Molecular phylogenetics and taxonomic issues in dragonfly systematics (Insecta: Odonata) Rasmus Hovm¨ oller
by user
Comments
Transcript
Molecular phylogenetics and taxonomic issues in dragonfly systematics (Insecta: Odonata) Rasmus Hovm¨ oller
Molecular phylogenetics and taxonomic issues in dragonfly systematics (Insecta: Odonata) Rasmus Hovmöller Department of Zoology Stockholm University 2006 Molecular phylogenetics and taxonomic issues in dragonfly systematics (Insecta: Odonata) Doctoral dissertation 2006 Rasmus Hovmöller Department of Entomology Swedish Museum of Natural History PO Box 500 07 SE 104 05 Stockholm Sweden [email protected] ISBN 91-7155-282-0 c 2006 Rasmus Hovmöller Typeset in Computer Modern with LATEX 2ε . Cover illustration by Andrea Klintbjer Sympetrum sanguineum (Müller, 1764) Printed by US-AB, Stockholm List of papers I: Hovmöller,, R., Källersjö, M. and Pape, T., 2004. The Palaeoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18, 313–323. II: Hovmöller, R. and Johansson, F., 2004. A phylogenetic perspective on larval spine evolution in Leucorrhinia (Odonata: Libellulidae) based on ITS1, 5.8S and ITS2 rDNA sequences. Molecular Phylogenetics and Evolution 30, 653–662. III: Hovmöller,, R. Monophyly of Ischnurinae (Odonata: Zygoptera, Coenagrionidae) established from COII and 16S sequences. Manuscript. IV: Hovmöller, R. A catalog of species group names in the genus Coenagrion Kirby, 1890 (Odonata: Coenagrionidae). Manuscript. V: Hovmöller, R. A proposal to conserve the name Calopteryx Leach, 1815 over Agrion Fabricius, 1775. Manuscript. i ii Contents 1 Clades and classification of the Odonata 1.1 Origin and monophyly of Odonata . . . . . . . . 1.2 Classification and taxonomy - a historical review 1.2.1 Pioneers of dragonfly systematics . . . . . 1.2.2 Cladistic morphological studies . . . . . . 1.2.3 Molecular studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 2 3 4 2 Life 2.1 2.2 2.3 2.4 2.5 2.6 2.7 history Larval stage . . . . . . . . Emergence . . . . . . . . . Imago . . . . . . . . . . . Mating system . . . . . . Mating rituals and species Ovipositing . . . . . . . . Life on the wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 8 8 9 10 11 3 Extant clades of Odonata 3.1 Zygoptera - damselflies . . . . . . . . . . . . 3.1.1 Calopterygoidea . . . . . . . . . . . 3.1.2 “Lestinoidea” . . . . . . . . . . . . . 3.1.3 Coenagrionoidea . . . . . . . . . . . 3.1.4 Hemiphleboidea . . . . . . . . . . . 3.2 Epiprocta: Anisoptera + “Anisozygoptera” 3.2.1 The paraphyletic Anisozygoptera . . 3.3 Anisoptera . . . . . . . . . . . . . . . . . . 3.3.1 “Aeshnoidea” . . . . . . . . . . . . . 3.3.2 Cordulegastroidea . . . . . . . . . . 3.3.3 Libelluloidea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 13 13 14 14 14 15 15 16 16 17 4 Odonata – a key group in insect evolution 4.1 History of insect flight . . . . . . . . . . . . . . 4.2 Paranota – a terrestrial origin? . . . . . . . . . 4.3 An aquatic origin? . . . . . . . . . . . . . . . . 4.4 Palaeopterous and neopterous wings . . . . . . 4.5 Folding wings – a key event in insect evolution 4.6 Palaeoptera – monophyletic or not? . . . . . . . 4.6.1 The Metapterygota hypothesis . . . . . 4.6.2 The Opistoptera hypothesis . . . . . . . 4.6.3 A monophyletic Palaeoptera? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 20 20 21 21 21 21 22 22 5 Ribosomal sequences in phylogenetic systematics 5.1 Structure and function of the ribosome . . . . . . . 5.2 Establishing homology in molecular data . . . . . . 5.3 Approaches to multiple sequence alignment . . . . 5.3.1 Finding an optimal path . . . . . . . . . . . 5.4 Multiple sequence alignment . . . . . . . . . . . . . 5.4.1 Heuristic multiple alignment . . . . . . . . 5.5 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 26 26 27 27 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . recognition . . . . . . . . . . . . . . iii . . . . . . . . . . . . . . 5.6 5.5.1 Parsimony direct optimization – an example . . . . . . . . Secondary structure alignment . . . . . . . . . . . . . . . . . . . 6 A presentation of the articles 28 29 31 7 Sammanfattning på svenska 7.1 Inledning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Trollsländors liv och naturhistoria . . . . . . . . . . . . . 7.2.1 Klassificering av trollsländor – en historisk översikt 7.3 En trollsländas livscykel . . . . . . . . . . . . . . . . . . . 7.3.1 Larvstadiet . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Förvandlingen . . . . . . . . . . . . . . . . . . . . 7.3.3 Imagon – den fullbildade sländan . . . . . . . . . . 7.3.4 Parningssystemet . . . . . . . . . . . . . . . . . . . 7.3.5 Parningsspel och artigenkänning . . . . . . . . . . 7.3.6 Äggläggning . . . . . . . . . . . . . . . . . . . . . . 7.3.7 Flyg- och jaktbeteende . . . . . . . . . . . . . . . . 7.4 De nu levande trollsländornas diversitet . . . . . . . . . . 7.4.1 Zygoptera . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Epiprocta . . . . . . . . . . . . . . . . . . . . . . . 7.4.3 Anisoptera - äkta trollsländor . . . . . . . . . . . . 7.5 En nyckelgrupp i insekternas evolution . . . . . . . . . . . 7.5.1 Vingutveckling på land – paranotalhypotesen . . . 7.5.2 Vingutveckling i vatten – omformade gälar? . . . . 7.6 Palaeoptera och Neoptera . . . . . . . . . . . . . . . . . . 7.6.1 Är Palaeoptera en monofyletisk grupp? . . . . . . 7.7 Ribosomala DNA-sekvenser i fylogenetisk systematik . . . 7.7.1 Ribosomers struktur och funktion . . . . . . . . . 7.8 Presentation av artiklarna . . . . . . . . . . . . . . . . . . 8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 37 37 37 39 39 39 39 40 40 40 40 41 41 41 42 42 43 43 44 44 45 45 47 51 iv Preface Dragonflies (Odonata) are one of the instantly recognizable groups of insects. The aerial acrobatics of the true dragonflies, the shimmering wings of the demoiselles and perhaps even the tiny damselflies are a familiar sight to anyone who has spent an afternoon at a lakeside. Dragonflies are an ancient group of insects, and a key group in understanding the evolution of insects and insect flight. I have studied dragonflies from different phylogenetic perspectives – from the wide view of the systematic placement of dragonflies in the insects, to higherlevel phylogeny in Coenagrionid damselflies and a close look at a small group of libellulids in the genus Leucorrhinia. For these papers, I have used molecular methods to obtain phylogenetic hypotheses. In addition to phylogentic studies, I have examined the nomenclature of two groups of damselflies, first in a synonymic catalog of the genus Coenagrion and next in an examination of the history and taxonomic availabilty of the genus name Agrion. The first and second chapters of the introduction are about the natural history of dragonflies and how their phylogeny and life-history evolution has been interpreted. This is followed by a presentation of the extant groups of dragonflies on a super-familial level. The final historical chapter is a history of insect flight. Next, there is a section on ribosomal genes and different strategies for homologizing DNA data in phylogenetic systematics, and finally a presentation of the five articles included in this thesis. v vi Chapter 1 Clades and classification of the Odonata 1.1 Origin and monophyly of Odonata Dragonflies are one of the most ancient groups of insects alive today. The first known fossils of dragonfly-like insects are from the Upper Carboniferous and belong to the group Protodonata, the extinct sister group of modern Odonata. Included in Protodonata is the largest insect known to have existed: Meganeuropsis permiana Carpenter, 1939. This species had a wingspan of over 70 cm. Most Protodonata are only known from wings, but a composite picture can be assembled from fragmented evidence (Grimaldi and Engel, 2005): an insect with some striking similarities to modern dragonflies bearing toothed mandibles, large compound eyes and legs angled forward. They were most certainly predators. Although the larvae are unknown, the close relationship to extant dragonflies suggests that they could have been aquatic. True Odonata appeared in the early Permian era, represented by the extinct suborders Protanisoptera, Protozygoptera as well as the species Permagrion falklandicum Tillyard, 1928, which has been interpreted either as a modern zygopteran or a representative of the extinct suborder Archizygoptera (Trueman in Silsby, 2001). Modern dragonflies (Odonata sensu stricto) are a well-supported monophyletic group (e.g. Rehn, 2003; Trueman, 1996; Kristensen, 1975; Wheeler et al., 2001). They share several unique characters, most notably the secondary male genitalia and the prehensile labial mask of the larvae. 1.2 Classification and taxonomy - a historical review Figure 1.1: Scandinavian besman scale. Illustration from “Nordisk Familjebok” (1905). Dragonflies were originally classified in the genus Libellula within the order Neuroptera (Linnaeus, 1758). Libellula means “small weighing scale”, referring to a type of counterbalanced hanging scales. The linnaean Neuroptera contained all the insect orders with multiple crossveins in the wings: Odonata in Libellula; Ephemeroptera in Ephemera; Trichoptera in Phryganea; Plecoptera, Neu1 roptera sensu stricto, and Megaloptera in Hemerobius, Mecoptera in Panorpa and Rhaphidioptera in Rhaphidia. Fabricius (1775) divided the genus Libellula intro three: Libellula, Aeshna and Agrion. An even finer division of the European genera was suggested by Leach (1815), where such familiar taxa as Lestes, Calopteryx (as Calepteryx ), Gomphus and Cordulegaster were described. Leach’s taxonomy was accepted and expanded upon by the francophone odonatologists Rambur (1842) and de Sélys-Longchamps (e.g. 1850, 1872, 1876).The Belgian entomologist Baron Michel Edmond de Sélys-Longchamps, can be considered the founder of modern odonatology. From 1840 to his death in 1900, he published monographs on every major group of Odonata except the Libellulidae. He described over 1000 species as well as erecting, as subfamilies, most of the groups now treated as families. Well into the 20th century Odonata were still usually treated as part of the Neuroptera sensu Linnaeus, although this was often considered an unnatural grouping. In contemporary literature, Odonata were sometimes referred to as Paraneuroptera, and grouped with the other hemimetabolous “Neuroptera” i.e. Ephemeroptera, Psocoptera and Plecoptera in the Pseudoneuroptera. The classification changed when Martynov (e.g. 1925) reconsidered the group Subulicornes, proposed by Latreille (1807) for Neuroptera with tiny bristle-like antennae and aquatic larvae, under the name Palaeoptera. This was to be a controversial group, as will be explained below. 1.2.1 Pioneers of dragonfly systematics Coenagrionoidea Lestoidea Calopterygoidea Epiophlebia Figure 1.2: Munz (1919) phylogeny for Zygoptera The most notable pre-cladistic phylogenetic studies of the Odonata were performed by Needham (1903) on the entire group, and Zygoptera by Munz (1919). These were mostly based on patterns in the wing venation and the theory that “ontogeny recapitulates phylogeny” (Haeckel, 1866). In Odonata larvae, the growth of tracheae in the wing pads can be followed throughout the instars. The pattern of the growing tracheae follow the pattern of the main veins in the imago, but there are indications that the trachaetion as well as the venation rather follows lacunae in the epidermis that form well before either tracheae or veins migrate in (see Carpenter (1966), for a review). Needham’s (1903) paper used comparative examinations of the wing-vein patterns to extract “trends” in odonate evolution. All character states were divided into an ancestral- (e.g. fore and hind wings alike), and a derived state (e.g. fore and hind wings differentiated). Needham stated that there is a dichotomy between Anisoptera and Zygoptera. Anisoptera are further divided into Libellulidae (modern Libelluloidea) and Aeshnidae (the remainder of the Anisoptera), with Aeshnidae considered representing a primitive branch. Zygoptera are in turn divided into Calopterygidae (Calopterygoidea) and other Zygoptera lumped into Agrionidae. Needham (1903) also discusses the peculiarities of the extant Anisozygopteran Epiophlebia superstes (de Sélys-Longchamps, 1889) (as Palaeophlebia), including its affinity to certain fossil groups, but he 2 leaves it unplaced in the genealogy. Munz (1919) also argued for a dichotomy between Zygoptera and Anisoptera, where the Agrionidae (Calopterygoidea in modern taxonomic terms) are a grade including a monophyletic Coenagrionidae (the remainder of the Zygoptera). Zygoptera are seen as being derived from Anisozygoptera. Fraser’s (1957) reclassification of Odonata was based on the unpublished work of Tillyard, who left an unfinished manuscript behind at his passing away in 1937. In this landmark paper, the first phylogenetic hypothesis of the entire Odonata was published. In Fraser’s interpretation (contrary to Tillyard’s as in his unpublished manuscript), Zygoptera are a paraphyletic group. To a modern phylogenetic systematist, it looks not quite like a cladogram, and one should be careful in interpreting groups as mono- or paraphyletic. Fraser based named groups on “persistent archaic characters”, or in cladistic terms: plesiomorphies. Several of the families are presented as less and less primitive grades towards final families where the ancestral line reaches its highest degree of advancement. For example, Coenagrionidae are presented as the apex of a grade consisting of (in turn) Platystichtidae, Protoneuridae and Platycnemididae. In the figure below, I have attempted to re-interpret Fraser’s phylogeny from a cladistic perspective. Coenagrionoidea Lestoidea Calopterygoidea Anisozygoptera Aeshnoidea Cordulegastroidea Libelluliodea Figure 1.3: Interpretation of Fraser’s tree (1957). 1.2.2 Cladistic morphological studies As late as in 1996 was the first formal cladistic study on Odonata published in John Trueman’s modestly titled “A preliminary cladistic analysis of odonate wing venation”. Here 14 fossil and 32 extant Odonata were scored for 96 wing characters; along with Palaeodictyoptera as outgroup. Trueman used an “exemplar approach”, and used only single species as terminal taxa. On the superfamilial level, Trueman’s tree holds a surprise: the rare Australian damselfly Hemiphlebia mirabilis de Sélys-Longchamps, 1877, placed in its own superfamiliy Hemiphlebioidea, appear as the sister taxon of all extant Odonata. All other superfamilies except Libelluloidea are found to be paraphyletic. Zygoptera are a paraphyletic grade, leading to a monophyletic Epiprocta, including a pa3 raphyletic Anisozygoptera and a monophyletic Anisoptera. Epiophlebia is basal to all of Anisozygoptera and are hence the sister taxon to the entire Anisoptera. Zygoptera Epiophlebia Anisozygoptera Aeshnoidea + Cordulegastroidea Libelluliodea Hemiphlebia Figure 1.4: Trueman’s tree (1996). To date, the most ambitious study on Odonata phylogeny was performed by Rehn (2003). In this morphological cladistic study, the focus is on resolving higher-level relationships in the Zygoptera. 85 terminals, representing all extant and fossil families and most subfamilies were included and coded for 122 characters. Terminal taxa were composites from several species coded to the generic level, and the 85 terminals were the synthesis of 161 examined species. Rehn found strong support for monophyly of extant Zygoptera as the sister group of Epiprocta. A grade of fossil Anisozygoptera leads to a monophyletic group of extant Anisoptera. In the Zygoptera, none of the superfamilies, as proposed by Fraser (1957), came out as monophyletic. In Calopterygoidea, there is a monophyletic core group of Calopterygidae, excluding a monophyletic Aphipterygidae, nested in a paraphyletic Lestinoidea. Philoganga and Diphlebia, sometimes both included in Amphipterygidae, sometimes in Diphlebiidae, are found outside the core Calopterygoidea: Philoganga as sister taxon to the rest of Zygoptera, and Diphlebia as the sister taxon to Lestinoidea + Amphipterygidae + Coenagrionoidea. Lestinoidea are not monophyletic in any analysis presented. Coenagrionoidea is monophyletic, if Lestoideidae are included. This taxon was placed in Agrioidea (=Calopterygoidea) by Fraser (1957). Hemiphlebia mirabilis is found within the lestoid grade. The basal placement on this taxon by Trueman (1996) was based on the absence of the arculus in the hind wings, a character state only seen in fossil Archizygoptera. But as found by Trueman (1999), this is a derived character state, as an arculus is occasionally found in Hemiphlebia specimens. Rehn (2003) concludes that this phylogeny has low statistical support, and that he is “reluctant to suggest formal changes to the current family group classification” and “The overall topology of Zygoptera suggests its division into three subfamilies, one each for Philoganga, Calopterygoidea and the [Diphlebia, Amphipterygidae, Hemiphlebia, Lestinoidea and Coenagrionoidea] clade [. . . ]” 1.2.3 Molecular studies No comprehensive molecular study on Odonata phylogeny has been published to date. Recent studies include the 12S rDNA phylogeny by Saux et al. (2003), 4 using 12S rDNA from 25 taxa, as well as Hasegawa and Kasuya (2006) who analyzed 16S and 28S rDNA data. Both studies found a paraphyletic Zygoptera with a single species of Lestes as the immediate sister taxon to a monophyletic Anisoptera. However, both studies suffer from poor taxon sampling and a narrow systematic scope. Where Saux et al. (2003) sampled 25 North American taxa, the 32 species Hasegawa and Kasuya included were all from Japan. Currently, there are several research groups working on large scale molecular phylogenies, both in Europe and in the USA. Coenagrionoidea Lestoidea Calopterygoidea Philoganga Libelluliodea Cordulegastroidea Aeshnoidea Anisozygoptera Epiophlebia Figure 1.5: Phylogeny of Odonata according to Rehn (2003). 5 6 Chapter 2 Life history A common myth is that dragonflies only live for a single day, something that probably stems from confusing them with mayflies. The life cycle for a dragonfly can be anything from six months in coenagrionid damselflies, up to nine years in the rare Epiophlebia laidlawii Tillyard, 1921 (Silsby, 2001). Most of their life is spent in the aquatic larval stage, with a final season as a winged imago. Although the imago only spends few days to a few months on the wing, during this time they will hunt, feed, defend a territory, mate and reproduce. 