Comments
Transcript
Hydrological Studies in the Danube Delta Part A
Hydrological Studies in the Danube Delta Part A Aljosja Hooijer December, 2002 Q3230 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 Contents List of Tables and Figures 1 2 Introduction...........................................................................................................1–1 1.1 Background................................................................................................1–1 1.2 This report..................................................................................................1–1 1.3 Objectives and planning ............................................................................1–1 Study methods and results....................................................................................2–1 2.1 Key Concepts.............................................................................................2–1 2.2 Determining the possibility of plaur flow..................................................2–2 2.3 Water balances for lake systems: assessing flow through reedlands by difference ...................................................................................................2–4 2.3.1 2.3.2 2.3.3 2.3.4 Measuring flow in channels..........................................................2–4 Determining lake water balances ..................................................2–5 Assessing reed flow by difference ................................................2–7 Observing flow through standing reed in the field: mainly through 'micro-channels'...............................................................2–7 2.4 Assessing lake-lake and lake-river connectivity: water level monitoring in lakes .......................................................................................................2–8 2.5 Water level monitoring in reed areas .........................................................2–9 2.6 Assessing source and residence time of lake water from Chloride contents ....................................................................................................2–10 3 Main conclusions...................................................................................................3–1 4 Recommendations.................................................................................................4–1 WL | Delft Hydraulics i Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 List of tables and figures Figure 1 Some field observations (from top to bottom): .......................................................................2 Figure 2 Measurement locations in the Lake Isac system; hydrological field studies, June 2002.........3 Figure 3 Flow measurements in the Lake Isac system; hydrological field studies, June 2002..............3 Figure 4 Measurement locations in the Lake Isac system; hydrological field studies, September 2002. ...................................................................................................................................4 Figure 5 Flow measurements in the Lake Isac system; hydrological field studies, September 2002 ....4 Figure 6 Definition of the Isac lake system ...........................................................................................5 Figure 7 Comparison of measured and modelled flow rates, around the Isac lake System, 3-14 June 2002...........................................................................................................................6 Figure 8 Discharge measurements in the Lake Rosu system.................................................................7 Figure 9 Water level record for the northern edge of lake Isac, in channel Isac 2. ...............................8 Figure 10 Comparison of monitored water levels in Lake Isac with river water levels. .......................8 Figure 11 Left: Installing a 'diver' water level recorder in reedland. .....................................................9 Figure 12 Right: Locations of divers, installed 8 and 9 September 2002..............................................9 Table 1 The difficulty of defining 'lake systems' ...................................................................................5 Table 2 Comparison of measured and modelled flow rates (old situation) ...........................................6 Table 3 Historical information on flows in the Litcov-Isac system.......................................................7 Table 4 Chloride contents in the Lake Isac system, 4-12 June 2002 .....................................................7 Table 5 Location descriptions and installation/retrieval procedures for 'divers'....................................9 Table 6 Water balance for the lake Isac / Isacel / Gerasimova system, September 2002 ....................10 Table 7 Tentative water balance for the Perivolovka channel, September 2002 .................................11 Table 8 Provisional water balances for the Lake Isac system and subsystems, June 2002 .................12 Table 9 Proposed experiment to measure the internal water balance of reedland ...............................13 Table 10 Proposed experiment to estimate flow rates through reeed in a 2D model...........................14 ANNEX 1 - Discharge measurements during the June 2002 mission. ANNEX 2 - Flow profiles during the September mission ANNEX 3 - Diver location photos (for retrieval) WL | Delft Hydraulics 15-17 18-21 22-23 ii Hydrological Studies in the Danube Delta Part A 1 Introduction 1.1 Background Q3230 December, 2002 Since 1997, WL | Delft Hydraulics assists DDNI in developing a hydraulic model for the Danube Delta, based on SOBEK. As water quality management is a crucial part of the conservation and restoration of the Danube Delta ecological system, there is a need to extend the hydraulic model towards a water quality model that takes into account biochemical processes. Before the Hydrological Studies of 2002, reported upon here, the hydraulic model could only be calibrated using flows and water levels in the main Danube branches, as only little data are available on flows and water levels within the lake complexes that form the Delta. Also, no information was available on the hydrological interactions between the different types of reservoirs within the Delta: open water bodies, standing reed swamps and floating reed ‘plaur’ areas. For modelling of biochemical processes, these flows, levels and interactions within the lake systems should be understood better, and used for further development of the hydrological model. The 'hydrological studies' reported here aim to assist in filling this gap in data and understanding. 1.2 This report This is a mission report describing project activities - not a scientific report on the hydrology of the Danube Delta. The two hydrological field missions reported upon here (in June and September) were very distinct in character: outcomes from the first mission were reported in June, as the basis for discussing goals for the second mission, as well as for further development of the model. As the time available for reporting is very limited, this Final Report consists of two progress reports that were merged - outcomes from the June and September missions are reported separately in two blocks within each section. Frequent reference is made in the text to location names - these can be found on the map in Figure 5. 1.3 Objectives and planning Objectives of the field studies The objectives stated in the Terms of Reference for the 2002 Hydrological Studies can be summarised as: • • • WL | Delft Hydraulics To determine if, and how, water flow under plaur occurs – focussing on the Gorgova- Isac System. To determine how these flows under plaur can be implemented in the existing hydraulic model. To report upon the above. 1–1 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 The first field findings (and discussions with RIZA and DDNI colleagues during the field visit) made clear that: A) flow under plaur is possible, but B) it is unlikely (and even impossible from a 'hydrological model' point of view) that this flow component can be separated from flow through standing reed, while C) quantification of net flow through any type of reed can only be quantified from the overall water balance, not from direct measurements of 'reed flow'. These early findings caused a change in the focus of the hydrological study: from looking at ‘plaur flow' only to analysing the entire hydrological system - including plaur flow. In consultation with RIZA and DDNI colleagues, the tasks were soon rephrased to: • • • • • • To determine if, and how, the process of water flow under plaur can occur. To assess to what degree water flow under plaur and through standing reed is actually likely form a significant component of the lake water balance - focussing on the Isac-Uzlina, Gorgova-Potcoava, Gorgostel-Cuibul cu Lebede and Iacob-Rosu lake systems. To collect water flow- and level data that will allow calibration of the flows within and between the lake systems – which has been limited so far, due to lack of data – and to assist in setting up a field monitoring scheme that will enable DDNI in collecting these data in the coming years. To assist in determining if, and how, these flows under plaur and through standing reed can be incorporated in the existing hydraulic model. To assist in deciding how the model schematisation can give a realistic simulation of water flows (and therefore biochemical processes) in the Isac-Uzlina, GorgovaPotcoava, Gorgostel-Cuibul cu Lebede and Iacob-Rosu lake systems. To report upon the above. The June and September field missions Almost all the work within the hydrological studies took place in Romania: in the field and in the DDNI office. Some field observations are shown in Figure 1. The main tasks during both the June and the September missions were field surveys, data collection and data analysis; not much literature research has been done. The conditions, during the two missions were the following: • • WL | Delft Hydraulics In June, water levels in the Danube Delta system were more or less 'average', but falling. Both intense rainstorms and strong winds occurred. In September, water levels in the Danube Delta are usually low, and it was expected that 'near-stagnant' conditions could be measured in this period. However, as a result of the rain events that caused flooding in much of Central Europe, water levels were actually very high (higher than they had been all year) and peaking. No rain occurred during the fieldwork period, but wind activity was considerable. 1–2 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 Objectives and approach of the two missions were: June: • The specific question regarding plaur flow (question 1 above) was answered in the first days. • Following that, in- and out-flows of a large number of lake systems (Gorgova/Isac/Cuibul cu Lebede/Rosu/Puiu; see Figure 5 for map; Annex 1 for measurements) were determined with rapid flow measurements (with relatively low accuracy), to establish of the connectivity between lakes and channels, develop lake water balances and to get an idea of the 'non-measured flows' i.e. the flows through reed that can only be determined by difference. Flows in the Rosu-Puiu systems were as determined (Figure 8). • A single water level recorder ('diver') was installed in Lake Isac for retrieval in September. September: • The water balance of a single lake system (Isac/Isacel/Gerasimova) was determined in far greater detail, by measuring all in- and outflows through full cross sections, every day. • divers were installed in different lakes, and 1 in a reed plain, to monitor water levels until 2003. WL | Delft Hydraulics 1–3 Hydrological Studies in the Danube Delta Part A 2 Q3230 December, 2002 Study methods and results Several unorthodox study methods and experimental set-ups have been used during the field missions. To understand the results, one must understand the method - therefore, the two are presented together. Some key concepts in the following text are rather specific for this (type of-) study and therefore need to be explained before describing the methods used. 2.1 Key Concepts Lakes, lake systems and lake complexes It is difficult to define a 'lake' in the Delta: open water bodies may be separated by ridges of mineral soil, by extensive plains of reed, by mozaics of reed and smaller patches of open water, or even by channels through reed. These are not always easily distinguished. Moreover, the boundary types change with changing water levels. For the purpose of determining a water balance, most inputs and outputs of water bodies must be through channels - clearly, this requirement is rarely met for individual lakes. Therefore, an attempt has been made to delineate 'lake systems' within which lakes are connected (for most of the year), while they are clearly separated (for most of the year) from other lakes. The way this is done for the Lake Isac System is illustrated in Figure 6 and Table 1. It should be noted that the connectivity between lakes is only partly shaped by natural processes - the effects of human activities may now be more important, in three ways: • • • Water flow between many water bodies has been increased by channels. The intensive canalisation in the Delta has created ‘water highways’, reducing the need for water transport through reedbeds. Less obvious but as important is the effect of the embankments along channels, which have compartemented the Delta and separated formerly connected water bodies. As connectivity is a function of water level, the changes in water levels caused by embanking the main river channels, opening and closing connection channels between the river and the lakes, as well as the changes in the river hydrograph itself through river regulation and upstream land use changes, all have an effect on the way water flows between lakes. Note: where the text refers to a 'lake complex', a geographic area within the Delta is indicated by the most prominent lake in it, without implying hydrological connectivity. 