendandrieofvierverdiepingenhoog.Hebtuweleenmeerdere verdiepingengedaanofalleenéénlaags? Neealleenmaarlaagbouw. Wantdatisookwel,jezietalleenmaareenoftweelaagsvoorbeelden.EninNederlandhebje natuurlijk,derijtjeshuizen,datisbijnaaltijd3woninglagen.Alsjehetgebruikvanstrowiltverhogen zouhetooktoepasbaarmoetenzijnindewoningbouw.EnhetvoorbeeldinAmsterdamisookgedaan metfolieenhoutinplaatsvanleem.Endaarzittenvolgensmijookweernadelenaan.Hetzoudan weeraantrekkelijkerzijnvoormuizenombijvoorbeeldtegaanzitten,endoordatfoliekunnenzewel heenbijten. WatzedaarinAmsterdamhebbengedaaniseendampopenfolieaandebuitenkantenaande binnenkanthebbenzehemafgeleemd.Endatisheelgevaarlijkemethode. Waaromisdatgevaarlijk. Wehebbenhetoverdampopenbouwenindenatuurwilallesgelijkmaken,dusallesinbalans.En datisookmetvocht.9tot10maandenperjaarproducerenwijmeervochtinhuisdanbuiten.Duser vindtbijnaaltijdeenvochttransportplaatsvanbinnennaarbuiten.Enalsjedandampopen materialenhebtzoalsstroofleemdanzaldiedamptransportvanbinnennaarbuitengaanenalsdan ineensdatfolietegenkomtdangaatdatinhetstrozitten.Maarikneemaandatzedaarover nagedachthebbenendatheteendampopenfolieis.Maardampopenfolie,dieblijkenovereen aantaljaarminderdampopentezijndandatwijnuzeggen,denkik.Diemembraampjesdatslibt gewoondichtonderanderedoorfijnstofendanhooptdatvochtzichop.Ikprobeerzominmogelijk membraampjestoetepassenhoemooidieverhalenookzijn. Wantwaaromdenktudatzehiernietgewooneenafwerklaagvanleemenkalkhebbentoegepast? Wantdatheefttochnietpersenadelen? Hetiswelwatzwaarderenlaterzijnzepasdieleemlaaggaanaanbrengen,enkanmijvoorstellendat alsjedatgaattransporterendatdatbreekt,kraktoftezwaaris.Ikprobeeraltijdzodampopen mogelijktebouwen. Enwaarombouwtumetstroofkalkhennepennietmeteenandereecologischmateriaalzoals zeegras,aardeofietsdergelijks?Isdatookvanwegepassieofvanwegenadelenvandeze materialen? Zeegraskenikniet. DatwordtvooralinDenemarkengedaan,tenminstevroeger.EenvoorbeeldishetSeeweedhousein Denemarkenwaarbijhetalsgevelbekleding,isolatiemateriaalenalspaneelwordttoegepastaande binnenkant. Ohdatzalikeenseenkeerbestuderen.Enisdittraditioneelook? Nouvoordegevelbekledingheefteenpersoonallemaaltouwtjesomhetmateriaalmoetenbinden handmatigmaardegevelwandenmetisolatiematerialenzijninzijngeheelvanuitdefabrieknaarde bouwplaatsgetransporteerd.Dushetiseensoortvancombinatie. Mensenhebbenaltijdgebouwdmetdematerialendievoorhandenliggen.Janetalsmetstro,zo logischwanthetwasoveral.Ooknuerzijnbalenwaarnietechteenanderebestemmingvooris. Isdatookmetkalkhennepzo? Nee,kalkhennepisweerietsnieuws.En,maardatismeerpuurfilosofisch,inmijnogenkomende materialenopdemomentenwanneerwezenodighebben.Zoalsnumetkalkhennep.Maarde anderematerialenbeniknietmeebekendenhebiknietonderzocht. Enwatzijndegrootstevoordelendienietalgemeenbekendzijnvanbouwenmetstro? Nouikkenalleendevooroordelendiemensenhebben,endatzijnfeitelijknadelen.Maarnadelen dieblijkenjuistvoordelentezijn. Zoals? Bijvoorbeelddatdemurendikzijn.Ja,datistochmooidikwordenenallemurenmoetendik worden.Enhetblijktdatalsjestroopzijnkantgaatplaatsendatdercwaardenogsteedshoogisen dankomjeopeendiktevan36cm.Dankomjealheeldichtindebuurtvaneenmodernespouw muur. Omweerterugtekomenookophetvochtgehalte,waarombouwenwijeigenlijkinNederlandmet stroalswijzoeenvochtigklimaathebben?IsNederlandweleengeschiktlandommetditmateriaal