2.1 Larval stage Immature stages of Odonata and Ephemeroptera are here referred to as larvae, following the terminology of Westfall and May (1996) for “immature feeding stage[s] of an insect that undergoes a major reorganization of body form when transforming to the adult stage.” Dragonfly larvae are entirely aquatic and inhabit all kinds of freshwater habitats, from streams (e.g. Gomphidae, Calopterygidae) to lakes and ponds (e.g. Libellulidae, Coenagrionidae, Lestidae) and even water accumulated in epiphytic plants (Pseudostigmatidae). Damselfly larvae can be recognized by their slender build and the presence of three caudal gill blades. These gills are highly tracheaeted and are used for extracting oxygen, as well as for swimming. The shape and patterns of the gills are important features in identifying damselfly larvae at the species level. The larvae of true dragonflies are more robustly built and are never equipped with external gills. Instead, the surface area of the rectum is folded, up to 60–80 times, to create internal gills. This specialized area of the gut can be closed with a valve, and muscles pump water in and out of the rectum for respiration. The pump also works as an escape mechanism, and water can be pushed out as a jet stream that propels the dragonfly larva away from predators. The ecology of dragonfly larvae can usually be deduced from their shape: ambush predators are squat and spiny to blend in with underwater vegetation, and active hunters are slender and streamlined. Many Anisoptera carry sharp spines on a ridge on top of the abdomen, as well as on the sides. These spines serve as a protection against predation, and Johansson and Samuelsson (1994), showed that the length of defensive spines is directly affected by the presence of fish predators in the habitat. The labium (the bottom mouth part, or lower lip) is transformed into an ejectable mask. At rest, it is folded underneath the head with the labial palps closed. When catching prey, the mask is ejected up to a third of the length of the body, the palps open up like a bear trap, and in an instant the prey is caught. The prey can be anything from small worms, mosquito larvae, other aquatic insects, tadpoles and even small fish. This adaptation is unique in the whole insect world, and one of the defining characteristics of the Odonata. The larval stage lasts through several molts, usually between 8–15, a low number compared to the Ephemeroptera, which pass through up to 50 larval stages (Peters and Campbell, 1991), but high compared to louse flies (Diptera, 7 Hippoboscidae), where larvae immediately form puparia as soon as they are deposited (Foote, 1991). The very first instar is known as a prolarva, and is immotile with its legs fixed against the sides of the body. This stage is very short-lasting, and the second instar hatches from the prolarva within a few hours. After each molt, when the cuticle is still soft, the larvae grow by inflating themselves with water. When the cuticle hardens, no growth is possible until the next molt. Wing pads begin to show in the third or fourth instar and get proportionally larger for every succeeding molt. 2.2 Emergence A few days before emergence, the larva stop feeding, and the final molt takes place within the larval skin, analogous to the pharate pupae found among holometabolous insects. Damselfly larvae, and those of stream-dwelling gomphid dragonflies, emerge on flat rock surfaces near the water. Most Anisoptera larvae climb reeds or plant stems and use their claws to attach themselves in a vertical position before emerging. The dragonfly emerges by breaking the dorsal surface of the head and thorax of the larval skin. It then proceeds to crawl partially out of the shell, and waits until the legs are hardened before emerging entirely. By first filling the body with air, and then using hydrostatic pressure to push haemolymph into the wing veins and abdomen, the dragonfly hatchling inflates itself to full size. The newly hatched, or teneral, dragonfly can be recognized by the soap bubble-shimmering wings and pale coloration. Teneral dragonflies sometimes migrate away from the source of water, to return when they have fully matured. 2.3 Imago The mature dragonfly’s appearance is different from the from the teneral. The wings are no longer shimmering, and body color is deeper and darker. Some species develop pruinescense. This is a waxy body coating, usually blue in color, but ranging from white to purple and even red. This is most notable in males, especially libellulids (i.e. Libellula depressa Linnaeus, 1758), where the tenerals are very similar in color to the female, but the mature male has an abdomen entirely covered with blue pruinescense. The mature dragonfly will return to a source of water, usually the one it was hatched from, but longer migrations also occur. An extreme example of a migrating species is the aeshnid Hemianax ephippiger (Burmeister, 1839). Its usual habitats are desert areas from the Sahara over the Middle East to India, but migrating individuals have been found as far away as Iceland (Ólafsson, 1975). Territoriality is common in dragonflies, and a male that takes up a territory will defend it from intruders, especially conspecific males. Territorial behavior is the norm in Anisoptera, but rare outside Calopterygoidea in Zygoptera. A good territory contains a perch, for the male to rest and observe, and suitable sites for depositing eggs. This can be a part of a riverbend, a clump of reeds or an area of open water. 2.4 Mating system A unique feature of Odonata is the peculiar mating system. Male dragonflies have, aside from the primary genitalia distally on the abdomen, secondary genitalia ventrally on the second and third abdominal segments. This structure has no homologous counterpart in any other extant group of insects. The primarily apterygote hexapods (Zygentoma – silverfish, Collembola – springtails etc.) have external fertilization: the males deposit spermatophores on the ground, which are subsequently picked up by the females. Other pterygote insects (including Ephemeroptera) have a direct gonopore-to-gonopore mating system. In 8 Odonata, the male has to transfer sperm from the tip of the abdomen to a reservoir in the secondary genitalia. A side effect of the odonate mating system is that every mating is dependent on female choice (Fincke, 1997). Before mating, the male clasps the female using the anal appendages, but for a successful mating to ensue, the female has to flex her abdomen to connect with the secondary genitalia of the male. In Zygoptera the females are grasped behind the prothorax, and in Anisoptera (and Anisozygoptera) around the back of the head. This is known as the tandem position. The mating position, when females are grasped by the males and the female genitalia are connected to the secondary genitalia of the male, is called the wheel position. The structures involved in Figure 2.1: Tandem and wheel. Redrawn from Robertson & Paterson (1981). mating are useful in identifying species: males of closely related species can be identified by the shape and size of anal appendages, and in Anisoptera also the structures around the secondary genitalia. Zygopteran females can be identified on the shape of the prothorax, and the mesostigmal plates on the metathorax. Species of anisopteran females can be separated on structures around the genital opening on abdominal segment 8. 2.5 Mating rituals and species recognition Dragonflies recognize conspecifics by visual and tactile information. Pheromones are apparently not involved, as the antennae of dragonflies are underdeveloped structures compared to insects where air-borne chemicals are important signals, such as moths and mosquitoes. In a few groups, most notably in certain Calopterygoidea, mating is preceded by a courtship ritual, where the predominantly dark-metallic male raises his abdomen to expose the light underside and flutters his wings. A brief courtship is also performed in some Anisoptera, but most species tend to rely on visual clues for identifying prospective mates and competitors. Pajunen (1964) studied the sex- and species recognition of two closely related and sympatric Leucorrhinia species: L. dubia (Vanderlinden, 1825) and L. rubicunda (Linnaeus, 1758). Pajunen found that males rely on the flight pattern to recognize conspecific males, and would attempt tandem coupling with anything not exhibiting the typical male behavior. This included erratically flying exhausted males, experimentally weighted down males and females painted in bright unnatural colors. Males of L. rubicunda were inspected closely, more often than unmanipulated conspecifics, by males of L. dubia. In smaller Zygoptera, visual clues are less useful, and recognition tends to rely more on tactile information. Males will attempt tandem coupling with any damselflies fitting the size and color of females of their own species. Loibl (1958), and Krieger and Krieger-Loibl (1958) studied sympatric species of Lestes and Ischnura (both Zygoptera), and found that males would often attempt mating with heterospecific females, but females would refuse mating by not assuming the wheel position. It was also found that females would refuse mating with conspecific males who had had their anal appendages experimentally altered. Paulson (1974), performed an experiment where captive females of Enallagma and Argia species (Coenagrionidae), were presented to con- and heterogeneric males. Males did not distinguish females of their own species visually, but showed less response towards heterospecific females. Extraspecfic matings were prohibited by the males’ inability to grasp heterogeneric females around the 9 prothorax, and the refusal to mate by congeneric, but heterospecific females. Paulson concluded that mechanical isolation is very important in clear winged Zygoptera, where the coloration of females are simliar between closely related species but the shape of male genitalia differ substantially. Robertson and Paterson (1982), repeated the methods of Loibl (1958) and experimentally altered the anal appendages of males of Enallgma glaucum (Burmeister, 1839) (now Africallagma), and found that females readily mated with males who had altered paraprocts (inferior anal appendages), but refused matings with those with altered cerci (superior anal appendages). This corroborates the theory that the site for tactile discrimination in Zygoptera are the inner grooves of the female mesostigmal plates. As revealed by scanning electron microscopy (Robertson and Paterson, 1982), the mesostigmal plates are equipped with tactile sensilla at the sites where only the cerci of a conspecific male will make sufficient contact. In these coenagrionid damselflies the shape of the genitalia and mesostigmal plates vary distinctly, even between closely related species, and females are very discriminating against males whose cerci does not hit the right spots on the mesostigmal plates. This is in contrast to those dragonflies that rely on visual information, such as the Leucorrhinia studied by Pajunen (1964), where altered cerci did not affect the females’ willingness to mate. Or sympatric Calopteryx species (i.e. North American C. maculata (Palisot de Beauvois, 1805) and C. aequabilis Say, 1839) where identification of conspecifics is dependent on visual cues, and there are only minor differences in the shapes of the genitalia and mesostigmal plates between species (Waage, 1975). The Odonata mating system superficially appears to be a perfect example of the lock-and-key hypothesis of Durfour (1844), explaining the shapes of genitalia as matched to prevent heterospecific matings. However, observations are also in concordance with Eberhard’s theory (1985) that sexual selection on animal genitalia is driven by female choice. Eberhard’s theory is that evolution of odd shapes in animal genitalia is driven by sexual selection, a red-queen race of male behavioral and mechanical manipulation and female counter-adaptations to resist the manipulations. If the same mechanisms for female choice are used to discriminate between males of the same species, and to separate out males from other species, then only these systems will be subjected to sexual selection. This prediction fits the female choice system of the visually oriented Leucorrhinia, the courting calopterygids (Waage, 1975) and the tactile Coenagrionidae (Loibl, 1958; Robertson and Paterson, 1982). 2.6 Ovipositing Very soon after mating, ovipositing takes place. In some species, the couple is still attached in the tandem position, in others, the male hovers around the female to chase off other males attempting to elope with the ovipositing female, or the female oviposits unattended. The ancestral state in Odonata is to deposit eggs endophytically, i.e. inside plant matter, using a serrated ovipositor. This behavior is found in all Zygoptera, in Epiophlebia, and in the plesiomorphic anisopteran groups Aeshnidae and Petaluridae. An ovipositing damselfly can stay underwater for several minutes while boring eggs into the stems of submerged plants. Not only underwater plants are used for endophytic oviposition: Lestes viridis attaches eggs to branches of trees and bushes hanging over open water. The eggs winter in this stage, and the larvae hatch in the spring. The ovipositor has been lost independently in Gomphoidea and Cordulegastroidea + Libelluloidea. In Cordulegastroidea a secondary unserrated ovipositor is formed from the vulvar scales, and is used for depositing eggs in mud along the bottom of brooks and streams. In other Anisoptera, there are several methods of ovipositing: Eggs can be dropped straight into the water from a perched or flying position, or a low-flying female can extrude eggs in small batches and release them by dipping her abdomen in the water. The corduliid Epitheca bimaculata 10 (de Charpentier, 1825) deposits eggs in long gelatinous strands, similar to frogs’ eggs. 2.7 Life on the wing Dragonflies are active visual predators, and show a number of adaptations for hunting and capturing live prey. Legs are spiny and pointed forward at an angle from the slanted pterothorax, forming a basket for catching and handling prey. The compound eyes are adapted for sensing movement, and dragonflies can be seen to investigate anything passing by in the air to decide if it is a competitor, mate or food. Adaptation to counter the acute sight of competitors have been investigated in the Aeshnid Hemianax papuensis (Burmeister, 1839) by Mizutani et al. (2003), who showed that interacting territorial males use motion camouflage to remain undetected even if they are circling around each other at high speed. This is accomplished by the attacker matching the flight movements of the occupant of the territory, as an objects stationary in the visual field are percieved as immobile. By employing motion camoflage, the attacker can get close to his opponent without being detected. Figure 2.2: Pseudostigmatidae: Megaloprepus caeruleatus (Drury, 1782). When it comes to feeding, dragonflies are generalists. Anything alive and flying is seen as food. Flies and mosquitoes are the staple diet of most Odonata, but some species have become specialist on certain type of prey. The aeshnid Anax junius (Drury, 1770) prefers hymenoptera (Warren, 1915), especially honeybees, but will also eat moths, beetles and dipterans. The real specialists are the helicopter damselflies (Psedostigmatidae) of Central- and South America, who prey exclusively on spiders. These long (up to 21 cm in Mecistogaster ), hover in front of spider webs in trees, and will carefully pluck any inhabitant. After grabbing a spider with its front legs, the pseudostigmatid will fly backwards to a perch, and then bite the legs off the spider before consuming the body (Corbet, 1999). 11 12 Chapter 3 Extant clades of Odonata The extant Odonata are traditionally divided into three suborders: Zygoptera, Anisoptera and Anisozygoptera (Fraser, 1957). Worldwide, about 6000 species of Odonata have been formally named (Silsby, 2001), and a speculative estimate (Tennessen, 1997), indicates that there are less than 10000 extant species of Odonata. The number of described species is about evenly divided between Zygoptera and Anisoptera. The names of higher taxa in this section is from Fraser’s re-classification, but all reference to phylogeny is based on Rehn (2003), and names of paraphyletic groups are set within quotes. All specimens are pictured approximately lifesize. 3.1 Zygoptera - damselflies The Zygoptera, damselflies, are characterized by their slender abdomen, the anterolaterally flattened head with widely separated compound eyes, similar shape of fore and hind wings and a functional serrated ovipositor in females. Eggs are deposited endophytically. Damselflies are generally weak fliers, compared to the true dragonflies, with a few notable exceptions in the Pseudostigmatidae. 3.1.1 Calopterygoidea The type family of this group is Calopterygidae, known as demoiselles in the UK and jewelwings in North America. They are mostly found in habitats with flowing water. Blue or green metallic body color is common, and many species have tinted wings with several antenodal crossveins. Figure 3.1: Polythoridae: Chalcopteryx rutilans (Rambur, 1842). 3.1.2 “Lestinoidea” This group is sometimes called Lestoidea (Silsby, 2001). However, Lestoidea is also the name of a genus within the group. Typically, the wings are petiolate, and are kept in a spread position at rest. The type family is Lestidae, spreadwings (North America), or emeralds (UK). The Lestinoidea are not a 13 monophyletic group, but rather a paraphyletic grade between Calopterygoidea and Coenagrionoidea. Some taxa traditionally placed in this group include the family Lestoideidae with the three genera: Diphlebia, Philoganga and Lestoidea. The former two are sometimes places in their own family Diphlebiidae (Davies and Tobin, 1984). In Rehn’s analyses (2003) Philoganga is the sister taxon of the entire Zygoptera, while Diphlebia is associated with the paraphyletic Lestinoid grade. Lestoidea itself is found within Coenagrionoidea. Figure 3.2: Lestidae: Lestes sponsa (Hansemann, 1828). 3.1.3 Coenagrionoidea The Coenagrionoidea are a monophyletic group, when Lestoidea is included. This group contains some of the smallest as well as the longest Odonata with the coenagrionid Agriocnemis pygmaea (Rambur, 1842) no longer than 16–18 mm, and pseudostigmatids which can reach over 21 cm in length. Wings are typically petiolate and hyaline with two antenodal crossveins. Ecologically they are a diverse group, with Coenagrionidae breeding in still waters, such as ponds and bogs, and Platycnemididae which inhabit brooks and streams. The unsual Pseudostigmatidae live in rainforests, and breed in water filled tree holes and leaf bases of epiphytic plants. Figure 3.3: Coenagrionidae: Coenagrion puella (Linnaeus, 1758). 3.1.4 Hemiphleboidea This groups consists of a single species Hemiphlebia mirabilis de Sélys-Longchamps, 1877, in the monotypic family Hemiphlebiidae, endemic to Australia and Tasmania. It was feared to be extinct in the 1980s, but several healthy colonies have been discovered in mainland Australia as well as Tasmania. As discussed above, the Hemiphleboidea, are not basal within Odonata, or even Zygoptera. 3.2 Epiprocta: Anisoptera + “Anisozygoptera” In the light of recent cladistic analyses (Trueman, 1996; Rehn, 2003), Anisozygoptera have been found to be paraphyletic. Lohmann (1996), suggested the taxon Epiprocta (referring to the structure formed by fusion of the male’s lower 14 Figure 3.4: Forewing of Hemiphlebia mirabilis (de Sélys-Longchamps, 1877). Note the conspicuous lack of an arculus. Redrawn from Munz (1919). anal appendages) for Anisozygoptera + Anisoptera, and I will use that terminology here. 3.2.1 The paraphyletic Anisozygoptera Figure 3.5: Epiophlebiidae: Epiophlebia superstes (de Sélys-Longchamps, 1889). One of two extant anisozygopterans. Historically, the Anisozygoptera were a diverse group (Fraser, 1957; Trueman, 1996), but today only two species are extant, both in the genus Epiophlebia. As the name implies, this group blends features of Zygoptera with Anisoptera. Epiophlebia has the robust synthorax of an anisopteran, with wings that are zygopteran in shape but intermediate in venation. The head has widely separated eyes, resembling those found in Gomphidae more than a typical zygopteran. The coloration of the body is of the black and yellow scheme common in basal Anisoptera. The larvae are cylindrical, and have rectal gills, but are unable to use them for jet propulsion. In mating, the female is grasped behind the head, rather than the prothorax. They have a functional ovipositor and lay eggs endophytically. Epiophlebia superstes (de Sélys-Longchamps, 1889) is common in Japan. The other species, E. laidlawii Tillyard, 1921 inhabit Himalayan mountain streams, and has never been found below an altitude of 1800 m. Epiophlebia spp. are adapted to cold water and a cold climate. The larvae of E. laidlawii have the longest development time found in Odonata, estimated to 5–9 years. 