'Net flow' versus 'storage change flow' There are two fundamentally different types of flow in a lake system: WL | Delft Hydraulics 2–1 Hydrological Studies in the Danube Delta Part A • • Q3230 December, 2002 'Net flow' is part of the overall flow through the Delta, and will be in the direction of the overall gradient. This flow component is expressed in the water balance of lake systems and can be considered 'steady state': if we assume that storage does not change, lake system inflow must equal outflow. Superimposed in this flow component is 'storage change flow' (sometimes called 'pulse flow'). When a lake system fills up and water level rises, lake water will enter the reedlands and smaller 'satellite' lakes within the system. When water levels fall, the direction of this flow component will be reversed and 'reedwater' will enter the lake. Though this flow component is not important to the water balance of the lake system as a whole, it is very important to water quality in the lakes. The discussions of flow rates in this report pertain only to net flows. The occurrence of 'storage change flow' is assumed, not measured. This flow component would have to be separated from net flows in field observations, and this is only possible in a prolonged and thorough field monitoring program. While such a study would be interesting, and possibly useful if linked to water quality studies, it is not necessary from a hydrological point of view: the fact that water flows in and out of reedlands when lake water levels go up and down is obvious. The delay which this introduces in the response of the system is unknown, but probably insignificant compared to the delays in channels between lake systems, and therefore insignificant from a 'hydraulic model point of view'. 2.2 Determining the possibility of plaur flow Before analysing the importance of plaur flow, it must first be determined whether such flow is possible in the first place. This was done using two methods that allow direct point measurement (i.e. at a certain moment and location) of the flow rate under the reed mat. It is emphasised that such point measurements can only be indicative: they may be accurate, but cannot be extrapolated to other points and moments, nor can they be translated into a general 'plaur flow rate' that can be used in the water balance or the hydrological model. Direct flow measurements under plaur An Ott-Nautilus electromagnetic flow meter was used to directly measure flow under plaur. To this aim, a hole was cut out in the floating reed mat with a 45-centimetre corer and the depth of the reed mat and the lake bottom underneath was assessed - with rather limited accuracy as a layer of almost fluid organic detritus is usually found (or suspected) under the plaur. This method may result in an underestimation of the flow under plaur, as some peat from the hole will inevitably drop under the plaur, obstructing flow. Result: two successful experiments were carried out using this method. 1 . 4 June 2002. Along the southern edge of Pojarnia Lake (see map, Figure 5), the only channel to a satellite lake was recently blocked with plaur. It was assumed that if any flow occurred under plaur between the two lakes, it would be here. Plaur depth was 1.3 m and the ‘solid’ channel bottom 2.5 m, so a water column of 1.2 m was available for water flow – at least in theory (the salt experiment suggested an ‘open’ water column of a few centimetres only, see experiment B.1.). The flow meter recorded no water movement at this location. WL | Delft Hydraulics 2–2 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 2 . 8 June 2002. Local experts reported that fishermen use the southward water movement under the plaur ridge between the Lumina and Puiu lakes by setting nets on the outflow side, on the south. Such flow was indeed found. Reference flow in a channel (8 m wide, 3 m deep) 200 m W of the experiment location was 0.04 m/s. Plaur depth was 1.2 m and the ‘solid’ channel bottom 2.45 m, so a water column of 1.25 m was available for water flow. A flow between 3 and 7 mm/s (with an average of 0.005 m/s) at this location, which indicates that flow under the plaur forms a major water balance component at this location: over a cross section of 1000 metres of uniform plaur, a throughflow of 6.25 m3/s would be possible. Flow assessments under plaur using a salt-solution tracer Salt dispersion in water under plaur provides a ‘tracer’ for flow direction and flow rates. To achieve a clear signal, a significant amount of salt (10 to 20 kilos, dissolved in local water) was injected through a plastic pipe. The movement of hyper-saline water was then followed using a ‘prikstok’ device (used by some Dutch soil scientists): an Electrical Conductivity meter on a metal rod which penetrates through the plaur into the water underneath - while ‘normal’ EC is around 500, the saline water would give readings well into the thousands. EC is measured in narrow circles around the injection point until a signal is picked up and the direction of the saline flow plume is clear. After that, the ‘peak’ of the plume is followed for several meters until a flow rate can be established. Result: two successful experiments were carried out, at the same locations as the direct flow measurements. 1 . 4 June 2002. Along the southern edge of Pojarnia Lake, it was first established that salt water can indeed move under the plaur: the ‘salt peak’ moved by approximately 3 meters in 30 minutes. However, this flow was not due to a natural gradient but appeared to be caused by 5 heavy researchers ‘squeezing’ water from the plaur by their weight (despite working from a wooden platform), as the plaur was in fact lying on the substrate. This was concluded from the following: • • • The main flow direction appeared towards the middle of the channel, not along it. Saline water also moved in the opposite direction from the ‘main’ direction. Water flow occurred only through a very thin zone (1-2 centimetres) under the plaur – above and below this zone, EC remained natural. Interestingly, using a gauge it was found that plaur depth was 1.3 m and the ‘solid’ channel bottom 2.5 m, so a water column of 1.2 m should theoretically be available for water flow. This lack of actual water flow at this location is consistent with the measurement using the EM flow meter (see above). It is concluded that: 1. Water flow under plaur is possible, but will not naturally occur once the plaur rests on the substrate, which is often the case - certainly at lower water levels. 2. In hydrological terms, the ‘substrate’ may not be the mineral lake bottom (as determined with a soil auger) but the top of a layer of almost fluid organic detritus which precipitates from the plaur and accumulates – especially when flow velocities are low. 3. The bottom-surface of the plaur appears to be quite sharply defined: otherwise a straight horizontal contact zone of only 1-2 centimetres deep would not be possible. This may WL | Delft Hydraulics 2–3 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 mean that the surface roughness under plaur is also limited – allowing significant flow velocities, in theory, when water levels are higher and the plaur is floating. 2. 8 June 2002. Under the plaur ridge between Lumina and Puiu lakes, the salt-method indicated a strong southward flow: in 2 minutes, the ‘salt peak’ had moved by over 60 centimetres. In fact, the flow was so fast that after this measurement the ‘pocket’ of saline water, moving under the plaur, was lost and could not be located anymore. If we assume a flow velocity of 100 cm in 2 minutes, or 8 mm/s, this would be even higher than the result as found using the EM flow meter (see above), but it is encouraging that the two methods can give consistent results. At this location, the depth of the open water column where saline water could be found was over 30 centimetres; the EC device would not penetrate deeper than this. This may indicate that no detritus layer is formed under plaur when flow velocities are this high. 2.3 Water balances for lake systems: assessing flow through reedlands by difference The idea behind determining water balances for lake systems was: 1. While most flow occurs through canals and can be measured, flow through reedlands may also be an important water balance component; this flow can not be measured directly but can be estimated ‘by difference’ from the water balance. 2. The flow measurements needed to determine water balances were also needed for calibration and further development of the hydraulic model. If an estimate of nonmeasured flows is possible, the water balance can also serve as a double-check for the accuracy of measurements: if a major measurement error is made, or an important in/outflow channel overlooked, the water balance will not add up. Only partial water balances were possible in this study, as no accurate evaporation of rainfall data were available for the study period. 2.3.1 Measuring flow in channels June Flows were measured repeatedly (with an Ott-Nautilus electromagnetic flow meter) at a large number of locations (Annex 1), in all channels in the Isac / Cuibul cu Lebede / Gorgova lake systems (Figure 2, 3), as well as in the Rosu /Puiu systems (Figure 8). The velocity measurements were part of a rapid assessment program and therefore approximate. However, they are estimated to be accurate within 25% in most cases (on the basis of comparisons of measurements at different moments, and on the basis of the water balance results; see below): WL | Delft Hydraulics 2–4 Hydrological Studies in the Danube Delta Part A • • Q3230 December, 2002 In order to minimise flow variation across the channel, all measurements were taken at straight channel sections, well away from tributaries, with little floating or submerged vegetation along the sides (unless indicated otherwise) and preferably with good tree shelter (on windy days). Due to regular dredging, most channel cross sections are quite uniform and very suitable for flow measurements: most are between 10 and 30 metres in width and 2 to 3 metres deep, with relatively little depth variation across or along it. The narrow (in order to minimise flow obstruction) working-boat was stabilised (with sticks and ropes) at a point about 1-third from the channel-side, and the electromagnetic sensor (Ott Nautilus) was placed upstream of the bow, 1 metre from the channel bottom (independent of channel depth). The average flow velocity over 5 seconds was measured 5 times, and averaged again. Flow velocities were generally rather uniform across channels, but where this was not the case a second measurement was made one-quarter from the opposite side of the channel and the two measurements were averaged again. September The flow measurements in September ware far more accurate, but also far more labour intensive, than those in June, because A) better equipment was used to stabilise the sensor, B) the boat was this time stabilised in the stream by ropes to the sides as well as sticks to the channel bottom, C) the channel cross sections were measured accurately at 2 m intervals across, or less and D) multiple measurements were made at different depths and across the channel. The measurement error is estimated to be well within 10%, on the basis of comparison of repeated measurements, using both the Ott-Nautilus electromagnetic flow meter and a conventional backup 'propeller' flow meter. As these measurements were repeated several times (every day in some cases) at each location around the Isac/Isacel/Gerasimova system (Figure 4, 5; Annex 2), it was possible to get an accurate record of total inflow as and outflows to the system, over a week. 2.3.2 Determining lake water balances June In Table 8, a series of water balances for ‘sub-systems’ is presented for June. As the flow measurements in these period were not highly accurate, they can not be used to determine flows through reed by difference - this flow component is of the same order as the measurement error. However, the water balance shows that the difference between surface water inflows and outflows is not too large to be explained by measurement errors and other uncertainties listed below - also considering the consistency between repeated measurements at the same location (see Table 8). This has two implications: • • June measurements are accurate enough to be used for calibration of the model. The unknown 'reed-flow' water balance component may not be a major water balance component. The fact that at the outlet in of the Eastern Litcov channel into the Crisan channel there is an ‘outflow deficit’ of 36% (or 6,3 m3/s) may be due to the following: WL | Delft Hydraulics 2–5 Hydrological Studies in the Danube Delta Part A • • • • Q3230 December, 2002 The lake system may not actually be in steady state during the study period, i.e. inflows have significantly exceeded outflows and the storage has been increasing. Figure 9 shows that water levels in Lake Isac have indeed risen by 1 or 2 centimetres in the