Assessing inbreeding and loss of genetic variation in canids, domestic Canis familiaris lupus
by user
Comments
Transcript
Assessing inbreeding and loss of genetic variation in canids, domestic Canis familiaris lupus
Assessing inbreeding and loss of genetic variation in canids, domestic dog (Canis familiaris) and wolf (Canis lupus), using pedigree data Mija Jansson DEPARTMENT OF ZOOLOGY DIVISION OF POPULATION GENETICS STOCKHOLM UNIVERSITY 2014 Cover illustration: Mija Jansson ©Mija Jansson, Stockholm 2014 ISBN 978-91-7447-858-7 Printed in Sweden by US-AB, Stockholm 2014 Distributor: Department of Zoology, Stockholm University Om saker och ting rullar på för enkelt är du bergis mitt i en utförsbacke. Claes Wiberg Abstract Genetic variation is necessary to maintain the ability of wild and domestic populations to genetically adapt to changed selective pressures. When relationships among individuals are known, conservation genetic management can be based on statistical pedigree analysis. Such approaches have traditionally focused on wild animal conservation breeding in captivity. In this thesis, I apply pedigree-based techniques to domestic and wild animal populations, focusing on two canids – the domestic dog and the wild wolf. Main objectives include to 1) develop a means for making any pedigree fit the input requirements of the software Population Management x (PMx) and to use this program to 2) investigate rate of inbreeding and loss of genetic variation in dog breeds, including possible correlations between recent inbreeding and health problems, 3) estimate effects on inbreeding of the 2010 hunt of the endangered Swedish wolf population, and to 4) evaluate the potential to genetically support this wolf population through cross-fostering releases of zoo bred pups from a conservation breeding program. Results include successfully developing the converter program mPed (Paper I) and applying both mPed and PMx to dog and wolf pedigrees. I found extensive loss of genetic variation and moderate rates of recent inbreeding in 26 dog breeds, but no major difference in these parameters between breeds classified as “healthy” vs. “unhealthy“ (Paper II). I found average inbreeding coefficients to more than double (from F=0.03 to 0.07) and founder genetic variation to decrease by c. 30 percent over the past few decades in traditional Swedish dog breeds identified as being of conservation concern (Paper IV). Hunting will make it less likely to reach genetically based Favourable Conservation Status criteria for the Swedish wild wolf population (Paper III), but release of zoo bred wolves through cross-fostering may potentially almost double founder genetic variation of this population (Paper V). This thesis is based on the following papers, which in the text will be referred to by their corresponding Roman numerals. I: Jansson, M., Ståhl, I., Laikre, L. (2013) mPed: a computer program for converting a text file into a pedigree file used by the PMx-software for conservation genetic analysis. Conservation Genetics Resources, 5:651-653. II: Jansson, M., Laikre, L. (2013) Recent breeding history of dog breeds in Sweden: modest rates of inbreeding, extensive loss of genetic diversity, and lack of correlation between inbreeding and health. Journal of Animal Breeding and Genetics, Article first published online: 2 DEC 2013; DOI: 10.1111/jbg.12060 III: Laikre, L., Jansson, M., Allendorf, F. W., Jakobsson, S., Ryman, N. (2013) Hunting threatens achieving Favourable Conservation Status for an isolated, highly inbred wolf population. Conservation Biology, 27: 248-253. IV: Jansson, M., Laikre, L. Monitoring rate of inbreeding and loss of genetic variation in traditional Swedish dog breeds of conservation concern using pedigree data. (Manuscript) V: Jansson, M., Amundin, M., Laikre, L. Supportive release from a zoo population by cross-fostering can significantly increase genetic variation in the highly inbred wild Swedish wolf population. (Manuscript) Paper III is reprinted with kind permission of the original publisher, Conservation Biology, which owns the copyrights. Assessing Inbreeding and Loss of Genetic Variation in Canids, Domestic Dog (Canis familiaris) and Wolf (Canis lupus), Using Pedigree Data Mija Jansson Division of Population Genetics, Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden INTRODUCTION ..................................................................................................................................... 11 Conserving Genetic Diversity ................................................................................................................. 11 The Founders of a Population ................................................................................................................. 11 Assessing Inbreeding Levels ................................................................................................................... 12 NATIONAL AND INTERNATIONAL CONSERVATION POLICY ................................................ 12 OBJECTIVES ........................................................................................................................................... 14 STUDY SPECIES ..................................................................................................................................... 15 The Domestic Dog .................................................................................................................................. 15 The Wolf ................................................................................................................................................. 16 INBREEDING DEPRESSION ................................................................................................................ 18 Inbreeding Depression in the Domestic Dog .......................................................................................... 18 Inbreeding Depression in the Wild Wolf ................................................................................................ 19 Inbreeding Depression in the Zoo Wolf .................................................................................................. 19 MATERIALS AND METHODS ............................................................................................................. 20 Paper I: The mPed Converter Program .................................................................................................. 20 Paper II: Recent Inbreeding and Health in Dogs .................................................................................... 20 Paper III: Genetic Effects of Wolf Hunting ........................................................................................... 25 Paper IV: Swedish Native Dog Breeds................................................................................................... 25 Paper V: Supportive Release from a Zoo Population ............................................................................. 25 RESULTS .................................................................................................................................................. 26 mPed (Paper I) ........................................................................................................................................ 26 Inbreeding and Health in Dogs (Paper II) .............................................................................................. 27 Genetic Effects of Hunting the Wild Swedish Wolf Population (Paper III) .......................................... 28 Inbreeding and Genetic Variation in Dog Breeds of Conservation Concern (Paper IV) ........................ 29 Supportive Release from a Zoo Population (Paper V)............................................................................ 30 DISCUSSION AND CONCLUSIONS .................................................................................................... 30 ACKNOWLEDGEMENTS...................................................................................................................... 33 9 REFERENCES .......................................................................................................................................... 35 APPENDIX 1 – CONSERVATION GENETIC CONCEPTS IN PEDIGREE ANALYZIS .............. 40 APPENDIX 2 – INBREEDING DISTRIBUTION, SCHILLER HOUND........................................... 43 APPENDIX 3 – INBREEDING DISTRIBUTION, BULLDOG ........................................................... 45 APPENDIX 4 – MEAN KINSHIP DISTRIBUTION, SCHILLER HOUND ...................................... 47 APPENDIX 5 – MEAN KINSHIP DISTRIBUTION, BULLDOG ....................................................... 49 APPENDIX 6 – AUTOSOMAL RECESSIVE DISEASE IN DOMESTIC DOGS ............................. 51 APPENDIX 7 – CHAMPIONSHIPS ....................................................................................................... 60 10 INTRODUCTION Conserving Genetic Diversity Many old, domestic breeds, which are not used in large scale commercial production, typically have a small population size, and many are considered threatened (Lannek 2007). Domesticated animals are under strong selective breeding that result in a loss of genetic variation (Johansson and Rendel, 1968), and during recent years conservation genetic focus has increased in domestic animal populations (Teinberg et al. 1995, Stephens and Splan 2013, Joly et al. 2012, Leroy et al. 2011). This attention includes both scientific efforts and international and national policy work, including the Global Plan of Action for Animal Genetic Resources adopted in Interlaken, Switzerland (FAO, 2007). Traditionally, pedigree analysis for conservation management has focused on zoo populations of threatened wild animals (Frankhamn et al 2004); available software has been developed in that context (Ballou et al. 1995). The necessity of conserving genetic variation in wild animals has been recognized and studied for quite some time (e.g. Chesser et al. 1982). As conservation genetic management extends to include domestic populations, and as pedigree data becomes increasingly available also for wild populations, there is an increasing need for methods, including software, developed for zoo populations (Koch et al 2008, Naish and Hard 2008) to be applied to populations outside the zoo community. In statistical pedigree analysis, exact genotypic probabilities are often too complex to compute even for modern day personal computers. Computer simulations thus become a valuable tool (Ballou et al. 1995). For example, the Gene dropping (MacCluer et al. 1986) computer simulation application is frequently used to analyze loss of genetic variation over time in populations bred for conservation purposes in zoos. Gene dropping simulates how alleles from individual founders are spread to descendants in the pedigree, and may be used to address a series of questions relating to allele diversity retention and genotypic similarity among various groups of individuals in the pedigree (Lacy 1989; Geyer et al. 1989). Examples of the use of gene dropping include (MacCluer et al. 1986); estimating inbreeding coefficients and the amount of existing genetic variation in the population, as well as predicting the risk of future loss of genetic variation (for conservation genetic concepts in pedigree analysis, see further in Appendix 1). The Founders of a Population The population founders limit the genetic potential of a population: the amount of genetic variation in a population cannot exceed that contributed by the founding individuals. In dog breeds, because of the closed gene pools, founder effects are responsible for several breed related diseases (Ubbink et al. 1998). Today’s modern breeds have closed gene pools, and 99 % of 414 dogs from 85 breeds are correctly assigned to their breed in a cluster analysis, meaning 11 that the relationships within a breed are not really questionable. This results in a reduced population size and an overall increase in genetic drift among domestic dogs (Wayne & Ostrander 2007). The increase in genetic drift results in a loss of genetic diversity within breeds and greater divergence among them. In some breeds, genetic variation has been further reduced by catastrophic events such as World War II (Wayne & Ostrander 2007), which reduced the number of pure bred dogs during that time. The variation (or lack of variation) in dog traits also seems to be driven by artificial selection (Vilà et al. 1999). It is possible that the intense inbreeding during the founding of the breeds made the deleterious recessive alleles widely spread already within the breeds (Vilà et al. 1999). For many wild species, it is natural to identify the subgroups within a geographical region, but this is less natural for purebred dog populations, mainly due to the effective use of popular sires (Calboli et al. 2008). The wild wolves of Scandinavia, like many other threatened wolfpopulations in the world, suffer from geographic isolation and fragmentation (Liberg and Sand 2009) which leads to no or minimal immigration and that the population could never extend its original potential. Assessing Inbreeding Levels Indications of inbreeding depression has been shown among both domestic dogs and the wild wolf-population of Scandinavia (e.g. Olafsdottir and Kristjansson 2008; Liberg et al. 2005; Räikkönen et al. 2006). Many pedigree-dogs have high coefficients of inbreeding (Calboli et al. 2008), and the wild wolves of Scandinavia are, on average, more related than siblings (Paper III). Given a situation with no immigration (and a finite population size), inbreeding levels increase over time. Pedigree analysis is useful to estimate loss of genetic variation due to inbreeding increases (Calboli et al. 2008). Even though homozygosity in smaller numbers of loci and inbreeding coefficients or in extreme inbreeding situations (such as selfing) are sometimes reported to be significantly associated, heterozygosity measured by molecular markers and inbreeding coefficient are generally uncorrelated (Bolloux et al. 2004). NATIONAL AND INTERNATIONAL CONSERVATION POLICY Both wild and domestic animals are explicitly mentioned in the United Nations Convention on Biological Diversity (CBD; www.cbd.int) and the National Swedish Environmental Objectives. Other policies handle either wild (The Habitats Directive, 92/43/EEC, available at: http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm) or domestic populations (Global Plan of Action for Animal Genetic Resources, available at: www.fao.org/docrep/010/a1404e/a1404e00.htm). 