3.3 Anisoptera Although the term dragonfly is also used for the entire order, it is commonly used as a vernacular for Anisoptera. The name refers to the dissimilar shape of the wing pairs: the bases of the hind wings are broader then those of the fore wings. At rest, the wings are held outwards to the sides. Anisopterans are strong fliers and are able to hover and fly in any direction, including backwards. The larvae are robust and use rectal gills for respiration and jet propulsion. 15 3.3.1 “Aeshnoidea” Figure 3.6: Gomphidae: Gomphus vulgatissimus (Linnaeus, 1758). This name covers the basal anisopteran groups Aeshnidae, Gomphidae and Petaluridae. Gomphidae and Petaluridae retain the widely separated eyes, while the Aeshnids have the more typical dragonfly eyes covering most of the head. Members of this group share the ancestral color scheme, with a dark base and brighter stripes on the synthorax and abdomen, never metallic. With Gomphidae as an exception, the ovipositor is fully functional and eggs are deposited endophytically. The Petaluridae are considered the most ancestral of the Anisoptera, based on wing venation characters. This group includes Petalura ingentissima, the world’s largest dragonfly. It is not as long as some pseudostigmatids, but has a wingspan up to 16 cm. 3.3.2 Cordulegastroidea This is a Holarctic group classified into a single family Cordulegastridae (goldenrings in the UK, spiketails in North America). They exhibit the ancestral color scheme of the Aeshnoidea: a black body with yellow stripes. Oviposition takes place in mud and sand in flowing water, the females using their elongated ovipositor to stab eggs into the substrate. Figure 3.7: Cordulegastridae: Cordulegaster boltoni (Donovan, 1807). 16 3.3.3 Libelluloidea This is one of the largest and morphologically diverse groups in Odonata. Libelluloid are found in most types of habitats around the world. They range in size from the gigantic chlorogomphids, with wingspans only rivaled by the Australian petalurids, to the world smallest dragonflies in Libellulidae (subfamily Brachydiplactinae). Figure 3.8: Libellulidae: Nannaphya pygmaea Rambur, 1842. One of the smallest anisopterans. All types of coloration are found in Libelluloidea, from the ancestral blackand-yellow in Chlorogomphidae and Macromiidae to bright metallic greens in Corduliidae and all possible colors within Libellulidae. Spectacular patterned wings are also common within this group. Although Libelluloidea is a diverse group, morphologically and ecologically, it is a well-established monophyletic taxon. Synapomorphies include the entirely reduced ovipositor, and the shapes Figure 3.9: Libellulidae: Libellula quadrimaculata Linnaeus, 1758. of the triangles being different in fore and hind wings. The nominate group, Libellulidae, contains the genus Libellula, which was the original Linnaean genus for the entire Odonata. Pictured is Libellula quadrimaculata Linnaeus, 1758, the nominate species in the nominate genus of the nominate family. 17 18 Chapter 4 Odonata – a key group in insect evolution Dragonflies are some of the most agile fliers among the insects. Their manouverability and speed are only rivaled by large robberflies (Diptera: Asilidae), who actually hunt dragonflies. The flight mechanism is also very specialized. Other insects mainly use their indirect wing muscles to power flight. These attach to the body wall and work by deforming the shape of the thorax. In dragonflies, the wings are powered by direct wing musculature which attach to the fulcrums formed by the basal wing sclerites. As Odonata are one of the most basal groups of winged insects, they hold vital clues to the origin of insect flight. Are the direct wing muscles and uniqe venation pattern an ancestral trait or a highly developed specilisation? 4.1 History of insect flight Powered flight has originated four times in the history of life on earth: In the insects, in pterosaurs, birds and bats. In the vertebrates, the multiple origin of vertebrate wing is evident from how the forelimbs have been modified. In pterosaurs, the arm is short, and the elongated fourth finger is used to stretch out the wing membrane. In bats, the wing is formed by the webbing between the fingers. In birds, the bones of the arm form the leading edge of the wing and feathers, rather than the wing membrane, form the airfoil. In other arthropods, there are no obvious homologous structures to the insect wings. The oldest known insect wings are found in Namurian (Upper Carboniferous, 326–315 myo) fossil beds (Carpenter and Burnham, 1985). These are fully formed structures and several can even be placed within extant groups, including mayflies (Ephemeroptera) and cockroaches (Blattodea). However, Engel and Grimaldi (2004), re-examined Rhyniognatha hirsti Tillyard, 1928, from the Rhynie Chert of Scotland (Devonian Old Red Sandstone, formed 400 mya). Only fragments of mouth-parts are preserved, but by using compound microscopy, the authors were able to show that the mandibles are clearly dicondylious and articulated in a manner only found among Odonata and Neoptera, backdating pterygote insects by 75 million years. No intermediary stage in insect wing evolution has ever been found, as noted by Carpenter and Burnham (1985) “The fossil record, as presently known, contributes nothing to our understanding of the actual origin of the insects.” Phylogeny offers no simple leads, as the firmly established sister-group of the pterygotes are the entirely wingless Zygentoma (Hennig, 1981; Kristensen, 1975, etc.). Clues to the origin of insect wings have been sought in ontogeny Snodgrass (1935), palaeecology (Wigglesworth, 1963a,b), and ethology (Alexander and Brown, 1963). These theories should be taken as they are: speculative, untestable, more or less plausible, but usually thought provoking and an interesting read. 19 4.2 Paranota – a terrestrial origin? Snodgrass (1935), launched the theory that wings have an origin in expanded paranotal lobes – structures expanding from the folds of the soft body wall below the sides of the dorsum. The evolution of wings is interpreted as a three-staged process: 1. Three pairs of lateral flaps develop on the thorax. 2. The flaps are utilized in gliding, enabling insects to “depart from a strictly terrestrial or arboreal life”. 3. The flaps of the meso- and metathorax acquire motility, and the flaps on the prothorax are lost. Alexander and Brown (1963) suggested the original function of the thorax flaps were mating display. Sexual selection would have driven the evolution towards larger and more prominent structures. Another proposed original function of the paranota is thermoregulation (Douglas, 1981). Extant dragonflies, as well as butterflies and other large-winged insects, actively use their wings to adjust body temperature. Many insects bask in sunlight to increase body temperature, or position themselves to minimize the area directly facing the sun. This can be observed in libellulid dragonflies perching in the “obelisk position” with the body nearly vertical and the wings pointed downward. As demonstrated by Kingsolver and Koehl (1985, 1994) selection for higher body temperature would favor having wing pads over not having them, and larger wing pads over smaller. 4.3 An aquatic origin? Other scenarios imagine wings originating in an aquatic environment, and adaptation to flight through a function shift. Handlirsch (1937), argued that the winged insects were derived from trilobites, rather than silverfish-like hexapods, and that the ancestral wings were intersegmental gills. Kukalová-Peck has in several publications (e.g. 1983; 1987; 1991) argued that wings evolved from an leg-associated structure known as the epicoxa. This structure is the hypothetical junction between the pleuron (side) and dorsum (top) of the leg bearing segments. Larvae in Ephemeroptera, perhaps the sister group to all extant pterygotes (Kristensen, 1975; Wheeler et al., 2001; Ogden and Whiting, 2003), bear paired abdominal gills with a tracheaetion mimicking the pattern on the developing winglets. These structures are seen by Kukalová-Peck as serially homologous to the wing pads of the meso- and metathorax. Marden and Kramer (1994) described a scenario for evolution of flight through a function shift: Stoneflies (Plecoptera) have aquatic nymphs, and are commonly associated with streaming water. In certain groups, a behavior called “skimming” occurs, where imagos remain on the water surface and use their wings for locomotion without becoming airborne. This could be interpreted as a possible intermediary stage in wing evolution, as it eliminates any useless transitional stages. Gill pads could initially have been used as immobile sails, and with selective pressure pushing mobility, gliding and eventually powered flight. Hennig (1981) placed Plecoptera as the sister group of all other neopterous insects, with Palaeoptera as the monophyletic sister group of Neoptera. A possible interpretation is that having aquatic larvae and surface skimming adults is an ancestral state in winged insects. However, as Will (1995) commented on Marden and Kramer (1994), Plecoptera are neither phylogenetically basal in pterygote insects, nor is surface skimming an ancestral trait in Plecoptera. Will notes in conclusion: “Surface skimming can be added to the list of feasible scenarios put forward, but without the support of phylogeny it remains speculative.” There are other difficulties with the aquatic origin theory (see Grimaldi and Engel 2005, p.159 for a review): the earliest fossil freshwater insects are from the Triassic era (Zherikhin, 2002), 100 million years younger than the first winged insect fossils. Most insect fossils are formed in water by becoming embedded in silts under anaerobic conditions (Carpenter and Burnham, 1985). It is unlikely that the fossil record would be biased towards terrestrial insects accidentally falling into water, against early protopterygotes in their natural aquatic habitat. Also the structures forming gills in extant insects are clearly not homolo20 gous ontogenically: the abdominal gills of Ephemeroptera are different from the caudal gills and modified gut in Odonata, and the gill tufts of Plecoptera. 4.4 Palaeopterous and neopterous wings Although the wings of palaeopterous and neopterous insects are undoubtedly homologous, they are different in structure and function. Martynov (1925) first divided the insects into two groups based on wing function. Most insects are able to fold their wings flat over the abdomen at rest. This is achieved by a muscle pulling on one of the sclerites articulating the wing against the body, and a wing vein branching that allows for folding. All extant pterygote insects fall into this category except Ephemeroptera and Odonata. These two groups are unable to fold their wings back in any way, and keep them either upright above the abdomen (Ephemeroptera and Zygoptera), or folded flat to the sides (Epiprocta). Martynov assumed the latter to the ancestral condition and called the group consisting of Ephemeroptera and Odonata Palaeoptera, or old wings. This in contrast to the wing folding insects in Neoptera – new wings. 4.5 Folding wings – a key event in insect evolution Wing folding has evolved twice in insects: once in the extinct group Palaeodictyoptera (Kukalová-Peck, 1991), and once in Neoptera. Wing folding has also been lost in certain neopterous groups (e.g. papillionid butterflies). However, Neoptera is a firmly established monophyletic taxon, as established both by morphology and molecular evidence (Hennig, 1981; Kristensen, 1975, 1991; Boudreaux, 1979; Wheeler et al., 2001). The ability to fold the wings flat over the abdomen is considered one of the most important reasons for the success and diversity of insects. Folded wings allow for a more compact shape of the insect, and has enabled the invasion of narrow habitats inaccessible to an insect with large inflexible wings. The neopterous wing has also opened up pathways for the forewings to evolve into protective covers for the flight wings. Protective elytra have evolved many times independently in Neoptera (e.g. in Blattodea, Orthoptera, Hemiptera and Coleoptera). If number of species is in any way a measure of evolutionary success, then neopterous wing folding, not wings in themselves, is the true key innovation for the diversity of insects. 4.6 Palaeoptera – monophyletic or not? The monophyly of Neoptera has rarely been questioned, but Palaeoptera has been a controversial group since it was first proposed by Martynov (1925). Even if the palaeopterous condition is ancestral, is Palaeoptera a monophyletic group or a grade towards Neoptera? There are three extant basal groups, and hence three possible trees, and all possible solutions have been more or less convincingly argued from a morphological perspective. Interpreting the morphology on this level has to rely on characters not involved with wings or flight, as these characters can not be used to polarize the character states using apterygote outgroups. The closest relatives of the pterygotes are Zygentoma, or silverfish. Together with the Pterygota, they form the monophyletic group Dicondylia, based among other characters on a unique adaptation in the articulation of the mandibles. Other mandibulate arthropods have a mandible connecting to the head capsule by a single socket, allowing a rotational movement of the mandible, whereas the dicondylian mandible is articulated by two joints, limiting the movement to that of a hinged door. This adaptation has allowed the dicondylious insects to exploit new sources of nutrition, as the more restricted mobility of the mandibles also allows for greater leverage, enabling the crushing or grinding of harder foodstuffs. 21 4.6.1 The Metapterygota hypothesis Börner (1904), considered the Odonata to be more closely related to Neoptera than Ephemeroptera and united them in the group Metapterygota. This group has received support from total-evidence (Kluge, 1998) studies (Whiting et al., 1997; Wheeler et al., 2001), and from the thorough work of Kristensen (1975, 1981, 1991), it is the grouping scheme that has the strongest support from morphology. The characters connecting Ephemeroptera to the apterygote hexapods involve characters in the mouthparts, the molting, musculature in the tracheal system and the caudal filament. The dicondylious mandibles of the Zygentoma and Ephemeroptera larvae (adult Ephemeroptera does not have any functional mouthparts) are elongate and articulated parallel to the teeth of the mandible, whereas Odonata and Neoptera have stouter, more triangular, mandibles with the articulation perpendicular to the teeth. Ephemeroptera are the only extant insects to molt after acquiring functional wings. The larvae hatch to an immature winged stage called a subimago. This stage only lasts for a very short time (minutes to a few hours), and the subimago molts to the winged, sexually mature imago. This has been interpreted as an ancestral trait, as many apterygote hexapods (and other arthropods) never reach an imaginal stage, but continue to molt at irregular intervals throughout their life (Snodgrass, 1935). However, the ancestral status of the subimago of Ephemeroptera is open to interpretation as they do molt into a final imago, one of the uniting characters of the Pterygota. No winged sexually mature insect molt, and the apterygotes do not have a final instar. Therefore, the subimago of Ephemeroptera can only also be considered an autapomorphy. There are indications from the fossil record that several other insect groups had one or more subimaginal instars (Kukalová-Peck, 1978, 1991). In Kukalová-Peck’s interpretation, juveniles with articulated winglets occurred not only in Ephemeroptera, but Odonata, Plecoptera, and even Hemiptera. From a cladistic perspective, it seems unlikely that flying subimagos have been lost independently so many times, and the allegedly flying nymphs of the Paleozoic are due for a thorough independent review. In most Odonata and many Neoptera groups, the muscles that close the abdominal spiracles are attached directly to the abdominal spiracular sternites, whereas they are missing in Ephemeroptera and apterygote hexapods. The exact distribution of this character is not elaborated on by Kristensen (1981), but it was coded as present in all Neoptera and Odonata in the morphological matrices of Whiting et al. (1997) and Wheeler et al. (2001). The terminal filament is an annulated process extending from the last abdominal segment. According to Hennig (1981), it is undecided if it is a synapomorphy of the true Insecta (or ectognathous hexapods), or if it is part of the hexapod groundplan. It is present in Zygentoma, Archaeognatha, and Ephemeroptera. It is missing in ectognathous hexapods and in Odonata. In a few Plecoptera, a similar structure, the posteromedian gill filament occupies the same position (Zwick, 1980), but its homology to the long terminal filament of Ephemeroptera and apterygote ectognaths is uncertain. 4.6.2 The Opistoptera hypothesis Boudreaux (1979) strongly argued for a sister-group relationship between Ephemeroptera and Neoptera, a grouping first proposed by Lemche (1940) as Opistoptera (and sometimes as Ophistoptera in the same publication). The strongest similarity linking Odonata to the apterygote insects is the mating system. Apterygote males deposit spermatophores which are picked up by the female, whereas Ephemeroptera and neopterous insects always mate in copula, gonopore to gonopore. The mating system of Odonata, is considered a variant of the ancestral method of indirect mating, with the secondary genitalia and active sperm transfer as adaptations to a life away from flat ground. According to fossil evidence interpreted by Bechly et al. (2001), Namurotypus (Protodonata), 22 did not have secondary genitalia and had a mating system with spermatophores much like the extant apterygote insects. 