last seven days of the mission, when flow measurements were made. This may not seem much, but assuming a ‘contributing surface area’ of 120 km2 for the Isac- Perivolovka system (S of the Litcov channel) an average rise by 2 mm/day would be equivalent to a ‘lost outflow’ of 2,8 m3/s – explaining almost half of the outflow deficit. This also indicates that, considering the limited throughflow rates in the system (after closing the Uzlina and Litcov E inflow channels), local inputs and outputs due to rainfall and evapotranspiration are important water balance components which should ideally be included in the model. An even larger part of the ‘lost outflow’ may be explained by evapotranspiration, that is likely to have been around 4 mm/d during the study period, as water availability was not a limiting factor, and there were many sunny and windy days. Following the above calculation, this could potentially reduce outflow by 5.6 m3/s. However, this output may partly be balanced by rainfall inputs. Ideally, this should be checked with weather data, but it was not possible to obtain such data in time. There are ‘diffuse’ outflows through reedlands and open water to the north of the Eastern Litcov channel (east of Perivolovka channel), which could not be measured. Finally, a similar ‘outflow deficit’ of 22% along the Western Litcov channel (West of Perivolovka) was attributed to acceptable measurement errors (partly caused by the fact that measurements were made on different days) – this channel is confined by ‘embankments’ of dredging material along its entire length and there it is not likely that major ‘unmeasured’ outflows occur. A similar error is also possible in the Eastern Litcov channel. September In Table 6, the water balance for the Lake Isac system (Isac/Isacel/Gerasimova) is presented, as determined over 4-11 September 2002. A tentative balance for the Perivolovka channel is also given , in Table 7. Apart from the far more accurate measurements during this period, there are several other reasons to believe that this water balance is far more accurate than the one established: • • WL | Delft Hydraulics The fieldwork period exactly (and very luckily) covered the peak of a high-water event. The water level in Lake Isac was the same on the first and last day; after having risen and fallen by 4 cm in between (Table 6, Figure 9, Figure 10). As a result, flow conditions approach a steady state: it can be assumed that surface water inflows equalled outflows over the study period, and no allowances have to be made for changes in storage. Measurements were repeated several times. In the case of the channel Isac III to the SE of lake Isac, for example, flows are highly variable (mainly due to variations in wind directions and strength) and only an average over multiple measurements has some validity. From the measurements in Channel Isac II (to the NE) it can be seen that variations show a trend: outflow from lake Isac increased when water levels first stabilised, then started falling towards the end of the fieldwork period. 2–6 Hydrological Studies in the Danube Delta Part A • Q3230 December, 2002 The way in which the separate lakes were combined into 'the Lake Isac system' differed from the way this was done during the first mission, on the basis of improved understanding of the connectivity between lakes. Such a system is defined here as the combination of lakes which allows all inflows to be measured in channels. 2.3.3 Assessing reed flow by difference From the descriptions of measurements and water balance analyses above, it will be clear that error margins in June were far greater than in September. Therefore, the assessment of the amount of flow through reed will also be far more accurate for September. In Table 6, it is shown that in September 1.4 m3/s of outflow from the Lake Isac System occurs through the reedlands to the east. This would be 17.4% of total outflow. Considering the fact that water levels were very high during the study period, this figure may be close to the maximum. This is confirmed by doing the same calculation using the June data, which yield a figure of only 1.3%. It should be kept in mind that there are uncertainties in both calculations, but that the error margin for the June calculation is especially large. Nevertheless, it can be concluded that outflow through reedland is only a minor component of the water balance of the Lake Isac System, and that the connections between lakes and lake systems are well represented by channels in the hydraulic model - additional channels to represent flow through reedland are not needed. 2.3.4 Observing flow through standing reed in the field: mainly through 'micro-channels' During the September mission, several attempts were made to directly measure flow rates within the flooded reed area between Lake Isac and Lake Gerasimova, as well as between Lake Gerasimova and Channel Perivolovka. This was done using sawdust as a 'visual tracer', on different days and early in the morning, when there was no wind. On all 4 locations, no movement was observed after 5 minutes - only unstable random movements of a few cm at most. In Table 6, it is estimated that, if 17% of the outflow from the Lake Isac System is through the reedland to the east, and this flow would be evenly distributed over a cross-section of 5 km wide and 0.5 m deep, flow velocity would be in the order of 0.6 mm/s. Insignificant as this may seem, it would still add up to 18 cm over 5 minutes. There are two ways to explain this: • • even this low proportion of lake system outflow occurring through reedland may be an overestimation, or this flow through reedland occurs very unevenly distributed, mainly through a few preferential pathways: probably narrow channels kept open by local fisherman. An argument for the latter explanation is that outflow from the Lake Isac System was indeed observed in two channels of 2 and 3 metres wide, to the west of channel Perivolovka (Figure 5). The flow in this channels (0.36 plus 0.21 m3/s) forms already 40% of total calculated outflow (1.4 m3/s) and it is not hard to imagine that there may be more such channels that are harder to find. WL | Delft Hydraulics 2–7 Hydrological Studies in the Danube Delta Part A 2.4 Q3230 December, 2002 Assessing lake-lake and lake-river connectivity: water level monitoring in lakes From the June 2002 study period onwards, water levels were monitored continuously (at 1hour intervals) using a ‘diver’ recorder in the NE of Lake Isac, at the entrance of Channel Isac 2. In addition to this, 4 more recorders were placed on September 8 and 9 at the Gorgostel inlet, the Gorgova outlet, the Uzlina outlet and in the reed N of Lake Isac. Further details are given in Table 3. Results for the latter 4 recorders will only be available by spring 2003. Here, preliminary results based on a single recorder are presented. While results for a single recorder do not allow full analysis of connectivities between lakes and river branches, the following observations can be made at this point: • • • A graph of hourly water level measurements for the summer of 2002 (Figure 9) shows that the water table fluctuates relatively 'smoothly' for most of the time, rarely changing by more than 1 or 2 centimetres in a day - including 'noise' caused by waves and wind activity. On a few occasions however (e.g. around June 15 and August 5) there are sudden 'jumps' in water level by some 5 centimetres, followed by a gradual decline. It seems logical to attribute these jumps to heavy rainstorms, in the order of 50 mm/day. Comparison of Isac water levels with those in the Sulina and Sf. Gheorge Danube branches (at the entrances of the Perivolovka and Crisan channels; the 'outflow pints' of the lake complex around Isac) during the August 2002 high-water event shows that: — The response in lake levels is delayed (more then the 3 days lag-time between Tulcea and the river branches N and S of Isac) but especially greatly weakened, indicating a limited connectivity between lakes and river branches - certainly after closing several channels. — The lake water level is closer to the level in the Sulina branch than in the Sf. Gheorge branch, suggesting that connectivity to the Sf. Gheorge branch is lower. As the only supply of river water to these lakes is from Sf. Gheorge through the Litcov channel, this means that the discharge capacity in the Litcov channel (upstream of lake Gorgova) must be very limited. During the fieldwork period of September 4-11, water levels in the lake were stable while those in the Danube branches were falling rapidly. This confirms the observation that discharges from the system were increasing throughout the period (Table 6). The following can be concluded at this stage: • WL | Delft Hydraulics The closure of the 2 channels between Sf. Gheorge and the lakes (to Lake Uzlina and to the Litcov channel near Lake Gorgova) has strongly reduced the connectivity between the Danube and the lakes. The large difference between the water levels (0.6 m on September 7) on the river- and lake-sides of the Uzlina blockage indicates that lake levels would have been controlled largely by river levels if this connection had been open. The huge inflow (tens of m3/s) measured in the past years in the now-blocked channels when they were still open, compared to the 1 m3/s now passing the Uzlina dam, confirms this (Table 3). 2–8 Hydrological Studies in the Danube Delta Part A • • Q3230 December, 2002 It appears that over short time periods the impact of the river level on the water level in the lake is relatively minor compared to the local effects of rainfall, evaporation and wind. This should be taken into account during future field studies over such short time periods. The decreased connectivity has increased the relative importance of local rainfall and evapotranspiration - for the hydrology and for water quality. In other words: closing the connection channels between river and lakes not only changes throughflow and water quality but also water level regime – making the lakes far less dynamic in general. As the Uzlina-dam was already partly re-opened (by the local population) in September, after only a few months service, it can be assumed that this channel will be opened further, if only by natural erosion, if nothing is done about it. This will again change the hydrological dynamics of the lakes. The question is whether such repeated changes in lake dynamics are beneficial. 2.5 Water level monitoring in reed areas The close association of plaur, standing reed areas and patches of open water, combined with the occurrence of water flow through these area – evident both from the observation of ‘outflow areas’ along channels and from the water balance for the lake systems – leads to the conclusion that water can flow through these reed areas by three or four pathways: under plaur, through standing reed, through open water and possibly even through the peat itself, when lake water levels drop below the level of the peat surface. In Table 9, an experiment is described which would allow the analysis of the water balance of reedlands throughout the year. This experiment could not be carried out in 2002, for logistical reasons and because the required large expanse of uniform standing reed was not found. Instead, a single 'diver' water logger was placed in a reed area, as far away from Lake Isac as possible (see Figure 12; Table 5). The diver was placed in a hole dug in the soil, some 20 cm below the surface. Comparison of this record with that obtained in Lake Isac will provide insight in the way water levels in the reedland response to a 'flood pulse' in the Delta. When installed, during high water on September 9, water levels in the reedland were some 50 cm above the soil surface (see photo Figure 11). The water level is therefore expected to be at or below the soil level for most of the year and the water level will be monitored in three situations: 1. As long as the water table is well above the soil surface, the surface water interaction between lake and reedland is monitored. This should provide valuable information on the hydraulic roughness in reedlands, which can be used in the model. 2. When the water table is near (above or below) the soil surface, there will be a limited connectivity with the lake. If lake water levels are plotted against reedland water levels, it will be interesting to see if there is a sharp breaking point where this connectivity is lost. 3. When connectivity with lake surface water is lost, water levels in the reedland respond only to local inputs and outputs: useful techniques exist which allow determination of actual evapotranspiration rates in wetlands using the diurnal water table records in dry periods, while the storage coefficient of the soil can be determined from the response to rainstorms. WL | Delft Hydraulics 2–9 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 With high water levels, it may also be possible to analyse the effect of wind activity on water storage in reed. It was found that winds can be strong in the Delta, and it is suspected this constant in- and outflow (even when lake levels are relatively constant) may enhance the water exchange between lake and reed, and may therefore be important to water quality. However, it is not sure whether the accurate wind data that are required for this analysis are available. Note: the diver is placed quite close to the surface, in a hole that should be water-filled even when the reedland is not flooded. This means that the sensor temperature may fall below zero during prolonged freezing conditions. It should be made sure that A) the monitoring data are not lost from the memory during such conditions, or that B) the diver is removed before such conditions start. 