12 The CBD aims at conserving biological diversity, sustaining the use of the components of biological diversity and fair and equitable sharing of the benefits arising from the utilization of genetic resources. The importance of conserving genetic variability of domestic populations of animals and plants is becoming increasingly recognized. The CBD, as well as the National Swedish Environmental Objectives (www.miljomal.nu), explicitly state that domesticated animals, and the genetic resources they represent, are part of the biological diversity that should be conserved, monitored, and sustainably used. Domesticated animals are mentioned as an indicator for assessing biologic diversity trends (http://www.bipindicators.net/), and Target 13 of the new Strategic Plan for 2011-2020 explicitly focuses on genetic variation of domestic populations (www.cbd.int/sp) The Habitats Directive (92/43/EEC) is the central biodiversity legislation within the European Union, which forces all member countries to promote a Favourable Conservation Status (FCS) of certain listed habitats and species, including the wolf (except for a Spanish and a Greek population). FCS of a species is defined in Article 1i of the Habitats Directive as: “conservation status of a species means the sum of the influences acting on the species concerned that may affect the long-term distribution and abundance of its populations within the territory referred to in Article 2; The conservation status will be taken as ‘favourable’ when: population dynamics data on the species concerned indicate that it is maintaining itself on a long-term basis as a viable component of its natural habitats, and the natural range of the species is neither being reduced nor is likely to be reduced for the foreseeable future, and there is, and will probably continue to be, a sufficiently large habitat to maintain its populations on a long-term basis” The Interlaken Declaration on Animal Genetic Resources for food and agriculture has been signed by 109 countries, including Sweden. The declaration recognizes that there are significant gaps and weaknesses in national and international capacities to inventory, monitor, characterize, sustainably use, develop and conserve domestic animal genetic resources, and this needs to be addressed urgently. It also calls for mobilization of substantial financial resources and long-term support for national and international animal genetic resources programs. Wolf conservation is a controversial issue in Sweden, heavily and constantly debated. In this debate, unfortunately, scientific results are often used to legitimize different, and often conflicting, positions (Möller-Hansen et al. 2011). 13 OBJECTIVES The aim of my work is to generate knowledge that will contribute to a sound conservation genetic management of the domestic dog and the wild wolf, for both species pedigrees exists. For this thesis, I used pedigree data to address questions relating to rates of inbreeding and loss of genetic variation (measured in terms of founder alleles; Lacy 1989). The major objectives were: To develop a converter that can transform a studbook from a text file (.txt) to an input file for the pedigree analysis software PMx (.ped; Paper I) which can be analyzed in the free software Population Management x (Papers II, III, IV, V). To examine levels and rates of inbreeding and degree of retention of genetic variation in dog and wolf pedigrees with the specific objective of addressing the following questions: Is there a difference in inbreeding levels and retention of genetic variability between healthy versus unhealthy dog breeds that may imply that recent genetic management affects their health status? (Paper II.) Were levels of inbreeding, kinship and retention of founder genetic variation in the Scandinavian wild wolf population affected by the hunt in 2010? (Paper III.) What are the rates of inbreeding and loss of genetic variation measured in terms of founder alleles in 12 dog breeds originating in Sweden, including the 10 breeds identified as of conservation concern? (Paper IV.) What is the potential of a zoo population of wolves, bred for conservation purposes, to provide genetic support for the genetically weak wild Scandinavian wolf population? (Paper V.) 14 STUDY SPECIES The model organisms used in this thesis are the domestic dog (Canis familiaris) and the wolf (Canis lupus; Figure 1). I provide a brief description of these species relating to this thesis. Figure 1. Study species of this thesis, wolf left (Canis lupus; photo by Lovisa Häggström) and domestic dog right (Canis familiaris) as exemplified by a Norwegian elkhound, grey (photo by Sannse and obtained from en.wikipedia.org). The Domestic Dog Although domesticated animal breeds account for only a small number of species, they have had profound effects on the evolution of human societies and on the course of human history (Ruane 2000). The dog is considered the first domestic animal. Its wild ancestor, the wolf, was probably domesticated by mobile hunters/gatherers rather than by settled farmers (Savolainen 2007). The domestication of the dog occurred around 14,000-15,000 years ago (Sundqvist et al. 2006, Savolainen et al. 2002). Up until 200 years ago, dogs were primarily selected for breeding based on practical use for hunters and herders, but for a long time dogs have also been used for other practical purposes such as pulling sledges, guarding property, and as lapdogs to provide warmth (Beilharz 2007). In the last centuries, morphology has become the primary focus of selection. Sundqvist et al. (2006) suggest that most modern dog breeds have a recent origin, probably less than 200 years old. They also show that there was an unequal contribution of sexes in the origin of modern dog breeds with fewer males than females contributing genetically. 15 According to phylogenetic studies, dog breeds are organized into a distinct evolutionary hierarchy with the following primary groups (Wayne and Ostrander 2007; Vilà and Leonard 2007, Table 1, materials and methods, below): “Herding” “Mastiff” (including e.g. some terriers) “Modern European” (from the 1800th) “Mountain” (including e.g. German shepherd and some spaniels) There are associations of dog haplotypes with wolf lineages which indicate admixture between wolves and dogs which could have been an important source of genetic variation for domestic dogs (Vilà et al. 2003). Some North Scandinavian/Finnish dog breeds were recently proven to have a different origin than the rest of domestic dog breeds. These breeds are the results of wolf and dog crossings a few hundred to a few thousand years ago, rather than from one single domestic event (Klütsch et al. 2009). The breeds are Finnish spitz, Norwegian elkhound (grey), Norwegian elkhound (black), and Finnish lapphund. With respect to domestic animal populations, the Swedish Board of Agriculture has identified a number of traditional Swedish breeds of particular conservation concern, including ten dog breeds (Lannek 2007). In Paper V, we describe the conservation genetic situation of the dog breeds that are Sweden’s conservation responsibility. The Wolf Recent studies have shown that large carnivores have even greater effects on eco-system than previously assumed and the grey wolf has been shown to affect not just the fauna but the flora as well (Ripple et al. 2014) – the wolf is an important species. The wolf (Canis lupus L.) is a native species of Sweden since the last ice age, but it is currently classified as Endangered (Swedish Species Information Centre; www.artdata.slu.se). It was hunted to extinction during the first part of the 20th century. In the mid-1960s the species became protected when only occasional individuals were observed, but unfortunately this did not prevent their extinction in the first part of the 20th century. In the winter of 1982-83, a breeding pair was established in the border region between the Province of Värmland and Norwegian Hedmark and provided the foundation for the return of the species to the Swedish fauna (Liberg and Sand 2009). These two individuals, together with a male wolf which immigrated from Finland/Russia around 1990, constitute the primary genetic basis for the current population more than 300 wolves inhabiting the central part of the Scandinavian Peninsula. For more than 18 years, none of at least ten wolves that immigrated via Finland to Northern Scandinavia were able to reach the population in MidScandinavia and contribute genes to the population (Liberg and Sand 2009). New genes were added in 2008 when two unrelated immigrating male wolves reproduced with females from the Scandinavian population (Åkesson and Bensch 2010). 16 Figure 2. The location of the breeding sites for the first five founders of the Swedish wolf population. Nyskoga refers to a mating couple from Nyskoga, all other founders were males. Every immigrant is important to the isolated Scandinavian wolf population. Since 2008, only seven more wolves, apart from the original founders, have migrated into Scandinavia (Ann Dahlerus, Svenska rovdjursföreningen and Mikael Åkesson, Grimsö Wildlife Research Station, personal communication, January 2014.). Five of them have had contact with the Scandinavian wolf population. One of these wolves, a female that was first observed in the northern part of Sweden in the Province of Norrbotten and later in the Province of Jämtland in 2010 (“Kilbergstiken” later “Junselevargen”), caused damage to reindeer and was subsequently moved south – three times – only to travel north again. Her first partner was illegally shot following their first relocation. In 2012, the female settled near Junsele with a new male, but he was shoot by authorities after killing reindeer. Authorities stopped the hunt on the female after public complaints and due to EU regulations. The female has currently bonded with a male from Siljansringen. In 2013, a couple from Finland immigrated and were moved from northern Sweden to Tiveden where they settled down and had at least three, probably five, pups. Thus, there are currently seven and one potential founder of the existing Swedish wolf population. This is a low number from a conservation genetics perspective, because the amount of genetic variation in a population cannot exceed that contributed by the founding individuals. The precarious situation of the Swedish wolves has been pointed out for decades (e.g. Laikre 1999, Liberg et al 2005, Hagenblad et al 2009). Rapid population growth and gene flow from neighboring populations are critical for achieving long-term population viability. Nevertheless, population levels have been kept low and in 2009, the Swedish Parliament “temporarily” decided 17 that the population should be kept below 210 individuals (Swedish Government 2008/09:210). In order to achieve this, 28 wolves were culled in 2010 and 19 in 2011. In addition, close to 30 animals were shot in these two years for other reasons (e.g., causing damage to livestock), 16 were killed in traffic and two drowned because of sedation after being tagged with radio transmitters. In 2014, the Swedish Government decided on a new licensed killing of 30 wolves in the provinces of Dalarna, Värmland and Örebro even though it is against both Swedish and EU legalization and after appeals to the administrative court, the Government had to call off the hunt, at least temporarily. For the past decades, the issue of viable carnivorous population has been discussed in Sweden. A population's viability is affected by both external factors, such as climate, food sources and diseases, and, for populations less than thousands of animals, the population size in itself is considered a risk as inbreeding leads to less evolutionary potential and inbreeding depression (Ebenhard and Höggren, 1999). INBREEDING DEPRESSION Conservation is particularly complicated in small populations (Franklin1980) because they inevitably suffer from inbreeding and loss of genetic variation, which may cause inbreeding depression and loss of evolutionary potential (i.e. the ability to adapt to changes in the environment; Gyllensten and Ryman 1985). Virtually all the genetic effects which arise in small populations result from the random sampling of alleles from parents to offspring. This process is known as genetic drift. In a small population, gene frequencies change rapidly from one generation to another because of this random process. A small population size may have genetic effects in both a long-time and short- time ´perspective. Inbreeding depression may occur over a short period. More long-term, sampling effects causing fluctuations in gene frequencies have important consequences for the future evolution of the species (Crow and Kimura 1970). Long-term species survival is dependent on retaining enough genetic diversity both within and between populations to accommodate new selection pressure brought about by environmental change (Schonewald-Cox et al. 1983). But there are examples of wild populations with a longterm small and effective population size with small genetic variations that are viable (Rodríguez et al. 2011). Inbreeding Depression in the Domestic Dog In the domestic dog, several breed-related diseases have been attributed to founder’s effect (Ubbink et al. 1998). Such diseases constitute a huge problem in many dog populations and are probably threatening their survival (Ubbink et al. 1998). For example, a population of Dutch Labrador retrievers (with elbow dysplasia) showed estimates of relatedness to seven related ancestors when modeling the most likely pattern in passage of genetic risk for the disease over generations (Ubbink et al. 1998). In investigations of cone degeneration (achromatopsia; Yeh et 18 al. 2013) in Siberian husky and Alaskan sled dogs and miniature Australian shepherd, all affected alleles were shown to be identical by descent, strongly suggesting a founder effect. Since the miniature Australian shepherd is not known to be genetically related to the Alaskan Malamute, other breeds may potentially carry the same allele and be affected by cone degeneration (achromatopsia). English keeshounds have problems with canine epilepsy. By calculating inbreeding and identifying common ancestors (under the hypothesis that both parents of an epileptic pup were themselves carriers; Hall & Wallace 1996), it could be assumed that the predisposition to epilepsy in keeshounds is determined by a single autosomal recessive gene. In the Icelandic sheepdog, hip dysplasia was also found to be significantly related to inbreeding depression (Ólafsdóttir & Kristjánsson 2008). P G C Bedford, at the Royal Veterinary College in UK, states in an editorial comment in Animal Welfare 1999 that: “Within the world of the pedigree dog, competition is extreme – and breeding policy based on dedication to breed type has resulted in the appearance of some 300 inherited diseases among canine species worldwide.” In appendix 6, I have compiled 145 diseases in the domestic dog with autosomal recessive inheritance. Inbreeding Depression in the Wild Wolf The genetic problems of the wild wolf population of Scandinavia include inbreeding depression (Liberg et al. 2005; Räikkönen et al. 2006). The number of surviving pups per litter during their first winter after birth are strongly correlated with inbreeding coefficients of pups (R2=0.39, p=0.001; Liberg et al. 2005). Several congenital malformations of the backbone have been shown (Räikkönen et al. 2006). Immigration of wolves from eastern populations is essential in order to counteract the possible manifestation of high frequencies of deleterious traits (Räikkönen et al. 2006). Inbreeding Depression in the Zoo Wolf Previous studies on captive wolves have shown negative effects of inbreeding (Laikre and Ryman 1991, Laikre et al. 1993). These effects are expressed as a reduction of juvenile weight, reproduction, longevity and a hereditary form of blindness. Presently, there are no documented negative effects of inbreeding in the captive population of wolfs (personal communication January 2014, Mats Amundin, official studbook keeper within the framework of the Swedish Association of Zoos and Aquaria). 