4.6.3 A monophyletic Palaeoptera? Martynov (1925) proposed a phylogenetic tree of the insects where several higher taxa of insects were described. These included Paraneoptera, a group consisting of Hemiptera + Psocoptera + Phthiraptera, and the groupings Mecopterida and Amphiesmenoptera in the Holometabola, groups later confirmed as monophyletic by phylogenetic studies (Whiting et al., 1997; Wheeler et al., 2001; Kristensen, 1975). Martynov’s group Neoptera, the wing-folding insects, would become almost universally accepted, but the Palaeoptera have remained controversial to this day. Hennig (1981), supported monophyly of the extant Palaeoptera, listing 4 “relatively trivial” characters: the short antennae, the intercalary veins in the wings, the fusion of the galea and lacinia in the larval maxillae, and the aquatic larvae. As any character involving wings or flight cannot be used to root the pterygotes using primarily wingless insects as an outgroup, they can’t tell us anything about the basal pterygote phylogeny. Wings with intercalary veins can equally parsimoniously be interpreted as a symplesiomorphy. The short bristlelike antennae are ubiquitous in extant Ephemeroptera and Odonata, but as shown by Grimaldi (2001), the antennae of Odonata are divided into distinct antennomeres ending with a annulated flagellum, whereas they are simple, unsegmented structures with a simple flagellum in Ephemeroptera. There is also fossil evidence (Bechly, unpublished) that stem-group Ephemeroptera, as well as the protodonatan Namurotypus, had long flagellar antennae. This shows that the short antennae of extant Palaeoptera is a derived condition that has arisen in parallel. Kukalová-Peck (1991, and others), list several characters that either involve the wings or flight (see above), or are extrapolations (from fossil evidence) to an unobserved ancestral condition involving endites and exites of the thorax and abdominal segments. In Whiting et al. (1997), and Wheeler et al. (2001), the phylogeny of holometabolous insects, and later, the entire hexapoda, were examined using formal cladistic methods. Morphological and ribosomal (18S and 28S) molecular markers were used to find a phylogeny of insects. In the lower Pterygota, they relied heavily on the characters described by Kristensen (1975, 1981, 1991). The morphological, as well as total-evidence trees showed support for the Metapterygota, while the 18S tree found a monophyletic Palaeoptera. 23 24 Chapter 5 Ribosomal sequences in phylogenetic systematics Three papers in this thesis use information from ribosomal sequences. Nuclear 18S and 28S rDNA was used in “The Palaeoptera problem”, nuclear 5.8S and the surrounding non-coding spacers ITS1 and ITS2 was used for the paper on Leucorrhinia phylogeny, and mitochondrial 16S sequences provide most of the support in the phylogenetic study on Ischnurinae. 5.1 Structure and function of the ribosome Ribosomes are the organelles that translate protein coding mRNA sequences into chains of amino acids that fold up to functional proteins. The ribosomes consists of an RNA scaffolding encrusted with proteins. The active site in ribosomes, where tRNAs connect to the extending amino acid chain is largely free of protein, indicating that the RNA itself is responsible for forming the catalytic site. This has been taken as evidence that the ribosomes are a remnant from the “RNA world” (Gilbert, 1986), before enzymatic proteins evolved and RNA both stored the inheritable information and carried out catalytic reactions. In metazoans there are two distinct varieties of ribosomes: the nuclear ribosome found in the cytoplasm, the endoplasmatic reticulum and the nuclear membrane and the mitochondrial ribosome, restricted to the insides of the mitochondrion. The nuclear ribosomes are assembled from two major parts: the large- (LSU, or 28S) and the small (SSU, or 18S) subunit. Their mitochondrial counterparts are the 16S and 12S subunits. In contrast to the 16S and 12S, which are encoded from adjacent single copy regions in the mitochondrial DNA, Nuclear Ribosomal RNA is transcribed from repeated regions found in many copies on one or more chromosomes in the nuclear DNA. The ribosomal repeats are transcribed as a unit of single stranded RNA. Aside from 18S and 28S subunits, the ribosomal repeats encode other regions of rRNA. These are the Internal Transcibed Spacers (ITS1 and ITS2) and the 5.8S subunit. Before the ribosome is fully formed the spacers are enzymatically removed. The 5.8S subunit is associated with the large subunit in the mature ribosome. The DNA regions encoding ribosomal repeats are very homogenous within a single genome, and a mechanism known as concerted evolution (Zimmer et al., 1980) is thought to keep the copies identical. The self-complementary nature of nucleic acids not only enables DNA to form the double stranded helix, but allows the rRNA to fold up on itself to a highly ordered 3-dimensional structure. The self-complementary regions are known as “stem”, and the intermittent single-stranded as “loop”-regions. Stemregions are highly conserved compared to loop-regions, as single mutations in a stem-region causes changes in the secondary- and tertiary structure of the ribosome, which can have severe effects on its ability to function. In molecular systematics, the nuclear rDNA genes have been extensively 25 rRNA Sequence (=primary structure) GAGUAAAGUUAAUACCUUUGCUC Secondary structure GAGUAAAG CUCGUUUC stem loop Figure 5.1: A self-complementary structure of ribosomal RNA used, especially small subunit (18S, or SSU) sequences e.g. for metazoa, Lipscomb et al. (1998); arthropods, Giribet and Rivera (2000); fungi, Tehler et al. (2000); hexapods, Wheeler et al. (2001); plants, Soltis et al. (2000), but also the 28S and the internal transcribed spacer (ITS) regions with the 5.8S gene. The variability in selective pressure on stems and loops have proven very useful for systematics. The highly conserved stem regions are suitable general primer sites, to the extent that the same set of 18S PCR primers can be used for everything from fungi (Tehler et al., 2000), flatworms (Norén and Jondelius, 1999), polychaetes (Rousset et al., 2004) as well as insects. Thus variable regions that contain phylogenetic information on several taxonomic levels can be amplified by general primers. The ITS regions are highly variable, but are easy to amplify by PCR using general primers in the 3’ end of the 18S rDNA and the 5’ of 28S. 5.2 Establishing homology in molecular data Comparing character states in homologous structures is the very basis of phylogenetic systematics (Hennig, 1966). For morphological characters, primary homology can be established from several criteria: positional homology, ontogeny, structural similarity, etc. In molecular data, ontogeny and structural similarity are not applicable. An adenine “A” in one position is indistinguishable from any other A. Thus positional information is the only clue for finding homology in DNA data, a procedure referred to as alignment. For protein coding genes, positional homology can easily be established as the sequences have to conform to the amino acid triplet code. A single insertion or deletion in a protein coding sequence shifts the reading frame, and often results in a non-functioning protein, which can be lethal to the organism. Ribosomal are less affected by insertion and deletion events, especially in the loop regions. As a result rDNA sequences from different organisms differ in length to the degree that positional homology is difficult to establish. 5.3 Approaches to multiple sequence alignment Homologous regions in two DNA sequences can be visualized as a dot-plot matrix, where one sequence is represented by the X-axis and the other by the Y-axis. Similarities between any position in one sequence to the other are marked, showing longer stretches of matching sequence as downward diagonal bands going left-to-right on the plot. All possible alignments between two sequences are contained in a dot-plot, as any path that begins in the upper right corner and ends in the lower right represents a possible alignment. 5.3.1 Finding an optimal path To find an optimal alignment, explicit costs for substitutions and gaps have to be set. The costs used must follow the triangle inequality law i.e., the sum of any two kinds of costs must be equal to or greater than any other. If substitutions cost 1, and gaps 0, the optimal result would be an alignment without parsimony informative characters from substitutions. 26 0 1000 0 1000 2000 Figure 5.2: A dot plot of 18S rDNA from the dragonfly Sympetrum sanguineum (Libellulidae) and the stonefly Isoperla obscura (Perlodidae). The break in the diagonal corresponds to a large insert in the stonefly sequence. Needleman and Wunsch (1970), developed an algorithm to find optimal alignments between protein amino-acid sequences. The algorithm is very general, and can be applied to any pairwise alignment problem, and is guaranteed to find every optimal path through a pairwise alignment. The N-W algorithm is the basis of all algorithmic multiple alignment. 5.4 Multiple sequence alignment Although the N-W algorithm was described for solving pairwise sequence alignment, it can be expanded to finding optimal alignments for more than two sequences. However, this rapidly becomes very computationally demanding, as the number of possible alignments increase geometrically with the number of sequences to align. Computationally hard problems, such finding an optimal multiple alignment, can sometimes be broken down into several smaller problems: a multiple alignment can be re-phrased into a series of pairwise alignments. However, this creates a new problem: you can no longer be sure to have found an optimal alignment, as the result is dependent on the order in which the sequences are added to the multiple alignment. One method for determining the sequence addition order is to create a guide tree. 5.4.1 Heuristic multiple alignment A common method for creating multiple sequence alignments is the Clustal algorithm (Higgins and Sharp, 1988), as implemented in computer programs ClustalW (Thompson et al., 1994) and ClustalX (Thompson et al., 1997). The Clustal algorithm is a two-stage process: pairwise and multiple alignment. In the pairwise step, phenetic distances between all sequences are calculated. These are used to create a guide tree for the multiple alignment stage. The first versions of Clustal, up to ClustalV, used a simple UPGMA (Sneath and Sokal, 1973) algorithm to create the guide tree, but later versions use a Neighbor-joining (Saitou and Nei, 1987) method. The limitation in Clustal is that it only examines a single guide tree, and outputs a single multiple alignment. The only options for finding better alignments under one set of multiple alignment costs is to either examine the effects of changing the cost settings in the pairwise alignment stage, or to use guide trees obtained from other methods. MALIGN (Wheeler and Gladstein, 1994), is a computer implementation of a heuristic multiple alignment algorithm. The tenet of the MALIGN philosophy is to use an explicit optimality criterion throughout the process of creating the guide trees and the multiple alignment. The MALIGN algorithm is different 27 from Clustal in that it evaluates several guide trees, and keeps a tally of costs during the multiple alignment stage. The total cost of the alignment will be identical to the tree length if the resulting multiple alignment is analyzed under the same cost parameters that was used in creating the alignment. MALIGN can perform the basic parsimony heuristic searches, such as SPR, TBR and branchand-bound. The trees found during searches are used as guide trees, with MALIGN keeping track of the implied tree-length in finding the most parsimonious multiple alignments. However, MALIGN is magnitudes more computationally demanding than Clustal. 5.5 Optimization methods From the tree based static alignment method implemented in MALIGN, direct optimization methods is just a step away. These methods were introduced by Wheeler (1996) under the bold title (although with a humble question mark) “Optimization alignment: the end of multiple sequence alignment in phylogenetics?” Direct optimization (DO) is derived from the standard cladistic character optimization of Farris (1970) and Fitch (1971). An explicit cost regimen is required for DO, where every allowed kind of transformation must be given a cost. The simplest models only set costs for substitutions (DNA base to another DNA base), and gaps (insertions and deletions). More complicated methods where different types of substitutions have different costs, and there is a lower cost for extending a gap than opening one etc., can also be utilized. In the Wheelerian philosophy, a cladogram can be interpreted as a computer program that transforms one sequence to another. The events that transformed the ancestral sequence at the node to the sequences observed in the terminal taxa can be deduced from the topology of the tree and the explicit costs used to calculate the tree length. DO finds the lowest total transformation costs needed for a tree (the tree length), and standard heuristics (TBR, SPR, Ratchet) can be used to find the tree that has the lowest total transformation costs. There is no need ever to create a static alignment in this process. TTT TTG TA TAG TA(G) +1 gap TWG +1 substitution +1 substitution TTK Figure 5.3: The down-pass of direct optimization. The cost of the optimization is calculated and preliminary ancestral states are reconstructed at the nodes 5.5.1 Parsimony direct optimization – an example Here I will only present how the simplest parsimony model for DO works, but several optimization methods have been presented e.g. fixed states (Wheeler, 1999), iterative pass optimization (Wheeler, 2003b) and Maximum Likelihood (Wheeler, 2006). These methods are implemented in the computer program POY (Gladstein and Wheeler, 2003). In the example, the optimization is a standard ACCTRAN optimization (Farris, 1970) under Fitch parsimony (unordered character states), with equal costs (1) for substitutions and gaps. There is a down-pass, where putative ancestral sequences are created at the nodes, and an up-pass, where the ancestral nodes are reconstructed. 28 The down-pass Starting at the upper right corner, the ancestral state for the sequences TA and TAG has to be re-created. This necessitates either an insertion or deletion of a G, so the preliminary sequence atTTG the node The parenthesis indicating TTT TA is TA(G). TAG that the third base is either a G, or nothing, so the ancestral sequence was either TAG or TA. Moving down one node, TA(G) the +1sequence on the next branch gap is TTG. The simplest way of transforming TTG to TA(G) is a substitution in the second position. In the putative ancestral sequence, +1 substitution this is represented by TWG a W, the IUPAC code for either T or A. The third position if fixes as a G, as +1 substitution TTK this state is found possible for both sequences. The putative ancestral sequence for this node becomes TWG. Moving further down, the final (root) node is to be reconstructed. Transforming TTT to TWG requires one substitution in the third position, and once again a IUPAC code (K = T or G) is used to represent the ambiguity. In the second position, T is fixed, as it is a possibility for both sequences, and the reconstructed root becomes TTK. The total transformation needed for this tree has been 1 indel and 2 substitutions, for a total cost (or tree length) of 3. TTT TTG TA TAG TAG TTG TTK Figure 5.4: The up-pass of direct optimization. Final ancestral states are reconstructed at the nodes. The up-pass The final cost cannot change by going through the up-pass, but this step will finalize the reconstruction of the ancestral states at each node. This begins at the node above the root, as the root has no ancestors. Each position in the ancestral state will be that of the node below, if they have a possible common character state. Comparing TTK to TWG, W is T or A, and K is T or G. Thus the final reconstructed sequence of that node is TTG. Moving up, TA(G) is compared to TTG. Now, the most parsimonious possible sequence has to be assigned to the node. TA(G) could be either TAG – this would require one substitution, or TA – this would require one substitution and an indel, so the optimized ancestral state of this node has to be TAG, and the deletion has to be an autapomorphy of the terminal taxon with TA. 5.6 Secondary structure alignment It is known from proteins, as well as ribosomal RNA, that the sequence (or primary structure) is less conserved than the secondary- (2-dimensional) or tertiary structure (the 3-dimensional shape). While the 3-dimensional structure cannot yet be inferred from the nucleotide (or amino-acid) sequence, there are numerous models to predict the secondary structure: the loops and stems of ribosomal RNA, and the helices and sheets of proteins. The European ribosomal database (Wuyts et al., 1994) is an online repository of RNA sequences, aligned after a secondary structure model. The derivation of the model is not strictly mathematical, but an amalgam of manual comparison, theoretical models, and incremental adjustments as more ribosomal sequences become known 29 (Van de Peer et al., 1997). Methods for aligning new sequences after a secondary structure model include using the profile alignment option implemented in Clustal (Norén and Jondelius, 1999), manual alignment with visual reference to pre-aligned sequences (Kjer, 2004), and model-based alignment using Hidden Markov Models (Wallberg et al., 2004). Clustal profile alignment uses an aligned matrix to create a consensus sequence. The unaligned sequences are then aligned to this consensus sequence following the standard Clustal algorithm, with all its implicit problems.Wallberg et al. (2004) used a probabilistic model for sequence alignment as implemented in the program HMMer (Eddy, 2003). This program uses pre-aligned sequences to create a statistical model of gaps and nucleotides (or amino-acids). The probability for each kind of nucleotide (or gap), is calculated for each position in the model. The custom model can then be applied to unaligned sequences to create a multiple alignment. Although HMMers have some limitations: “HMMs make poor models of RNAs [. . . ] because an HMM cannot describe base pairs ( HMMer manual. p.7)”, this method of creating an alignment with reference to secondary structure is repeatable, and will get better the more pre-aligned sequences are used in creating the model. However, the “repeatable” methods for secondary structure alignment (Clustal profile alignment, HMMer), as well as the manual method, all rely on the vaguely defined model of the European Ribosomal database. Unlike an alignment created by MALIGN, or an implied alignment from POY, they do not use an optimality criterion and deciding on the “best” alignment becomes a matter of aesthetics. Phillips et al. (2000) summed up their review on multiple sequence alignment with this cautionary message: “In many ways, alignment is where phylogenetic analysis was 20 years ago. [. . . ] Computer programs for performing alignments are in their infancy and users are often unfamiliar with the numerical and methodological assumptions made.” Alignment methodology is often a neglected step in systematics, compared to recreating the phylogeny. One should never forget that this is the crucial step in which homology assessments are made. 30 Chapter 6 A presentation of the articles I: Hovmöller,, R., Källersjö, M. and Pape, T., 2004. The Palaeoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18, 313–323. This article originates from my undergraduate thesis ”Basal pterygote phylogeny – a molecular study” from Stockholm University (1999). For this study, complete 18S sequences, along with a 600 bp fragment of 28S, were obtained from 18 Odonata, 8 Ephemeroptera and the archaeognathan Petrobius brevistylus Carpenter, 1913. This publication spurred a reply by Ogden and Whiting (2003). In their rebuttal, they focused on the omission of a POY sensitivity analysis (Wheeler, 1995), as well as not incorporating the morphological characters of Whiting et al. (1997). In the sensitivity analysis paradigm, the best parameters for analyzing molecular data (including creating alignments) are those that minimize incongruence among datasets (Mickevich and Farris, 1981). The most “robust” phylogeny is the one recovered under many different parameter sets. The reanalysis of the data from paper I, found that a monophyletic Palaeoptera is found “only under a small (23%) subset of alignment parameters” The figure 23% was calculated by