tebouwen?BijpostͲandͲbeamtechniekzetjeeerstdeheleconstructieneermetdakzodathetniet natwordt,maaralsjebijvoorbeeldzoalsalsPimbouwtzoujeperseeenzonnigedag,weekof langereperiodemoetenhebbenomtebouwen.ZoujekunnenconcluderendatNederlandmisschien nietheelgeschiktisvoorbouwenmetstro?Ofhoezoudenwemetdezeweersomstandighedenom moetengaan?Ofermoetmisschieneenelementkomendatalhelemaalkanenklaarafgewerktis. Alsjemetelementenwerkthebjedaarhelemaalgeenlastvan.Jainderdaadzorgendatjedakeral opzit,datscheeltaleenheleboelenjekannatuurlijkaltijdmaatregelentreffen.Ikziegeen belemmeringenvoorbouwenmetstroinNederland.Ophetmomentdatjehemdichthebten gestuukthebtishetwatmijbetreftgewoon100%betrouwbaarenbestandtegenonsklimaat.Endat heeftdegeschiedenisookweluitgewezen.HetoudstestrohuisinFrankrijk,NoordͲFrankrijk,dus vergelijkbaarmethetklimaathierstaatsinds1923. Dathebiktoevalligvandaaggelezen,eneentijdbalkjevangemaakt. Hetisonlangsgerestaureerdensommigeplekkenstucerafgehaaldenhetstrobleeknogprimain orde. Datisookeenvooroordeelvanmensen,datalsietsbioafbreekbaarisdathetnietlangmeegaat.Dat meteenhuisjeerbijvoorbeeldmaartienjaarinkanwonen. Datisookeenvooroordeeldatnietklopt,mitsgoedbehandeld. Watdenktudatdebelangrijkstefactorisvanhetverkiezenvanhedendaagsegebruiktematerialen bovenbioafbreekbarematerialenindebouw? Geld,politieklobby.Leeshetboekmaardeduurzaamheidsoorlogendeonbekendheiddatspeelt ookzekermee.Tyrzaikhebpasmeteenregulierebouwhandelaargesprokengewoonvaneengrote bouwketen,wantbijhenwildeikeenshopaanshopwinkelmaken.Danhuurikdaareenruimteen danhebikinloopwieweetwatervankomt.Enhijzegtjohdatmoetjehelemaalnietdoen,wantin hetbouwbesluitwordtbepaaldwaaraandebouwmaterialenmoetenvoldoen.Bouwbesluitdat wordtfeitelijkbepaalddoordegrotejongensindebouwhandel. Duszewillenhelemaalnietdatstroalsbouwmateriaalwordtgeaccepteerd? Nee,datzijndeUnideckenenandereendaarzittenmaareenpaarfamiliesachterendatzijnniet mijnwoordenhè. Wiltudaarmeezeggendatzijdattegenhoudendatstrogecertificeerdisomdatzijdaargeengeld meekunnenverdienen? Ja. Oké,daarhebiknooitovernagedacht. Datzitzoinelkaarendatblijftvoorlopigookwelzo.Enalsik,endaarmeekomenweweeropjouw onderwerp.Alsikineenbouwmateriaaleenelementwilmakendanmoetikzoverschrikkelijkdiepin debuideltasten,10,25misschienwel50duizendeuroneerleggen.Enwathebikdan,danhebikeen paarrapporten.Metdiepaarrapportenhebiknogmaareengedeeltelijkeweergavevande werkelijkheid.AlsjeiemandinAfrikaonzeIQtestvoorlegtdanscoortdiewaanzinnig.Infeitendoen wedatookmetstroenkalkhennep,diegaanwetestendatisallanggedaan,zekermetstro.Maar dietestenzeggenfeitelijkeigenlijkniks.AlsikinEngelandhebbenzeookeenbouwbesluiteneisen voormateriaalendergelijken.Maarwatzedaarnaastnogdoen,endaarpleitikheelergvoor,isdat zehethelegebouwtesten.Zeverwarmenhet,doen24uurlangdedeurdichtenhoeishetdanna 24uur?Ishetdan16graden,14graden,12gradenofishetnogsteeds20graden?Datisook onlangsgedaanmeteenwinkelvanMarkenSpencerdaarhebbenzenaeenjaardietestgedaanen watblijktdan,zehebbendaarkalkhennepindegevel,hadookstrokunnenzijn,datgebouw presteertopallefronten36%beterdanzebedachthadden,ikkanereenpaarprocentnaastzitten. Beduidendbeterdandatdeeisenwaren.Danzeggenzedatkomtdoordeluchtdichtheidvande kalkhennep,jaammehoela,hetiseensamenspelvanluchtdichtheid,dusdenaadlozeaansluiting,de dampopenheid,vochtregulatie,defaseveranderingendatallessamendathetmateriaalzogoed