2.6 Assessing source and residence time of lake water from Chloride contents Because chloride is considered a 'conservative' ion - its concentration only affected by dilution and concentration - it is often used as a tracer in hydrological studies. In wetland hydrology, this tracer is often used to 'map' stagnant parts (where salt accumulates due to evapotranspiration), identify relative inputs of river water versus rainwater, and determine mixing rates between lakes. To find out if this could also be done in the Danube Delta, 16 samples from different types of locations around Lake Isac were compared. The analysis results presented in Table 4 show that chloride contents in most lakes are quite uniform, between 0.2 and 0.3 mg/l. However, they appear lower around the L. Gorgova lake system (samples 12-13), presumably due to relatively high fraction of rainwater inputs (i.e. lower river water inputs), while a higher concentration was found in water taken from under plaur (sample 16), possibly indicating stagnant conditions. Somewhat unexpectedly, the water in C. Litcov, which largely originates from the river, does not have high chloride contents (sample 14). It is concluded that in this case, when water levels and throughflow rates are high, and after a winter/spring period of low evapotranspiration, chloride is not a good tracer in these lakes. However, it is worth trying to use the method when water levels are low, and after a period of high evapotranspiration - by late summer. It is recommended that chloride contents are determined systematically in water samples analysed in the DDNI laboratory, in order to build up a database that allows analysis of temporal and spatial patterns in chloride content. WL | Delft Hydraulics 2–10 Hydrological Studies in the Danube Delta Part A 3 Q3230 December, 2002 Main conclusions Flow under plaur is possible, but not an important water balance component It has been shown that an open-water column can exist under plaur, and that this allows flow in particular conditions. However, the flow measurements in channels and findings of the water balance show that only a small part of the net flow across lake systems is through reed, and only part is that through plaur. Therefore, flow under plaur is not likely to be a significant component of the water balance of lake systems. Field surveys and discussions with DDNI confirm that net flow under plaur can occur at high rates (see the results of the flow measurements), but it also seems clear that this only happens in a few places – especially under narrow ridges of plaur between two lakes with a significant water level difference. In most places, flow under plaur is limited, for the following reasons: • • • • • WL | Delft Hydraulics Large expanses of solid, uninterrupted plaur are rare – in fact, they could not be identified in the Isac lake system, during the field surveys. Instead, there is a mosaic of plaur, standing reed and open water. This means there are many blockages for uninterrupted flow under plaur over long distances, but also that there are many opportunities for flow through open water bodies (‘creeks’ or 'rivulets') in the standing reed, between open water bodies. Most plaur is not floating on deep open water. Comparison between the bathymetric and vegetation maps shows a close relation between plaur distribution and the occurrence of shallow lake soils between and along lakes. The water column under the plaur is therefore not as deep as when it would be located over deeper water bodies. Also, this observation indicates that the plaur is not uniformly free-floating – it must clearly be ‘anchored’ to the lake bottom (possibly through patches of standing reed), or it would simply float away with high water levels. Build-up of a layer of organic detritus below the reed mat is common, and is likely to prevent flow under most conditions. A significant depth of open water under plaur is found only during high water, except from a few locations where permanent flow removes detritus under narrow 'plaur ridges between lake, as in the case of the plaur between Rosu and Puiu described above. The intensive canalisation in the Delta has not only created ‘water highways’, reducing the need for water transport through reedbeds, but has also created embankments where dredging material is deposited along channels, which in many cases block flow across channels, from and to reedbeds. Also, water flows under plaur will be strongest when water levels are highest, in early spring, while the most important time for hydrological water quality processes may be in summer, when water levels are lower. 3–1 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 Flow through reedlands is not a major water balance component At least in the case of the Lake Isac System, at most 17% of outflow occurs through reedland. This was determined during the high-water period of September 2002. When water levels are lower, this flow component will be even smaller - a tentative figure of 1.3% was found for June. This means that the connections between lakes and lake systems are well represented by channels in the hydraulic model - additional channels to represent flow through reedland are not needed. It should be kept in mind that human activities - especially the building of channels and embankments along them - have completely altered the connectivity and hydrology of the lake systems, and reduced the amount of flow through reedlands. There are indications that flow through reedland is far more important in situations that are more 'natural': where lakes are separated by 'open' reedland and not connected by channels. Examples are the connection between L. Isacel and L. Isac, and between L. Chiril and L. Cuibul cu Lebede. An implication of the currently very 'unnatural' situation is that nature restoration can not be based on the assumption that the original hydrology can be restored - but this discussion goes beyond the scope of this study. Comparison of field measurements and model results In Table 2, the field flow measurements during June are compared with model results at that time - the channels from Sf. Gheorge to Uzlina and to Litcov near Gorgova were already closed in the schematisation, as in reality. It can be seen that there were large differences between observed and modelled flows. From Figure 7 it is clear that in some cases also the direction of modelled flows differed from observed directions, and that a few important connections were missing in the model. At the time of finishing this report (November 2002), the model has been developed further - modelled flow rates are now close to observed rates. Further model improvement will be possible when water level records from the divers that were installed in September become available. One conclusion from this comparison is the confirmation of the need for data collection for model development. This is not surprising to anyone, yet data collection is too often forgotten too long in this type of study, and it is important that collection of hydrological data continues in the Danube Delta. To know what further data will be needed, an idea is needed of the precise objectives for the model. For instance, the improvements in modelled discharges between June and November 2002 were partly achieved by increasing the hydraulic roughness in lakes. This may be fine if the model is used to model flows and travel times in the current situation. However, if the aim would be to also predict water level fluctuations (e.g. for analysis of bird breeding areas), or to be able to predict the hydrological effects of changes to the system (e.g. scenario studies for opening and closing channels), it should be made sure that roughness in the model indeed reflects the physical reality. WL | Delft Hydraulics 3–2 Hydrological Studies in the Danube Delta Part A Q3230 December, 2002 It is likely that the water level information now collected by 5 divers around lake Isac will allow further improvement of the model to the stage where water level predictions and scenario studies in the Isac complex become possible. However, it is expected that model refinement will be a continuous process and that further data will be needed. WL | Delft Hydraulics 3–3 Hydrological Studies in the Danube Delta Part A 4 Q3230 December, 2002 Recommendations Some recommendations made during the field missions, on model development and the need to monitor water levels in lakes, have now been implemented: • • • Recalibration of the model using flow measurements. Inclusion of evapotranspiration and rainfall in the model. Monitoring of water levels in lakes for further calibration. In order to make full use of the water level information from the divers, it is necessary to determine the absolute water level at each diver location. This may require a rather complex topographic survey as there are only few reliable benchmarks. Over such large distances, it is not an option to simply assume that 'the water surface is horizontal' and link diver records to this water level - this would result in there being no gradient in the modelled Isac lake complex. In discussions at DDNI, it was agreed that it may be a good idea to carry out the topographic survey at a time when channels and lakes are frozen and can be walked on. Further work needed on model development and hydrological studies depends on the needs of DDNI and other researchers. The model can be further refined to the stage where water quality predictions and water level predictions in the entire Delta have a high level of accuracy and detail, but the question of purpose should first be answered. Therefore, only tentative further recommendations can be given at this stage: • • • • WL | Delft Hydraulics It is recommended to collect information on flows and water levels, similar to the data collected in the Isac complex, for the rest of the Delta if the model is to be used for management decisions. Apart from the intensive monitoring campaigns aiming to determine the water balance for a system at one time, it would be helpful to make regular (e.g. 3monthly) flow measurements at selected locations along the main channels within the lake complexes (such as Litcov and Perivolovka). If further research into lake-water interactions is needed, it could be helpful to simulate specific cases in a 2-dimensional model (as in Delft FLS or Delft 1D2D). A tentative idea for a simple simulation is suggested in Table 10. For some applications it may be considered to further develop the model so as to better simulate the different connectivities at different water levels. Maybe there could be 3 water level stages in the model, characterised by different hydrological connectivities: — high water levels: full connectivity between lakes and river. — low water levels: connectivity only through channels. — intermediate water levels: transition stage where an increasing part of the flow occurs through reedbeds, with increasing water levels. It is hoped that the current hydrological studies will result in a tentative relation between water level and the proportion of flow going through reedbeds, which can be used in the model. However, measurements at higher water levels will be needed to finalise this relation. 4–1 Hydrological Studies in the Danube Delta Part A • • WL | Delft Hydraulics Q3230 December, 2002 For further model development and future hydrological studies, it would be useful to set up a systematic database of data relevant to future hydrological studies - of the type that is offered by HYMOS at WL | Delft Hydraulics. This could include also topographic data (elevations of reference locations), channel descriptions, weather data (rain, evaporation, wind) and water quality data. A database not only gives access to data collected over a long period, but also allows easy interpretation and standardised quality control. Once sufficient data have been collected, other lake complexes could be analysed as we have now done for the Lake Isac complex. 