creating Clustal alignments from 18S, 28S and combined datasets under 11 sets of gap opening weights (1,2 and 5 -100 in 5 step increments), with gap extension either set to 1 or equal to the gap opening cost, and then analyzing the multiple alignments with gaps either as a 5th base or missing data. It should be noted that one of the conclusions of paper I is that 28S rDNA is not useful for finding the basal pterygote phylogeny, yet 28S only datasets accounts for 33% of these analyses. In the 18S only datasets, either a monophyletic Palaeoptera was found (81%), or the basal phylogeny was unresolved (19 %) with gaps treated as missing data. In combination with 28S, and gaps as missing data, Palaeoptera remains at 81%, while exactly one set of parameters each found an unresolved basal polytomy or Opistoptera. If gaps were treated as a 5th state all 18S only analyses found the basal phylogeny unresolved. A monophyletic Metapterygota or Opistoptera was never recovered from 18S or combined 18S + 28S data, only from 28S only analyses accounting for a total of 7%. Ogden and Whiting (2003) also performed a combined analysis with 18S, 28S, morphology and new data from the histone 3 (H3) gene. These analyses always found a well supported monophyletic Metapterygota. Using only molecular data, the basal phylogeny varied according to the settings, and all four (Palaeoptera, Metapterygota, Opistoptera, and unresolved) possible outcomes appeared. However, in all analyses including the morphological data, Metapterygota was always recovered. There are no natural boundaries for “reasonable” parameter sets to examine, and by carefully selecting which data to present, the reliability of a group can be given any requested percentage. There is clearly 31 phylogenetic conflict in between the 18S data and morphology. The evidence from 18S can only be considered inconclusive, and the other genetic markers tested (H3, 28S) do not provide information at this taxonomic level. The case of the Palaeoptera problem remains open. II: Hovmöller, R. and Johansson, F., 2004. A phylogenetic perspective on larval spine evolution in Leucorrhinia (Odonata: Libellulidae) based on ITS1, 5.8S and ITS2 rDNA sequences. Molecular Phylogenetics and Evolution 30, 653–662. Leucorrhinia Brittinger, 1856 are a group of Anisopterans, consisting of 14 (Tsuda, 2000) to 16 (Paulson et al., 2006) recognized species. The scientific name is derived from the white frons, a plate located above the mouthparts, as leukos is white and ris is nose in classic Greek. The common name is whiteface dragonflies in North America and white-face darters in the UK. These dragonflies have a circumboreal distribution, i.e. they are only found on the northern hemisphere. They prefer acidic water, and several species only breed in Sphagnum bogs. In Libellulidae, and many other anisopteran groups, the larvae are equipped with spines on the dorsal and lateral sides of the abdomen. In Leucorrhinia larvae, there are species with strong spines (e.g. L. caudalis (de Charpentier, 1840)), and those completely lacking spines (e.g. L. borealis Hagen, 1890). Johansson and Samuelsson (1994) and Johansson (2002), showed that the spines are effective in defense against predation from fish, and that the length of the spines is affected by the presence or absence of fish in the larval environment. This is an example of predator-induced phenotypic plasticity (reviewed by Benard (2004)), where the production of spines is affected by not just genetic, but also environmental factors. One of the purposes of this study was to obtain a reliable phylogeny of Leucorrhinia, to find the relations among the species lacking spines. We were able to show that the spines had been reduced at least twice: once in the Paleaarctic L. rubicunda (Linnaeus, 1758), and once in a clade of Nearctic species. The genetic markers used in this study are the internal transcribed spacer (ITS) regions and 5.8S rDNA. We found evidence that concerted evolution, the mechanism which keeps the many copies of ribosomal DNA identical throughout the genome, has less effect over the ITSs than the rDNAs (18S, 28S and 5.8S). This was found when the PCR products proved difficult to sequence, and no amount of tweaking the protocols resulted in clear readings. A solution was to clone the sequences into bacterial plasmids. Cloning is performed by ligating the PCR product into a bacterial plasmid. The plasmids are then mixed with E. coli bacteria with chemically disrupted cell walls, allowing the plasmids into the cytoplasm. The bacteria are grown on a selective medium, which only allows those cells that have taken in a plasmid to multiply. The bacteria are spread on agar plates, where colonies stemming from a single bacterium grow. Each colony is genetically identical, and the insert in the plasmid stems from a single molecule in the PCR product. The result is that individual molecules can be sequenced, even from a mixed PCR product. In every examined case, intraindividual variation was found in the non ITSs, but rarely in the 5.8S rDNA. A modified sensitivity analysis (Wheeler, 1995) was used to evaluate the topological stability in the phylogenetic trees. We tested a variety of settings in the pairwise- and multiple alignment stages, effectually testing various guide trees (from the pairwise step). In retrospect, this was a crude way of circumventing the limitations of the single guide tree of the Clustal algorithm. III: Hovmöller,, R. Monophyly of Ischnurinae (Odonata: Zygoptera, Coenagrionidae) established from COII and 16S sequences. Manuscript. These are the first results from an ongoing project about the phylogenetic relationships within the family Coenagrionidae. The monophyly of the family has been doubted by recent cladistic morphological studies (O’Grady and May, 32 2003; Rehn, 2003), and the subfamilial divisions have been demonstrated to be highly artificial. Coenagrionidae are divided into 5 subfamilies, following pre-cladistic work by Fraser (1957). The characters involved in separating the subgroups are mostly quantitative characters, such as the degree of petiolation: the relative length of the narrow proximal part of the wings. In a preliminary study involving a wider sample of coenagrionids, the only subfamily that was resolved as monophyletic were the Ischnurinae, and I decided to focus on this group. This is also the only group that is diagnosed by clearly defined morphological characters: the presence of a vulvar spine in females, and a raised structure of the 10th abdominal segment in males. The placement of the groups outside Ischnurinae proved to be unsupported by parsimony jackknifing, and a forthcoming project is to sequence additional molecular markers to improve stability in these parts of the tree. Two molecular markers were sequenced for this study, both from the mitochondrial genome: 16S ribosomal DNA and cytochrome oxidase II (COII), a protein-coding gene. For the alignment of the 16S gene, I used a new method for finding better alignments than those found by Clustal. This method uses the standard cladistic optimality criterion, where shorter trees are preferred. Since there are frequent indels in the 16S gene, gaps are treated as a 5th character state. Following Grant and Kluge (2003), no type of transformational events are given higher weight than another, so all costs (substitutions and gaps) were set to 1 in all steps. An initial alignment was produced by Clustal from the Neighbor-joining distance tree. This alignment was entered into TNT (Goloboff et al., 2005) to find the most parsimonious trees. Of of the most parsimonious trees was then used as a guide tree in Clustal, to produce a new alignment, which in turn was entered into TNT etc. This iterative process resulted in trees significantly shorter than the initial tree produced by analysis of the Clustal alignment. At the fourth iteration, the resulting trees were longer, and the tree from the third iteration was submitted to POY to create an implied alignment. The use of POY to create the final alignment was indented to minimize artifacts introduced by the Clustal algorithm. Given a tree and explicit transformation costs, POY can in a very short time (seconds in this case) generate an implied alignment (Wheeler, 2003a; Giribet, 2005). The implied alignment is based on the homology statements implicit from the tree. The tree length as calculated from POY is identical to the one of the shortest trees from the static implied alignment. This shows that almost any tree produced by a parsimony method is an improvement over the distance based guide trees produced by Clustal. This simple iterative process eventually yielded trees more than 10% shorter than the initial tree. Ideally, POY could have been used to find the shortest trees too, but the computer resources needed were not available at this time. The 16S and COII sequences were combined and analyzed separately, as well as in a combined analysis. Parsimony jackknifing and Bayesian inference (Ronquist and Huelsenbeck, 2003) were used to estimate stability of the groups in the tree. In Ischnurinae, the two genera Ischnura and Enallagma together make up almost 50% of the 291 species recognized in the subfamily. 24 out of 29 ischnurine genera have less than 5 species, with 13 being monotypic. One of the purposes of this study was to find the boundaries of Ischnura and Enallagma, as several smaller genera are likely to be ingroups within these. Ischnura was found to be monophyletic if the monotypic genus Rhodischnura was allowed as an ingroup, while Enallagma was never found to be monophyletic. Also, Ischnura hastata (Say, 1893), unusual in having a pterostigma behind the wing margin, was found to be a true Ischnura. It had previously sometimes been placed in the monotypic genus Anomalagrion. Historically, Enallagma has been used for species in two geographically disjunct areas: the Northern hemisphere and Africa. As was suggested by May (2002), the African Enallagma are not closely related to the Holarctic monophyletic group. A puzzling find was that samples from two Ischnura aurora (Brauer, 1865), a species with a wide geographical distribution from Tahiti to the Middle East, did not group together. An investigation into 33 this using the ITS regions hints that I. aurora may be a species complex, and could possibly be divided into several species (Dumont, pers. comm.). IV: Hovmöller, R. A catalog of species group names in the genus Coenagrion Kirby, 1890 (Odonata: Coenagrionidae). Manuscript. This is a purely taxonomical study, as it does not contain any analytical findings. However, taxonomic information is a necessity in systematics for providing the correct names of species and locating type material and descriptions. Sources for taxonomic information are scattered all over historical literature, and there is no central repository for species names, descriptions and information of type material. One of my findings was that the species Coenagrion exornatum (de SélysLongchamps, 1872) as listed in several catalogs, simply did not exist! The bibliographical reference for C. exornatum is found in the catalog published by Kirby (1890), pointing to a description by de Sélys-Longchamps, 1872. Only by checking the original 1872 description, it could be deduced that Kirby must have accidentally changed C. ecornutum into C. C. exornatum. On the page specified, only the description of Agrion ecornutum can be found. Errors introduced by one catalog author are propagated by later compilers, and once in a while a return to the sources is useful for clearing up inconsistencies and finding accurate bibliographical data. This takes many trips to the library and emails to curators all over the world. V: Hovmöller, R. A proposal to conserve the name Calopteryx Leach, 1815 over Agrion Fabricius, 1775. Manuscript. The rule of priority is one of the central tenets in nomenclature. This is the rule that the first name imposed on a taxon (species-level or higher) should be used for that group and cannot be replaced by a younger synonym. However, sometimes older names are forgotten, or fall into disuse even if they formally have priority. For this reason, the International Commission of Zoological Nomenclature (ICZN), is an instance of appeal for when zoologists notice that there is a need to suppress a formally senior name when a junior name is in such prevailing usage that a reversal would threaten taxonomic stability. In the case of Agrion and Calopteryx, this was an old disagreement that was never formally settled. In this case, Kirby (1890) is once again one of the culprits! When Kirby wrote his catalog of Odonata, there were no formal published rules on zoological nomenclature. Kirby was a strong enthusiast of the rules of priority, and devised new names for taxa whenever he thought the senior name could be threatened. Thus the usage of the name Calopteryx Leach, 1815 and Agrion Fabricius, 1775 were radically changed. Latreille (1810), had indicated Agrion virgo Linnaeus, 1758, as type species for the genus Agrion Fabricius, 1775. At this point in time, only the genus Agrion was recognized in the entire Zygoptera. Leach (1815) described the new genus Calepteryx for “Agrionida with coloured wings”, as well as the genus Lestes. The naming scheme with using Agrion for Coenagrionoidea, Lestes for Lestidae and Calopteryx for, well, Calopterygids was used by most of the important odonatologists of the 19th century. Kirby decided to apply the rules of priority strictly, and reverted the Calopterygids to Agrion and devised the new taxon Coenagrion for the species at that time usually called Agrion. The result was confusion about which group should really be called Agrion. In the debated that followed, the usage of Agrion was clearly an emotional issue. Erich Schmidt (1948) raised the question if the name changes introduced by Kirby added to, or reduced, nomenclatural confusion: “ [. . . ]why should I use Agrion, when the arguments offered for the change are in no way indisputable? If I continue to use Calopteryx, as hitherto in all my published papers, I am sure to be understood correctly at once, and this is the principal matter.” A (harsh) reply from Cynthia Longfellow came the following year: “How exceedingly tiresome of Dr. Erich Schmidt to have again raised the question 34 of ‘Calopteryx versus Agrion’, and on insufficient knowledge.” Citing the rules of priority, Longfellow concluded “The case for Agrion versus Calopteryx is clearly proved and all Dr. Schmidt’s arguments are useless.” In Schmidt’s rebuttal (ibid.), he resorts to hoping for a decision against Latreille’s genus types by the “God-like International Commission of Zoological Nomenclature”, but “[. . . ]this is only a dream of the future. However, the present generation has a duty to establish an accord in nomenclature as soon as possible [. . . ] especially for the younger generation, in order to prevent, in the end, football versus entomology.” In 1954, everyone seemed to have settled down when Montgomery wrote a very thorough paper on “Nomenclatural confusion in the Odonata; The Agrion-Calopteryx problems.” This article delves deeply into the etymology of the Greek behind the names Calopteryx and Agrion, and the correct form for the family named after the latter genus (it should be Agrionidae, rather than Agriidae or Agrioidae). This is followed by a careful examination of the literature and the finding that Agrion does have priority over Calopteryx. This conclusion has been accepted, but not applied by later authors. In recent faunistic literature (Westfall and May, 1996; Askew, 1988), the issue is recapitulated with the conclusion that using Agrion would be formally correct, but using Calopteryx is actually less confusing. I found that the issue had never been formally settled, although a manuscript written by Montgomery (1955) to conserve Agrion was widely circulated but never published (Garrison, pers. comm.). I drafted this manuscript as an appeal to the ICZN, formulated according to their specifications. It is currently circulated among odonatologists, as to avoid stirring up a hornet’s nest like Erich Schmidt! Figure 6.1: Calopterygidae: Calopteryx virgo (Linnaeus, 1758). 35 36 Kapitel 7 Sammanfattning på svenska Trollsländor tillhör de insekter som är lättast att känna igen. Deras skickliga manövrar i luften, de skimrande vingarna hos jungfrusländor och kanske även de små flicksländorna är en bekant syn för den som tillbringat en sommareftermiddag vid en sjö. Trollsländor är en av de äldsta grupperna av nu levande insekter, och en nyckelgrupp i insekternas naturhistoria och utvecklingen av insektsvingar. 7.1 Inledning Avhandlingen sammanfattar den forskning jag har utfört vid Naturhistoriska riksmuseet 2001–2006. Den inkluderar fylogenetiska studier över trollsländornas släktskap ur olika perspektiv, samt rent taxonomiska avsnitt där jag av nomenklaturorsaker har gjort djupdykningar i arkiven för att reda ut vilka namn som är giltiga inom flicksländesläktet Coenagrion och vilket vetenskapligt namn som är det rätta för jungfrusländorna: Agrion eller Calopteryx. 7.2 Trollsländors liv och naturhistoria Trollsländor används som namn för hela ordningen Odonata, men ibland också specifikt för gruppen Anisoptera. Här använder jag “trollsländor” för hela Odonata, “äkta trollsländor” för Anisoptera samt “flick- och jungfrusländor” för Zygoptera. De äldsta fossilen av trollsländelika insekter är från övre karbon och hör till ordningen Protodonata, en utdöd grupp som är trollsländornas historiskt närmaste släktingar. Till denna grupp hör Meganeuropsis permiana som med ett vingspann på över 70 cm är den största insekt som funnits. De äldsta fossilen är mestadels avtryck av vingar, men från dessa är det känt att Protodonata var mycket trollsländelika insekter. Inga larver har hittats, men det är fullt möjligt att de var akvatiska. Äkta trollsländor har hittats bland fossil från perm, huvudsakligen representerade av utdöda grupper men även ett vingfragment som kan ha kommit från en flickslända av nutida typ har påträffats. 