presenteert.Endanzouik50.000euroneerleggenvooreentest,watbeduidendmindereenbeeld geeft.Danhebikveellievereengebruikerdiezegtwauw,hierbenikgezondmijnkinderenzijnvan hunastmaaf.Wewonenhiernuzeswekenenmijnkindheeftnoggeenpufjegehad.Ende thermostaatstaatop19gradenentochvoelenwijonslekker.Hettestenvanmaterialenpuuromte voldoenaanbepaaldeeisenjadatmoetjegaandoenalsjeindustrieelwiltgaanbouwenendan moetjeaantonenvankijkeensblablablabla...Alsikgaprefabricerendankomhetineenfabriekje, dangaathettransporteroverheenenjadankomtereenmerknaampjeop.Ikzoudaneerstkijken naarwatikwil,hetmaaktnatuurlijkweleenwegvrijvooreengroteretoepassing,grootschalige toepassingmaarhetgeeftmijniethetbeeldwatikfeitelijkwilhebbenvanhetproduct. Maarlosvandiecertificatieenhoedatwordtgetestdenktuweldathetverhogenvande industrialisatiezalbijdragenaandeverhogingvanhettoepassingvanditproduct? Ikdenkhetwel,maarhetisallemaalzostrowerdnatuurlijknadetweedewereldoorlogookwel toegepast,stroplatenwerdenertoengeperst.Dusinmijnogenishetaltijddenood,desituatieofde geschiedenisdieditbepaaldenikgahetnatuurlijkfantastischvindenalsstromeertoegepastzou worden,maarikbennogaltijdheelergbeduchtvoorgreenwash.Watblijfterfeitelijkovervanzo eenproduct,enwatisdannogdeecologischewaarde? Denktudathetpercentageecologischematerialenafzalnemennaarmatedeindustrialisatietoe neemt?Doordatweaanpassingenmoetendoen,ofopofferingenomeengeprefabriceerdelement mogelijktemaken? Datdenkikwelja.Jegaatmetdemachinenaarjouwstrotoeendanweetjeookwatjehebt,op momentdatjehetmoettransporterenendatgaatnaarjeprefabelement.Maarwiegaatde kwaliteitindegatenhouden?Ikbenabsoluutniettegenhoor,maarjemoethetheelkritischblijven volgendathetproductwatjeuiteindelijkopdebouwkrijgt,hoeecologisch,misschienhebbenzeer welwatopgedaanomdebrandwerendheidteverhogen,weetjijveel.Ikwildatgewoonweten,dat moetjegoedindegatenhouden.Ikbenaltijdheelergbeduchtvoorvercommercialisering,maardat gaanwetochmeemaken,wegaantochmeemakeninhetecologischbouwen,iedereenisgroen,elke aannemerwerktmetgroenbeton,groenglaserzijnzoveelmaterialendiegroengewassenworden. Hetinteresseerthungeenros,zemoetengewoongeldverdienen.Enmetindustrialisatiemoetje daarheelbeduchtopzijn. Alsikzelfdenkoverhoezoeenelementeruitzoumoetenzien,zitikbijvoorbeeldwelmetdenaaddie jealtijdzitwaardeelementenofplaatmaterialenopelkaaraansluiten.Nuindestrobouwhebjeeen helemooieegaleafwerking,denktudathetmogelijkisomeenprefabelementtemakenwaarbijje ookdiezelfdeuitstralingbehoudt? Ja,denkhetwel. Waarhetleemlaagdanalopdeelementenzit? Nee,datmoetgetransporteerdworden,waardoordatheeftuiterstematenheeftendankrijgje altijdeenaansluitingwaarjeietsoverheenmoetendoen.Elkenaaddiekomteenkeertevoorschijn. Diekanjebenadrukken,jekunthemverdoezelen,ikweetniethoeergdatis. Waarzittenvolgensudepuntenvanverbeteringindestrobouw? Indeaansluitingen. Aansluitingenbijdekozijnenenz.? Jaendekwaliteitvanhetstro.Aansluitingenookinhetstucwerk,stucwerkaansluitingopde waterslagen,daarvaltookeenheleboelinteverbeteren. Denktudatdetraditionelebouwklaarisvoorgeprefabriceerdestrobouw? Jahoor,ikdenkhetwel.Alsiknaareentraditionelebouwergaenikkommetelementendiezezo kunneninbouwenalszegewendzijn,dankandatwel. Watzijnbelangrijkeontwerpingrepenomrekeningmeetehoudenalsjeeenstrobouwprojectdoet? Volgordevanelementen,ofmaterialendienietsamenkunnengaanofmaterialendieiniedergeval