19 MATERIALS AND METHODS Paper I: The mPed Converter Program In Paper I, I present the mPed program which we developed to convert studbook data into a format that can be used in the Population Management x software (PMx; Ballou et al. 2011; Lacy et al. 2011). PMx is a free software for analysis and conservation management of pedigreed zoo populations. It provides tools for optimal genetic management of populations for which preserving genetic diversity is a primary goal. The software can handle large data set outputs of several parameters relating to inbreeding and loss of genetic variation. PMx is most easily used as an accessory program to the SPARKS software for studbook management, but it can also be used as a stand-alone software for population management of the demographic and genetic data The data must first be prepared in a specific format (.ped, the PMx input file). It is quite timeconsuming, to the point where it is impossible, to create .ped files from else than SPARKS’s studbooks, with many manual steps. Paper II: Recent Inbreeding and Health in Dogs Paper II focuses on the investigation of potential correlations between recent inbreeding and health in populations of dog breeds recorded in Sweden and those we obtain from the Swedish Kennel Club. In total, 332,784 individuals from 26 pedigrees (breeds) of domestic dog were analyzed (Table 2). I selected populations for analysis by first identifying ‘‘healthy’’ and ‘‘unhealthy’’ breeds based on information from insurance companies. Statistics reflecting the extent of veterinary care per dog breed were obtained from Sweden’s four most prominent pet insurance companies for pets (Agria; http://www.agria.se, Folksam; http://www.folksam.se, If; http://www.if.se, and Sveland; http://www.sveland.se). The companies Agria, Folksam and Sveland use six price categories (six being the highest costs for veterinary care per dog, and one the lowest). The “If” insurance company uses eight price categories (where eight represents the highest costs for veterinary care per dog, and one the lowest). I ranked dog breeds based on the classifications from the four companies, respectively, and defined “unhealthy” breeds as those classified as most expensive with respect to veterinary care by at least three of the four companies. The opposite was done to identify “healthy” breeds (breeds classified in the category of lowest veterinary care expenses by at least three of the four companies). I identified 15 “unhealthy” and 11 “healthy” breeds. These breeds are presented in Table 1, together with the classification of each breed with respect to type of dog made by the international kennel club FCI (www.fci.be), Parker et al. (2004), and Wayne and Ostrander (2007), respectively. The number of individuals per pedigree is shown in Table 2. 20 Table 1. Unhealthy/healthy breeds were chosen from data from insurance companies. The type of dog is based on the nomenclature from the international kennel club (FCI). The final classification was based on analysis in the publications of Parker et al. (P. et al. 2004) and Wayne and Ostrander (W. and O. 2007). We have used the categories of W. and O., namely: Ancient breeds (A), Herding (H), Mastiff (M), Modern European (E), Mountain (X). In Paper II, only a certain type of bull terrier - the miniature bull terrier - was studied. Class Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Breed bull terrier bulldog bullmastiff dogo Argentino German boxer great Dane mastiff Neapolitan mastiff Rottweiler shar pei French bulldog Bernese mountain dog dobermann deer hound Irish wolfhound coton de Tuléar Hamilton hound Schiller hound Småland hound Finnish lapphund Finnish spitz Norrbottenspitz Norwegian buhund Norwegian elkhound, black Norwegian elkhound, grey Siberian husky Type of breed (FCI Breeds nomenclature) Bulltype terrier Molossioid breed Molossioid breed Molossioid breed Molossioid breed Molossioid breed Molossioid breed Molossioid breed Molossioid breed Molossioid breed Small Molossian type Mountain Dog Pinscher Sighthound Sighthound Companion and Toy dog Scenthound Scenthound Scenthound Spitz type Spitz type Spitz type Spitz type Spitz type Spitz type Spitz type 21 Classification P. et al. M M M M E M M A M M E H W. and O. M M M M H M X A M X E H E A E A Bulltype terriers are terriers that originally were used for fighting (Bull terriers and Staffordshire terriers). Molossers are solidly built, generally quite large dog breeds mostly used for guarding people or livestock. Mountain dogs are molossoid breeds but more of a farm dog. Pinschers (and schnauzers) are continental dogs of the type that in Great Britain are called terriers but unlike the terriers the pinschers (and schnauzers) were farm dogs. Sighthounds hunt primarily by speed and sight. Companion and Toy dogs are small in body size and are primarily used as companions. Scenthounds hunt primarily by scent. Table 2. The number of individuals in the pedigree for each of the 26 dog breeds included in Paper II. The type of breed is based on Federation Cynologique Internationale (FCI) Breeds nomenclature. Status Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Unhealthy Full name coton de Tuléar Hamilton hound Schiller hound Småland hound Finnish lapphund Finnish spitz Norrbottenspitz Norwegian buhund Norwegian elkhound, black Norwegian elkhound, grey Siberian husky Bull terrier Bulldog Bullmastiff dogo Argentino German boxer great Dane mastiff Neapolitan mastiff Rottweiler shar pei French bulldog Bernese mountain dog Dobermann pinscher deer hound Irish wolfhound No. in ped. 3563 46571 13660 7118 6465 15449 8176 4123 994 51552 15620 4870 5830 3749 1295 30972 15177 1678 1207 36054 2475 8933 20088 18108 1555 7502 22 The health problems occurring in the breeds classified as unhealthy have been noted by the Swedish Kennel Club (SKC). Attention to these health issues caused by exterior exaggerations has been noted for instance in the publication “Special Breed Specific Instructions (BSI) regarding exaggerations in pedigree dogs” for both the individual dog and the development of the breed as a whole. BSI is handed out to every judge at Swedish dog shows. The aim is to identify areas of risk and to prevent possible future problems. 10 of the 15 unhealthy breeds in this study are noted in the BSI, i.e.: Bull Terrier (and Miniature Bull Terrier), Bulldog, Bullmastiff, German Boxer, Great Dane, Mastiff, Neapolitan Mastiff, Shar Pei, French Bulldog, and Irish Wolfhound. The origins of the dog breed exteriors are explained by their original tasks, even though the interpretations of the breed standards do not always reflect their original task. The molossoid and bulltype breeds are typically heavy and solid. When these physical characteristics are exaggerated, the exterior becomes unhealthy. The pincher and sighthounds included in the study are very large in body size for their group of breeds. Typical molossoid breed diseases are shown in Table 3. Though molossoid breeds show common problems (they all have skin problems), it is unknown whether this caused by a common genetic background. To address the issue of possible temporal trends in average inbreeding and retention of founder genetic diversity, we analyzed levels of inbreeding and loss of founder genetic variation at three points in time including dogs alive at 31th of December, 1980, 1995, and 2010, respectively. The pedigrees of December 31, 2010, represent the full pedigree of each breed (Table 2). The number of individuals per full pedigree varied from 994 (Norwegian elkhound, black; Table 1) to 47 892 (Norwegian elkhound, grey). See further Appendix 2-5. 23 Table 3. Typical health problems of some of the breeds classified as unhealthy. Data were obtained from Breeds Specific Strategies available from the Swedish Kennel Club (http://www.skk.se/hundraser/ [in Swedish]). Breed type classification is based on Parker et al. 2004 (P et al) and Wayne and Ostrander 2007 (W & O); Mastiff (M) and Mountain (X). Breed P et al W&O Health problems immunological diseases (mainly skin diseases), patellaluxation, heart and kidney problems bull terrier M M bulldog M M weak contractions, HD1, a large number of skin diseases, eye problems, problems with circulation and breathing, epilepsy bullmastiff M M cancer (lymphoma), skin diseases, eye problems, ligament injuries, HD, ED2, aortic stenosis German boxer M M HD, osteoarthritis, PNP (kidney disease), heart problems, skin problems, epilepsy, Cryptorchidism, spondylosis, weak contractions mastiff M M ear and eye problems, obstetric complications, HD, ED, cruciate ligament injuries, gastric torsion/bloat stomach, skin problems Rottweiler M X HD, ED, epilepsi, thyroid diseases French bulldog M M respiratory problems, eye problems, ear infections/problems, allergies (including skin), patella dislocationtumors of the mouth/throat sarcoma lymphon, back pain, epilepsy, othematom, problems in the lower urinary tract Bernese mountain dog M X HD, ED, PNP (kidney disease), umbilical hernia, tumors, pyometra, cruciate ligament injuries 1 Hip dysplasia 2 Elbow dysplasia 24 Paper III: Genetic Effects of Wolf Hunting Paper III aimed to investigate if levels of inbreeding, kinship and retention of founder genetic variation in the Scandinavian wild wolf population were affected by the hunt performed in 2010 and to assess whether the Swedish wolf hunts in 2010 and 2011 were in line with national and international policy agreements (including agreements within the European Union [EU] of which Sweden is a part).The study is based on a studbook of the Swedish wild wolf population that has been generated by the Skandulv Research Project (http://skandulv.nina.no). The Swedish wolf population has been monitored closely since the establishment in the 1980s. Tracking data in combination with molecular genetic analysis of collected blood, hair, and other biological material including tissue from dead animals has resulted in an almost complete pedigree of the population that is maintained by the Skandulv Project (Liberg et al. 2005). We analyzed the genetic effects of the 2010 wolf hunt using the pedigree data from the Skandul Project as of November 2010 obtained from the Skandulv Project. We used the Population Management 2000 software (http://www.vortex9.org/pm2000.html) to compute inbreeding coefficients, mean kinship, to analyze founder contribution and loss of founder genetic variation. Paper III also relates wolf hunting and the genetic situation of the Swedish wolf population to existing international and national conservation policies, particularly the EU Habitats Directive (http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm), the UN Convention on Biological Diversity (www.cbd.int), and the Swedish national environmental goals (Swedish Government Bill 2004/05:150, Environmental Quality Objectives - A Shared Responsibility, adopted by the Swedish Parliament in November 2005). Paper IV: Swedish Native Dog Breeds In Paper IV, we described the rates of inbreeding and loss of genetic variation, measured in terms of founder alleles in 12 dog breeds originating in Sweden, including the 10 breeds identified as being of conservation concern. The pedigrees of nine of the 12 breeds date back to the 1960s or before. Four of the breeds were recognized as pedigree breeds relatively late by the Swedish Kennel Club – the Danish Swedish Farmdog (1987; Table 1), the Gotland hound (1990), the Swedish white elkhound (1993), and the Hällefors hound (2000). The pedigrees of these breeds date back to the 1970s for Hällefors hound and to the 1980s for Danish Swedish farmdog, Gotland hound, and Swedish white elkhound. To monitor possible temporal trends, we analyzed levels of inbreeding and loss of founder genetic variation (see below) at five points in time including dogs alive on December 31 in the years of 1980, 1990, 2000, 2006, 2012, respectively. To determine the number of live dogs at the three points in time, we had to make assumptions about the longevity of dogs and we only considered dogs with a Swedish registration number as being alive. Paper V: Supportive Release from a Zoo Population This paper describes the potential of a zoo population, bred for conservation purposes, to provide genetic support for the genetically weak wild Scandinavian wolf population. The pedigree of the wild Scandinavian wolf population is maintained by the Skandulv Project. We obtained studbook data as of January 2012, and this pedigree included a total of 740 individuals, 376 of which were 25 classified as being alive. This classification was based on the assumption that identified individuals that have not yet been documented as dead are alive unless they are unreasonably old and/or have not been seen for many years. The pedigree of the captive population is maintained by Mats Amundin, a co-author who maintains the official studbook keeper within the framework of the Swedish Association of Zoos and Aquaria. We used pedigree records per January 2012 comprising a 132 total of 1229 individuals out of which 145 were alive at that time. We used the Population Management x software to obtain the quantities assessed, and mPed to convert the pedigree of the wild wolf population into PMx input format (see Paper 1 above). Input files to PMx for the captive population pedigree were generated through PopLink 2.3 (Faust et al. 2012). PopLink is a computer program designed for management and analysis of studbook databases. (Zoo studbooks include information on each individual in a population, including pedigrees, and dates of birth, death and transfers between institutions. The studbook traces the entire history of each individual in a population; these collective histories describe the population's genetic and demographic identity.) PopLink can help maintain, analyse and export data for a captive population which are relevant to their genetic and demographic management. PopLink imports a studbook from SPARKS, the current software used to manage studbook datasets in Zoos. (Faust et al. 2012.) RESULTS In this section, the results are presented by paper. mPed (Paper I) To simplify the creation of new ped-files from databases which were not originally constructed for PMx, we developed a converter called mPed (make ped file) in the C programming language. The converter we developed (Paper I), proved to be useful in transforming studbook data