7.2.1 Klassificering av trollsländor – en historisk översikt Trollsländorna placerades av Linné i ett enda släkte, Libellula, inom ordningen Neuroptera. Namnet Libellula betyder “liten våg” och syftar på en gammaldags besmanvåg. Linné placerade alla insekter med tvärribbor i vingarna i denna ordning, som innehöll alla de insektsgrupper med efterleden –sländor: dagsländor, trollsländor, bäcksländor, stövsländor, nattsländor och skorpionsländor samt de nätvingeartade (Neuropteroida) insektsordningarna (äkta nätvingar, ormhalssländor och sävsländor). Eftersom den linnéanska ordningen Neuroptera visade sig vara en onaturlig grupp av insekter som inte var närmare släkt med varand37 ra, och de övriga “sländorna” har placerats i egna ordningar, omfattar numera ordningen Neuroptera bara gruppen äkta nätvingar. Den förste att dela upp trollsländorna i mindre grupper var Fabricius, som 1775 bröt upp Linnés Libellula i tre släkten: Aeshna för mosaik-, flod- och kungstrollsländor, Agrion för flick- och jungfrusländor, samt Libellula för segeloch guldtrollsländor. Trollsländor fortsattes att betraktas som en del av Neuroptera långt in på 1900-talet, trots att man var medveten om att det var en onaturlig gruppering. Ibland fördes de ihop med de övriga “sländor” som har ofullständig förvandling, dvs. dagsländor, bäcksländor och stövsländor, i gruppen Pseudoneuroptera, eller som en självständig ordning i Paraneuroptera. Betydande förkladistiska studier över trollsländornas fylogeni utfördes under det tidiga 1900-talet av Needham och Munz, samt senare även Fraser. Under denna tidsperiod utgick man mycket från Haeckels teori om att ontogenin upprepar fylogenin – en organism upprepar stadier dess förfäder genomgått under evolutionshistorien i sin embryonalutveckling. Ett populärt exempel var de gälbågar och simhud som finns under en kort tid under fosterutvecklingen hos däggdjur. Hos trollsländelarver kan man se hur vingribbnätet anläggs genom ådror som växer in i vinganlagen från kroppssidan. Man utgick ifrån att de ribbor som anlades först var de mest ursprungliga, och genom att studera utvecklingen av vingribbsnätet genom larvstadierna slöt man sig till vilka drag som var primitiva respektive avancerade. Senare har det visat sig att utvecklingen av vingribbor, såväl som de ådror med kroppsvätska som finns i vingarna, snarare följer de hålrum, lakuner, som bildas i vinganlagen långt innan vingribbor eller kroppsvätskeådror växer in. Needham jämförde trollsländor släktesvis för att upptäcka mönster i gruppens evolution. Karaktärstillstånd klassificerades som antingen primitiva (framoch bakvingar likformade), eller avancerade (fram- och bakvingar olikformade). Needham, liksom Munz, tycke sig kunna se en tvådelning i utvecklingen av trollsländorna mellan Zygoptera och Anisoptera. Fraser gjorde ett banbrytande arbete i sin reklassificering av hela Odonata. Han gick noggrant igenom vingkaraktärer, men utgick fortfarande från tänkandet i utvecklingslinjer när han ritade ett släktträd över ordningen Odonata. I detta träd ligger familjegrupper som stationer på en tunnelbanekarta, med den mest avancerade familjen som slutstation. Till exempel måste flicksländetåget passera Platystichtidae, Protoneuridae och Platycnemididae innan det kan nå fram till fulländing i Coenagrionidae. Fraser ansåg att Zygoptera inte var en enhetlig grupp, utan innehöll arter som via en gradvis utveckling nådde de äkta trollsländorna. Den första större kladistiska översikten av trollsländesystematiken kom så sent som 1996. Då publicerade australiensaren John Trueman sin morfologiska studie baserad på vingkaraktärer från 32 nutida och 14 fossila arter. Han fann också att flick- och jungfrusländorna utgjorde en parafyletisk (icke-naturlig) grupp. En överraskning var att den den sällsynta flicksländan Hemiphlebia mirabilis, endemisk för Australien och Tasmanien, visade sig vara systertaxon till hela övriga Odonata! Rehn (2003) publicerade en mycket ambitiös studie över ordningen Odonata. Denna studie fokuserade på släktskapsförhållandena mellan större grupper inom flick- och jungfrusländor och baserades på morfologi, men inte bara från vingkaraktärer. Rehn fann, att flick- och jungfrusländor utgjorde en naturlig systergrupp till Epiprocta som innehåller de äkta trollsländorna samt de som placerats i den parafyletiska gruppen Anisozygoptera. Ett viktigt resultat var att klassificeringen i överfamiljer bland flick- och jungfrusländor visade sig vara baserad på icke-naturliga grupper. 38 7.3 En trollsländas livscykel En vanlig missuppfatting är att trollsländor bara lever en enda dag, någonting som förmodligen kommer ifrån en sammanblandning med de mycket kortlivade dagsländorna. Livscykeln hos en trollslända varierar mellan ett halvår för vissa små flicksländor upp till de nio år utvecklingen kan ta hos den sällsynta trollsländan Hemiphlebia laidlawii. Den längsta delen av livscykeln utgörs av larvstadier, med en sista säsong som fullbildad flygande insekt. Trots att den flygande trollsländan endast lever några dar till några månader så hinner de jaga byten, försvara ett revir och para sig under denna period. 7.3.1 Larvstadiet Yngelstadier hos de insekter som inte har fullständig förvandling (med larv, puppa och imago) brukar kallas nymfer, men trollsländors yngelstadier brukar även de kallas larver, och jag följer den terminologin här. Ett äldre namn som aldrig slog igenom för vattenlevande insektsnymfer är najader. Vackert, men lika bortglömt som Linnés yrfän som svenskt ord för insekter. Trollsländelarver lever i alla slags sötvatten, från strömmande vatten till sura mossar, sjöar och små dammar. Flick- och jungfrusländelarver känns igen på den smäckra kroppsbyggnaden och de tre bladgälarna i bakkroppsspetsen. Larverna hos äkta trollsländor är mer kraftigt byggda och saknar helt yttre gälar. De förlitar sig på en veckad gältarm för syreupptagning. Vatten kan pumpas ut och in genom anus, och genom att snabbt pressa ut allt vatten ur tarmen kan trollsländelarver förflytta sig korta sträckor genom jetdrift! Detta har förmodligen utvecklats som ett sätt att undfly rovdjur som andra större vatteninsekter och fiskar. Trollsländelarvers ekologi återspeglas i kroppsformen. Lurpassare är satta och taggiga, medan aktiva jägare är avlånga och strömlinjeformade. En unik anpassning hos trollsländelarver är fångstmasken. Denna består av ett omformat labium, den understa mundelen hos insekter, med en gångjärnsled och två rörliga palper. I hopfällt tillstånd ligger den vikt under huvudet, med de tandade palperna täckande större delen av ansiktet. När ett byte skall fångas kastas fångstmasken ut, och palperna slår igen som en rävsax. Byten utgörs av små vattendjur som maskar, mygglarver och grodyngel. Trollsländor genomgår totalt 8-15 larvstadier. De kan bara växa i storlek mellan skalömsningar, något de gör genom att pumpa upp sig själva med vatten innan den nya huden ännu inte hunnit hårdna till ett skal. Vinganlag börjar anas som små flikar i omkring tredje eller fjärde larvstadiet. De blir proportionerligt större för varje ömsning. I det sista larvstadiet kan vingribbmönstren hos den fullbildade sländan anas i de halvgenomskinliga vinganlagen. 7.3.2 Förvandlingen Ett par dagar innan den akvatiska delen av livscykeln avslutas slutar larven att äta, och den sista ömsningen sker inuti larvskalet. Larven kryper sedan upp på land för att fullborda förvandlingen, på ett vasstrå eller en klippa. Ömsningen sker genom att skalet spricker upp över ryggen och huvudet, och trollsländan kryper ut med huvud och mellankropp först. När benen har härdat i luften drar den ut bakkroppen ur skalet. Den nyömsade trollsländan blåser upp sig själv till full storlek genom att fylla kroppen med luft och sedan pressa ut kroppsvätska i vingribborna och bakkroppen. En nyömsad trollslända känns igen på de bleka färgerna och på att vingarna skimrar som såpbubblor. 7.3.3 Imagon – den fullbildade sländan Nyömsade trollsländor ger sig ibland av från vattnet tills de blivit könsmogna. De återvänder för det mesta till det vattendrag där de kläcktes, men kan även göra längre förflyttningar. Ett extremt exempel är mosaiktrollsländan Hemianax ephippiger som normalt lever i ökenområden i Nordafrika och Mellanöstern, men 39 har hittats så långt bort som på Island, där det inte förekommer några inhemska trollsländearter. 7.3.4 Parningssystemet Bland insekterna har trollsländor ett helt unikt parningssystem. Hanar har förutom de primära könsorganen i bakkroppsspetsen sekundära könsorgan på undersidan av de andra och tredje bakkroppssegmenten. Denna struktur har ingen motsvarighet hos någon annan insektsgrupp, och är svårtolkad ur ett evolutionärt perspektiv. De vinglösa insekterna (som silverfiskar och hoppstjärtar) har extern befruktning – hanar deponerar en spermatofor direkt på marken och denna plockas upp av honan utan att någon egentlig parning sker. Övriga vingade insekter har intern befruktning där parningen sker könsöppning mot könsöppning. Hos trollsländor förflyttar hanen sperma från bakkroppsspetsen till en reservoar i de sekundära könsorganen. Vid parningen använder hanen sina cerci (bakkroppsspröt) för att greppa honan, antingen bakom huvudet (hos äkta trollsländor), eller runt mellankroppens första segment (flick- och jungfrusländor). Honan måste sedan böja sin bakkropp upp mot hanens sekundära könsorgan för att parningen skall slutföras. Både de primära och sekundära könsorganen hos trollsländor är viktiga karaktärer för artbestämning: även hos arter som är ytligt sett mycket lika finns det små men distinkta skillnader i dessa strukturer. 7.3.5 Parningsspel och artigenkänning Trollsländor förlitar sig på synen och känseln för att känna igen artfränder. I ett fåtal grupper, som jungfrusländor, föregås parningen av ett parningsspel där hanen fladdrar med vingarna och visar upp den ljusa undersidan av bakkroppsspetsen. Hos äkta trollsländor sker artigenkänningen helt genom visuella signaler. Hanar av kärrtrollsländor, Leucorrhinia, tolkar flygstilen hos andra trollsländor, och uppvaktar allting som inte flyger som en hane av samma art. Bland flicksländor är känselsignaler viktiga för artigenkänningen. Hanar försöker ofta para sig med individer av annan art, men lyckas då inte få grepp runt det första mellankroppssegmentet. I de fall där hanen lyckas gripa en hona av annan art sker ofta ingen parning. På undersidan av det andra mellankroppssegmentet finns en mesostigmalplatta som är försedd med strategiskt placerade känselborst. Endast hanar av artfränder har bakkroppsspröt som passar och träffar rätt känselborst. Om inte rätt borst berörs av hanen vägrar honan att böja upp bakkroppen mot hanens sekundära könsorgan och genomföra parningen. 7.3.6 Äggläggning Mycket kort tid efter parningen lägger honan sina ägg. Detta sker ibland medan paret är hopkopplade i tandem. Det ursprungliga tillståndet hos trollsländor är att lägga äggen inuti växtmaterial, så kallad endofytisk äggläggning. Hos alla flick- och jungfrusländor, samt de ursprungligaste grupperna bland äkta trollsländor har honan en sågtandad äggläggare som snittar små hål i växter där äggen läggs ett och ett. I de grupper där äggläggaren har förlorats läggs äggen i öppet vatten, eller borras ner i dy eller sand. En udda metod finns hos guldtrollsländan Epitheca bimaculata där äggen läggs i geléartade strängar, liknande grodrom. 7.3.7 Flyg- och jaktbeteende Kroppen hos en trollslända har många anpassningar för ett liv som aktivt jagande rovdjur. De stora fasettögonen är anpassade för att upptäcka rörelse mer än för att känna igen målbilder av byten. Mellankroppen är vinklad framåt så att de taggiga benen bildar en fångstbur för att gripa och hålla fast bytet. Mundelarna består av ett par kraftiga mandibler som river bytet i mindre delar, och 40 ett par syllika maxiller som håller det i ett stadigt grepp. När det gäller dieten är trollsländor generalister, men flugor och mygg utgör stapelfödan. Ett fåtal grupper has specialiserat sig, som helikopterflicksländorna (Pseudostigmatidae) i Syd- och Mellanamerika som är specialister på att äta spindlar. De svävar fram mot spindelnät i träd och plockar skickligt innehavaren. Sedan flyger de baklänges bort från nätet. När de landat, knipsar de först av benen på spindeln innan de äter upp kroppen. 7.4 De nu levande trollsländornas diversitet Traditionellt delas trollsländor in i Zygoptera (flick- och jungfrusländor), Anisoptera (äkta trollsländor) samt Anisozygoptera (saknar svenskt namn). Det finns ca 6000 beskrivna arter av trollsländor, och en gissning är att det finns färre än 10000 totalt. 7.4.1 Zygoptera Flick- och jungfrusländor känns igen på den smala kroppen, det framifrån tillplattade huvudet med utstående brett skilda fasettögon och nästan likformade fram- och bakvingar. De är för det mesta svaga flygare och förflyttar sig sällan längre sträckor. Calopterygoidea Typfamiljen i denna grupp är Calopterygidae, jungfrusländor. De lever vanligen i strömvatten och hanarna uppvaktar honor med parningsspel. Kroppen är ofta blå- eller grönmetallisk, och vingarna är mörkfärgade. “Lestinoidea” Detta är en parafyletisk grupp som inte är baserad på några enkla karaktärer. Vingarna är vanligen avsmalnande mot kroppen och hålls något utslagna när sländan sitter stilla. Smaragdflicksländorna, Lestes och vinterflicksländan Sympecma fusca hör hit. Coenagrionoidea Inom denna grupp finns såval de minsta flicksländorna som de allra längsta helikopterflicksländorna (Pseudostigmatidae), vilka kan ha en bakkroppslängd över 21 cm. Ekologiskt är det en divers grupp. Vanligast är larvutveckling i stillastående vatten, men även strömmande vatten utnyttjas av flodflicksländorna (Platycnemididae). De udda helikopterflicksländornas larver lever i vattenfyllda trädhål och epifytiska ananasväxter. Vingarna hålls vid vila ihopslagna över bakkroppen. Hemiphleboidea Denna grupp innefattar en enda art, den lilla sällsynta Hemiphlebia mirabilis, endemisk för Australien och Tasmanien. Den har betraktats som mycket primitiv, eftersom den saknar den innersta tvärslån i vingen, arculus, något som finns hos alla andra trollsländor men saknas hos utdöda grupper. Det har senare visat sig att detta är en sekundär förlust hos Hemiphlebia, eftersom ett par procent av alla individer trots allt har en utveckad arculus. 7.4.2 Epiprocta Detta är en sammanslagning av den parafyletiska gruppen Anisozygoptera och den monofyletiska gruppen Anisoptera. Karaktären som förenar gruppen är att de undre bakkroppsspröten, paraprocterna, har smält samman. 41 Den parafyletiska gruppen Anisozygoptera Historiskt var Anisozygoptera en artrik grupp, men nu finns endast två levande representanter, båda i släktet Epiophlebia. Dessa ser ut som en felande länk mellan Zygoptera och Anisoptera. De har ögon som sitter brett åtskilda, men till formen är Anisoptera-artade. Mellankroppen är kraftigt byggd, som hos Anisoptera, men vingarna är likformiga som hos Zygoptera. En fungerande äggläggare finns. Larverna är byggda som Anisopter-larver, men saknar förmågan till jetdrift. Av de två arterna är Epiophlebia superstes vanlig på de Japanska öarna, men Epiophlebia laidlawii förekommer endast på över 1800 m höjd i Himalaya. 7.4.3 Anisoptera - äkta trollsländor Namnet syftar på de olikformade fram- och bakvingarna. De senare är bredare och har ofta en skarp vinkel vid basen. De äkta trollsländorna är skickliga flygare och kan sväva i luften och flyga i alla riktningar, även baklänges. Larverna är kraftiga och kan förflytta sig korta sträckor med jetdrift. Vid vila hålls vingarna brett utslagna åt sidorna. “Aeshnoidea” Detta namn täcker de ursprungligare trollsländefamiljerna Aeshnidae, Gomphidae och Petaluridae. Gomphidae (flodtrollsländor) och Petaluridae har behållit de ursprungliga separerade fasettögonen medan Aeshnidae (mosaiktrollsländor) har mer typiska trollsländeögon som täcker nästan hela huvudet. De har alla den ursprungliga färgskalan, med svart bottenfärg och ljusare ränder på mellanoch bakkroppen. Äggen läggs endofytiskt förutom i Gomphidae. Cordulegastroidea Kungstrollsländorna, Cordulegastridae, är den enda familjen i denna holarktiska grupp. De har den ursprungliga svart-gula färgskalan som aeshnoiderna. Honorna har en sekundär äggläggare som används för att borra in ägg i dy och sand i strömmande vatten. Libelluloidea Denna monofyletiska grupp uppvisar en stor del av den morfologiska variationen inom de äkta trollsländorna. Libelluloider finns i alla typer av vatten över hela jorden. Storleksmässigt varierar de mellan jättarna i familjen Chlorogomphidae (med vingspann upp till 15 cm) och den knappt tumslånga Nannophyopsis clara i Libellulidae. Alla typer av färger förekommer, och mönstrade vingar är vanligt. Inom denna grupp finns släktet Libellula, som var Linnés ursprungliga släkte för alla arter som nu ingår i ordningen Odonata. 7.5 En nyckelgrupp i insekternas evolution Vingar och aktiv flygning har uppstått fyra gånger under evolutionen: hos insekter, flygödlor, fåglar och fladdermöss. Bland ryggradsdjuren är det uppenbart att vingarna har uppstått flera gånger oberoende av varandra eftersom de har bildats från olika strukturer. Hos flygödlorna hölls vingmembranet uppe av ett förlängt finger, hos fladdermöss av huden mellan fingrarna och hos fåglar bildas vingframkanten av benen i armen och vingytan av fjädrar. Hos ryggradsdjuren är det också lätt att förstå varifrån vingarna utvecklades, eftersom de alla är modifierade framben. Bland övriga leddjur finns det ingen självklar motsvarighet till insekternas vingar. De äldsta insektsfossilen har hittats i 400 miljoner år gammal röd sandsten i Rhynie, Skottland. Ett av dessa fossil, Rhyniognatha hirsti består endast av fragment från mundelar. Fossilet hittades 1925, men en ny undersökning har visat att mundelarna liknar de som endast finns hos trollsländor och högre 42 vingade insekter. Detta tyder på att vingarna utvecklades tidigt i insekternas historia. Det har inte hittats något mellansteg i utvecklingen av vingar i fossil, där de antingen saknas helt eller är fullt utvecklade flygdugliga vingar av modern typ. Det finns inte heller några ledtrådar att hämta från fylogenin, eftersom systergruppen till de vingförsedda insekterna är de fullständigt vinglösa fjällborstsvansarna. Mer eller mindre trovärdiga teorier om vingarnas uppkomst har framlagts inom utvecklingsbiologi, etologi, morfologi och palaeoekologi. De skall tas för vad de är – intressanta hypoteser, mer eller mindre trovärdiga och tankeväckande, men trots allt spekulationer. 7.5.1 Vingutveckling på land – paranotalhypotesen Snodgrass lanserade i sitt standardverk om insektsmorfologi teorin om att vingflikar uppstått som genom en utvidgning av den mjuka kroppsväggen mellan sidoplåtarna och ovansidan av mellankroppssegmenten. Ovansidan av ett mellankroppssegment hos insekter kallas notum, och paranota betyder “vid sidan av notum”. Den ursprungliga funktionen skall ha varit glidflygning, och rörlighet och muskulatur något som utvecklats senare. Ett annat förslag på den ursprungliga funktionen är att vingflikarna användes för parningsspel. Sexuell selektion skall sedan ha drivit dem mot större och större strukturer. Även värmereglering har föreslagits som en ursprunglig funktion för vingflikar, och det har bevisats experimentellt att även små vingflikar skulle ge ett betydligt värmetillskott som kunde öka rörligheten hos en liten insekt. 7.5.2 Vingutveckling i vatten – omformade gälar? Andra hypotes om vingarnas uppkomst är att de har utvecklats i sötvatten och ursprungligen haft en annan funktion än flygning. Ett förslag som lagts fram är att vingar har sitt ursprung i en ben-associerad struktur kallad epicoxa. Detta är ett helt hypotetiskt segment, som är resultatet av en extrapolering från fossil och nutida leddjur hur det ursprungliga leddjursbenet såg ut, och vilka segment som ingick. I denna modell är de gälar som finns längs bakkroppen hos dagsländenymfer en motsvarighet till vingar, vad gäller position i segmentet och ursprunglig funktion. Insektsvingar blir också genom den hypotetiska epicoxan jämförbara med de bengälar som finns hos vissa kräftdjur. Hos vissa bäcksländor förekommer ett beteende som kallas “skimming”, något som jag i brist på bättre motsvarande begrepp kallar surfning. Bäcksländenymfer är vattenlevande, och de fullbildade sländorna håller alltid till nära vattendrag. Surfningen innebär att den nykläckta bäcksländan använder vingarna som segel, utan att någonsin lämna vattenytan. Gälblad skulle ursprungligen varit icke-rörliga strukturer som använts som segel, och selektionen skulle gynnat större, rörligare och till slut flygdugliga strukturer. Hypotesen of surfning som ett förstadium till flygning har dock inget som helst stöd i fylogenin. Bäcksländor är inte en basal grupp bland högre vingade insekter (Neoptera), och de arter som surfar är inte basala inom ordningen bäcksländor. Det rör sig snarare om en anpassning till ett liv i en mycket kall miljö, där vingmusklerna inte blir tillräckligt varma för att lyfta insekten. Det finns andra skäl att tveka om trovärdigheten i att vingar utvecklats i vatten. De äldsta fossila sötvattensinsekterna är 100 miljoner år yngre än de äldsta vingade insektsfossilen. De flesta av de äldsta insektsfossilen är från landlevande insekter, men fossiliseringen har skett i vatten genom att insekterna bäddats in i lera under syrefattiga förhållanden. Varje landlevande insekt som fossiliserats i vatten måste ha hamnat där genom olyckshändelser. Om flygande insekter utvecklats i en akvatisk miljö verkar det osannolikt att fossillagren i sjösediment domineras av landlevande insekter. Även morfologiskt är det tydligt att gälar hos vattenlevande insekter har utvecklats ur olika strukturer. Trollsländornas bladgälar och gältarm motsvaras inte av dagsländornas bakkroppsgälar eller bäcksländornas gältofs i bakkroppsspetsen. 