4–2 Hydrology and Water Quality Modelling in the Danube Delta Part B Ronald Bakkum December 2002 Q3230 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Contents 1 2 3 4 5 Introduction...........................................................................................................1–1 1.1 Background................................................................................................1–1 1.2 Objectives ..................................................................................................1–2 1.3 This report..................................................................................................1–2 Hydrology / SOBEK-CF.......................................................................................2–1 2.1 Introduction................................................................................................2–1 2.2 Model outline.............................................................................................2–2 2.3 Meteorology data .......................................................................................2–3 2.4 Calibration and results ...............................................................................2–6 Eutrofication (DANUBS)......................................................................................3–1 3.1 Main characteristics (changes)...................................................................3–1 3.2 Some results...............................................................................................3–3 Eutrofication (BLOOM).......................................................................................4–1 4.1 Introduction................................................................................................4–1 4.2 Required input ...........................................................................................4–1 4.3 Some results.............................................................................................4–10 Conclusions and recommendations .....................................................................5–1 5.1 Conclusions................................................................................................5–1 5.2 Recommendations......................................................................................5–2 Appendices A000 WL | Delft Hydraulics Update of DANUBS module description........................................................... A–1 i Hydrology and Water Quality Modelling in the Danube Delta Part B B000 WL | Delft Hydraulics Q3230 December, 2002 BLOOM subset details ....................................................................................... B–1 ii Hydrology and Water Quality Modelling in the Danube Delta Part B 1 Introduction 1.1 Background Q3230 December, 2002 Since 1997, WL | Delft Hydraulics assists DDNI in developing a hydraulic model for the Danube Delta, using SOBEK. As water quality management is a crucial part of the conservation and restoration of the Danube Delta ecological system, in 2001 a beginning was made in extending the hydraulic model towards a water quality model that takes into account biochemical processes. During a six-week mission of Ronald Bakkum in autumn 2001, a successful first step in the extension was made in close collaboration with Adrian Constantinescu. At the end of the mission the water quality model had been incorporated and three different modules had been developed; DANUBS, for predicting nutrient removal in the Delta on a coarse scale, SEDIMENT, for examination of sedimentation zones and DDNIEUTRO, for studying eutrofication phenomena in more detail. By then the hydraulic model had been calibrated mainly using flows and water levels in the main Danube branches, as only little data were available on flows and water levels within the lake complexes that form the Delta. Moreover, no information was available on the hydrological interactions between the different types of reservoirs within the Delta: open water bodies, standing reed swamps and floating reed ‘plaur’ areas. For appropriate modelling these flows, levels and interactions within the lake systems had to be understood better, both for further development of the hydrological model as well as the modelling of biochemical processes. To be able to make a distinction in biochemical processes in reed beds and open water bodies it was necessary to separate both parts in the hydrological model. In 2001 the model had been calibrated (or fitted) using nutrient removal coefficients for each complex based upon weight factors between open water and reed beds of each of the complexes and depending on a function based upon the water level at Tulcea. Finally it was claimed, both from a hydrological as a water quality point of view, that meteorological conditions as wind, precipitation and evaporation play a significant role in the dry period and should not be ignored in the model. In 2002 two field visits were paid to the Delta to focus on analysing the entire hydrological system, and how it compares with the model outcomes. The results of these field visits are described in part A. The objectives were to determine if and how water flow under plaur can occur and to what degree water flow under plaur and through standing reed is actually likely form a significant component of the lake water balance. During these visits he focused upon the Isac-Uzlina, Gorgova-Potcoava, Gorgostel-Cuibul cu Lebede and IacobRosu lake systems. Based upon the findings of the hydrological survey and the needs claimed in 2001, Adrian Constantinescu collected meteorological data and prepared a new model schematisation this summer, in which reed beds are separated from open water bodies. All of this formed the starting point for the autumn 2002 hydrological and water quality modelling mission. WL | Delft Hydraulics 1–1 Hydrology and Water Quality Modelling in the Danube Delta Part B 1.2 Q3230 December, 2002 Objectives The objectives stated in the Terms of Reference for the 2002 hydrological and water quality modelling mission can be summarised as: 1. 3. Hydrology; adapt in close cooperation with Adrian the outline of the model (i.e. (1) separation of reed beds and open water and (2) introduce precipitation and evaporation) and calibrate the hydrology using data gathered by data loggers and the field trips. Update and improve the water quality model regarding eutrofication by introducing the BLOOM component. This task has been split into: • adapting the existing DANUBS module to the new model outline, redefining the process formulations for reed beds, implement recent monitoring results, calibrate the DANUBS module again, and finally • redefinition and calibration of DDNI-EUTRO by replacing the algae by BLOOM processes and introduction of a sediment layer and accompanying processes. To report upon the above. 1.3 This report 2. This report presents the results and preliminary conclusions of the work performed during the period September-October 2002. This report is NOT a calibration report of a model application. In stead of this, it contains technical support information for its potential users. The changes in the model outline, meteorology data and the calibration of the hydrology model are briefly described in chapter 2. In chapter 3 the recalibrated DANUBS, simple eutrofication model is discussed. Based upon this work the model has been extended (on request) with a different more complex algae bloom module and sediment layer. A technical description of this so-called DDNI-BLOOM module is described in chapter 4, followed by the main conclusions and recommendations, which can be made at this stage. WL | Delft Hydraulics 1–2 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 2 Hydrology / SOBEK-CF 2.1 Introduction December, 2002 Based upon the field measurements of June 2002 it was concluded that there are large differences between field measurements and model results. This in fact was true, but we have to keep in mind that flow measurements had never be done before in the Delta. The calibration of the Delta was only based upon limited monitored water levels. The challenge now was to benefit from the availability of field data and the new insights. In the June mission report two tentative recommendations for improving the model were made: 1. A way should be found to simulate the situation with high water levels, when lakes are connected to the degree it is effectively a single body of water and water levels are practically equal to those in the main river branches. Maybe there should be 3 water level stages in the model, characterised by different hydrological connectivity’s: • high water levels: full connectivity between lakes and river. • low water levels: connectivity only through channels. • intermediate water levels: transition stage where an increasing part of the flow occurs through reed beds, with increasing water levels. 2. When water levels are intermediate and low, local rainfall and evapotranspiration form a significant part of the water balance of many lakes. In the 2001 version of the model it is impossible to truly represent the hydrological functioning of the lakes, because the full water balance is not included. With respect to the 3 connectivity layers, it does not make sense to use a 1-dimensional model for the really high water levels in the Delta. It is just out of range of the model, which already was known on the forehand. Maybe SOBEK1D2D can play a role with respect to flooding in future, but for the moment it is suggested to be familiar with the fact this hydrological model is not suitable for predicting the conditions in the Delta during flood periods. Therefore also in the present updated model outline the first connectivity layer has been neglected. During the second hydrology mission, water balances proved that reed bed flow is from a water balance point of view not significant during low water and probably will play only a modest role during intermediate conditions. Which means, with respect to the model outline, it could be sufficient to use a connectivity outline in which flow between the different lakes only occurs via channels. Within the lakes itself a separation has been introduced between open water and reed bed parts. So within lakes now it is possible to study on the exchange of water in between open water and reed. The separation between water and reed has been created based upon surface areas and cross sections. At present the model itself has not been calibrated on these specific flows. In the next section the model outline will be discussed in more detail. WL | Delft Hydraulics 2–1 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 With respect to the recommendation introducing evaporation and precipitation within the model it can be stated this has been done. Further reference is made to the section “meteorological data”. 2.2 Model outline With respect to the models outline, as created in 2001, it has been changed in two ways: 1. Distinction in open water and reed bed parts: physical and chemobiological processes are totally different in reed beds in comparison with open water. As stated in October 2001 for the purpose of water quality modelling it was necessary to make a distinction in the model between open water and reed bed area’s (plaur plus standing reed). Of secondary importance it is to make a further distinction between standing reed beds and plaur. In the new outline the distinction between open water and reed beds has been implemented for all areas. 2. Implementation of precipitation and evaporation: this has been done by definition of lateral discharges on branches, which refer to a meteorological database. Also a distinction has been made between precipitation and evaporation in reed bed parts and the open water. The new outline principle is shown in figure 2.1. 2001 2002 Figure 2.1 WL | Delft Hydraulics Modelling principle for reed beds versus open water and evaporation and precipitation 2–2 Hydrology and Water Quality Modelling in the Danube Delta Part B 2.3 Q3230 December, 2002 Meteorology data In order to assess the relative importance of local rainfall and evapotranspiration within the water balance, it was necessary to collect data or make assumptions. With respect to the water quality model also data on surface water temperature and effective radiance have been collected. In table 2-1 the long term monthly average values of these data are presented. Table 2-1 Long term monthly average meteorological date for the Delta Month Precipitation 1 2 3 4 5 6 7 8 9 10 11 12 [mm/day] 1.2 1 1 1.2 1.5 1.8 1.5 1.2 1.2 1 1.2 1.2 Evaporation literature [mm/day] 0 0 -2.26 -3.27 -4.97 -7 -8.58 -7.58 -6.53 -3.61 -1.87 0 Evaporation Open water [mm/day] 0 0 -1.63 -2.35 -3.58 -5.04 -6.18 -5.46 -4.70 -2.60 -1.35 0 Evaporation reed [mm/day] 0 0 -2.51 -3.63 -5.52 -7.77 -9.52 -8.41 -7.25 -4.01 -2.08 0 Temp [Celsius] 1.1 2.5 7.0 10.3 17.2 22.8 25.4 25.2 20.5 16.0 9.1 3.9 Effective radiance [W/m2.day] 24 37 64 92 106 115 123 102 71 36 26 18 The precipitation data used by the model originate from Gorgova and Tulcea meteorological stations; these data consist of monthly precipitation amounts for each year. The Evaporation data used are taken from DDNI projects based on Gorgova and Tulcea meteorological stations data and “The monograph of the Danube Delta reed” by L.Rudescu, 1965, especially for deducing the balance between evapotranspiration from water surface and reed surface. Because these data are the total evaporation for the Delta it is subdivided into evaporation from open water and evaporation from reed bed areas. This has been done using a: • • weight factor of 1.54 for the conversion of evaporation from open water to reed beds and total Delta area average weight factor for the area proportion distribution; 30% open water, 70% reed beds. In figure 2.2 and 2.3 the evaporation and precipitation model data for the year 2000 are shown. Also the figures for Schiphol, The Netherlands, are shown as a reference. As can be seen the evaporation in the Delta is lower in winter and higher in summer and autumn, as could be expected. Evaporation in reed beds reaches values up to a maximum of 10 mm/day in July. With an area cover of 70% reed in the Delta, this is an amount, which can not be ignored in the water balance. Especially not during low water periods with a rather stable water level. WL | Delft Hydraulics 2–3 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 0.0 20.0 P_Sc hiphol 18.0 -2.0 30 per. Mov . A v g. (P_Sc hiphol) 14.0 m m /da y -4.0 -6.0 -8.0 10.0 8.0 6.0 E_Sc hiphol E_DDNI_openw ater E_DDNI_reed(1.54) 30 per. Mov . A v g. (E_Sc hiphol) -10.0 12.0 4.0 2.0 Example of evaporation and precipitation in the Delta (and as a reference for Schiphol, the Netherlands) as monthly average values. 