into a pedigree file (a .ped file) which can be used by Population Manager x. We had several problems with some dog pedigrees obtained, including too extensive data for PMx (Table 2), which typically have an upper limit of about 20,000 individuals, but also depending on the complexity of the pedigree. mPed was constructed to reduce the file by deleting dead individuals which have no descendants in the living population. Also, data on date of birth are sometimes missing in the SKC studbooks, and mPed can help estimate birthdates in such cases. Similarly, the SKC databases do not include dates of death, but mPed can provide estimated dates. There are also other ways in which mPed can modify pedigrees, and in addition to providing input files for PMx, mPed can produce input data to the Vortex Population Viability Analyses Software simulation program (www.vortex9.org). mPed was successfully used to provide pedigree files used for Papers II and III. 26 Inbreeding and Health in Dogs (Paper II) We found extensive loss of genetic variation and moderate rates of inbreeding in all the 26 breeds examined, but no strong indication of a difference in these parameters between healthy and unhealthy breeds (Table 4). Thus, we conclude that recent breeding history with respect to inbreeding levels and maintenance of founder alleles does not appear to be a main cause of poor health in some dog breeds. Table 4. Summary of results from Paper II regarding healthy and unhealthy breeds at the three different points of time. Mean values, for all breeds, of founder, founder genome equivalents (fge), mean kinship (MK) and inbreeding (F). Health status Healthy Healthy Healthy Unhealthy Unhealthy Unhealthy Year 1980 1995 2010 1980 1995 2010 Founders 180 137 300 147 256 624 fgeLacy1995 12.6 9.9 12.7 11.8 12.0 22.4 MK 0.05 0.06 0.05 0.07 0.05 0.03 F 0.04 0.05 0.04 0.04 0.04 0.02 Appendices 2-3 show an example of distribution of F for a healthy and an unhealthy breed and Appendices 4-5 show MK for the same breeds. MK typically varies less than F when the mean kinship is the theoretical F for the next generation. Figure 3 includes a figure for inbreeding level and one for genetic variation for all breeds during the years, grouped in “unhealthy” and “healthy” breeds. The inbreeding Figure (3a) illustrates the lack of a linear trend in inbreeding. 27 Figure 3. Left (a) - Mean inbreeding for breeds, classified as healthy (light) and unhealthy (dark). The classification of “healthy” or “unhealthy” was based on statistics on extent of veterinary care obtained from Sweden’s four largest insurance companies for pets. Right (b) The Loss of Genetic Variation measured as Founder Genome Equivalents (fge) per Founder for each breed, grouped as unhealthy breeds (dark) and healthy breeds (light). Genetic Effects of Hunting the Wild Swedish Wolf Population (Paper III) Prior to the 2010 hunt, the wild Swedish wolf population consisted of 209 individuals. Fourteen of these wolves were protected from hunting because they represented the territories of the two males that immigrated into Sweden in 2007/2008. This implies that 195 animals were subjected to hunting. The mean inbreeding coefficients among the 195 animals was F=0.29. Among the 28 wolves which were killed, the average inbreeding was F=0.26. This was significantly less than what would be expected if the 28 animals killed had been selected at random. Average F was at 0.27 after the 2010 hunt. If pedigree data had been used to identify the most inbred individuals, average F could have been reduced to 0.25. However, reducing the average level of inbreeding 28 should not be the only objective of genetic management in a case like this; it is equally important to maintain as much as possible of the remaining allelic diversity from the five founders of the population. Maximizing the retention of their alleles includes reducing further loss of genetic variation and striving to spread the genes of the two most recent immigrant males to make their genetic contribution similar to that of the three original founders. During the 2010 hunt, offspring from the two immigrant males were protected. Thus, the genetic contribution from these founders was not reduced, but the proportion of lost variation measured as founder allele survival as calculated from the pedigree increased from 18% to 20% for the two original founders and from 4% to 5% for the male which immigrated in 1990. Inbreeding and Genetic Variation in Dog Breeds of Conservation Concern (Paper IV) Inbreeding is relatively extensive in these breeds with the average F across all breeds exceeding that of first cousin mating in both 2006 and 2012, and for 8 of the 12 breeds the average F of the living population exceeds 0.0625 at one or more points over time. Similarly, the ranges of F within breeds show conspicuously high inbreeding coefficients for at least individual dogs within all breeds. There is no correlation between average F and population size and there is no correlation between F and the number of founders at any of the points in time, indicating that, contrary to what would be expected; number of founders or population size does not explain inbreeding levels. MK is used in conservation breeding to choose breeding animals; by prioritizing low MK, individual inbreeding and loss of founder genetic variation is minimized. Average and range of MKs among the Swedish dog breeds show that such prioritization has typically not been carried out for these breeds. In many cases, average MK at one point in time is lower than average F for the next time point. For instance, average F for the Swedish lapphund is consistently larger than the average MK for the prior time point. In contrast, for the Swedish white elkhound, the Norrbotten spitz, the Danish Swedish farmdog, and the Gotland hound, the average F is below the MK of the preceding time step, indicating that dogs chosen for breeding have had lower MK than the average among living dogs. Comparing ranges of MK to ranges of F, however, indicates that for none of these dogs, breeding animals are consistently chosen to primarily reduce inbreeding and retain genetic variation. Genetic variation is measured in relation to population founders as the proportion of founder alleles that remain among living animals at separate points in time, and the results show that the loss of such variation is extensive. Similar results are observed when retention of founder alleles is quantified as founder genome equivalents. The result indicate that current gene pools of separate Swedish traditional dog breeds represents variation of less than 20 unrelated founders, and in many cases less than 10 unrelated founders. 29 Supportive Release from a Zoo Population (Paper V) We combined the pedigrees of the captive and wild populations to investigate the potential for genetic support from the zoo to the wild. The joint population has 15 founders and 21 of their alleles remain, fgeLacy1995= 3.2 and fgeLacy1989=4.8. Thus, founder genetic variation of the wild wolf population can be almost doubled using genetic support from the zoo. We computed target values for genetic contribution of separate founders taking their retention of genetic variation into account, and found that for maximum founder allele retention, the zoo founders should contribute just below 50 percent to a joint population. We investigated how much of the genetic variation of the zoo population would remain in five or ten hypothetical offspring from each of eight established captive breeding pairs existing at the time of our data collection. For separate PMx runs, we assumed that only hypothetical offspring (5 or 10) from a particular pair was alive. The amount of remaining founder genetic variation is consistent and not much affected by the number of offspring (5 or 10). The remaining number of founder alleles is around 3.5, representing 30 percent of current levels of variation . Further, if all eight pairs produced either 3 or 5 offspring, resulting in 24 or 40 hypothetical pups and assuming only these pups remain alive, the number of retained founder alleles is 9.9 or 10.3, fgeLacy1995 is 3.0 or 3.1, and fgeLacy1989 is 4.6 or 4.7, respectively. Thus, both 3 and 5 pups per pair retain a large proportion of the remaining genetic variation of the zoo population. Founder allele retention can be computed for a large number of hypothetical combinations of reproducing pairs. Our limited analysis indicates that a relatively large proportion of the founder allelic gene pool of the captive population can be maintained by a limited part of the population. DISCUSSION AND CONCLUSIONS Even though pedigree information can be used to monitor and control inbreeding in a population, molecular data can also be used. A study shows that the heterogeneity found when estimating the alleles identical by descent between pairs of dogs ranged from 0 to 0.60 within the same breed (Pertoldi, 2013). The 0.6 value is much higher than common inbreeding levels (and this is probably due to early inbreeding in the origin of breeds). Despite this, pedigree analysis is more cost-effective when investigating recent inbreeding in large dog populations. In this section, I will briefly go through the conclusions for the different papers followed by some discussion. Developing a converter that can transform a studbook from a text file (.txt), to a input file for the PMx pedigree analysis software (.ped; Paper I): Me and my colleagues were able to develop the mPed converter program which allows for a broad range of pedigrees outside the zoo community 30 to be easily analysed using already available software specializing in conservation genetic management. This includes domestic populations such as rare breeds subjected to conservation breeding programs in Sweden (e.g. Wennerström 2009) and wild populations for which pedigrees are becoming available for an increasing number of populations (e.g. Naish and Hard 2008). We then used mPed to address conservation genetic issues using domestic dog (Paper II and IV) pedigrees and the pedigree of the wild Swedish wolf population (Paper III and V), the estimated inbreeding, mean kinship and loss of founder-genetic variation in these populations. Is there a difference with respect to inbreeding levels and retention of genetic variability in healthy versus unhealthy dog breeds that could imply that recent genetic management affects health status? (Paper II.) We found no difference regarding inbreeding levels or retention of genetic variation in dog breeds which are classified as unhealthy versus those classified as healthy. Thus, inbreeding and loss of variation over the last few decades do not seem to be associated with the health problems in many dog breeds. It is possible that the initial inbreeding and founder effects associated with the creation of separate dog breeds are the major causes of these health issues. The fact that the same type of defects occur in closely related breeds supports this idea. The temporal tendency of reduced inbreeding levels and an increasing number of founders indicate that these Swedish dog populations are not closed, but dogs from other pedigrees of the same breeds in other countries are added to the majority of these populations. Firstly, inbreeding and mean kinship coefficients may be underestimated in cases where imported dogs have ancestors in the Swedish population, but further back than three generations (which is what is registered). Imported dogs may be regarded as unrelated to the Swedish population while, in fact, they are not. Secondly, founder statistics could be affected; if an imported dog does not have Swedish ancestors in its pedigree three generations back, up to eight new founders will be added to the Swedish population of the breed. The exact number depends on potential relationships among the dogs of the three generations back pedigree of the imported dog. If one dog occurs in several places in this pedigree, the number of added founders will be less than eight. The need for international collaboration on dog studbook data is being increasingly recognized (Wilson and Wade 2012, Fikse et al 2013). Pooling of pedigree and phenotype data from different countries may improve the accuracy of derived indicators of both genetic diversity and genetic merit of traits of interest (Fikse et al 2013). There is many interesting questions that could be answered with sush an international database, one I would like to investigate is if there is any difference regarding dogs that are bred for work or show (mesuered by championships, see Appendix 7. Even when the studbooks are linked together in an international database, it would be interesting to estimate founder relationships (Haig et al. 1994) as most dog breeds are supposed to be created from only a few breeding animals. What are the rates of inbreeding and loss of genetic variation measured in terms of founder alleles in 12 dog breeds originating in Sweden, including the 10 breeds identified as being of conservation concern? (Paper IV.) I found average inbreeding coefficients to more than double (from F=0.03 to 0.07). Retention of founder alleles is quantified as founder genome equivalents. The range of fgeL89 and fgeL95 among live dogs in 2012 is 5.0-18.2 and 3.3-11.5, respectively. 