43 7.6 Palaeoptera och Neoptera Vingarna hos insekter är homologa strukturer, och de vingförsedda insekterna (Pterygota) utgör en naturlig grupp. Om vingar finns, uppträder de i samma position: mellankroppens andra och tredje segment. De flesta insekter kan vika vingarna platt över bakkroppen när de inte flyger; de enda insektsgrupper som helt saknar denna förmåga är trollsländorna och dagsländorna. Ovikbara vingar sågs som någonting primitivt, och gruppen som utgörs av dagsländor och trollsländor fick namnet Palaeoptera – gamla vingar. De vingvikande insekterna sågs som mer avancerade och placerades i Neoptera – nya vingar. Förmågan att vika vingarna över bakkroppen är en av de viktigaste anpassningarna i insekternas evolution. Vikbara vingar har möjliggjort för insekter att invadera trånga mikrohabitat som skulle trasa sönder stora stela palaeoptervingar. Vingvikning har även bäddat för omformning av framvingar till täckvingar, som skyddar de ömtåliga flygvingarna. Skyddande täckvingar har uppstått parallellt hos exempelvis kackerlackor, tvestjärtar och skalbaggar. Om antalet arter är ett mått på evolutionär framgång så är det vikbara vingar, och inte vingar i sig, som är nyckeln till diversiteten inom insekterna. 7.6.1 Är Palaeoptera en monofyletisk grupp? Eftersom det finns tre basala grupper (Odonata, Ephemeroptera och Neoptera), så finns det tre möjliga fylogenier, varav alla tre har haft sina välformulerade förespråkare. Ett bekymmer är att karaktärer i vingarna, eller strukturer associerade med flygning inte kan användas för lösa Palaeoptera-problemet. Anledningen är, att det är omöjligt att upptäcka vilket karaktärstillstånd som är det ursprungliga, eftersom vingar helt saknas hos de närmaste släktingarna. Det går inte att avgöra om ovikbara vingar är en anpassning som förenar trollsländor och dagsländor i en monofyletisk grupp, eller om det är det ursprungliga tillståndet för en flygande insekt. Metapterygota: Odonata + Neoptera En av de karaktärer som håller ihop gruppen är formen på mandiblerna. Hos fjällborstsvansar och dagsländenymfer (fullbildade dagsländor saknar helt fungerande mundelar) är mandibeln långsträckt och mest rörlig parallellt med mandibelns tänder. Hos Odonata och Neoptera är mandibeln kraftig och triangulär och rörlig mer som ett gångjärn. En mer tveksam karaktär är förlusten av subimagostadiet. Primärt apterygota insekter når aldrig ett sista utvecklingsstadium, de blir könsmogna när de nått en viss storlek och fortsätter sedan att ömsa skal med ojämna mellanrum hela livet. Dagsländenymfer kläcks till ett kortlivat sub-imagostadium, som efter ett par timmar ömsar skal till det slutgiltiga könsmogna imagostadiet. Inga andra insekter ömsar skal efter det att de har utvecklat flygdugliga vingar. De som förespråkar Metapterygota ser dagsländornas sub-imagostadium som en rest av det ametabola ömsningssystemet hos de vinglösa insekterna. Men eftersom de vinglösa insekterna aldrig når ett imagostadium kan sub-imagostadiet lika gärna ses som en unik anpassning hos dagsländorna. Andra karaktärer som föreslagits är de muskler som stänger andningsöppningarna på bakkroppen och förlusten av ett långt ringlat spröt på sista bakkroppssegmentet. Opistoptera: Ephemeroptera + Neoptera Den starkaste karaktären som förenar de två grupperna Ephemeroptera och Neoptera är parningssystemet där spermieöverföringen alltid sker könsöppning mot könsöppning. Här ses trollsländornas unika parningssystem som en sekundär anpassning till ett liv som inte levs som hos de apterygota insekterna, på marken. Ett fossil av Namurotypus från den utdöda gruppen Protodonata tyder på att de första trollsländeartade insekterna inte hade sekundära könsorgan utan hade ett parningssystem med spermatoforer liknande det hos de apterygota insekterna. 44 Ett monofyletiskt Palaeoptera? Karaktärer som anförs för ett monofyletiskt Paleoptera är de korta antennerna, sekundära längsribbor i vingarna, sammansmältningen av två mundelar och de akvatiska larverna. Vid en närmare gransking är de korta borstlika antennerna hos trollsländor och dagsländor inte särskilt lika varandra. Trollsländeantenner är uppdelade i segment, medan de hos dagsländorna har en enkel struktur utan tydliga segmentgränser. Det finns dessutom fossil som antyder att ursprungliga dagsländor, såval som den trollsländelika Namurotypus hade långa trådlika antenner. Detta visar att de korta antennerna hos nutida Palaeoptera har uppstått parallellt. I nyare studier har morfologiska karaktärer och DNA-sekvenser analyserats för att hitta en stabil insektsfylogeni. För de ursprungligare flygande insekterna har fanns ett starkt morfologiskt stöd för Metapterygota, medan molekylärinformationen gav ett svagare stöd för Palaeoptera. När alla data analyserades tillsammans, en så kallad “total-evidence”-analys, hade de morfologiska karaktärerna en starkare genomslagskraft än den molekylära informationen. 7.7 Ribosomala DNA-sekvenser i fylogenetisk systematik De tre fylogenetiska studierna i denna avhandling bygger alla på information från ribosomala DNA-sekvenser. 18S och 28S användes i “The Palaeoptera Problem”, ITS-sekvenser i artikeln om Leucorrhinia och mitokondriella 16Ssekvenser bidrar med det mesta av upplösningen till fylogenin över Ischnurinae. 7.7.1 Ribosomers struktur och funktion Ribosomer är de organeller i cellen som bygger upp proteiner genom att översätta den genetiska koden i mRNA (messenger-RNA) till en kedja av aminosyror. Hos djur finns det två typer av ribosomer, de som är associerade med kärnan och cellplasman, och de som endast finns inuti mitokondrier. Kärnribosomen byggs upp av två subenheter: 18S och 28S. De mostsvaras i de mitokondriella ribosomerna av 12S och 16S. Varje subenhet består av ett RNA-skelett insprängt med proteiner. Den del av ribosomen som sammanfogar aminosyror saknar nästan helt proteinkomponenter, och kan vara en rest av livet före DNA, när RNA både lagrade den genetiska informationen och skötte katalys av biokemiska reaktioner. Kärnribosomernas RNA-skelett byggs upp utifrån mönster i DNA-sekvenser i “ribosomala paket”. Paketen innehåller den komplementära DNA-koden för de ribomala subenheternas RNA-skelett, men även regioner som inte bygger upp ribosomen. Ribosomalt RNA i de ribosomala paketen transkriberas (översätts) från DNA i ett stycke. Därefter klipps de mellanregioner som inte ingår i subenheterna bort från RNA-kedjan innan subenheterna sammankopplas till en ribosom. Ribosomala paket finns i många kopior på flera av kärnans kromosomer, och en biofysisk mekanism antas hålla alla kopiorna identiska genom hela genomet. Komplementära strukturer Liksom DNA bildar en dubbelspiral kan RNA bilda strukturer genom självkomplementaritet. Genom självkomplementaritet byggs ribosomens tredimensionella struktur upp av de förbindelser som bildas mellan olika regioner i ett och samma RNA-kedja. De segment som är komplementära till ett annat är också mycket känsligare för mutationer, eftersom en förändring as sekvensen riskerar att orsaka en icke-fungerande ribosom. Detta medför att ribosomalt DNA består av omväxlande variabla- (icke-komplementära) och konserverade regioner. I molekylärsystematisk forskning har ribosomala DNA-sekvenser använts för att utreda fylogenin inom så vitt skilda grupper som gröna växter, svampar, leddjur och även för stora analyser av hela djurriket. 45 Homologi i molekylära data Att jämföra karaktärstillstånd är själva grunden för fylogenetisk systematik. För morfologiska karaktärer är det i regel inte svårt att avgöra om karaktärerna i sig är homologa i de organismer som undersöks. För DNA finns det inga motsvarande ledtrådar. Ett adenin-A ser exakt likadant ut som vilket annat A. Nukleotider i DNA är endast jämförbara om de har samma relativa position i DNA-sekvensen. För proteinkodande gener är DNA-sekvensen uppbyggd av tripletter som motsvaras av aminosyror i proteinet. Om en DNA-bas skulle läggas till eller försvinna så fasförskjuts översättningen till protein vilket resulterar i ett oanvändbart enzym. Därför varierar proteinkodande sekvenser mycket lite i längd mellan organismer, vilket gör det lätt att hitta den positionala homologin. Ribosomala gener regleras inte av tripletter. Det medför att DNA-baser lättare kan plockas bort eller läggas till genom mutationer, och är mycket svårare att homologisera. Jämkning av DNA-sekvenser När DNA-sekvenser från olika arter varierar i längd är den positionella homologin för varje enskild DNA-bas osäker. En metod för att hitta homologin är jämkning av sekvenserna, vilket innebär att “gap”, representerade av ett “-” sätts in för att fylla ut de positioner där baser förlorats eller motsvaras av en insertion. Den metod som är grunden för alla typer av beräknad jämkning är Needleman-Wunsch (N-W) algoritmen. Med den kan man enkelt hitta en optimal jämkning mellan två sekvenser, så kallad parvis jämkning. N-W algoritmen kan utökas för att hitta en optimal jämkning av fler sekvenser än två. Antalet antalet beräkningar som krävs ökar geometriskt med antalet sekvenser, och en expanderad N-W är därför praktiskt oanvändbar för mer än ett fåtal sekvenser samtidigt. Ett matematiskt svårt problem som jämkning av många sekvenser kan delas upp i en serie av parvisa jämkningar, men då kan man inte längre vara säker på att man har hittat den optimala lösningen. De två mest använda datorprogrammen för multipel jämkning är Clustal, som är baserad på distans-metoder och MALIGN, som är parsimonibaserad. Clustal har fördelen att det är snabbt, men är dåligt på att hitta bra lösningar. MALIGN kräver mycket datorkraft, och är nästan oanvändbart med en enkel persondator. Ett nytt sätt att homologisera DNA, utan att göra en multipel jämkning, är direktoptimering (DO). Här används en metod som liknar MALIGN, men som betraktar jämkningen av DNA som optimering av karaktärer i ett parsimoniträd. I likhet med en heuristisk sökning efter de kortaste träden i en parsimonianalys jämför DO fylogenetiska träd, och den mängd insertioner, deletioner och substitutioner som krävs för att förklara variationen mellan sekvenserna. Det träd som kräver minst förändring är det mest parsimoniska, och mängden förändringar är direkt jämförbar med trädlängden i standardparsimoni. Ytterligare en metod för multipel jämkning av rDNA-sekvenser är sekundärstrukturjämkning. Även om sekvenser varierar mellan arter, så är mönstret av stabila komplementära och variabla regioner likartat. European Ribosomal Database tillhandahåller färdigjämkade rDNA-sekvenser från alla typer av organismer fritt tillgängliga på internet. Dessa är jämkade med referens till sekundärstrukturen, och forskare kan använda dem som mall för jämkning av nyframtagna sekvenser. Nackdelen med sekundärstrukturjämkning är densamma som för helt manuell jämkning, att det inte finns något optimalitetsbegrepp. Det finns inget sätt att säga om en multipel jämkning är en bättre lösning än en annan. Det har sagts att metoderna för multipel jämkning av sekvenser befinner sig i samma position som kladisisk analys gjorde för 20 år sedan. Man skall inte glömma att detta är ett lika viktigt steg som den fylogenetisk analysen i och med att homologibedömningarna är helt beroende av hur jämkningen gjordes. 46 7.8 Presentation av artiklarna I: Hovmöller,, R., Källersjö, M. and Pape, T., 2004. The Palaeoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18, 313–323. Artikeln började som mitt examensarbete “Basal pterygote phylogeny - a molecular study” från Stockholms Universitet, 1999. För denna studie sekvenserade vi 18S och 28S rDNA från 18 trollsländor, 8 dagsländor och den vinglösa klippsmygen Petrobius brevistylus. Resultatet blev ett starkt statistiskt stöd för ett monofyletiskt Palaeoptera. Året efter kom en replik där vår artikel kritiserades för att ha använd en olämplig jämkningsmetod (Clustal), och att vi inte tagit med de morfologiska karaktärer som publicerats tidigare. De analyserade om våra data med direktoptimeringsmetoder, såväl som Clustal, och drog slutsatsen att ett monofyletiskt Palaeoptera endast hittas inom ett “snävt område” av jämkningsparametrar. Ett “snävt område” är förstås en ren definitionsfråga. Ett intressant resultat är att i de allra flesta analyser baserade på 18S finner stöd för ett monofyletiskt Paleoptera, om gap (-) inte räknas med. Opistopera eller Metapterygota hittas nästan aldrig på detta sätt, hur parametrarna än sätts. Räknas gap med, så blir resultatet ett oupplöst träd. Men så fort de morfologiska karaktärerna läggs in, så blir resultatet alltid ett monofyletiskt Metapterygota! Det är tydligt att det finns en konflikt i informationen mellan 18S och de morfologiska karaktärerna. Resultaten från 18S kan fortfarande räknas som tveksamma, och kontroversen kring Palaeoptera är långt ifrån avslutad. II: Hovmöller, R and Johansson, F., 2004. A phylogenetic perspective on larval spine evolution in Leucorrhinia (Odonata: Libellulidae) based on ITS1, 5.8S and ITS2 rDNA sequences. Molecular Phylogenetics and Evolution 30, 653–662. Det här arbetet utfördes i samarbete med ekologen Frank Johansson vid Umeå Universitet. Hans forskargrupp studerar ekologin hos trollsländelarver, och hur de påverkas av fiskpredation. Leucorrhinia är ett litet släkte (14–16 arter beroende på hur man räknar) inom segeltrollsländorna. Släktet har fått sitt vetenskapliga namn från den frons, en plåt ovanför mundelarna, som lyser vitt i ett övrigt mörkt ansikte. På klassisk grekiska betyder “leukos” vit och “rhis” nos. På svenska kallas de kärrtrollsländor, eftersom flera av arterna föredrar surt vatten i vitmossekärr. Släktet har en utbredning över norra halvklotets nordligare delar, från Europa, över Ryssland, Kina och Japan, till USA och Kanada. Många trollsländelarver är beväpnade med taggar på bakkroppens rygg och sidor. Hos kärrtrollsländorna varierar taggigheten mellan arterna. Så har till exempel den breda kärrtrollsländan L. caudalis mycket taggiga larver, medan den nordiska kärrtrollsländan L. rubicunda nästan helt saknar taggar. Frank Johansson m.fl. har visat att taggarna är effektiva som ett skydd mot rovfisk, och att förekomsten av arter är beroende av om det finns fisk i vattnet eller inte. Ett syfte med den här undersökningen var att hitta en stabil fylogeni över kärrtrollsländorna, så att det går att avgöra för varje art om avsaknaden av taggar är en anpassning eller ett nedärvt tillstånd. Vi lyckades visa att taggarna har förlorats åtminstone två gånger: dels hos den europiska arten L. rubicunda, och i en grupp med nordamerikanska arter. Fylogenin baserades på sekvenser från de mycket variabla spacer-regionerna (ITS) i de ribosomala paketen. Vi gjorde en egen version av parameterkänslighetsanalys, där Clustal kördes under många olika parameterinställningar och resultatet sammanställdes grafiskt. Vi upptäckte också att den mekanism som skall hålla kopior av ribosomala sekvenser identiska i genomet inte hade lika stor inverkan över ITS som över 18S och 28S. 47 III: Hovmöller,, R. Monophyly of Ischnurinae (Odonata: Zygoptera, Coenagrionidae) established from COII and 16S sequences. Opublicerat manuskript. Det här är de första resultaten från ett pågående projekt om fylogeni inom flicksländefamiljen Coenagrionidae. Indelningen i underfamiljer är baserad på svårtolkade kvantitativa karaktärer, mest i vingribbmönstret. I mycket preliminära analyser över hela familjen Coenagrionidae fick jag endast fram denna underfamilj som monofyletisk, och jag bestämde mig för att koncentrera mig på den. Det är också den enda underfamiljen som är definierad på otveksamma karaktärer, som att honorna har en tagg i anslutning till äggläggaren och att hanarna har ett upphöjt utskott på bakkroppssegment 10. Två mitokondriella gener användes: den proteinkodande COII och den ribosomala 16S. Här använde jag en annan strategi för jämkningen av de ribosomala sekvenserna, en kombination av Clustal och parsimonijämkning med ett direktoptimiseringsprogram. Resultatet blev betydligt bättre träd än de jag skulle funnit om jag helt förlitat mig på Clustal för jämkningen. Ischnurinae domineras av två stora släkten med ca 70 arter vardera: Enallagma, representerat av arten E. cyathigerum i Sverige, och Ischnura med med två svenska arter I. elegans och I. pumilio. Utöver dessa finns en mängd mindre släkten, varav de flesta bara innehåller en eller ett fåtal arter. Jag fann att Ischnura är monofyletiskt, men Enallagma var som tidigare förslagits en ickenaturlig grupp. Historisk sett har Enallagma använts för den holarktiska grupp dit E. cyathigerum hör, men också för vissa afrikanska arter. Den holarktiska gruppen är monofyletisk, men de afrikanska arterna bör placeras i egna släkten. IV: Hovmöller, R. A catalog of species group names in the genus Coenagrion Kirby, 1890 (Odonata: Coenagrionidae). Opublicerat manuskript. En katalog är ett rent taxonomiskt arbete och innehåller inte någon analytisk del. Ändå är kataloger helt nödvändiga för de som forskar inom systematik. Det finns ingen samlande databas för information om artbeskrivningar, typmaterial eller vilka namn som är giltiga. All den informationen finns spridd i originallitteraturen och i bibliografisk litteratur som Zoological Record. Kataloger sammanställer den spridda informationen för en mindre grupp, och gör i bästa fall arbetet lite lättare för den som skall arbeta med gruppen systematiskt. Ett oväntat resultat av denna sammanställning var att arten Coenagrion exornatum, som finns upptagen i flera artlistor, helt enkelt aldrig har funnits! Det namnet är från början en felskrivning i W. F. Kirbys katalog över trollsländor från 1890. Senare sammanställare har tagit med alla arter som Kirby tog upp, och felet har kvarstått. V: Hovmöller, R. A proposal to conserve the name Calopteryx Leach, 1815 over Agrion Fabricius, 1775. Opublicerat manuskript. Det här är en gammal fråga som aldrig har fått en slutgiltig lösning: vilket är det giltiga vetenskapliga namnet på jungfrusländorna i släktet Calopteryx ? Återigen figurerar W. F. Kirby. Inom taxonomi är namnprioritet en av grundstenarna. Det första namn som publicerats för en art, släkte eller familj är också det som skall användas. För att skydda väletablerade namn som hotas av ett bortglömt, men äldre namn, finns det en nomenklaturkommission som beslutar om ett väletablerat namn skall vara giltigt trots att det inte har prioritet. Jungfrusländorna placerades tillsammans med alla andra Zygoptera i släktet Agrion av Fabricius (1775). Leach (1815) upprättade släktet Calepteryx (senare omstavat till Calopteryx ) för “Agrionider med färgade vingar”, och detta namn slog igenom hos de tongivande odonatologerna under 1800-talet. Agrion fortsatte att användas för andra grupper inom flicksländorna. Kirby var en stark anhängare av namnprioritet, något som ännu inte var helt accepterat år 1890. 