40.0 P-E Sc hiphol Net: P-Eow DDNI Net: P-Ereed DDNI 30 per. Mov . A v g. (P-E Sc hiphol) 35.0 30.0 m m /da y 25.0 20.0 15.0 10.0 5.0 0.0 -5.0 Figure 2.3 01-dec -00 01-nov -00 01-okt-00 01-s ep-00 01-aug-00 01-jul-00 01-jun-00 01-mei-00 01-apr-00 01-mrt-00 01-f eb-00 01-jan-00 -10.0 Example of the net precipitation in open water and reed beds in the Delta for the year 2000 (and as a reference for Schiphol, the Netherlands) Data on surface water temperature are based on monitoring data near Tulcea. In figure 2.4 the average surface water temperature for the period 1994-2002 is presented, as well as the minimum and the maximum in this period. WL | Delft Hydraulics 2–4 01-dec -00 01-nov -00 01-okt-00 01-s ep-00 01-aug-00 01-jul-00 01-jun-00 01-mei-00 01-mrt-00 01-jan-00 01-dec -00 01-nov -00 01-okt-00 01-s ep-00 01-jul-00 01-aug-00 01-jun-00 01-mei-00 01-apr-00 01-mrt-00 01-f eb-00 01-jan-00 Figure 2.2 01-apr-00 0.0 -12.0 01-f eb-00 m m /da y P_DDNI 16.0 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 30.00 25.00 20.00 Average of tem p 15.00 M in of tem p M ax of tem p 10.00 5.00 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 A v erage of temp 1.11 2.47 7.02 10.31 17.25 22.75 25.39 25.21 20.48 16.02 9.12 3.88 13.33 Min of temp 0.50 0.51 1.45 7.30 15.63 21.42 23.40 21.50 18.10 14.03 8.00 1.60 0.50 Max of temp 2.00 5.60 9.40 12.40 21.00 24.10 26.38 28.00 23.88 17.80 11.03 5.29 28.00 Figure 2.4 Monthly average surface water temperature data at Tulcea (1994-2002) Actual Radiation data (necessary for the computation of algae bloom) are not available. A monthly average value was estimated based on literature. Literature stated that 73% of the annual radiation falls within the period April-September. Furthermore the maximum is 20 kcal/cm2 (radiance value) in the month July. These values should however be corrected for e.g. clouds and the wavelength spectrum. It is assumed that 10% of the light is reflected and 50% of the radiance is the amount of visible light (available for algae bloom). The radiance in the model is expressed in W/m2. Literature data from 1963 gave us some idea about the monthly average values, ranging from 3.4 kcal/cm2.month in November till 18.8 kcal/cm2.month in July. These values match approximately with values from Venice (available from a former Delft Hydraulics study) which has more or less the same latitude. In figure 2.5 the monthly average data used in the model are presented, as well as the minimum and the maximum values in this period. The average values from Venice have been used in the Danube Delta applications, without any variations over different years. 160 140 120 100 A verage of rad M in of rad 80 M ax of rad 60 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 A v erage of rad 24 37 64 92 106 115 123 102 71 36 26 18 67 Min of rad 10 12 51 70 85 91 110 92 54 17 17 8 8 Max of rad 39 55 83 113 135 139 132 116 93 47 47 27 139 Figure 2.5 WL | Delft Hydraulics Average effective solar radiation (corrected for clouds, reflection and visible light) from Venice (Italy) which are used in the Delta application. 2–5 Hydrology and Water Quality Modelling in the Danube Delta Part B 2.4 Q3230 December, 2002 Calibration and results After implementing the improved outline, in which reed beds are separated from open water, and incorporation of precipitation, evaporation and wind effects, the hydraulic model was calibrated again. All of this assuming the boundary conditions, model outline and definition of cross-sections are not anymore points of discussion. In fact this means calibration has to be performed on water levels and discharges or velocities. The discharge/velocity on each location in the model is a computational result of the CF module. It is mainly driven by the water levels as defined at the up stream boundary in the Danube near Tulcea. Of secondary importance in this are meteorological data like wind speed and direction. During calibration of the model measurement data regarding water levels and discharges in the Uzlina districts have been used. Water level data have been recorded by data loggers, which resulted in the availability of a time series (spring 2002 up till September 2002). The data regarding flow velocity are based upon two individual monitoring moments in June and September this year. Discharges at the in and outflow points of several lakes in the Uzlina districts have been monitored during the field missions (see Part A). To be able to obtain a good fit between measurement data and model data we were forced using a rather extraordinary value of the bed roughness value in the lake and reed bed areas. Using normal values of this roughness coefficient the gradient in water levels became too large. At the same moment we were not able to compute discharges in the same order of magnitude as monitored in June and September. Within the river and channel branches the present model uses Manning roughness values in the order of magnitude 0.04-0.08, rather normal values for a system like the Danube Delta. Within the lakes (open water and reed beds) at present an extraordinary Manning value of about 5 is used. This is a ridiculous value for empirical relations derived for rivers and channels. However we are dealing with a 1-dimensional model scheme for lakes, including reed beds and open water, a situation no literature values for Manning or Chezy values could be found. Moreover, the very high value for the Manning coefficient is not unusual to represent laminar flow (pers. com. Adri Verwey) An example of the discharges as modelled by the model in comparison with field measurements in the Uzline-Isacova region is given in figure 2.6. In this figure momentum measurements are compared with the average modelled flow (average, minimum and maximum) during both the June and the September 2002 field trips. As can be seen the in and out flows of Isacova lake are predicted very well by the model. WL | Delft Hydraulics 2–6 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 dis charges: m onitoring versus m odelled 3 disc harges : m onitoring versus m odelled 6 2 1 dis cha rg e (m 3/s ) dis charge (m 3/s ) 5 4 3 2 0 -1 -2 discharges: m onitoring versus m odelled 2 -3 -4 1.5 -5 1 1 d is charg e (m 3/s ) -6 -7 0 0.5 0 -0.5 -1 -1.5 -2 -2.5 dis c harges : m onitoring vers us m odelled 4 3 disc harges : m onitoring vers us m odelled 2 1 0 1 -1 -2 -3 -4 dis cha rge (m 3 /s ) dis charge (m 3/s ) 2 0 -1 -2 -3 -4 -5 Figure 2.6 Monitored discharges around lake Isacova during the field trips in June (3-11) and September (410) in comparison with average, minimum and maximum modelled discharges for the same period. In figure 2.7 an overview is given of new water level monitoring locations in the Delta. In figure 2.8 both the monitored and modelled water levels in Isacova are presented for a low water period in April 2002. As can be concluded, the model predicts the water levels very well. It should be noted that this has been achieved by using the extreme (out of range) value of the Manning coefficient in the lakes. With Manning roughness values within the socalled expected range we were not able to produce such nice results. The Black Sea zero reference (MNS) had been delivered by the topographical team and has been deduced from the original zero reference Black Sea 75 (MN75). The conversion formula between both locations is: H_MNS = H_MN75 + 0.35 (m). The average difference between the monitored water level in the diver (H_diver) and the modelled level (H_model) data is 0.33 m, which represents the constant value used to correct the levels form MN75 to MNS. This observation is according to the Aljosja Hooijer report from September 2002. It means that the initial value of the reference point (cnl.Litcov and cnl.Perovolovca crossing) is according to the Black Sea Sulina zero reference location (H_diver_correction) and it is not necessary to correct again by adding 0.35 m. A check of all the zero reference points will be done by the DDNI topographical team for all the new divers that have been installed in Gorgova-Uzlina aquatic complex. WL | Delft Hydraulics 2–7 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Black Sea Sulina zero reference point (M NS) Diver cnl. Isac 2 Isac lake level (model) Figure 2.7 Figure 2.8 WL | Delft Hydraulics Map of diver and topographic point location (Black Sea Sulina zero reference) Monitored and modelled water levels 2–8 Hydrology and Water Quality Modelling in the Danube Delta Part B 3 Q3230 December, 2002 Eutrofication (DANUBS) For an update of the technical description of the process configuration for DANUBS reference is made to appendix A. The calibration of the DANUBS processes configuration focused upon the lakes Uzlina, Isacova and Cuibulcuelebede for the years 1996-1997. Other locations and other years were used for verifying the process coefficient settings. 3.1 Main characteristics (changes) Shear stress (sedimentation) The bed shear stress, which is used by the water quality model, is calculated as the sum of the shear stress caused by wind, flow and ship movements. If the directions of the flow (FlowDir) and the wind (WindDir) are supplied the wind and flow stresses are summed as vectors, otherwise as scalars. The stress by ship movements is always added as a scalar as it is assumed to be independent of direction (and assumed to be equal to zero in this application). The calculation method of the shear stress uses the formulations according to Tamminga (1987) or Soulsby et al. (1993). For shear stress caused by flow this means: Within our model we are using quite normal roughness values for river and channel branches, but extraordinary values for the lake and reed parts. Using these extraordinary values we obtained reasonable discharge values (and so velocity values) at the in and outflow point of the lakes. We should take into account that the roughness value has become a model calibration parameter in stead of a value with a real physical meaning. However its value is used to compute a shear stress, which of course then also loses its physical value. The shear stress caused by flow in this case is order of magnitude 1000 out of range. The shear stress within the water quality model is used to calculate the sedimentation of particles. The final result is that with respect to the calibration values obtained for critical shear stress for sedimentation the value should by multiplied by 1000 as well. WL | Delft Hydraulics 3–1 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Reaeration The driving force for gas transport across the air-water interface is the difference between the actual dissolved concentration and the saturated concentration. The reaeration flux can thus have a positive or a negative value. The reaeration rate constant (RCRear) can be supplied directly by the user or is calculated by the model. In literature, there are many empirical relations available. Several empirical relations representing the effect of depth and stream velocity on RCRear are implemented in the process library as options (SWREAR switches 2 until 6). One option for the combined effect of wind velocity, stream velocity and depth on RCRear has been implemented as well as options for the combined effect of wind velocity and depth. The update of the DANUBS subset uses a scaled version of the Connor O’ Dobbins equations (SWREAR = 4) to derive the oxygen exchange flux with the atmosphere. In which: KLRear = scale factor for RCRear (-) RCRear = reaeration rate constant (d-1) Depth = water depth (m) Veloc =stream velocity water (m.s-1) KLRear has a default value of 1 (which means the original Connor O’Dobbins is used), but has been set to 0 in reed beds and uses a higher value for the lakes. The zero value is chosen to disable the exchange with the atmosphere in reed beds, because the surface water is covered. The higher value for lakes is chosen to compensate for the extra exchange caused by wind and waves, which is not part of the equation. With respect to the field situation probably formula number 7 (reckoning with wind, flow and depth) within the library would be more suitable for a model outline including rivers and lakes, but with this formula it is impossible to switch of the rearation in reed beds. Reed bed modelling Now reed beds are separated from open water it is possible to define specific conditions for this surface water type. As the process library of the water quality model does not contain specific biochemical process formulations for reed bed conditions we have to use the same formulations as for open water. However some specific conditions are created. For detailed information reference is made to appendix A, and the process library of SOBEK-WQ. WL | Delft Hydraulics 3–2 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 The main reed bed assumptions are: 1. No algae bloom can take place in reed beds. Within the model this has been assured by means of “switching of the light” by introduction of a dummy huge background extinction (ExtVLBak = 99). This does not mean there are no algae in reed beds. Caused by inflow from open water there is a transport of algae towards the reed beds, where they will die. 2. Second assumption is that there is no oxygen exchange possible between air water, assuring conditions of low oxygen contents or even without oxygen. 3. It is known a lot of nitrogen is removed in reed beds. Denitrification is the process, which removes nitrogen from the system. The removal is forced by the coefficients RcDenSed (denitrification rate in sediment = 0.06 1/d) and RcDenWat (denitrification in surface water = 0.2 1/d). The process takes part on nitrate. To be sure that nitrate does exist, the nitrification in reed beds continues even till oxygen concentrations of zero (OOXNit and COXNit settings). 