31 The averages over all breeds are fgeL89=13.0 and fgeL95=7.1, respectively, indicating that current gene pools of separate Swedish traditional dog breeds represents variation of less than 20 unrelated founders, and in many cases less than 10 unrelated founders. Were levels of inbreeding, kinship and retention of founder genetic variation in the Scandinavian wild wolf population affected by the hunt in 2010? (Paper III.) With respect to the wolf pedigree, the 2010 hunt resulted in 28 animals being killed, and they were on average less inbred than expected from a random sample among the 195 wolves subjected to the hunt. On average two percent of the remaining genetic variation from the original Nyskoga founders (G1-83, D85-01; Figure 2) were lost during the hunt and one percent of the remaining variation from the Gillhov male founder (G1-91; Figure 2). We conclude that the official hunts decided by the Swedish Government have not contributed to the genetic health of the population. Furthermore, the hunt was not carried out in a manner that agrees with adaptive management because available pedigree information was not used in the best possible way. For example, a common conservation genetic recommendation when genetically managing populations with a known pedigree is to identify and remove individuals with the highest mean kinship (Lacy 1995). Relating the genetic situation of the Swedish wild wolf population and the hunt to international and national conservation policies, we conclude that hunting to reduce wolf numbers in Sweden is currently not in line with national and EU policy agreements and will make it less likely that genetically based FCS criteria are achieved for this species. To reach FCS for the wolf in Sweden, we suggest that the following criteria need to be met: i) a well-connected, large, subdivided wolf population across Scandinavia, Finland and the Russian Karelia-Kola region must be reestablished, ii) a genetically effective population size (Ne) with a minimum range of Ne=500-1000, iii) Sweden should harbour a part of this total population that substantially contributes to the total Ne, and which is large enough not to be classified as threatened genetically or according to IUCN Red List criteria, and, iv) average inbreeding levels in the Swedish population of <0.1. What is the potential of a zoo population of wolves, bred for conservation purposes, to provide genetic support to the weak wild Scandinavian wolf population? (Paper V.) We conclude that the zoo wolf population held in northern European zoos can contribute genetically to the wild Swedish wolf population. Genetic variation measured as founder alleles can be almost doubled. Relatively few zoo wolves are needed to capture the remaining genetic variation of that population – 3-5 offspring from each of the eight established breeding pairs would retain 90 percent of the remaining founder alleles, and over 95 percent of the remaining genetic variation measured as founder genome equivalents (Lacy 1989, 1995). Theoretically, 24-40 wolf pups could therefore retain the genetic variation of the captive population. In practice, however, the number of wolves needed to transfer and establish this variation into the wild will depend on the survival and reproduction of the released wolves and their descendants. The genetic relationship between the zoo and the wild populations and current levels of close relationships precludes a reduction of inbreeding below the management target of 0.1 (Hansen et al 2011). Thus, release of genes from zoos cannot fully resolve the genetic problems of the wild population. 32 ACKNOWLEDGEMENTS Först och främst – tack till min handledare Linda Laikre för din enorma insats för att få till den här avhandlingen, för att du gav mig chansen, för den här tiden och för allt jag har lärt mig av och tack vare dig och, inte minst, tack för alla skratt. Stort tack också till min biträdande handledare Nisse Ryman för din konstruktiva kritik, för allt du kommer på när du ber om att få vara ifred och för att du är så inspirerande. Tack till Hasse Temrin och Bengt Karlsson, i min uppföljningsgrupp samt Birgitta Tullberg som bistod när jag, eller om det var avhandlingen, eller både och kanske, krisade lite. Tack också till Hasse för gott samarbete och roliga lärorika stunden på och kring kursen ”Hundens evolution, genetik och beteende, orienteringskurs, 7.5 hp” och för hundsnack i största allmänhet. Tack till mina medförfattare: Fred Allendorf (University of Montana); big thanks, Sven Jakobsson (Tovetorps forskningsstation), Mats Amundin (Kolmårdens djurpark) and Ingvar Ståhl. Ingvar, avdelningens IT-konsult och programmerare, har bidragit mycket till denna avhandling. Stort tack också till Thomas Wink, Svenska kennelklubbens IT-avdelning, för data och support. Tack till alla, nuvarnade och tidigare kollegor på avdelningen för populationsgenetik: Karin Tahvanainen att Fjant är lugn på labbet med dig men inte någon annanstans på kontoret talar sitt tydliga språk. Lovisa Wennerström – jag har sagt det förut, men, på riktigt, jag hade blivit galnare utan dig. Du är och har varit ovärderlig. Lena Larsson, Anna Palmé och Johan Charlier: tack för att ni ”skolade in mig” som doktorand och för att jag fått återkomma med frågor även sedan ni slutat på avdelningen. Givetvis också tack för social samvaro, i fält i Jämtland såväl som på Stockholms krogar. Tidigare examensstuderande på avdelningen har också bidragit till den här avhandlingen. Tack för hjälpen och trevligt sällskap Peter Guban, Rebecka Salamon och Anastasia Andersson som numera är doktorand på avdelningen. Thanks to the new group in the division of population genetics – the butterfly people led by Chris Wheat. Alyssa Woronik, Naomi Keehnen, Peter Pruisscher, Ramprasad Neethiraj and Jason Hill, thanks for a breath of fresh air (and good beers). Thank you to all, present and former, colleagues at the Department of Zoology. I have had a great time. (And thanks to Facebook for keeping me in touch with so many of you.) Tack, James Dickson, för tio år med en intelligent över-akademisk snubbe med skruvad humor. Tack, Peppe Tapper, som hjälpte mig med taktiken inför floristiken, trots att jag ringde mitt under en fotbollslandskamp (utan floristik ingen examen och ingen doktorandtjänst). Tack, Petra Nilsson Lindström, som tidigt tyckte att det var ”självklart” att jag skulle doktorera och som har varit ett stöd genom hela processen. Tack, Anders Nyholm, för ego-livscoaching när jag behövde det som bäst. 33 Tack, styrelsekollegor i Solna agilityklubb och Ms Xlntdog Veronica Bache för att att ni hjälpt mig få till bra agilityträning – det roligaste jag vet och absolut nödvändigt för att jag ska fungera. Tack också till Mrs Klickerklok Fanny Gott för att du så ofta är tillgänglig för att reda ut diverse agilityteoretiska frågetecken (utan dessa utredningar hade jag haft väldigt svårt att fokusera på någon avhandling). Tack, Mari Edman, för alla gånger du hjälpt mig få ordning på orden och allt annat. Tack, Helene Wallskär för att du funnits för mig och för att du är en sådan smart och kul prick. Tack, Sussie Strandberg och Annica Vestman – riktiga vänner är sådana som vet hur illa det är men finns kvar ändå, eller kanske just därför. Tack, farmor för att du lärde mig om skogen och hur man ska få svampar att anfalla en och sådant. Och tack för att du är så stolt över mig. Tack, morfar för att du vågat vägra Jante och grattis till hedersdoktorstiteln i medicin. Jag vill bara påpeka att jag skrivit en avhandling för att få min titel. Tack, mamma och pappa för att ni såg till att jag pluggade. Det blev ju riktigt kul, till slut. Till alla mina syskon: Micke, Magnus, Marcus och Moa - innan någon av er påstår att att doktorera inte är ett arbete nästa gång så vill jag se era avhandlingar. Puss! Tack också för de visdomsord vi kommit fram till här i livet: Låt inte andras solsken tränga igenom dina mörka moln. When nothing goes right – go to sleep! I vanliga fall skulle jag tycka att det var rätt så töntigt att tacka sina hundar men i det här fallet känns det berättigat. För det finns naturligtvis ingen som påverkat mitt hundintresse så starkt som just mina hundar och det var genom att lära känna hunden som art som mitt allmänna djurintresse väcktes. I hundhimlen: Cosy (flat), Smulan (cavalier), Sasha (cavalier) och Jojje (BC). Mina nuvarande hundar har i allra högsta grad bidragit positivt till mitt välbefinnande och därmed till mitt arbete som doktorand: Råttan (kelpie, född 2001) har bland annat varit en riktig hjälte i fält och hon stökar till livet på ett härligt vis i största allmänhet. Rasken (Råttans son, född 2006) är ett riktigt agilitygeni vilket givit mig obeskrivlig glädje. Fjant (BC, född 2013) har kanske mest ”bidragit” till denna avhandling som dokumentförstörare och elektroniksaboterare men han är väldigt söt. TACK! 34 REFERENCES Ballou, J.D., Gilpin, M., Foose, T.J. (eds). (1995). Population Management for Survival and Recovery. Analytical methods and strategies in small population conservation. Columbia Press. Ballou, J.D., Lacy, R.C., Pollak, J.P. (2011). PMx: Software for Demographic and Genetic Analysis and Management of Pedigreed Populations (Version 1.0). Chicago Zoological Society, Brookfield, Illinois. http://www.vortex9.org/PMx.html. Balloux, F., Amos, W., Coulson, T. (2004). Does heterozygosity estimate inbreeding in real populations? Molecular Ecology 13: 3021–3031. Beilharz, R. (2007). Evolutionary Aspects on Breeding of Working Dogs. Pages 166-181 in P. Jensen, editor. The Behavioral Biology of Dogs. Cabi Publishing, Oxfordshire. Calboli, F.C.F., Sampson, J., Fretwell, N., Balding, D. J. (2008). Population Structure and Inbreeding from Pedigree Analysis of Purebred Dogs. Genetics 179: 593-601. Chesser, R. K., C. Reuterwall, and N. Ryman. (1982). Genetic differentiation of scandinavian moose alces-alces populations over short geographical distances. Oikos 39:125-130. Crow, J. F., and Kimura, M. (1970). An introduction to population genetics theory. Times Printers Sdn, Singapore. Ebenhard, T. and Höggren, M. (red; 1999) Livskraftiga rovdjursstammar. CBM:s Rovdjursseminarium 12 oktober 1998. CBM:s Skriftserie 1, Centrum för Biologisk Mångfald, Uppsala. FAO (2007). Report of the International Technical Conference on Animal Genetic Resources for Food and Agriculture. Interlaken, Switzerland, 3 – 7 September 2007. FAO – Food and Agriculture Organization of the United Nations, Rome, Italy. Faust, L.J., Bergstrom, Y.M., Thompson, S.D., Bier, L., (2012). PopLink Version 2.3 Lincoln Park Zoo, Chicago, IL. Fikse, W.F., Malm, S., Lewis, T.W. (2013). Opportunities for international collaboration in dog breeding from the sharing of pedigree and health data. The Veterinary Journal 197:873-875. Frankham, R., Ballou, J.D., Briscoe, D.A. (2004). A Primer of Conservation Genetics. University Press, Cambridge. Franklin, I. R. (1980). Evolutionary change in small populations. Pages 135-135-150 in M.E. Soule and B.A. Wilcox, editors. Conservation biology - an evolutionary-ecological perspective. Sinauer Associates, Sunderland, Massachusetts. Geyer, C.J., Thompson, E.A., Ryder, O.A. (1989). Gene survival in the Asian wild horse (Equusprezwalskii). 2. Gene survival in the whole population, in subgroups, and through history. Zoo Biology 8:313-329. 35 Gyllensten, U., and N. Ryman. (1985). Bevarande av genetiska resurser – En kunskapsöversikt med förslag till åtgärds- och forskningsprogram. 3004. Statens naturvårdsverk, Solna, Sweden. Möller-Hansen, M., Wesley Andersen, L., Aspi, J., Fredrickson, R. (2011). ”Minst 3 000 djur behövs för att vargen ska överleva”. Dagens Nyheter 2011-02-08 [http://www.dn.se/debatt/minst-3-000-djur-behovs-for-att-vargen-ska-overleva/] Haig, S.M., Ballou, J.D., Casna, N.J. (1994) Identification of kin structure among Guam rail founders: a comparison of pedigrees and DNA profiles. Molecular Ecology 3: 109-119. Hagenblad, J., Olsson, M., Parker, H.G., Ostrander, E.A., Ellegren, H. (2009). Blackwell Publishing Ltd Population genomics of the inbred Scandinavian wolf. Molecular Ecology 18:1341–1351. Hall, S. J. G., and M. E. Wallace. 1996. Canine epilepsy: A genetic counselling programme for keeshonds. The Veterinary record 138:358-360. Hansen, M. M., L. W. Andersen, J. Aspi, and R. Fredrickson. 2011. Evaluation of the conservation genetic basis of management of grey wolves in Sweden. Swedish large carnivore inquiry. Publisher: Statens Offentliga Utredningar (The Swedish Government’s Official Investigations), SOU 2011:37. Available at: http://www.artdata.slu.se/filer/Evaluation-of-theconservation-genetic-basis-of-management-of-grey-wolves-in-Sweden.pdf (accessed January 2014). Johansson, I., Rendle, J. (1968). Genetics and Animal Breeding. Oliver and Boyd, London, UK. Joly, T., Neto, V. & Salvetti, P. (2012). Cryopreservation of genetic diversity in rabbit species (Oryctolagus cuniculus). In Current Frontiers in Cryopreservation: 179-186. Katkov, I.I. (Ed.). InTech, Open Access Publisher (www.intech.com). Klütsch, C., Seppälä, E.H., Fall, T., Uhlén, M., Hedhammar, Å., Lohi, H., Savolainen, P. (2009). Regional occurrence, high frequency but low diversity of mitochondrial DNA haplogroup d1 suggests a recent dog-wolf hybridization in Scandinavia. University Press, Cambridge. Animal Genetics 42: 100-103. Koch, M., Hadfield, J.D., Sefc, K. M. Sturmbauer, C. (2008). Pedigree reconstruction in wild cichlid fish populations. Molecular Ecology 17:4500–4511. Lacy, R.C. (1989). Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biology 8:111-124. Lacy, R. (1995). Clarification of genetic terms and their use in the management of captive populations. Zoo Biology 14:565-578. Lacy R.C., Ballou J.D., Pollak J.P. (2011). PMx: software package for demographic and geneticanalysis and management of pedigreed populations. Methods in Ecology and Evolution 3:433–437. Laikre, L. (1999). Conservation genetics of Nordic carnivores: lessons from zoos. Hereditas 130:203-216. 36 Laikre, L., and N. Ryman. (1991). Inbreeding depression in a captive wolf (Canis lupus) population. Conservation Biology 5:33–40. Laikre, L., N. Ryman, and E. A. Thompson. (1993). Hereditary blindness in a captive wolf (Canis lupus) population: frequency reduction of a deleterious allele in relation to gene conservation. Conservation Biology 7:592–601. Lannek, J. (2007). Delmål för husdjursgenetiska resurser åren 2010 till 2020. Underlagsrapport inför den fördjupade utvärderingen av miljökvalitetsmålarbetet 2009. Jordbruksverket, Avel- och djurhållningsenheten 2007-04-17. [online] <http://www.sjv.se/download/18.b1bed21121e26684180006145/rapport+070511> Jönköping, Sverige, Juni 2008 [2008-06-16]. Leroy G. (2011). Genetic diversity, inbreeding and breeding practices in dogs: Results from pedigree analyses. Vet. J., 189, 177–182. Liberg, O., Andrén, H. Pedersen, C.-H., Sand, H., Sejberg, D., Wabakken, P., Åkesson, M., Bensch, S. (2005). Severe inbreeding depression in a wild wolf Canis lupus population. Biology Letters 1:17-20. Liberg, O., Sand, H. (2009). Measures to strengthen the genetic situation of the Swedish wolf population. Immigration history, demographics, policy options and international experience of the transport of wolves. Report to the Swedish Environmental Protection Agency, included in Appendix 1 of the Swedish Environmental Protection Agency´s report to the Swedish Government no: Dnr 429-8585-08 Nv. Swedish Environmental Protection Agency, Stockholm, Sweden (in Swedish). MacCluer, J.W., VandeBerg, J.L., Read, B., Ryder, O.A. (1986). Pedigree analysis by computersimulation. Zoo Biology 5:147-160. Naish, K.A., Hard, J.J. (2008). Bridging the gap between the genotype and the phenotype: linking genetic variation, selection and adaptation in fishes. Fish and fisheries 9:396-422. Olafsdottir, G.A., Kristjansson, T. (2008). Correlated pedigree and molecular estimates of inbreeding and their ability to detect inbreeding depression in the Icelandic sheepdog, a recently bottlenecked population of domestic dogs. Conservation Genetics 9(6). Parker, H.G., Kim, L.V., Sutter, N.B., Carlson, S., Lorentzen, T.D., Malek, T.B., Johnson, G.S., DeFrance, H.B., Ostrander, E.A., Kruglyak, L. (2004). Genetic Structure of the Purebred Domestic Dog. Science 304:1160-1164. Pertoldi, C. Kristensen, T.N., Loeschcke, V., Berg, P., Praebel, A., Stronen, A.V., Proschowsky, H.F., Fredholm, M. (2013). Characterization of the genetic profile of five Danish dog breeds. Journal of Animal Science 91:5122-5127. Ripple, R.W., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D., Wirsing, A.J. (2014) Status and Ecological Effects of the World’s Largest Carnivores. Science 343:151162. 