48 Han upptäckte att Latreille redan 1802 hade utsett Agrion virgo som typart för släktet, och införde ett nytt namnskick inom Zygoptera. De som kallats Calopteryx hette nu Agrion, och de som hetat Agrion placerades i det nyupprättade släktet Coenagrion. Namnet Agrion användes för båda grupperna, och resultatet blev en del förvirring och en hätsk debatt. Erich Schmidt (1948), ifrågasatte lämpligheten i att över huvud taget använda Agrion. “Om jag skriver Calopteryx [. . . ] förstår alla omedelbart vad jag syftar på”, menade han. Ett skarpt svar kom året därpå och en hetsig debatt utbröt i tidskriften Entomological News. 1954 hade debatten lugnat ner sig, och Montgomery publicerade en mycket noggrann genomgång av nomenklaturfrågan. Han fann att formellt sett så har Agrion prioritet över Calopteryx. Detta har inte följts av senare års odonatologer, och Agrion har knappast använts alls de senaste 20 åren. Trots det är Calopteryx formellt sett ett ogiltigt namn, något som ofta påpekas i faunistisk litteratur. Detta manuskript är en formell ansökan till kommissionen för zoologisk nomenklatur om att ge Calopteryx status som giltigt namn, och placera Agrion på listan över namn som inte kan användas. Jag har cirkulerat manuskriptet bland odonatologer i flera världsdelar för att undvika att trampa i ett getingbo som Erich Schmidt! 49 50 Chapter 8 Acknowledgments I owe my thesis advisors Thomas Pape, Mari Källersjö and Kjell Arne Johanson thanks for their patience and support. Thomas, thank you for your indefatigable encouragement and insights on insects. Mari, I have never received a single piece of bad advice from you, and because of you, my writing has really become more better. Kjell Arne, thank you for always taking time, for advice, reading and commenting on my texts and for dealing with all the bureaucracy. The faunistics team: Erland Dannelid, Magne Friberg, Johan Lind, Johan Liljeblad, Fredrik Stjernholm, Helena Strömberg and Lisa Weingartner. We have had fun, accidents and even fun accidents teaching field courses on Öland and elsewhere 2001-2005. I wish to thank everyone at the Molecular Systematics Laboratory. Residents and transients: Pia Eldenäs and Bodil Cronholm for technical assistance and good advice. Former and current PhD students – I have learned a lot from our discussions. Invertebrate enthusiasts: Ida Envall, Micke Norén, and Erica Sjölin. Fans of fins, feathers and fangs: Rei Dehghani, Bo Delling, Martin Irestedt, Jan Ohlson and Ulf Johansson. Experts on things green: Petra Korall, Catarina Rydin, Jenny Smedmark, Ida Trift and Livia Wanntorp. Odonatologists around the world: thank you for sharing your knowledge and material. In approximately west-eastern order: Frank Johansson and Göran Sahlén in Sweden, Matti Hämäläinen in Finland, KD Dijkstra in the Netherlands, Henri Dumont in Belgium, Viola Clausnitzer in Germany, Oleg Kosterin in Russia, Tohru Yokoyama in Japan, Kim Pullen in Australia, Frederico Lencioni in Brazil, Dennis Paulson, Rosser Garrison, Seth Bybee and Heath Ogden in the USA and Jeff Skevington, Reg Webster and Paul Brunelle in Canada. Thanks for fantastic phylogenetic software: James Farris, Pablo Goloboff, Fredrik Ronquist and Ward Wheeler. For science and cinnamon rolls: Jonathan Habib-Enqvist, Cinna Lindqvist, Gunilla Röör and Sofie Sweger. Artists know when they are creating art. 51 Everyone at the department of entomology: My office mates – James Bonet, dipterologist, hi-fi enthusiast and coffee-connaisseur. Tobias Malm, trichopterologist, disco bandit and TNT-hacker. Ellen Rehnberg, prospective arachnologist, mantis feeder and socialite. Office neighbors – Marianne Espeland, the new kid. Mattias Forshage, Canadian field trip companion and a true polyhistor. Niklas Jönsson, beetle fan and pet farmer. Andrea Klintbjer, unrivaled illustrator. Bert Gustafsson, Kevin Holston, Torbjörn Kronestedt, Gunnel Sellerholm and Bert Viklund who actually know the collections – I still get lost. Marie Svensson, not afraid to stare bureaucracy in the face. Bertil Borg is thanked for comments that really improved the text in this thesis. Sören Nylin and Hans-Erik Wanntorp: thank you for the undergraduate class on evolutionary biology back in 1997. That’s when this thesis started. 52 Bibliography Alexander, R. D., Brown, W. L., 1963. Mating behaviour and the origin of insect wings. Occasional papers of the Museum of Zoology, University of Michigan 628, 1–19. Askew, R. R., 1988. The Dragonflies of Europe. Harley Books, Colchester, UK. Bechly, G., Brauckmann, C., Zessin, W., Gröning, E., 2001. New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera) from the Namurian of Hagen-Vorhalle (Germany). Journal of Zoological Systematic & Evolutionary Research 39, 209–226. Benard, M. F., 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Annual Review of Ecology, Evolution and Systematics 35, 651–673. Boudreaux, H. B., 1979. Arthropod phylogeny with special reference to insects. Wiley, New York, USA. Carpenter, F. M., 1966. The lower Permian insects of Kansas. Part II. The orders Protorthoptera and Orthoptera. Psyche 73, 46–88. Carpenter, F. M., Burnham, L., 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences 13, 297–314. Davies, D., Tobin, P., 1984. The dragonflies of the world: A systematic list of the extant species of Odonata. Vol.1 Zygoptera, Anisozygoptera. No. 3 in Rapid Communications (Supplements). Societas Internationalis Odonatologica, Utrecht, Germany. de Sélys-Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe. Muquart, Brussels, Belgium. de Sélys-Longchamps, E., 1872. Matériaux pour une faune névroptérologique. Annales de la Société Entomologique de Belgique 15. de Sélys-Longchamps, E., 1876. Synopsis des Agrionines. Bulletin de l’Académie Royale des Sciences de Belgique 41. Douglas, M. M., 1981. Thermoregulatory significance of thoracic lobes in the evolution of insect wings. Science 211, 84–86. Eberhard, W. G., 1985. Sexual Selection and Animal Genitalia. Harvard University Press, Cambridge, MA, USA. Eddy, S., 2003. HMMer 2.3.2: http://hmmer.wustl.edu. Software and manual. Available from Engel, M. S., Grimaldi, D. A., 2004. New light shed on the oldest insect. Nature 427, 627–630. Fabricius, J. C., 1775. Systema Entomologiae, sistens insectorum classes, ordines genera, species, adiectus synonymus, locis, descriptionibus, observationibus. Korte, Flensburgi et Lipsiae [Flensburg and Leipzig, Germany]. 53 Farris, J. S., 1970. A method for computing Wagner trees. Systemaic Zoology 19, 83–92. Fincke, O. M., 1997. Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice. Biological Journal of the Linnaean Society 60, 201–220. Fitch, W. M., 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20, 406–416. Foote, B. A., 1991. Hippoboscidae. In: Stehr, F. W. (Ed.), Immature insects. Vol. 2. Kendall / Hunt, Ch. 37, pp. 878–879. Fraser, F., 1957. A Reclassification of the order Odonata. Royal Zoological Society of New South Wales. Gilbert, W., 1986. Origin of life: The RNA world. Nature 319, 618. Giribet, G., 2005. Generating implied alignments under direct optimization using POY. Cladistics 21, 396–402. Giribet, G., Rivera, C., 2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16, 204–231. Gladstein, D. L., Wheeler, W. C., 2003. POY. Program and documentation. American Museum of Natural History. Current version 3.0.11 (2003) available from ftp://ftp.amnh.org/people/wheeler/poy. Goloboff, P., Nixon, K., Farris, J. S., 2005. TNT 1.0 Software and manual., published by the Authors. Grant, T., Kluge, A. G., 2003. Data exploration in phylogenetic inference: scientific, heuristic, or neither. Cladistics 19, 379–418. Grimaldi, D., Engel, M. S., 2005. Evolution of the Insects. Cambridge University Press, New York, USA. Haeckel, E., 1866. Generelle Morphologie der Organismen. Gerog Reimer, Berlin, Germany. Handlirsch, 1937. Neue Untersuchungen über die fossilen Insekten I. Annalen den Naturhistorischen Museums in Wien 48, 1–140. Hasegawa, E., Kasuya, E., 2006. Phylogenetic analysis of the insect order Odonata using 28S and 16S rDNA sequences: a comparison between data sets with different evolutionary rates. Entomological Science 9, 55–66. Hennig, W., 1966. Phylogenetic systematics. University of Illinois Press. Hennig, W., 1981. Insect Phylogeny. John Wiley & Sons, Bath, UK. Higgins, D. G., Sharp, P. M., 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244. Johansson, F., 2002. Reaction norms and production costs of predator-induced morphological defences in a larval dragonfly (Leucorrhinia dubia: Odonata). Canadian Journal of Zoology 80, 944–950. Johansson, F., Samuelsson, L., 1994. Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia 100, 74–79. Kingsolver, J. G., Koehl, M. A. R., 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution 39, 488–504. 54 Kingsolver, J. G., Koehl, M. A. R., 1994. Selective factors in the evolution of insect wings. Annual Review of Entomology 39, 425–51. Kirby, W. F., 1890. A synonymic catalogue of Neuroptera Odonata, or dragonflies. Gurney & Jackson, London, UK. Kjer, K. M., 2004. Aligned 18S and insect phylogeny. Systematic Biology 53, 506–514. Kluge, A. G., 1998. Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics 14, 151–158. Krieger, F., Krieger-Loibl, E., 1958. Bieträge zum Verhalten von Ischnura elegans und Ischnura pumilio (Odonata). Zeitschrift für Tierpsychologie 15, 83–93. Kristensen, N. P., 1975. The phylogeny of hexapod “orders”. A critical review of recent accounts. Zeitschrift für zoologische Systematik und Evolutionsforschung 13, 1–44. Kristensen, N. P., 1981. Phylogeny of insect orders. Annual Review of Entomology 26, 135–57. Kristensen, N. P., 1991. The phylogeny of extant hexapods. In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradberry, J. P., Taylor, R. W., Whitten, M. J., Littlejohn, M. J. (Eds.), Insects of Australia: A textbook for students and research workers, 2nd Edition. Vol. 1. CSIRO, Melbourne University Press, Melbourne, Australia, Ch. 5, pp. 125–140. Kukalová-Peck, J., 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. Journal of Morphology 156, 53–126. Kukalová-Peck, J., 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology 61, 1618–1669. Kukalová-Peck, J., 1987. New Carboniferous Diplura, Monura and Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta). Canadian Journal of Zoology 65, 2327–2345. Kukalová-Peck, J., 1991. Fossil history and the evolution of hexapod structures. In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradberry, J. P., Taylor, R. W., Whitten, M. J., Littlejohn, M. J. (Eds.), Insects of Australia: A textbook for students and research workers, 2nd Edition. Vol. 1. CSIRO, Melbourne University Press, Melbourne, Australia, Ch. 6, pp. 141– 179. Latreille, P. A., 1810. Considérations générales sur l’ordre naturel des animaux composant les classes des Crustacés, des Arachnides et des Insects avec un tableu méthodique de leurs genres disposés en familles. Schoell, Paris, France. Latreille, P. L., 1807. Genera Crustaceorum et Insectorum secundum ordinem naturalem in familias doisposita, iconibus exemplurisque plurimis explicata. Amand Koenig, Paris. Leach, W. E., 1815. Edinburgh Encyclopediae. Vol. 9. Brewster, Edinburgh, UK, Ch. Entomology, pp. 57–172. Lemche, H., 1940. The origin of winged insects. Videnskablige Meddelelser fra Dansk Naturhistorisk Forening i København 104, 127–168. Linnaeus, C., 1758. Systema Naturae, 10th Edition. Vol. 1. Laurentii Salvii, Holmiae [=Stockholm], Sweden. Lipscomb, D. L., Farris, J. S., Källersjö, N., Tehler, A., 1998. Support, ribosomal sequences and the phylogeny of eukaryotes. Cladistics 14, 303–338. 55 Lohmann, H., 1996. Das phylogenetische System der Anisoptera (Odonata). Entomologische Zeitschrift 106, 209–252. Loibl, E., 1958. Zur Ethologie und Biologie der deutschen Lestiden (Odonata). Zeitschrift für Tierpsychologie 15, 54–82. Longfellow, C., 1949. Agrion versus Calopteryx. Entomological News 60, 145– 146. Marden, J. H., Kramer, M. G., 1994. Surface-skimming stoneflies: A possible intermediate stage in insect flight evolution. Science 266, 427–430. Martynov, A. V., 1925. Über zwei Grundtypen der Flügel bei den Insekten und ihre Evolution. Zeitchrift für Morphologie und Ökologie der Tiere 4, 465–501. May, M. L., 2002. Phylogeny and taxonomy of the damselfly genus Enallagma and related taxa (Odonata: Zygoptera: Coenagrionidae). Systematic Entomology 27, 387–408. Mickevich, M. F., Farris, J. S., 1981. The implications of congruence in Menidia. Systematic Zoology 30, 351–370. Mizutani, A., Chahl, J. S., Srinivasan, M. V., 2003. Motion camouflage in dragonflies. Nature 423, 604. Montgomery, B. E., 1954. Nomenclatural confusion in the Odonata: The AgrionCalopteryx problems. Annals of the Entomological Society of America 47, 471–483. Munz, P. A., 1919. A venational study of the suborder Zygoptera. Memoirs of the American Entomological Society 3, 1–78. Needham, J. G., 1903. A genealogic study of dragon-fly wing venation. Proceedings of the United States Natural Museum 26, 703–764. Needleman, S. B., Wunsch, C. D., 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453. Norén, M., Jondelius, U., 1999. Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA Sequences. Cladistics 15, 103–112. Ogden, T., Whiting, M. F., 2003. The problem with ”the Paleoptera problem:” sense and sensitivity. Cladistics 19, 432–442. O’Grady, E. W., May, M. L., December 2003. A phylogenetic reassessment of the subfamilies of Coenagrionidae (Odonata, Zygoptera). Journal of Natural History 37, 2807–2834. Ólafsson, E., 1975. Drekaflugan Hemianax ephippiger (Burm.) (Odonata) óvæntur gestur á ı́slandi. Náttúrufrækingurinn 45, 209–212, [In Icelandic]. Pajunen, V. I., 1964. Mechanism of sex recognition in Leucorrhinia dubia v. d. Lind., with notes on the reproductive isolation between L. dubia and L. rubicunda L. (Odon., Libellulidae). Annales Zoologici Fennici 1, 55–71. Paulson, D., Schorr, M., Lindeboom, M., 2006. World Odonata List. Webiste. http://www.ups.edu/x6140.xml. Paulson, D. R., 1974. Reproductive isolation in damselflies. Systematic Zoology 23, 40–49. Peters, W. L., Campbell, I. C., 1991. Ephemeroptera. In: Naumann, I. D., Carne, P. B., Lawrence, J. F., Nielsen, E. S., Spradberry, J. P., Taylor, R. W., Whitten, M. J., Littlejohn, M. J. (Eds.), Insects of Autralia, 2nd Edition. Vol. 1. CSIRO, Melbourne University Press, Melbourne, Australia, Ch. 16, pp. 279–293. 56 Phillips, A., Janies, D., Wheeler, W., 2000. Multiple sequence alignment in phylogenetic analysis. Molecular Phylogenetics and Evolution 16, 317–330. Rambur, M. P., 1842. Histoire Naturelles des insectes Néuroptères. Librairie encyclopédique de Roret, Paris, France. Rehn, A. C., 2003. Phylogenetic analysis of higher-level relationships of Odonata. Systematic Entomology 28, 181–239. Robertson, H. M., Paterson, H. E. H., 1982. Mate recognition and mechanical isolation in Enallagma damselflies (Odonata: Coenagrionidae). Evolution 36, 243–250. Ronquist, F., Huelsenbeck, J. P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 572–1574. Rousset, V., Rouse, G. W., Siddall, M. E., Tillier, A., Pleijel, F., 2004. The phylogenetic position of Siboglinidae (Annelida) inferred from 18S rRNA, 28S rRNA and morphological data. Cladistics 20, 518–533. Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 6, 514– 525. Saux, C., Simon, C., Spicer, G. S., 2003. Phylogeny of the dragonfly and damselfly order Odonata as Inferred by mitochondrial 12S ribosomal RNA Sequences. Annals of the Entomological Society of America 96, 693–699. Schmidt, E., 1948. Calopteryx versus Agrion: Again? (Odonata). Entomological News 59, 197–201. Silsby, J., 2001. Dragonflies of the World. Smithsonian Institution Press, Washington, D.C., USA. Sneath, P., Sokal, R. R., 1973. Numerical Taxonomy: The principles and practiceof numerical classification. Freeman, San Fransisco, CA, USA. Snodgrass, R. E., 1935. Principles of insect morphology. McGraw-Hill Book Company, New York, USA. Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Prince, L. M., Kress, J. W., Nixon, K. C., Farris, J. S., 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnaean Society 133, 381–461. Tehler, A., Farris, J. S., Lipscomb, D. L., Källersjö, M., 2000. Phylogenetic analyses of the fungi based on large rDNA data sets. Mycologia 92, 459–474. Tennessen, K. J., 1997. The rate of species descriptions in Odonata. Entomological News 108, 122–126. Thompson, J., Higgins, D., Gibson, T., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673–4680. Thompson, J. D., Higgins, D. G., Gibson, T. J., 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Research 25, 4876–4882. Trueman, J. W. H., 1996. A preliminary cladistic analysis of odonate wing venation. Odonatologica 25, 59–72. 57 Trueman, J. W. H., 1999. The enigmatic Australian endemic species Hemiphlebia mirabilis Selys (Zygoptera: Hemiphlebioidea): four short observations and a new record. International Journal of Odonatology 2, 115–121. Tsuda, S., 2000. A Distributional List of World Odonata. Published by author, Osaka, Japan. Van de Peer, Y., Jansen, J., De Rijk, P., De Wachter, R., 1997. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research 25, 111–116. Waage, J. K., 1975. Reproductive isolation and the potential for character displacement in the damselflies, Calopteryx maculata and C. aequabilis (Odonata: Calopterygidae). Systematic Zoology 24, 24–36. Wallberg, A., Thollesson, M., Farris, J. S., Jondelius, U., 2004. The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20, 558–578. Warren, A., 1915. Dragonflies and their food. Proceedings of the Hawaiian Entomological Society 3, 72–82. Westfall, Jr., M. J., May, M. L., 1996. Damseflies of North America. Scientific Publishers, Gainsville, USA. Wheeler, W., 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331. Wheeler, W., 1996. Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9. Wheeler, W., 1999. Fixed character states and the optimization of molecular sequence data. Cladistics 15, 379–385. Wheeler, W. C., 2003a. Implied alignment: a synapomorphy-based multiplesequence alignment method and its use in cladogram search. Cladistics 19, 261–268. Wheeler, W. C., 2003b. Iterative pass optimization of sequence data. Cladistics 19, 254–260. Wheeler, W. C., 2006. Dynamic homology and the likelihood criterion. Cladistics 22, 157–170. Wheeler, W. C., Gladstein, D. L., 1994. MALIGN. Program and documentation. American Museum of Natural History, current version 2.7 (2002) available from ftp://ftp.amnh.org/people/wheeler/. Wheeler, W. C., Whiting, M., Wheeler, Q. D., Carpenter, J. M., 2001. The phylogeny of the extant hexapod orders. Cladistics 17, 113–169. Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., Wheeler, W. C., 1997. The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribsosomal DNA sequences and morphology. Systematic Biology 46, 1–68. Wigglesworth, V. B., 1963a. Origin of wings flight in insects. Proceedings of the Royal Entomological Society of London 28, 23–32. Wigglesworth, V. B., 1963b. Origin of wings in insects. Nature 197, 97–98. Will, K. W., 1995. Plecopteran surface-skimming and insect flight evolution. Science 270, 1684. Wuyts, J., Perrière, G., Van de Peer, Y., 1994. The European ribosomal database. Nucleic Acids Research 32, 101–103. 58 Zherikhin, V. V., 2002. Pattern of insect burial and conservation. In: History of Insects. Kluwer Academic Publishers, Dordrecht, Netherlands, Ch. 1.4, pp. 17–62. Zimmer, E. A., Martin, S. L., Beverly, S. M., Kan, Y. W., Wilson, A. C., 1980. Rapid dupliactions and loss of genes coding for chains of hemoglobin. Proceedings of the National Academy of Sciences, USA 77, 2158–2162. Zwick, P., 1980. Handbuch der Zoologie : eine Naturgeschichte der Stämme des Tierreiches. Vol. 4. Walter de Gruyter, Berlin, Germany. 59