4. Sedimentation rates within reed beds are double in comparison with open water and no resuspension is possible. 5. Mineralisation rates in reed beds are high in comparison with open water. 6. A higher background sediment oxygen demand has been defined (representing the higher organic matter content in reed bed sediments) (remark: sediment oxygen demand has been forced, modelling with the DANUBS subset does mean you are not modelling the sediment layer itself). 3.2 Some results Underneath some results of the calibration of the DANUBS-2002 subset are presented in figure 3.1 and 3.2. The result of the new application is at least as good as the fitting, which has been performed last year. But in contradiction of last year, we now are using surface water type related coefficients in stead of district coefficients. It is not necessary anymore to scale coefficients according to their weight factors between open water and reed areas, as well as to use the denitrification function related to the water level at Tulcea. In Figure 3.1 the total phosphorus contents of three lakes in the Gorgova-Uzlina are presented. Figure 3.2 gives the chlorophyll levels for the same lakes. Last year we faced difficulties in the calibration procedure with both these parameters. Phosphorus because of its contradictory monitoring results, which provided us with boundary conditions. Chlorophyl because of the fact we did not have a separation between reed beds and open water areas. The present application shows for both parameters in trend a reliable fit. Some more results for the same district are presented in Appendix B. For results of other districts reference is made to the application itself. WL | Delft Hydraulics 3–3 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Total phosphorous (mg/l) 0.3 0.25 0.2 0.15 Cuibul cu Lebede 0.1 0.05 0 94 95 96 97 98 99 00 01 02 0.3 0.25 0.2 Isacova 0.15 0.1 0.05 0 94 95 99 00 96 97 98 99 00 01 02 0.3 Uzlina 0.25 0.2 0.15 0.1 0.05 0 94 Figure 3.1 95 96 97 98 01 02 Modelled total phosphorus contents in the Gorgova-Uzlina district in comparison with monitoring data. 100 90 Chlorophyl-a (μg/l) 80 70 60 50 40 Cuibul cu Lebede 30 20 10 0 100 94 95 96 97 98 99 00 01 02 90 80 70 60 Isacova 50 40 30 20 10 0 94 95 96 97 98 00 01 02 99 00 01 02 100 Uzlina 90 80 70 60 50 40 30 20 10 0 94 Figure 3.2 WL | Delft Hydraulics 95 96 97 98 99 Modelled chlorophyll-a contents in the Gorgova-Uzlina district in comparison with monitoring data. 3–4 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 4 Eutrofication (BLOOM) 4.1 Introduction December, 2002 Due to eutrophication the complex and varied ecosystems of the Danube Delta have deteriorated over past few decades. High nutrient loads in the Danube River as it enters the Delta are seen as one of the reasons. The DANUBS subset has been developed to give more insight in nutrient removal processes on a lake-district scale. Complex processes have been modelled on a simple way. For example, the model does not contain a sediment layer, so any interaction between surface water and sediment is neglected. Sedimentation parameters have to be interpreted as net removal. Release of phosphorus from sediments in dry periods, which is supposed to be relevant in reed beds, can not be described by this subset. Another example is the modelling of the algae content. Although it has proven to make a rather reliable prediction, all algae-species have been lumped in one species and an important issue as gracing by zooplankton has been compensated by a higher mortality rate. With the process library however, it is possible to describe these and other phenomena in more detail. It was asked to extend the model with BLOOM functionality on algae, in order to describe several algae-species, and to incorporate relevant sediment processes. The specific challenge of this module should be replication of the chlorophyll and turbidity characteristics of the lake types, which have been identified in the TROFDD project (Oosterberg et al. 2000, Ecological gradients in the Danube Delta), as well as the distribution of these lake types over the Danube Delta. This chapter provides in a short introduction in the DDNI-DBS water quality model, its process definition and model assumptions. This model has been created in the period October 2002. For detailed information on the processes, the coefficients and the general model assumptions reference is made to the DELWAQ technical reference manual and the SOBEK help file. Final remark, which has to be made, is that during the calibration of this module only is focused upon the Uzlina-Isacova region. Calibration has been performed for the years 1997 and 1998, verification for the years 2000 and 2001. 4.2 Required input The water quality model requires data on boundary conditions, initial conditions, meteorological conditions and process coefficients. The meteorological data used by the model have already been described in the hydrology chapter. The others are discussed briefly below. Boundary conditions WL | Delft Hydraulics 4–1 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 For the hydrological model of the Danube Delta area the most important boundary is the upstream inflow at Reni. Another relevant source within the Danube Delta, which has been incorporated in the model, is atmospheric deposition. Point-source waste loads and nonpoint source waste loads are considered to be of minor importance. Model outflow locations are the downstream boundaries at the Black Sea and evaporation. Within the water quality model it is assured that evaporation only extracts water and no substances. The DDNI-DBS model distinguishes the following model variables: Surface Water • continuity • dissolved oxygen (OXY); • inorganic nutrients: NH4, NO3, Si, PO4 (dissolved), AAP (adsorbed phosphorus), PAP (irreversible adsorbed phosphorus); • inorganic suspended matter in two fractions: IM1, IM2; • 11 algae; Diatoms energy type, Diatoms P/Si type, Greens energy type, Greens N type, Greens P type, Blue-greens energy type, Blue-greens N type, Blue-greens P type, Microcystes energy type, Microcystes N type, Microcystes P type; • organic detritus: DetC, DetN, DetP, DetSi. • other organic matter: OOC, OON, OOP, OOSi Sediment layer • adsorbed ortho phosphorus in sediment (AAPS1) • inorganic matter in sediment (IM1S1, IM2S1) • organic matter in sediment (DetC, DetN, DetP, DetSi) For all of these variables the model has to be provided with initial and boundary conditions water. Of course, not all of these items are directly available within the DDNI monitoring database. Within the SOBEK framework so called calculation rules have been incorporated to define the relation between monitoring data and model variables. By using these kinds of calculation rules, it is possible to "feed" the model with data directly from the database. Presently we use monitoring data on total suspended solids (SS), oxygen (O2), dissolved nitrogen (NO3_2, NH4), dissolved phosphorus (PO4) and chemical oxygen demand (CCO) from the DDNI laboratory for the deduction of model variables. Total phosphorus (TotP) measurements are expected to be unreliable. Separate analysis in the RIZA laboratory showed significant higher values. Also total phosphorus monitoring data used within the DANUBS project at station Reni show higher values (source: v.Gils). At present the total phosphorus data from the Reni station are used. Except for these data also computational results by the DANUBS model for the upstream region (v.Gils) have been used for the estimation of the upstream conditions regarding total inorganic matter (sTIM) and algae carbon (sALGC) content. This is motivated by the relative big importance of these parameters in relation to the availability of reliable data. For the period after 1997 monthly average computational results of the previous period have been used. Detritus carbon is assumed to be equal to the algae carbon and for deducing the other organic carbon content the difference between monitored CCO data and the sum of the algae and detritus part is used. WL | Delft Hydraulics 4–2 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 The results of this for the upstream inorganic-matter concentrations and the algae content are presented in Figure 4.1. At the bottom end it means that in comparison with previously derived boundary conditions the suspended solids data at station Reni are not longer used. Diat _DDNI 2.5 Diat _Danubs A lgC- suggest ion 2 1.5 1 0.5 0 1994 1995 1996 1997 1998 1999 2000 2001 120 IM 1 _ d d ni 100 IM 1 _ d anub s IM 1 sug g est 80 60 40 20 0 1994 1995 1996 1997 1998 1999 2000 2001 16 14 AlgC-suggest ion 12 Det Csuggest OOCsuggest 10 8 6 4 2 0 1993 1994 1995 Figure 4.1 WL | Delft Hydraulics 1996 1997 1998 1999 2000 Deduction of organic and inorganic suspended matter for the upstream boundary. 4–3 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 To estimate values for non-monitored variables standard coefficients and relations from the water quality process library are used. Examples are the nutrient to carbon ratio’s in organic matter (NCratio = 0.16, PCRatio = 0.02, SiCRatio = 0.49) and a dry matter conversion factor between carbon and dry matter (DMCF = 2.5 gDM/gC). Currently calculation rules as presented in table 4-1 are used (file name is substanc.def) for estimating the upstream Danube river boundary conditions: Table 4-1 List of model variables and calculation rules to determine them out of monitoring data. Sobek-WQ Variable monitoring database related calculation rule (user defined substances) Oxygen (OXY) Nitrate (NO3) Ammonium (NH4) Ortho Phosphorus (PO4) Adsorbed ortho phosphorus (PAP) Adsorbed ortho phosphorus (AAP) Dissolved Silica (Si) Detritus (organic) Carbon (DetC) Detritus Nitrogen (DetN) Detritus phosphorus (DetP) Detritus Silica (DetSi) Other Oorganic Carbon (OOC) Other Organic Nitrogen (OON) Other Organic Phosphorus (OOP) Other Organic Silica (OOSi) DIATOMS energy type DIATOMS P/Si type GREENS energy type GREENS nitrogen type GREENS phosphorus type BLUEGREENS energy type BLUEGREENS nitrogen type BLUEGREENS phosphorus type MICROCYS energy type MICROCYS nitrogen type MICROCYS phosphorus type Inorganic Matter (IM1) Inorganic Matter (IM2) O2 NO32 NH4N OPO4 PTot - OPO4 – sALGC * 0.033 0.0 * OPO4 0.80 * CCO 1.0 * sALGC 0.23 * sALGC 0.02 * sALGC 0.60 * sALGC 0.80 * CCO – 2.0 * sALGC 0.19 * CCO – 0.47 * sALGC 0.016 * CCO – 0.04 * sALGC 0.48 * CCO – 1.2 * sALGC 0.40 * sALGC 0.0 0.30 * sALGC 0.0 0.0 0.30 * sALGC 0.0 0.0 0.0 0.0 0.0 0.5*sTIM 0.5*sTIM Limit MIN 0.0 MIN 0.0 MIN 0.0 MIN 0.0 MIN 0.0 Initial conditions Initial conditions imply the initial concentrations of the substances in the model. By default, global initial conditions are used for all segments in the model (table 4-2). If desired the user is able to vary the initial conditions per segment by using a binary restart file, in which for every segment the modelled conditions on the last time step of a previous simulation have been stored. Residence times in some parts of the complex could be very high and consequently a chosen global initial value still can have influence on the model outcome. It is advised to simulate at least one year for creating a restart file (preferable is even a longer period). However, at present (i.e. during the calibration procedure) has been chosen for global initial values. WL | Delft Hydraulics 4–4 Hydrology and Water Quality Modelling in the Danube Delta Part B Table 4-2 Q3230 December, 2002 List of the default global initial conditions. Sobek-WQ Variable Oxygen (OXY) Nitrate (NO3) Ammonium (NH4) Ortho Phosphorus (PO4) Adsorbed ortho phosphorus (PAP) Adsorbed ortho phosphorus (AAP) Dissolved Silica (Si) All algae types Detritus (organic) Carbon (DetC) Detritus Nitrogen (DetN) Detritus phosphorus (DetP) Detritus Silica (DetSi) Other Organic Carbon (OOC) Other Organic Nitrogen (OON) Other Organic phosphorus (OOP) Other Organic Silica (OOSi) Inorganic Matter first fraction (IM1) Inorganic Matter second fract. (IM2) Initial Value 10 1.9 0.2 0.06 0.0 Unit mg/l mgN/l mgN/l mgP/l MgP/l 0.02 mgP/l 1 0 0.05 0.013 0.0015 0.04 0.04 0.012 0.0014 mgSi/l MgC/l mgC/l mgN/l mgP/l mgSi/l mgC/l mgN/l mgP/l 0.04 29 mgSi/l mg/l 28 mg/l Sobek-WQ variable in sediment Initial value Unit Adsorbed (AAPS1) phosphorus 1 gP/m2 Detritus Carbon (DetCS1) Detritus Nitrogen (DetNS1) Detritus phosphorus (DetPS1) Detritus Silica (DetSiS1) 1 1 1 1 gC/m2 gN/m2 gP/m2 gSi/m2 Inorganic Matter first fract. (IM1S1) Inorganic Matter sec. fract. (IM2S1) 1 g/m2 1 g/m2 Processes The model equations for the variables mentioned above include a number of processes from SOBEK'S Processes Library, some of which will be described below briefly. For a more extended description we refer to the Theoretical Reference Manual (TRM) for the individual processes of the Processes Library or the SOBEK help file. It should be noted that in the greater part of the Danube Delta area transport has the biggest influence on the internal fluxes within the model. A good calibration of the hydrological model therefore always is a pre-condition for the calibration of the water quality model. An overview of the processes within the DDNI-DBS subset regarding the nutrients is presented in Figure 4.2 and Figure 4.3. A total overview of all processes, which presently are incorporated in the model, is given in Appendix C. WL | Delft Hydraulics 4–5 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 N2 = Transport Denitrification Denitrification in reed beds N2 OON NO3 Nitrification Uptake &Release Mineralisation NH4 Algae Algae Growth uptake C:N:P:Si (2 diatoms) Mortality and Grazing release DetN Grazing by zooplankton Growth uptake Resuspension Mortality (3 greens) Sedimentation (3 bluegreens) (3 microcystes) Mineralisation DetNS1 Burial Figure 4.2 Processes overview regarding nitrogen components. = Transport PAP Decay Uptake &Release OOP Mineralisation NH4 PO Ad/desorption IM1 IM2 Growth uptake AAP Mortality release Algae Algae (2 diatoms) Sedimentation / Resuspension Desorption and release IM1S1 AAPS1 IM2S1 (3 greens) (3 bluegreens) (3 microcystes) Mineralisation Burial Figure 4.3 WL | Delft Hydraulics DetP Grazing by zooplankton C:N:P:Si Resuspension Mortality Sedimentation DetPS1 Burial Processes overview regarding phosphorus components. 