37 Ruane, J. (2000). A framework for prioritizing domestic animal breeds for conservation purposes at the national level: a Norwegian case study. Conservation Biology 14:1385-1393. Rodríguez, R., Ramírez, O., Valdiosera, C.E., García, N., Alda, F., Madurell-Malaperia, J., Marmi, J., Doadrio, I., Willerslev, E., Götherström, A., Arsuaga, J.L., Thomas, M.G., LaluezaFox, C., Dahlén, L. (2011). 50,000 years of genetic uniformity in the critically endangered Iberian lynx. Molecular Ecology. (18):3785-3795. Räikkönen, J., Bignert, A., Mortensen, P., Fernholm, B. (2006). Congenital defects in a highly inbred wild wolf population (Canis lupus). Mammalian Biology 71: 65-73. Savolainen, P. (2007). Domestication of Dogs. Pages 21-37 in P. Jensen, editor. The Behavioural Biology of Dogs. 1st edition. Cromwell Press, UK. Savolainen, P., Y. Zhang, J. Luo, J. Lundeberg, and T. Leitner. (2002). Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610-1613. Schonewald-Cox, C. M., S. M. Chambers, B. MacBryde, and L. Thomas. (1983). Genetics and conservation. The Benjamin/Cummings publishing company, Melno Park, California. Stephens, T.D. & Splan, R.K. (2013). Population history and genetic variability of the American Shire horse. Animal Genetic Resources, 52: 31–38. Sundqvist, A., Björnerfeldt, S., Leonard, J.A., Hailer, F., Hedhammar, Å. Ellegren, H., Vila, C. (2006). Unequal contribution of sexes in the origin of dog breeds. Genetics 172:1121-1128. Swedish Government. (2009). Regeringens proposition 2008/09:210. En ny rovdjursförvaltning. (Swedish Government bill 2008/09:2010. A new large carnivore management plan (In Swedish). 72 pp. Teinberg, R., Kalamees, K. & Kallaste, A. (1995). Native cattle and horse breeds in Estonia. Animal Genetic Resources 16: 65-70. Ubbink, G. J., van de Broek, H.A.W., Hazewinkel, H.A.W.K., Rothuizen, J. (1998). Risk estimates for dichotomous genetic disease traits based on a cohort study of relatedness in purebred dog populations. The Veterinary Record 142(13). Vilà, C., Leonard, J.A. (2007). Origin of Dog Breed Diversity. Pages 38-58 in P. Jensen, editor. The Behavioural Biology of Dogs. 1st edition. Cromwell Press, UK. Vilá, C., Maldonado, J.E., Wayne, R.K. (1999). Phylogenetic relationships, evolution, and genetic diversity of the domestic dog. The American Genetic Association 90:71-77. Vilà, C., Walker, C., Sundqvist, A.-K., Flagstad, O., Andersone, Z., Casulli, A., Kojola, I., Valdmann, H., Halverson, J. Ellegren, H. (2003). Combined use of maternal, paternal and biparental genetic markers for the identification of wolf-dog hybrids. Heredity 90:17-24. Wayne, R.K., Ostrander, E.A. (2007). Lessons learned from the dog genome. Trends in genetics, 23:557 – 567. 38 Wilson, B.J., Wade, C.M. (2012). Empowering international canine inherited disorder management. Mammalian Genome (2012) 23:195–202 Wennerström, L. (2009). Bevarandegenetisk status hos gotlandskanin – en svensk lantras. Examensarbete, Avdelningen för populationsgenetik, Zoologiska Institutionen, Stockholms universitet. Yeh, C.Y., Goldstein, O., Kukekova, A.V., Holley, D., Knollinger, A.M., Huson, H.J., PearceKelling, S.E., Acland, G.M., Komáromy, A.M. (2013). Genomic deletion of CNGB3 is identical by descent in multiple canine breeds and causes achromatopsia. BMC Genet 14:27-38. Åkesson, M., Bensch, S. (2010). Undersökning rörande flytt och jakt på varg; delredovisning från Leverantör 4 på uppdrag av Naturvårdsverket (dnr 235-3697-10). (Investigation concerning migration and hunting of wolves; interim report from Supplier 4 for the Environmental Protection Agency ref no 235-3697-10.), Swedish Environmental Protection Agency, Stockholm, Sweden (in Swedish). Some text in this thesis is reused from my doktoranduppsats and licentiate thesis: Jansson, M. (2009). Conservation genetic management of domestic animals with particular focus on the dog (Canis familiaris). Doktoranduppsats, 2009:3, Populationsgenetik, Zoologiska instititutionen, Stockholms universitet. Jansson, M. (2012). Assessing inbreeding and loss of genetic variation in Canids, domestic dog (Canis familiaris) and wolf (Canis lupus), using pedigree data. Licentiatavhandling 2012:3, Populationsgenetik, Zoologiska instititutionen, Stockholms universitet. 39 APPENDIX 1 – CONSERVATION GENETIC CONCEPTS IN PEDIGREE ANALYZIS Below is a brief description of some common concepts and functions applied in conservation genetic pedigree analyses that were used in this thesis. Founder A founder is an individual at “the top” of the pedigree that is expected to be unrelated to all other founders and to all other individuals in the pedigree except for its descendants. As applied in the PMx software only individuals that have living descendants in the population are considered to be founders. Mean kinship (MK) The MK is the mean kinship coefficient between one individual and all living animals, including the individual itself, in the population. An individual that has an unknown (UNK) parent is considered haploid and has kinship one (1) with itself. As a consequence an individual that has several UNK in its studbook might have MK higher than one. Founder genome equivalents (fge, Lacy 1989) The fge is the number of founders that the living population of today corresponds to. fge = 1 / ∑(pi2/ri) pi = the proportion of the genes in the living population given by a founder (representation) ri = (retention) proportion of founder i:s alleles represented in descendants in the living population Examples, exploring the fge when two founders mate and have one offspring: p=0.5 r= 0.5 fge = 1/(0.25/0.5)+(0.25/0.5) = 1 Founder genome equivalents (fge, Lacy 1995) In the 1989 paper Lacy states that fge is “that number of equally contributing founders with no random loss of founder alleles that would be expected to produce the same genetic diversity as in the population under study”. fge is depending on the source population though. It is the number of founders drawn from a source population containing the same amount of genetic variation as the population we study. While gene diversity (GD; expected heterozygosity), based on MK (GD = 1 – mean MK), is a more precise way to calculate the quantity of loss of genetic variation Lacy (1995) changed the formula to (subscripts denote generation): fge = 0.5 / (1-(GDt / GD0 )) 40 Inbreeding coefficient The probability that two alleles in a certain locus are ”identical by descent” (equivalent with the kinship between the individuals parents). Fi = Σ 0.5n-1 (1+FA) Fi = inbreeding coefficient for the individual i FA = inbreeding coefficient for an common ancestor for the individuals parents n = the number of gene transmissions from parents to offspring Over generations Over generations is the mean number of generations from founders to living individuals. Example: A set of parents with two offspring, all four still alive, gives a mean generation of 0.5 between founders and living descendants with the setting “include founders”. If using the default setting (not to include founders) gives mean generation, 1. Illustration: Including founders: A and B are founders and are in thus 0 generations from founders. C and D are 1 generation from founders. (0+0+1+1)/4=0.5 Default setting in PMx (not including founders): C and D gives (1+1)/2=1 One more example (founders included): If A and C in the pedigree have one offspring the offspring will be 1.5 ((1+2)/2) generations from founders. The mean number of generation will then be (0+0+1+1+1.5)/5=0.7. Unknown parents in relation to percent known. Percent known = (known share of mothers pedigree + known share of fathers pedigree) /2 Example: please turn page over 41 ID 1 2 3 4 5 6 7 8 9 10 DAM WILD WILD 1 1 3 3 6 6 8 8 SIRE WILD WILD 2 UNK 4 5 4 7 5 9 Mean: % KNOWN 100 100 100 50 75 87.5 68.75 78.125 76.5625 77.34375 81.328125 (100 + 50)/2 (100 + 75)/2 (50 + 87.5)/2 (87.5 + 68.75)/2 (78.125+75)/2 (78.125 + 76.5625)/2 If every animal in a pedigree has known ancestors (starts with “WILD”) the Founder contribution will sum up as a hundred percent. If many animals have unknown ancestry (“UNK”) the inbreeding will be relatively low. 42 APPENDIX 2 – INBREEDING DISTRIBUTION, SCHILLER HOUND Example of the distribution of inbreeding coefficients (F) for a dog breed at three points in time (1980, 1995, and 2010). Here, the Shiller hound, classified as "healthy" based on insurance data. F 3000 Number of Individuals 1980 N: 4768 MEAN: 0.044 SD: 0.034 VAR: 0.001 2500 2000 1500 1000 500 0 Inbreeding Coefficient F 3000 Number of Individuals 1995 N: 4345 MEAN: 0.060 SD: 0.026 VAR: 0.001 2500 2000 1500 1000 500 0 Inbreeding Coefficient 43 2010 F Number of Individuals N: 1777 MEAN: 0.069 SD: 0.022 VAR: 0.001 1800 1600 1400 1200 1000 800 600 400 200 0 Inbreeding Coefficient 44 APPENDIX 3 – INBREEDING DISTRIBUTION, BULLDOG Example of the distribution of inbreeding coefficients (F) for a dog breed at three points in time (1980, 1995, and 2010). Here, the bulldog, classified as "unhealthy" based on insurance data. F Number of Individuals 1980 N: 235 MEAN: 0.020 SD: 0.041 VAR: 0.002 160 140 120 100 80 60 40 20 0 Inbreeding Coefficient F 600 Number of Individuals 1995 N: 1053 MEAN: 0.056 SD: 0.056 VAR: 0.003 500 400 300 200 100 0 Inbreeding Coefficient 45 F Number of Individuals 2010 N: 1484 MEAN: 0.021 SD: 0.036 VAR: 0.001 900 800 700 600 500 400 300 200 100 0 Inbreeding Coefficient 46 APPENDIX 4 – MEAN KINSHIP DISTRIBUTION, SCHILLER HOUND Example of the distribution of mean kinship (MK) for a dog breed at three points in time (1980, 1995, and 2010). Here, the Shiller hound, classified as "healthy" based on insurance data. 1980 MK 3000 Number of Individuals N: 4768 MEAN: 0.047 SD: 0.013 VAR: 0.0001 2500 2000 1500 1000 500 0 Mean Kinship MK Number of Individuals 1995 N: 4345 MEAN: 0.066 SD: 0.010 VAR: 0.0001 4500 4000 3500 3000 2500 2000 1500 1000 500 0 Mean Kinship 47 MK 2000 Number of Individuals 2010 N: 1777 MEAN: 0.079 SD: 0.007 VAR: 5.087E-05 1500 1000 500 0 Mean Kinship 48 APPENDIX 5 – MEAN KINSHIP DISTRIBUTION, BULLDOG Example of the distribution of mean kinship (MK) for a dog breed at three points in time (1980, 1995, and 2010). Here, the bulldog, classified as "unhealthy" based on insurance data. MK Number of Individuals 1980 N: 235 MEAN: 0.043 SD: 0.013 VAR: 0.0002 180 160 140 120 100 80 60 40 20 0 Mean Kinship 1995 N: 1053 MEAN: 0.056 SD: 0.020 VAR: 0.0004 49 MK Number of Individuals 2010 N: 1484 MEAN: 0.015 SD: 0.008 VAR: 6.507E-05 1600 1400 1200 1000 800 600 400 200 0 Mean Kinship 50 APPENDIX 6 – AUTOSOMAL RECESSIVE DISEASE IN DOMESTIC DOGS Searching for autosomal recessive disease on Online Mendelian Inheritance in Animals, OMIA. Faculty of Veterinary Science, University of Sydney, {January 9 2014}. World Wide Web URL: http://omia.angis.org.au/ Gene symbol Disease name Breeds in literature ABCB1 Multidrug resistance 1 Australian shepherd, border collie, collie, German shepherd, longhaired whippet, McNab shepherd, mixed-breed, old English sheepdog, Shetland sheepdog, silken windhound, white Swiss shepherd ADAM9 Crd3 - PRA Glen of Imaal terrier ADAMTS10 Glaucoma, primary open angle beagle, shiba inu, shih tzu ADAMTS17 Lens luxation widespread among breeds and mixed-breeds ADAMTSL2 Musladin-Lueke syndrome beagle AGL Glycogen storage disease IIIa (Pompe disease) curly-coated retriever AMHR2 Persistent Mullerian Duct Syndrome basset hound, miniature schnauzer AMN Intestinal cobalamin malabsorption Australian shepherd, giant schnauzer, Hungarian komondor AP3B1 Gray Collie Syndrome collie ARSB Mucopolysaccharidosis VI miniature pinscher, miniature poodle ARSG Neuronal ceroid lipofuscinosis, 4A American Staffordshire terrier ATF2 Neonatal encephalopathy with seizures standard poodle ATP13A2 Neuronal ceroid lipofuscinosis, 12 Tibetan terrier BCAN Episodic falling cavalier King Charles spaniel 51 BEST1 Multifocal retinopathy 1 American bulldog, Australian shepherd, bullmastiff, dogue de Bordeaux, English bulldog, English mastiff, great Pyrenees, Italian cane corso, perro de Presa Canario BEST1 Multifocal retinopathy 2 coton de Tuléar BEST1 Multifocal retinopathy 3 Lapponian herder BIN1 Myopathy great Dane C17H2orf71 Rod-cone dysplasia 4 Gordon setter, Irish setter C3 C3 deficiency Brittany spaniel CCDC39 Primary ciliary dyskinesia old English sheepdogs, Staffordshire bull terrier, Newfoundland dogs, English springer spaniel, bichon frisé, chow chow, Dalmatian, old English sheep dog CCDC66 Generalized PRA schapendoes CHAT Myasthenic syndrome, congenital old Danish pointer CLCN1 Myotonia Australian cattle dog, chow chow, great Dane, miniature schnauzer, Staffordshire bull terrier CLN5 Neuronal ceroid lipofuscinosis, 5 border collie CLN6 Neuronal ceroid lipofuscinosis, 6 Australian shepherd CLN8 Neuronal ceroid lipofuscinosis, 8 English setter CNGB1 PRA Papillon CNGB3 cone degeneration Alaskan malamute, Alaskan sled dog, miniature Australian shepherd, Siberian husky, German shorthair pointer COL11A2 Skeletal dysplasia 2 Labrador retriever COL4A4 Nephropathy English cocker spaniel, English springer spaniel, Pembroke Welsh corgi 52 COL7A1 Epidermolysis bullosa, dystrophic golden retriever COL9A2 Oculoskeletal dysplasia, 2 Samoyed COL9A3 Oculoskeletal dysplasia, 1 Labrador retriever COMMD1 Wilson disease Bedlington terrier CTSD Neuronal ceroid lipofuscinosis, 10 American bulldog CUBN Intestinal cobalamin malabsorption beagle, border collie DNM1 Exercise-induced collapse Boykin spaniel, Chesapeake bay retriever, curly-coated retriever, Labrador retriever ENAM Enamel hypoplasia greyhound, standard poodle F7 Factor VII deficiency beagle FAM83H Dry eye curly coat syndrome cavalier King Charles spaniel FERMT3 Canine leukocyte adhesion deficiency, type III Irish red and white Setter, Irish setter FNIP2 Hypomyelination of the central nervous system chow chow, Weimaraner FUCA1 Fucosidosis (neurological degeneration) English springer spaniel G6PC Glycogen storage disease Ia (Pompe disease) Maltese terrier GALC Krabbe disease cairn terrier, west highland white terrier GLB1 proportional dwarfism Alaskan husky, beagle, English springer spaniel, Portugese water dog, shiba GRM1 Bandera's neonatal ataxia (Ataxia, cerebellar) coton de Tuléar GUSB Mucopolysaccharidosis VII Brazilian terrier, German shepherd 53 HCRTR2 Narcolepsy Afghan hound, Airedale terrier, beagle, Welsh corgi, dachshund, Doberman pinscher, giant schnauzer, Irish setter, Labrador retriever, Alaskan malamute, miniature poodle, Rottweiler, saint Bernard dog, springer spaniel, standard poodle, wirehaired griffon HEXA Gangliosidosis, GM2, type I Japanese chin dog HEXB Gangliosidosis, GM2, type II golden retriever, toy poodle IDUA Mucopolysaccharidosis I Plott hound IQCB1 Crd2 - PRA American pit bull terrier ITGA10 Chondrodysplasia, disproportionate short-limbed Karelian bear dog, Norwegian elkhound ITGB2 Canine leukocyte adhesion deficiency, type I Irish setter and mixed-/crossbreed KLKB1 Prekallikrein deficiency shar pei KRT10 Epidermolytic hyperkeratosis Norfolk terrier L2HGDH L-2-hydroxyglutaric aciduria Staffordshire bull terrier, west highland terrier, Yorkshire terrier LAMA3 Epidermolysis bullosa, junctionalis German pointer LGI2 remitting focal epilepsy lagotto Romagnolo LHX3 Dwarfism, pituitary German