nodigzijnbijhetbouwenmetstro? Injeontwerpmoetjealtijdzorgendathetstrovoldoendehoogvanhetmaaiveldafkomt. Tegenwaterdaterintrekt? Precies,enjemoetzorgendatjestucwerk,jegevelafwerkingopstroafstemmen.Dusjeontwerpis daarinbelangrijkenerzalheelgoedoverlegdmoetenwordenmetpartijenwaarmeesamengewerkt wordt.Jezoubijvoorkeurjehartophartmaarvanjestijlenmoetenaanpassenopdematenvande matenvandestrobalenofandersom.Maarhoeeerderjeindatprocesbent,enjezoudushalf geprefabriceerdestrobalenvanhetlandkunnenhalen,dusdatjeeenlijstjehebtikmoetzoveel balenvan1,10en200balenvan80cmnodig,datheeftallemaaltemakenmetgoedevoorbereiding. Deelsontwerpdatdatgoedis,deelsgoedoverlegmetanderepartijenendeelsvoorbereiding.En hetheeftooktemakenmetlulligedetails,rekeninghoudenmetmatenvandestrobalen,denkaan datraam,daarkanjegeenstrobaaltussenproppen. Enwatvindtueengedeeltevandestrobouwwatnietverlorenzoumogengaanaande industrialisatievanditproduct?Misschienietsvanuiterlijk,ofgaathetvoorumeeromhettoepassen vanhetmateriaal?Maaktnietuitofjehetmateriaalwelofnietziet,ofdathetdieambachtelijke uitstralingheeft? Nouweetjewatvoormijheelbelangrijkis,iswatikzie,endatklinktheelzweverig,maaraandacht enliefde.Alsjedatnouisdoetdankrijgjeeen100%goedgebouw.Endankanjeontwerpheellullig zijn,maardemogelijkheidgevenaanmensenomzelfmeetebouwenaanhunhuisisveel belangrijkerofopzijnminsterbijbetrokkentezijn.Datvindenzeprachtig.Maarzedrukkendeprijs eenbeetje,wanthetisnatuurlijkzodatwijmetaldiewoonwijkenallesuithandengevenenwe kiezeneenhuisvaneentekeningenzijnerhelemaalnietbijbetrokken. Endenktudatstroenkalkhenneptecombinerenzijningeïndustrialiseerdeelementen?Zodatdie aansluitingenbeterkankrijgen? Nee,datdenkikniet,alsjestrogoedtoepastnetalsbijModcelldansluitdathoutgewoonnetjes aan. Alsuéénnegatiefpuntmoetaanwijzenvoorhetniettoepassenvanstroindebouwindustriewatzou datdanzijn? Datismisschiennogweldekwaliteitvanhetstro,hetfeitdaterslechteontwerpenworden gemaakt,oheentjemaarhè? Wathetmeestbelangrijkenadeelis. Slechtontwerp,hetfeitdatmensennietwetenwaarzehetoverhebben. Enwatisdanhetmeestpositieveelementindestrobouw,waaromwehetzekerzoudenmoeten toepassen?Omgroteaannemersovertehalenommetstrotebouwen? Hetfeitdathetgewoonzovanhetlandkomt,dathetzominmogelijkbewerkingenheeftondergaan. Datsnaptiedereenwel. 0,13Ͳ70 3 16,8 92,1Ͳ102 Wood Straw Brick Rockwool EPS total: 5,14m3 0,6155 3,9783 Volumestrawelement(m3)(determinedbycaddrawings) 0,555 Price(€/m2) (Hondeveld,2015;Ligthart,2015;Capiau,2015) Limerender/clay 75(clay)95(limerender) Concreteelement 350 Wood 950(€/m3) Straw 37.50 9,82Ͳ10,9 Concrete total: 1800 15Ͳ21 15Ͳ40 120 700 2400 1815,66kg 430,85 > 497,29 > 98,6kg/m2 23,40kg/m2 27,00kg/m2 Totalweightstrawelement(kg) 887,52 > 48,19kg/m2 1022,5 383,5 191,8 1597,8MJ/m2 EmbodiedEnergyCasestudyEPSinsteadofRockwool Concret 240*6= 1440 Brickwork 180*3= 540 EPS 16*93= 1488 3468MJ/m2 EmbodiedEnergyCasestudy Concret 170,4*6= Brickwork 127,8*3= Rockwool 11,4*16,8= EmbodiedEnergyStrawelementLimefinish Clay/Limerender 48,2*3= 144,57 wood 23,4*8= 187,2 Straw 27*35= 945 1276,8MJ/m2 1600 3 1Ͳ1,3 Limerender/clay Density(kg/m3) (Granatoupoulou2014;CESedupack,2014;Hondeveld,2015;boxtel,1995) EmbodiedenergyMJ/kg (Granatoupoulou2014;CESedupack,2014) Data&calculationelements 7 // 7 // 8 134 // TYRZA A. LIGTHART // 4004701 // MASTER THESIS FACADE DESIGN