shepherd LOC607355 Oxalosis I coton de Tuléar, Tibetan spaniel MFN2 Neuroaxonal dystrophy giant schnauzer MLPH Alopecia (hair loss) German pinsher, Dobermann pinscher, Rhodesian ridgeback, whippet, Australian shepherd, briard, bolonka swetna, Frensch bulldog, great dane, Chihuahua, beagle, large Münsterlander, Newfoundland, Hovawart, miniatyre pinscher, border collie, Slovakian rough hair pointer, American Staffordshire terrier, Italian greyhound, Jack Russel terrier NAGLU Mucopolysaccharidosis IIIb schipperke dog 54 NDRG1 Polyneuropathy Alaskan malamute, border collie, Dalmatian, golden retriever, greyhound, miniature schnauzer NHEJ1 Collie eye anomaly Australian shepherd, border collie, Boykin spaniel, Lancashire heeler, longhaired whippet, Nova Scotia duck tolling retriever, rough collie, shetland sheepdog, Silken windhound, smooth collie NHLRC1 Myoclonus epilepsy of Lafora miniature wirehaired dachshund, basset hound NKX2-8 Spinal dysraphism Weimaraner NPHP4 Crd - PRA standard wire-haired dachshund P2RY12 Bleeding disorder greater Swiss mountain dog PDC Photoreceptor dysplasia miniature schnauzer PDE6A Rod-cone dysplasia 3 Cardigan Welsh corgi PDE6B Crd1 - PRA American staffordshire terrier PDE6B Rod-cone dysplasia 1 Irish setter PDE6B Rod-cone dysplasia 1a sloughi PDK4 Dilated cardiomyopathy German boxer, Doberman pinscher, Irish wolfhound PDP1 Exercise intolerance clumber spaniel, Sussex spaniel PFKM Glycogen storage disease VII (Pompe disease) American cocker spaniel, English cocker spaniel, Wachtelhund, whippet PHC Cataract Australian shepherd, Boston terrier, Staffordshire bull terrier PKLR Pyruvate kinase deficiency basenji, beagle, cairn terrier, west highland white terrier PKP1 Ectodermal dysplasia/skin fragility syndrome Chesapeake bay retriever PNPLA1 Ichthyosis Golden retriever PPT1 Neuronal ceroid lipofuscinosis, 1 dachshund 55 PRCD PRCD American cocker spaniel, Australian cattle dog, Australian shepherd, Australian stumpy tail cattle dog, Chesapeake bay retriever, Chinese crested dog, English cocker spaniel, Entlebucher mountain dog, Finnish lapphund, golden retriever, Karelian bear dog, Kuvasz, Labrador retriever, Lapponian herder, miniature poodle, Norwegian elkhound, Nova Scotia duck tolling retriever, Portugese water dog, Spanish water dog, Swedish lapphund, toy poodle, Yorkshire terrier PRKDC Combined immunodeficiency disease Jack Russell terriers PTPLA Myopathy, centronuclear Labrador retriever RD3 Rod-cone dysplasia 2 collie RPE65 congenital stationary night blindness briard RPGRIP1 Crd4 - PRA miniature long-haired dachsund SAG PRA basenji SCA Spinocerebellar ataxia Parson Russell terrier SEL1L Ataxia, cerebellar Finnish hound SERPINH1 Osteogenesis imperfecta dachshund SGSH Mucopolysaccharidosis IIIa wire-haired dachshund SLC13A1 Osteochondrodysplasia miniature poodle SLC2A9 Urolithiasis dalmatians, cavalier King Charles spaniels, American stafforshire terrier, Australian shepherd, German shepherd, giant schnauzer, Parson russel terrier, Labrador retriever, large Münsterlander, Pomeranian, South African boerboel, Weimaraner, English bulldog, black Russian terrier SLC3A1 Cystinuria, type I - A Labrador retriever, Landseer, Newfoundland dog SLC4A3 PRA 1 golden retriever SLC6A5 Hyperekplexia (Startle disease) Irish wolfhound, Labrador retriever 56 SOD1 Degenerative myelopathy American Eskimo dog, Bernese mountain dog, German boxer, Cardigan Welsh corgi, Chesapeake bay retriever, German shepherd, Golden retriever, Kerry blue terrier, miniature poodle, Pembroke Welsh corgi, pug, Rhodesian ridgeback, Siberian husky, soft coated wheaten terrier, standard poodle, wirehaired fox terrier SPTBN2 neonatal cerebellar cortical degeneration (NCCD) beagle, kelpie STK38L Early retinal degeneration Norwegian Elkhound SUV39H2 Nasal parakeratosis Labrador retriever TGM1 Ichthyosis Jack Russel terrier TPO Hypothyroidism rat terrier, Spanish water dog, Tenterfield terrier, toy fox terrier TPP1 Neuronal ceroid lipofuscinosis, 2 dachshund VDR Vitamin D-deficiency rickets, type II Pomeranian VPS13B Trapped Neutrophil Syndrome border collie - zinc deficiency bullterrier - Ataxia, cerebellar Malinois - Black hair follicle dysplasia large Münsterlander , New Zealand huntaway dog, Gordon setter, mixed-breed dog, bearded collie, border collie, saluki, Jack Russel terrier, mongrel dog - Brachydactyly (two-toed) - - Cerebellar cortical atrophy papillon, Portuguese podenco, Labarador retriever - Chondrodysplasia, disproportionate short-limbed Labrador retriever - Cleft lip and palate Pyrenees shepherd, German boxer - Coloboma Australian shepherd 57 - Craniomandibular osteopathy West highland white terrier, pit bull terrier, Akita, bullmastiff, Pyrenean mountain dog, Shetland sheepdog, Labrador retriever - Cricopharyngeal dysfunction Golden retrievers - Deficiency of cytosolic arylamine N-acetylation - - Dwarfism, hypochondroplastic Irish setter - Encephalomyelopathy and polyneuropathy Alaskan husky - Epilepsy Belgian shepherd, collie, Finnish spitz - Exfoliative cutaneous lupus erythematosus German shorthair pointer, mixed breed - Gangliosidosis, GM2, generic German shorthair pointer, English setter, mixed-breed, Golden retriever - Gangliosidosis, GM2A Japanese spaniel - Gaucher disease, type I Sydney silky dog - Glomerulonephropathy French mastiff (Bordeaux) dogs, Bullmastiff, beagle, Bernese mountain dog - Glossopharyngeal defect (lethal) - - Gluten-sensitive enteropathy Irish setter - Goniodysplasia, mesodermal Siberian husky, bouvier des Flandres - Kartagener syndrome Staffordshire bull terrier, dachshund, Newfoundland dog, English cocker spaniel, English springer spaniel, bichon frisé, chow chow - Leukoencephalomyelopathy Rottweiler - Multiple system degeneration Chinese crested, Kerry blue terrier - Nephritis, autosomal recessive English cocker spaniel - Neurological syndrome (lethal) Gordon setter 58 - Neuronal ceroid lipofuscinosis Rottweiler, Kerry blue terrier, Jack Russell terrier, papillion, English setter, border collie, Golden retriever, Australian cattle dog, saluki, Chihuahua, Tibetian terrier, dachshund, miniature schnauzer, Australian shepherd, Polish owczarek nizinny (PON), American bulldog, border collie, Labrador retriever, cocker spaniel - Canine Scott syndrome German shepherd - Retinal dysplasia miniature schnauzer - Rod dysplasia Norwegian elkhound - Subaortic stenosis Newfoundland, dogue de Bordeaux - Canine tricuspid valve malformation dogue de Bordeaux, Labrador retriever - Xanthinuria, generic cavalier king Charles spaniel, dachshund - XX testicular DSD (Disorder of Sexual Development) cocker spaniel, mixed-breed Pit bull, mongrel dog, French bulldog, Bernese mountain dog, pug, Podenco, beagle, Jack Russell terrier, basset hound, Norwegian elkhounds, German shorthair pointer 59 APPENDIX 7 – CHAMPIONSHIPS Four types of “Championships” exists in SKC’s records: Show Championships, Working Championships, Combined Championships (several titels adds up to one) and Internationell prüfungsordnung titles. In IPO, the highest title is the ... III: Number 795 88 420 510 797 Abbreviation SCHHIII SG BHPIII VPGIII IPOIII SCHHIII Full text SKYDDSHUND III SEHR GUT BRUKSHUNDPROV III DETSAMMA SOM SKYDDSHUND III INTERNATIONELL PRüFUNGSORDNUNG III SKYDDSHUND III Show Championships: Number 482 491 773 794 889 980 983 7 53 54 63 148 164 165 184 185 194 202 223 265 270 281 291 297 Abbreviation UY CH BH CH LU JCH KBH V-06&NO V-05-08 UCH FISPCH BK CH NO U(DV)CH SL CH NORD U(DV)CH ZW CH IE SHCH CU CH SK CH LV CH LT CH CR CH GR CH DK U(S)CH CL CH GI CH UA CH CO CH PANAMCH Full text URUGUAY CHAMPION BOSNIEN-HERZEGOVINE CHAMPION LUXEMBURGSK JUNIORCHAMPION UTSTÄLLNINGSCHAMPION ANV EJ! FINSK SPÅRCHAMPION NORSK UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION SLOVENSK CHAMPION NORDISK UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION ZIMBABWISK CHAMPION IRLÄNDSK SHOW CHAMPION CUBANSK CHAMPION SLOVAKISK CHAMPION LETTISK CHAMPION LITAUISK CHAMPION COSTA RICA CHAMPION GREKISK CHAMPION DANSK CHAMPION /SPÅR/ CHILENSK CHAMPION GIBRALTISK CHAMPION UKRAINSK CHAMPION COLOMBIA CHAMPION PANAMERIKANSK CHAMPION 60 329 360 372 388 389 400 405 421 437 455 456 457 460 464 493 501 556 559 560 564 586 610 632 676 691 694 709 741 745 790 791 800 801 802 803 804 BY CH SE U(S)CH GE CH MA CH MD CH SE U(U)CH BG CH CZ CH PH CH MY CH DK CH(U) MT CH TH CH CY CH HK CH CHIB IS CH KZ CH UZ CH GT CH AZ CH HR CH NO U(GV)CH MK CH ME CH RS CH EE CH PR CH SM CH C.I.B C.I.E SE UCH SE U(D)CH SE U(G)CH SE U(KV)CH SE U(V)CH 806 807 808 SE U(GKV)CH SE U(GV)CH SE U(GK)CH 809 SE U(DGV)CH VITRYSK CHAMPION SVENSK UTSTÄLLNINGS(SKOGSPROV)CHAMPION GEORGISK CHAMPION MAROCKANSK CHAMPION MOLDAVISK CHAMPION SVENSK UTSTÄLLNINGSCHAMPION UTAN JAKTPROVSMERIT BULGARISK CHAMPION TJEKISK CHAMPION FILIPPINSK CHAMPION MALAYSISK CHAMPION DANSKT UTSTÄLLNINGSCHAMPIONAT UTAN JAKTMERIT MALTESISK CHAMPION THAILÄNDSK CHAMPION CYPRIOTISK CHAMPION HONG KONG CHAMPION INTERNATIONELL UTSTÄLLNINGSCHAMPION ISLÄNDSK CHAMPION KAZAKSTANSK CHAMPION UZBEKISK CHAMPION GUATEMALANSK CHAMPION AZERBAIJAN UTSTÄLLNINGS CHAMPION KROATISK CHAMPION NORSK UTSTÄLLNINGS(GRYT-&VILTSPÅRPROV)CHAMPION MAKEDONIEN CHAMPION MONTENEGRISK CHAMPION SERBISK CHAMPION ESTNISK CHAMPION PUERTO RICO CHAMPION SAN MARINO CHAMPION INTERNATIONAL BEAUTY CHAMPION INTERNATIONAL SHOW CHAMPION SVENSK UTSTÄLLNINGSCHAMPION SVENSK UTSTÄLLNINGS(DREVPROV)CHAMPION SVENSK UTSTÄLLNINGS(GRYTPROV)CHAMPION SVENSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION SVENSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION SVENSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR&GRYTPROV)CHAMPION SVENSK UTSTÄLLNINGS(GRYTPROV&VILTSPÅR)CHAMPION SVENSK UTSTÄLLNINGS(KARAKTÄR&GRYTPROV)CHAMPION SVENSK UTSTÄLLNINGS(GRYT&DREVPROV&VILTSPÅR) CHAMPION 61 810 SE U(DG)CH 811 812 813 821 822 823 824 825 829 830 831 832 836 863 874 875 880 881 885 892 893 911 917 920 921 922 923 925 926 935 940 941 SE U(DGKV)CH SE U(RÄV)CH SE U(DV)CH FI U(V)CH FI U(KV)CH FI U(G)CH FI U(D)CH FI U(SP)CH DK U(G)CH DK UCH NO UCH FI UCH CH RU CH BR CH VDH CH NORD UCH INT UCH PT CH NZ CH YU CH SG CH CH CH NO U(V)CH NO U(G)CH NO U(KV)CH NO U(D)CH NO U(DG)CH DDR CH RO CH INT U(G)CH INT U(D)CH 942 INT U(KV)CH 943 944 945 948 950 INT U(GKV)CH INT U(V)CH INT U(DG)CH ES CH NORD U(G)CH SVENSK UTSTÄLLNINGS(DREV&GRYTPROV)CHAMPION SVENSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR&DREV&GRYTPROV) CHAMPION SVENSK UTSTÄLLNINGS(RÄV)CHAMPION SVENSK UTSTÄLLNINGS(VILTSPÅR&DREVPROV)CHAMPION FINSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION FINSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION FINSK UTSTÄLLNINGS(GRYTPROV)CHAMPION FINSK UTSTÄLLNINGS(DREVPROV)CHAMPION FINSK UTSTÄLLNINGS(SPÅRHUND)CHAMPION DANSK UTSTÄLLNINGS(GRYTPROV)CHAMPION DANSK CHAMPION NORSK UTSTÄLLNINGSCHAMPION FINSK CHAMPION CHAMPION RYSK CHAMPION BRASILIANSK CHAMPION VDH CHAMPION NORDISK UTSTÄLLNINGSCHAMPION INTERNATIONELL UTSTÄLLNINGSCHAMPION PORTUGISISK CHAMPION NYA ZEELÄNDSK CHAMPION JUGOSLAVISK CHAMPION SINGAPORE CHAMPION SCHWEIZISK CHAMPION NORSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION NORSK UTSTÄLLNINGS(GRYTPROV)CHAMPION NORSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION NORSK UTSTÄLLNING(DREVPROV)CHAMPION NORSK UTSTÄLLNINGS(DREV&GRYTPROV)CHAMPION ÖSTTYSK CHAMPION RUMÄNSK CHAMPION INTERNATIONELL UTSTÄLLNINGS(GRYTPROV)CHAMPION INTERNATIONELL UTSTÄLLNINGS(DREVPROV)CHAMPION INTERNATIONELL UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION INTERNATIONELL UTSTÄLLNINGS(KARAKTÄR&GRYTPROV&VILTSPÅR)CHAMPION INTERNATIONELL UTSTÄLLNINGS(VILTSPÅR)CHAMPION INTERNATIONELL UTSTÄLLNINGS(DREV&GRYTPROV)CHAMPION SPANSK CHAMPION NORDISK UTSTÄLLNINGS(GRYTPROV)CHAMPION 62 951 952 953 NORD U(D)CH NORD U(KV)CH NORD U(V)CH 954 955 958 959 960 961 962 963 964 965 966 967 969 970 971 972 973 975 976 977 988 989 992 993 994 995 996 997 999 1101 1103 1240 1241 NORD U(GKV)CH NORD U(DG)CH AR CH PE CH IE CH PL CH BM CH LU CH BE CH MC CH AU CH GB SHCH MX CH FR CH JP GCH CSSP CH IT CH BR CH IL CH HU CH AT CH ZA CH GB CH US CH CA CH DE CH NL CH JP CH EA CH IS SH CH C.E.C TR CH DK CH(+J) NORDISK UTSTÄLLNINGS(DREVPROV)CHAMPION NORDISK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION NORDISK UTSTÄLLNINGS(VILTSPÅR)CHAMPION NORDISK UTSTÄLLNINGS(KARAKTÄR& GRYTPROV&VILTSPÅR)CHAMPION NORDISK UTSTÄLLNINGS(DREV&GRYTPROV)CHAMPION ARGENTINSK CHAMPION PERUANSK CHAMPION IRLÄNDSK CHAMPION POLSK CHAMPION BERMUDA CHAMPION LUXEMBURGSK CHAMPION BELGISK CHAMPION MONEGASKISK CHAMPION AUSTRALISK CHAMPION GREAT BRITAIN SHOW CHAMPION MEXIKANSK CHAMPION FRANSK CHAMPION JAPANSK GRAND CHAMPION TJECKISK CHAMPION ITALIENSK CHAMPION BRASILIANSK CHAMPION ISRAELISK CHAMPION UNGERSK CHAMPION ÖSTERRIKISK CHAMPION SYDAFRIKANSK CHAMPION GREAT BRITAIN CHAMPION AMERIKANSK CHAMPION KANADENSISK CHAMPION TYSK CHAMPION NEDERLÄNDSK CHAMPION JAPANSK CHAMPION ÖSTAFRIKANSK CHAMPION ISLÄNDSK UTSTÄLLNINGSCHAMPION CENTENARY SHOWS CHAMPION TURKISK CHAMPION DANSK CHAMPION MED JAKTPROVSMERIT Working Championships: Number 290 759 Abbreviation SE J(B)CH NJ(+K)CH Full text SVENSK JAKTPROVS(BANDHUND)CHAMPION (SÄK) GÄLLER STÅENDE FÅGELHUNDAR 63 4 56 57 59 66 67 70 100 138 146 161 162 167 169 183 196 208 224 226 231 263 264 298 324 326 336 340 341 350 363 366 369 371 373 376 379 380 385 386 387 404 BE JCH SE (VALL-F)CH SE (VALL-N)CH SE RPCH DE J(DG)CH SE SPCH SE SÖCH FI SPCH SE SPBCH DE LCCH SE VCH FI AGCH DK SCH NL JCH NORD VCH DK VCH DK L(ELIT)CH NORD AGCH FI J(RÄV)CH AT JCH DK J(D)CH EE VCH FI LCCH SE LCCH DK BRCH EE LCH IT LCH INT AGCH SE J(LE)CH SE (AP)CH US LCCH INT LCCH DK SPCH SE AG(HOPP)CH NO J(SCH)CH FI AG(HOPP)CH SE J(LÖ)CH SE J(GS)CH SE J(GF)CH NORD J(GS)CH NO LCCH 411 SE B(IPO/BHP)CH BELGISK JAKTPROVSCHAMPION SVENSK VALLHUNDS(FÅR)CHAMPION SVENSK VALLHUNDS(NÖT)CHAMPION SVENSKT RAPPORTPROVSCHAMPIONAT TYSK JAKTPROVS(DREV&GRYT)CHAMPION SVENSKT SPÅRPROVSCHAMPIONAT SVENSKT SÖKPROVSCHAMPIONAT FINSK SPÅRCHAMPION SVENSK SPÅRPROVSCHAMPION BLODHUND TYSK LURE COURSING CHAMPION SVENSK VILTSPÅRPROVSCHAMPION FINSK AGILITYCHAMPION DANSK SPÅRCHAMPION NEDERLÄNDSK JAKTPROVSCHAMPION NORDISK VILTSPÅRPROVSCHAMPION DANSK VILTSPÅRCHAMPION DANSK ELITLYDNADSCHAMPION NORDISK AGILITYCHAMPION FINSK JAKTPROVS(RÄV)CHAMPION ÖSTERRIKISK JAKTCHAMPION DANSK JAKTPROVS(DREV)CHAMPION ESTNISK SPÅRCHAMPION FINSK LURE COURSING CHAMPION SVENSK LURE COURSING CHAMPION DANSK BRUGSCHAMPION ESTNISKT LYDNADSCHAMPIONAT ITALIENSK LYDNADSCHAMPION INTERNATIONELL AGILITY CHAMPION SVENSK JAKTPROVS(LEDHUND)CHAMPION SVENSK ARBETSPROVSCHAMPION AMERIKANSK LURE COURSING CHAMPION INTERNATIONELL LURE COURSING CHAMPION DANSK SPRINGCHAMPION SVENSK AGILITYCHAMPION (HOPP) NORSK JAKTPROVSCHAMPION SCHWEISSHUNDPRÖVE (VILTSPÅR) FINSK AGILITYCHAMPION (HOPP) SVENSK JAKTPROVS(LÖSHUND)CHAMPION SVENSK JAKTPROVSCHAMPION /GRYT, SPRÄNGARE/ SVENSK JAKTPROVSCHAMPION /GRYT, FÖRLIGGARE/ NORDISK JAKTPROVSCHAMPION GRYT, SPRÄNGARE NORSK LURE COURSING CHAMPION SVENSK BRUKSPROVSCHAMPION (INT PRÜFINGSORDNUNG & BRUKSHUNDPROV) 64 422 434 SE J(S)CH IT AGCH 447 448 450 466 478 495 518 565 570 595 596 597 598 608 620 631 633 636 637 639 640 643 660 661 697 699 705 707 710 729 742 746 776 783 792 838 840 841 843 845 SE J(GFGS)CH NORD J(LÖ)CH SE J(J)CH NO (VP)CH DK J(G)CH AU FTCH EE LCCH LT JCH SE J(A)CH DK AGCH DK BCH(G) DK BCH(D) DK BCH(S) DE JCH HR JCH IT JCH FI VCH NO J(B)CH NO J(L)CH INT LCH SE (VP)CH NO TCH NORD LCCH DK U(D)CH LV JCH CA FTCH SE (POLAR)CH HU JCH NO AGCH NO AG(HOPP)CH SE AGCH NO VCH NZ FTCH NO L(ELIT)CH C.I.T DK LCH INT J(G)CH INT J(D)CH FR JCH SE L(ELIT)CH SVENSK JAKTPROVSCHAMPION /SKOG/ ITALIENSK AGILITYCHAMPION SVENSK JAKTPROVSCHAMPION /GRYT; SPRÄNGARE & FÖRLIGGARE/ NORDISK JAKT(LÖSHUND)CHAMPION SVENSK JAKTPROVSCHAMPION UTAN UTSTÄLLNINGSMERIT NORSK VATTENPROVSCHAMPION DANSK JAKTPROVS(GRYT)CHAMPION AUSTRALISK FIELD TRIAL CHAMPION ESTNISK LURE CUORSING CHAMPION LITAUISK JAKT CHAMPION SVENSKT JAKTPROVSCHAMPIONAT A-PROV DANSK AGILITYCHAMPION DANSK BRUKSPROVSCHAMPION (GRYTPROV) DANSK BRUKSPROVSCHAMPION (DREVPROV) DANSK BRUKSPROVSCHAMPION (SPÅRPROV) TYSK JAKTPROVSCHAMPION KROATISK JAKTCHAMPION ITALIENSK JAKTPROVSCHAMPION FINSK VILTSPÅRPROVSCHAMPION NORSK JAKTPROVS(BANDHUND)CHAMPION NORSK JAKTPROVS(LÖSHUND)CHAMPION INTERNATIONELL LYDNADSCHAMPION SVENSK VATTENPROVSCHAMPION NORSK TREKKEHUNDSCHAMPION NORDISK LURE COURSING CHAMPION DANSK UTSTÄLLNINGS(DREVPROV)CHAMPION LETTISK JAKTCHAMPION KANADENSISK FIELD TRIAL CHAMPION SVENSK (POLARHUNDS) CHAMPION UNGERSK JAKTPROVSCHAMPION NORSK AGILITYCHAMPION NORSK AGILITY HOPP CHAMPION SVENSK AGILITYCHAMPION NORSK VILTSPÅRCHAMPION NYA ZEELÄNDSK FIELD TRIAL CHAMPION NORSK LYDNADS(ELIT)CHAMPION INTERNATIONAL WORKING CHAMPION DANSK LYDNADSCHAMPION INTERNATIONELL JAKTPROVS(GRYT)CHAMPION INTERNATIONELL JAKTPROVS(DREV)CHAMPION FRANSK JAKTPROVSCHAMPION SVENSK LYDNADS(ELIT)CHAMPION 65 850 851 852 859 860 861 862 864 865 866 867 868 869 870 877 879 888 890 894 895 896 898 899 900 901 902 903 904 905 906 907 908 909 910 919 927 928 930 931 932 933 968 NORD J(G)CH NORD J(D)CH NORD J(V)CH NO J(V)CH NO JCH NO J(G)CH NO J(D)CH RU JCH FI JCH FI J(D)CH FI J(G)CH FI J(V)CH DK U(V)CH DK JCH SE J(V)CH IT LCCH BCH SE LCH EE JCH SE J(DG)CH SE J(DGV)CH SE J(RÄV)CH SE J(DV)CH SE JCH SE J(D)CH SE J(G)CH NORD JCH INT JCH SE BCH SE J(KV)CH SE (DRAG)CH SE (VALLH)CH NO LCH NORD LCH DK LCCH US FTCH IE FTCH DK BCH NO BCH FI BCH FR BCH GB FTCH NORDISK JAKTPROVS(GRYT)CHAMPION NORDISK JAKTPROVS(DREV)CHAMPION NORDISK JAKTPROVS(VILTSPÅR)CHAMPION NORSK JAKTPROVS(VILTSPÅR)CHAMPION NORSK JAKTPROVSCHAMPION NORSK JAKTPROVS(GRYT)CHAMPION NORSK JAKTPROVS(DREV)CHAMPION RYSK JAKTPROVSCHAMPION FINSK JAKTPROVSCHAMPION FINSK JAKTPROVS(DREV)CHAMPION FINSK JAKTPROVS(GRYT)CHAMPION FINSK JAKTPROVS(VILTSPÅR)CHAMPION DANSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION DANSK JAKTPROVSCHAMPION SVENSK JAKTPROVS(VILTSPÅR)CHAMPION ITALIENSK LURE COURSING CHAMPION BRUKSPROVSCHAMPION SVENSK LYDNADSCHAMPION ESTNISK JAKT CHAMPION SVENSK JAKTPROVS(DREV&GRYT)CHAMPION SVENSK JAKTPROVS(GRYT&DREV&VILTSPÅR)CHAMPION SVENSK JAKTPROVS(RÄV)CHAMPION SVENSK JAKTPROVS(DREV&VILTSPÅR)CHAMPION SVENSK JAKTPROVSCHAMPION SVENSK JAKTPROVS(DREV)CHAMPION SVENSK JAKTPROVS(GRYT)CHAMPION NORDISK JAKTPROVSCHAMPION INTERNATIONELL JAKTPROVSCHAMPION SVENSK BRUKSPROVSCHAMPION SVENSK JAKTPROVS(KARAKTÄR&VILTSPÅR)CHAMPION SVENSK (DRAGPROVS)CHAMPION SVENSK (VALLHUNDS)CHAMPION NORSK LYDNADSCHAMPION NORDISK LYDNADSCHAMPION DANSK LURE LOURSING CHAMPION AMERIKANSK FIELD TRIAL CHAMPION IRLÄNDSK FIELD TRIAL CHAMPION DANSK BRUKSPROVSCHAMPION NORSK BRUKSPROVSCHAMPION FINSK BRUKSPROVSCHAMPION FRANSK BRUKSPROVSCHAMPION GREAT BRITAIN FIELD TRIAL CHAMPION 66 990 991 998 1000 1102 1104 1105 1106 1107 1108 1109 1110 1116 1117 1216 1239 NORD BCH INT BCH FI LCH SE FREECH FI VPCH C.I.C SE J(VLÖ)CH SE J(T)CH SE J(FÅ)CH SE PTRHCH SE IPO-FH CH SE RDHCH SE B(IPO)CH DK RLCH FI J(A)CH C.I.AG NORDISK BRUKSPROVSCHAMPION INTERNATIONELL BRUKSPROVSCHAMPION FINSK LYDNADSCHAMPION SVENSKT FREESTYLECHAMPIONAT FINSK VATTENPROVSCHAMPION INTERNATIONAL RACES CHAMPION SVENSK JAKTPROVS(VILDSVIN-LÖSHUND)CHAMPION SVENSK JAKTPROVSCHAMPION TOLLING SVENSK JAKTPROVSCHAMPION(SKÄLLANDE FÅGELHUNDAR) SVENSK PATRULLHUNDSCHAMPION SVENSK IPO-FH CHAMPION SVENSK RÄDDNINGSHUNDSCHAMPION SVENSKT BRUKSPROVSCHAMPIONAT IPO DANSK RALLYLYDNADSCHAMPION FINSK JAKTPROVSCHAMPIONAT A-PROV INTERNATIONELL AGILITY CHAMPION Combined Championships: Number Abbreviation 17 19 23 25 INT&NORD&FI U(V)CH INT&NORD&LU U(D)CH FI&NL&LU CH AT&BE&NL&VDH CH INT&NORD&FI&NL&LU CH INT&NORD&LU CH FI&NO U(G)CH INT&NORD&LU&NL&PT CH FI U&J(G)CH DK U&J(G)CH INT&NORD&DK UCH BE&FR&NL CH EE&LV CH NO U&VCH DE&LU&NL&VDH CH INT&NORD&NO UCH FI&EE CH INT&VDH CH IPOIII&SCHHIII FR&MC CH 26 28 30 38 40 41 43 46 48 50 80 81 84 89 91 92 Full text INTERNATIONELL&NORDISK&FINSK UTSTÄLLNINGS (VILTSPÅR)CHAMPION INTERNATIONELL & NORDISK & LUXEMBURGSK CHAMPION FINSK & NEDERLÄNDSK & LUXEMBURGSK CHAMPION NEDERLÄNDSK & BELGISK & ÖSTERRIKISK & VDH CHAMPION INTERNATIONELL & NORDISK & FINSK & NEDERLÄNDSK & LUXEMBURGSK CHAMPION INTERNATIONELL & NORDISK & LUXEMBURGSK CHAMPION NORSK & FINSK UTSTÄLLNINGS(GRYTPROV)CHAMPION INT & NORDISK & PORTUGISISK & LUXEMBURGSK & NEDERLÄNDSK CHAMPION FINSK UTSTÄLLNINGS & JAKTPROVS(GRYT)CHAMPION DANSK UTSTÄLLNINGS & JAKTPROVS(GRYT)CHAMPION INTERNATIONELL & NORDISK & DANSK CHAMPION NEDERLÄNDSK & BELGISK & FRANSK CHAMPION ESTNISK & LETTISK CHAMPION NORSK UTSTÄLLNINGS & VILTSPÅRPROVSCHAMPION NEDERLÄNDSK & LUXEMBURGSK & VDH & TYSK CHAMPION INTERNATIONELL & NORDISK & NORSK CHAMPION FINSK & ESTNISK CHAMPION INTERNATIONELL & VDH CHAMPION INTERNATIONELL PRüFUNGSORDNUNG III & SKYDDSHUND III FRANSK & MONEGASKISK CHAMPION 67 93 DK&PL UCH 95 121 122 125 129 131 132 133 134 INT&NORD&FI&LU UCH INT&DK&FI&EE&LU&NL CH INT&DE&PT CH SE&NO JCH INT&NORD&FI UCH NORD&DK UCH INT&SE&DK UCH BE&FR CH INT&DE&NL&VDH CH INT&IT CH CH&MC CH BE&CH&FR&IT&LU&MC CH DK&DE UCH AT&FR&NL CH AT&NL CH DK&BE&NL CH AU&FI&PT UCH DK&DE&LU&NL CH PE&US CH 147 149 156 171 173 177 180 181 182 186 187 188 189 193 201 207 212 213 SE J&V CH NORD&FI UCH FI&EE&NL UCH MX&PL CH AT&CH CH AU&NZ CH IT&YU CH SL&HR CH SE&DK&US& UCH DK&VDH CH NORD&NO UCH SE&DK&FI UCH AU&SI CH BE&LU CH SE J(D,GS)CH CH&US CH SE&DK&ES&NL UCH SE J(G)CH&FI JCH 216 NORD LCH&SE BCH 96 98 102 104 106 107 111 112 116 120 POLSK & DANSK CHAMPION INTERNATIONELL & NORDISK & LUXEMBURGSK & FINSK CHAMPION INTERNATIONELL&FINSK&DANSK&LUXEMBURGSK& NEDERLÄNDSK&ESTNISK CHAMPION INTERNATIONELL & TYSK & PORTUGISISK CHAMPION SVENSK & NORSK JAKTPROVSCHAMPION INTERNATIONELL & NORDISK & FINSK CHAMPION NORDISK & DANSK CHAMPION INTERNATIONELL & DANSK & SVENSK CHAMPION BELGISK & FRANSK CHAMPION INTERNATIONELL & NEDERLÄNDSK & TYSK & VDH CHAMPION INTERNATIONELL & ITALIENSK CHAMPION MONEGASKISK & SCHWEIZISK CHAMPION BELGISK&FRANSK&ITALIENSK&LUXEMBURGSK &SCHWEIZISK&MONEGASKISK CHAMPION TYSK & DANSK CHAMPION NEDERLÄNDSK & FRANSK & ÖSTERRIKISK CHAMPION ÖSTERRIKISK & NEDERLÄNDSK CHAMPION NEDERLÄNDSK & BELGISK & DANSK CHAMPION AUSTRALISK & PORTUGISISK & FINSK CHAMPION NEDERLÄNDSK & LUXEMBURGSK & TYSK & DANSK CHAMPION PERUANSK & AMERIKANSK CHAMPION SVENSK VILTSPÅRCHAMPION & SVENSK JAKTPROVSCHAMPION NORDISK & FINSK CHAMPION ESTNISK & NEDERLÄNDSK & FINSK CHAMPION MEXIKANSK & POLSK CHAMPION ÖSTERRIKISK & SCHWEIZISK CHAMPION AUSTRALISK & NYA ZEELÄNDSK CHAMPION JUGOSLAVISK & ITALIENSK CHAMPION SLOVENSK & KROATISK CHAMPION AMERIKANSK & DANSK & SVENSK CHAMPION DANSK & VDH CHAMPION NORDISK & NORSK CHAMPION SVENSK & FINSK & DANSK UTSTÄLLNINGSCHAMPION AUSTRALISK & SLOVENSK CHAMPION BELGISK & LUXEMBURGSK CHAMPION SVENSK JAKTPROVSCHAMPION /DREV,GRYT,SPRÄNGARE/ SCHWEIZISK & AMERIKANSK CHAMPION DANSK & NEDERLÄNDSK & SPANSK & SVENSK CHAMPION FINSK & SVENSK JAKPROVS(GRYT)TCHAMPION NORDISK LYDNADSCHAMPION & SVENSK BRUKSPROVSCHAMPION 68 219 229 236 DK&FI UCH LT&LV CH NORD&US CH 237 246 SE&DK&FI&NO U(DV)CH INT&NORD&BENELUX 247 249 257 258 259 AT&CH&FR&IT&MC&VDH CH DE&ES&FR&IL&VDH CH FR&PL CH SE L&BCH NORD&NO&LU CH 280 ES&GI&IT CH&EUW-99 288 296 307 308 319 320 331 338 344 347 351 355 382 ZA CH&ZA FTCH PL CH & LU CH LU&NL CH INT&LU CH INT&SE&NO UCH LP&SE LCH SE&NO VCH FI&NO UCH VHIII INT&NORD LCH NORD U(GV)CH DK&NO UCH FI J(V&G)CH 397 413 415 417 425 430 431 433 458 462 475 479 500 506 SE U(DKV)CH SJ&V CH SE&FI&NO AGCH DE&PL CH DK U(GV)CH LPELIT&SE LCH LPI LPII LPIII&SE LCH SE J(G/F&D)CH BGCH PTCH BY&RU CH LVCH LTCH KORAD SE&NO UCH US&CA CH NO B(IPO/BHP)CH DANSK & FINSK CHAMPION LITAUISK & LETTISK CHAMPION NORDISK & AMERIKANSK CHAMPION SVENSK & FINSK & DANSK & NORSK UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION INTERNATIONELL & NORDISK & BENELUX CHAMPION FRANSK&MONEGASKISK&SCHWEIZ&VDH&ÖSTERRIKISK& ITALIENSK CHAMPION SPANSK & FRANSK & ISRAELISK & TYSK & VDH CHAMPION POLSK & FRANSK CHAMPION SVENSK LYDNADS & BRUKSPROVSCHAMPION NORDISK & NORSK & LUXEMBURGSK CHAMPION ITALIENSK & SPANSK & GIBRALTISK CHAMPION & EUROPAVINNARE -99 SYDAFRIKANSK CHAMPION & SYDAFRIKANSK JAKTPROVSCHAMPION POLSK & LUXEMB CHAMP LUXEMBURGSK & NEDERLÄNDSK CHAMPION INTERNATIONELL & LUXEMBURGSK CHAMPION INTERNATIONELL & SVENSK & NORSK CHAMPION LYDNADSPROV I & SVENSK LYDNADSCHAMPION SVENSK & NORSK VILTSPÅRPROVSCHAMPION FINSK & NORSK CHAMPION HOLLÄNDSKT BRUKSHUNDPROV III ELLER SKYDDSHUND III INTERNATIONELL & NORDISK LYDNADSCHAMPION NORDISK UTSTÄLLNINGS(GRYTPROV&VILTSPÅR)CHAMPION DANSK & NORSK CHAMPION FINSK JAKTPROVS(VILTSPÅR&GRYT)CHAMPION SVENSK UTSTÄLLNINGS(DREVPROV&KARAKTÄR&VILTSPÅR)CHAMPION SVENSK JAKTPROVS- & VILTSPÅRPROVSCHAMPION SVENSK & NORSK & FINSK AGILITYCHAMPION POLSK OCH TYSK CHAMPION DANSK UTSTÄLLNINGS(VILTSPÅR & GRYTPROV)CHAMPION LYDNADSPROV III & SVENSK LYDNADSCHAMPION LYDNADSPROV I II III & SVENSK LYDNADSCHAMPION SVENSK JAKTPROVS(GRYTPROV/FÖRL&DREVPROV)CHAMPION BULGARISK & PORTUGISISK CHAMPION RYSK U-CHAMPION & VITRYSK U-CHAMPION LETTISK OCH LITAUISK CHAMPION KORAD SVENSK & NORSK UTSTÄLLNINGSCHAMPION AMERIKANSK & CANADENSISK CHAMPION 69 512 514 523 530 533 540 541 547 550 551 553 554 562 563 566 567 573 576 594 599 601 GI&MX CH ES&PT CH SE&NO LCH US&DE CH INT&DK CH NO J(D&G)CH FI J(DG)CH C.I.B&NORD UCH SE UCH&J(D)CH SE UCH&J(G)CH SE UCH&J(DG)CH SE UCH&J(RÄV)CH DK AG&SPCH EE< CH CH&LU CH INT&FI UCH NORD&DK&DE CH SE&FI JCH NORD&FI&EE&LV CH SE&DK&EE&LV CH SE&FI U(G)CH 603 604 607 609 SE&FI U(KV)CH SE&FI U(V)CH FR J(DG)CH INT J(DG)CH 635 638 DE&FR&LU&NL CH AT&FR&LU&VDH CH 644 SE&NO U(DV)CH 646 647 648 649 SE&NO U(KV)CH SE&NO U(D)CH SE&NO U(G)CH SE&NO U(V)CH 650 SE&NO U(GKV)CH 651 652 653 655 SE&DK U(KV)CH SE&DK UCH SE&DK U(G)CH DK&FI&US CH MEXIKANSK & GIBRALTISK CHAMPION SPANSK & PORTUGISISK CHAMPION SVENSK & NORSK LYDNADSCHAMPION AMERIKANSK & TYSK CHAMPION INTERNATIONELL & DANSK CHAMPION NORSK JAKTPROVS(DREV&GRYT) CHAMPION FINSK JAKTPROVS(DREV&GRYT)CHAMPION INTERNATIONELL UCH & NORDISK UCH SVENSK UTSTÄLLNINGS&JAKTPROVS(DREV)CHAMPION SVENSK UTSTÄLLNINGS&JAKTPROVS(GRYT)CHAMPION SVENSK UTSTÄLLNINGS&JAKTPROVS(DREV&GRYT)CHAMPION SVENSK UTSTÄLLNINGS&JAKTPROVS(RÄV)CHAMPION DANSK SPRING & DANSK AGILITY CHAMPION ESTNISK & LITAUISK CHAMPION SCHWEIZISK & LUXEMBURGSK CHAMPION INTERNATIONELL & FINSK UTSTÄLLNINGSCHAMPION NORDISK DANSK & TYSK CHAMPION(VDH) SVENSK & FINSK JAKTPROVSCHAMPION SVENSK & FINSK UTSTÄLLNINGS(GRYTPROV)CHAMPION SVENSK & FINSK UTSTÄLLNINGS(KARAKTÄR,VILTSPÅR)CHAMPION SVENSK & FINSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION FRANSK JAKTPROVS(DREV&GRYTPROV)CHAMPION INTERNATIONELL JAKTPROVS(DREV&GRYT)CHAMPION NEDERLÄNDSK & LUXEMBURGSK & FRANSK & TYSK CHAMPION FRANSK&LUXEMBURGSK&ÖSTERRIKISK&VHDH CHAMPION SVENSK & NORSK UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(DREVPROV)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(GRYTPROV)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR&GRYTPROV) CHAMPION SVENSK & DANSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION SVENSK & DANSK CHAMPION SVENSK & DANSK UTSTÄLLNINGS(GRYTPROV)CHAMPION FINSK & DANSK & AMERIKANSK CHAMPION 70 657 INT U(GV)CH 667 671 678 681 696 700 701 702 INT&NL&DE&LU&IL CH INT&SE UCH EE&FI UCH SE AGCH&SE AG(HOPP)CH FI&EE&PL CH FI&NO U(V)CH SE&FI J(D)CH SE&FI J(G)CH 703 704 725 SE&NO U(DG)CH FI&DK UCH CH&VDH CH 731 737 738 743 747 748 749 750 INT U(DV)CH SE UCH&JCH NO UCH&J CH NORD J(DG)CH SE&FI UCH SE&NO UCH SE&NO J(D)CH SE&NO J(G)CH 751 INT&NORD U(G)CH 753 INT&NORD U(V)CH 754 INT&NORD U(D)CH 755 INT&NORD U(KV)CH 756 762 774 777 778 793 798 799 814 INT&NORD U(DG)CH US&CA CH SE L&NO L(ELIT)CH AT&FR&IT CH INT&BE&CH CH C.I.E&DK&NO UCH SE VCH LPII INT&NORD J(G)CH INT&DK&FI UCH 820 FI U(KVDG)CH INTERNATIONELL UTSTÄLLNINGS(VILTSPÅR&GRYTPROV)CHAMPION INT&NEDERLÄNDSK&TYSK&LUXEMBURGSK&ISRAELISK CHAMPION INTERNATIONELL & SVENSK UTSTÄLLNINGSCHAMPION ESTNISK OCH FINSK UTST CHAMPION SVENSKT AGILITY- & AGILITY(HOPP)CHAMPIONAT FINSK & ESTNISKT & POLSKT NORSK & FINSK UTSTÄLLNINGS(VILTSPÅR)CHAMPION SVENSK & FINSK JAKTPROVS(DREVPROV)CHAMPION SVENSK & FINSK JAKTPROVS(GRYTPROV)CHAMPION SVENSK & NORSK UTSTÄLLNINGS(DREV&GRYTPROV)CHAMPION FINSK & DANSK CHAMPION SCHWEIZISK & VDH CHAMPION INTERNATIONELL UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION SVENSK UTSTÄLLNINGS & JAKTPROVSCHAMPION NORSK UTSTÄLLNINGS & JAKTPROVSCHAMPION NORDISK JAKTPROVS(DREV&GRYT)CHAMPION SVENSK & FINSK UTSTÄLLNINGSCHAMPION SVENSK & NORSK UTSTÄLLNINGSCHAMPION SVENSK & NORSK JAKTPROVS(DREV)CHAMPION SVENSK & NORSK JAKTPROVS(GRYT)CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(GRYTPROV)CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(VILTSPÅR)CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(DREVPROV)CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR)CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(GRYT&DREVPROV)CHAMPION AMERIKANSK & KANADENSISK CHAMPION SVENSK & NORSK LYDNADS(ELIT)CHAMPION ÖSTERRIKISK & ITALIENSK & FRANSK CHAMPION INTERNATIONELL & BELGISK & SCHWEIZISK CHAMPION SVENSK VILTSPÅRCHAMPION & LYDNADSPROV II INTERNATIONELL & NORDISK JAKTPROVS(GRYT)CHAMPION INTERNATIONELL FINSK DANSK CHAMPION FINSK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR&DREV &GRYTPROV)CHAMPION 71 833 834 835 844 FI&NO J(G)CH DK&CS&NL&IT CH DE&VDH CH BE&FR&HU&LU&NL&PL CH INT&NORD UCH SE B&LCH 871 INT&NORD U(GKV)CH 873 876 882 887 897 915 946 956 957 978 979 INT&NORD U(DV)CH SE&FI LCH INT&NORD UCH JCH DE&HU&PL CH EE&GI CH BE&DE CH INT&NORD&NO&HU&SL UCH BE&DE&NL CH AR&CL CH BENELUX CH 985 987 1100 S BCH TJH(RH) SE BCH&LCH CIB&CIE 837 NORSK & FINSK JAKTPROVS(GRYT)CHAMPION TYSK & VDH CHAMPION BELGISK&NEDERLÄNDSK&LUXEMBURGSK&FRANSK &UNGERSK&POLSK CHAMPION INTERNATIONELL&NORDISK UTSTÄLLNINGS-& SVENSK BRUKSPROVS-&LYDNADSCHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(KARAKTÄR&VILTSPÅR&GRYTPROV) CHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGS(DREVPROV&VILTSPÅR)CHAMPION SVENSK & FINSK LYDNADSCHAMPION INTERNATIONELL & NORDISK UTSTÄLLNINGSCHAMPION JAKTPROVSCHAMPION ESTNISK & GIBRALTAR CHAMPION TYSK & BELGISK CHAMPION NEDERLÄNDSK & BELGISK & TYSK CHAMPION ARGENTINSK & CHILENSK CHAMPION BELGISK & NEDERLÄNDSK & LUXEMBURGSK CHAMPION SVENSKT BRUKSPROVSCHAMPIONAT TJÄNSTEHUND(RÄDDNING) SVENSK BRUKS- & LYDNADSCHAMPIONAT (The Table includes Championships that existed in the Swedish Kennel Club’s Data Base on September 10th 2012. Queries were answered by Håkan Ericson, SKC, personal communication.) 72