4–6 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 The following assumptions are made for this application (amongst others and apart from the assumptions, which have been mentioned for the DANUBS application): • • • No sedimentation of algae and the other organic matter does occur. Burial in the present application is defined as a “surface water type” dependent constant. In the field situation, algae and detritus in the water column can be consumed by grazing zooplankton and zoobenthos. In the DBS application biomass of grazers is defined as a forcing function. Some of the processes will be discussed at the end of this chapter. Coefficients There are four types of process coefficients that may be specified in the model input are used in water quality model: • • • • model constants; model parameters f(x); model functions f(t); segment functions f (x,t) The model constants are separated into algae coefficients and constants, which have been set on “editable” by the user interface. For the algae coefficients reference is made to a fixed bloom algae coefficient database. It is strongly not advised to edit these coefficients. An overview of the so-called editable coefficients is available in the model application (settings menu). Parameters are constant in time but may differ for the computational elements. If they are used, they need to be specified for all computational elements or for element types. In the Danube Delta model outline 4 geographically based surface water types have been defined, in order to be able to define specific conditions for each type of water. In the DANUBS application currently the parameter settings as presented in table c) are used: WL | Delft Hydraulics 4–7 Hydrology and Water Quality Modelling in the Danube Delta Part B Table 4-4. Q3230 December, 2002 Parameter settings used for calibrating the DDNI-DBS application Surface water types KLRear ExtVLBak Rc0AAPS1 VsedDetC TauCSDetC VsedIM1 TaucSIM1 VsedIM2 TaucSIM2 VburDMS1 FResS1DM RcNit COXNIT OOXNIT RcDenWat Rc0DenSed RcDetC RcDetN RcDetP RcDetSi Danuberiver 1 DistrictChannels 1 LakesOpen-water 1.5 LakesReed 0 1.5 0 0 0.001 0 0.01 0 0.01 0 0 0.1 1 5 0.1 0 0.12 0.12 0.12 0.12 1. 0 0 0.001 0.1 0.01 0.05 0.01 0 0 0.1 1 5 0.1 0.01 0.12 0.12 0.12 0.12 0.5 0 0 1 0.2 10 0.07 0.5 0.005 2 0.1 1 5 0.1 0.01 0.15 0.15 0.15 0.15 999 0.01 0.1 1 0.3 10 0.1 0.5 0.01 0 0.2 -1 0 0.2 0.06 0.2 0.2 0.2 0.2 These parameters are related to oxygen climate, light, sedimentation behaviour, (de)nitrification and mineralisation. Oxygen: KLRear = reaeration transfer coefficient. KLRear has been made space dependent (= parameter) to be able to define different exchange velocities with the atmosphere. At present the reaeration formulation uses a scaled version of the Connor O’ Dobbins equations to derive its exchange flux. The scale factor is the KLRear. KLRear has a default value of 1 (which means the original Connor O’Dobbins is used), but has been put to 0 in reed beds and uses a higher value for lakes. The zero value is chosen to disable the exchange with the atmosphere in reed beds, because the surface water is covered. The higher value for lakes is chosen to compensate for the extra exchange caused by wind and waves, which is not part of the equation. (With respect to this formula number 7 in the library would be more suitable for a model outline including rivers and lakes, but with this formula it is impossible to switch of the rearation in reed beds). Light climate: ExtVLBak = background extinction ExtVLBak has been made space dependent to be able to include the effect of different concentrations of humified acids and non modelled suspended particles on the light climate and the effect of reed beds and other vegetation on the limitation of light availability for algae bloom. The high value for reed beds is chosen to switch of all possibilities for algae bloom in reed beds. WL | Delft Hydraulics 4–8 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Sediment behaviour: VSedDetC = sedimentation velocity of detritus carbon TauCSDetC = critical shear stress for sedimentation of detritus carbon VsedIM1 = sedimentation velocity of inorganic suspended matter TauCSIM1 = critical shear stress for sedimentation of inorganic suspended matter VsedIM2 = sedimentation velocity of second fraction of inorganic suspended matter TauCSIM2 = critical shear stress for sedimentation of second fraction inorganic suspended matter FResS1DM = zero order resuspension flux VBurDMS1= burial of dry matter Regarding sedimentation it is assumed that organic matter only is due to sedimentation in reed bed areas. Inorganic matter settles also in the channels and lakes (more or less to lose adsorbed phosphorus), but has a higher sedimentation rate in reed beds. Regarding the critical shear stress values of organic and inorganic matter reference is made to the section “main characteristics”, “shear stress”. The higher value (factor 1000) is related to the extreme value of the Manning roughness value, which has been used in lakes for the calibration of the hydrology. Finally, a resuspension flux has been introduced in the lakes. No sediment layer has been modelled in this application, but is it known that resuspension due to wind does occur. In this application it has been chosen to use a constant factor for resuspension. This eventually results in a more constant suspended solids content in the lakes in comparison with the monitoring data, but its goal is to model average values. Nitrification and denitrification: RcNit = first order nitrification rate COXNit = critical oxygen content for nitrification OOXNit = optimal oxygen content for nitrification RcDenWat = first order denitrification rate for surface water Rc0DenSed = first order denitrification rate for sediment The nitrification rate in reed beds is assumed to be twice the rate of the surface water. Also, with help of the COXNit and OOXNit values it has been adjusted for reed beds to have nitrification in lower oxygen conditions in comparison with the open water (it is known that the nitrification process continues due to transport of oxygen via the reed to the sediment layer). The denitrification rates in surface water and in sediments are used to simulate the nitrogen removal in the districts. Most of the removal will be due to denitrification in reed beds, explaining the higher values used in these cases. Using the 0.06 value for RcDenSed, the removal fluxes as in the old application are approached. Mineralisation: RcDetC = first order mineralisation rate for detritus carbon contents RcDetN = first order mineralisation rate for detritus nitrogen RcDetP = first order mineralisation rate for detritus phosphorus RcDetSi = first order mineralisation rate for detritus silicate For mineralisation regular literature values have been used. Only for reed beds higher values have been chosen (to stimulate nutrient removal). WL | Delft Hydraulics 4–9 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Phosphorus release: Rc0AAPS1 = desorption rate phosphorus in sediment The Delta area is not only a sink regarding phosphorus. It is known that release of phosphorus from the sediment layer may increase the phosphate levels in the lakes. During low water periods the release could be higher then the sum of adsorption and sedimentation. Functions are constant all over the area, but follow a prescribed sequence over time. Most common examples are temperature and solar radiation, which both are defined within the Meteo data task. No additional functions are used within the DANUBS application. Table 4-5 Model functions Parameter id Temp Rad Zooplankton Description Water temperature Solar radiation at the water surface Zooplankton concentration Recommended value f(t) f(t) f(t) Unit deg C W/m2 gC/m3 For the temperature and radiation functions reference is made to the chapter “Hydrology”. Data from the TROFDD report have been used for deducing the average biomass of zooplankton (gC/m3) of the lakes Uzlina, Isacova and Cuibul cu Lebede for the years 19971998, both calibration years. For 1997 the zooplankton content has been put to 0.5 gC/m3 till July and 0.4 foor the rest of the year. For 1998 a constant value of 0.5 gC/m3 is used. It should be noted that the zooplankton contents are very heterogeneous in space and time. At present zooplankton is defined as a model wide function. Grazing is one of the key factors regulating the algae contents in the lakes, so different values can give completely different results. A second point of order is that I corrected the 1998 data by a factor 10; the values in the graphs in the report seem to be out of range. Using the original data from the TROFDD graphs as input for the model, it is not possible to compute any algae concentrations. Anyway, they are anyhow far out of range of all the other data, while the DDNI monitoring data regarding algae concentrations are not. 4.3 Some results Underneath some results of the calibration of the DDNI-BLOOM subset are presented in picture 4.1 till 4.3. No detailed output is presented and discussed in this report, which mainly focuses on giving a technical description of the BLOOM subset. In Figure 4.1 the chlorophyll levels for the Uzlina-Isacova lakes are presented. In Figure 4.2 the species types are given. It can be concluded that according to the model in summertime the N- and P-type green algae are dominant in the lakes, and for Uzlina also energy and N-limited microcystes are modelled. In Figure 4.3 the chlorophyll levels for the Uzlina-Isacova lakes in case grazing is switched of are presented. WL | Delft Hydraulics 4–10 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 140 Chlorophyl-a (μg/l) 130 120 110 100 Cuibul cu Lebede 90 80 70 60 50 40 30 20 140 10 0 jan-97 apr-97 jul-97 okt-97 jan-98 apr-98 jul-98 okt-98 jan-99 130 120 110 100 90 80 70 60 Isacova 50 40 30 20 10 0 jan-97 140 apr-97 jul-97 okt-97 jan-98 apr-98 jul-98 okt-98 jan-99 130 120 110 100 Uzlina 90 80 70 60 50 40 30 20 10 0 jan-97 Figure 4.1 apr-97 jul-97 okt-97 jan-98 apr-98 jul-98 okt-98 jan-99 Chlorophyll-a concentrations in Uzlina, Isacova and Cuibul cu Lebede for 1997-1998. 5.5 Algae (mgC/l) 5 4.5 4 Cuibul cu Lebede 3.5 3 2.5 2 5.5 1.5 5 1 4.5 0.5 4 0 m rt-97 jun-97 sep-97 dec-97 m rt-98 jun-98 sep-98 dec-98 3.5 3 2.5 Isacova 2 1.5 1 0.5 0 mrt-97 jun-97 sep-97 dec -97 m rt-98 jun-98 s ep-98 dec -98 2.4 2.2 2 Uzlina 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 m rt-97 Figure 4.2 WL | Delft Hydraulics jun-97 sep-97 dec-97 m rt-98 jun-98 sep-98 dec-98 Algae types (in gC/m3) in Uzlina, Isacova and Cuibul cu Lebede for 1997-1998. 4–11 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 Chlorophyl-a (μg/l) 220 200 without grazing 180 160 Cuibul cu Lebede 140 120 100 80 220 60 200 40 180 20 0 jan-97 160 140 apr-97 jul-97 okt-97 jan-98 apr-98 jul-98 okt-98 jan-99 120 100 Isacova 80 60 40 20 0 jan-97 apr-97 jul-97 okt-97 apr-98 jul-98 jan-98 apr-98 jul-98 okt-98 jan-99 220 200 Uzlina 180 160 140 120 100 80 60 40 20 0 jan-97 apr-97 jul-97 okt-97 jan-98 okt-98 jan-99 Figure 4.3 Algae concentration in Uzlina, Isacova and Cuibul cu Lebede for 1997-1998 in case grazing is ignored. WL | Delft Hydraulics 4–12 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 5 Conclusions and recommendations 5.1 Conclusions December, 2002 Objective 1: adapt in close cooperation with Adrian the outline of the model (i.e. (1) separation of reed beds and open water and (2) introduce precipitation and evaporation) and calibrate the hydrology using data gathered by data loggers and the field trips. • • • Separation of reed beds and open water has been successfully fulfilled within the lakes. Exchange of water between reed beds and channels, as well as exchange of water between lakes via reed beds is not covered by the present application. The big reed bed areas in the model are assigned to the lakes (as well in the old as the new model outline). Exchange of water between reed beds and open surface water, is driven by advection and dispersion. As a result of the introduction of precipitation and evaporation in the lakes the Danube river is not any more the only “regulator” for the flow regime in the districts. Additionally also wind speed and direction has been defined and taken into account in predicting the flows in the districts. Based upon the flow measurements gathered in June and September the hydrology has been recalibrated. The roughness value proved to be as well a necessary as a successful key to assure a good fit between modelled and modelled discharges in the districts. According to hydraulic experts it is allowed to define a extreme high Manning roughness coefficient in lakes with adjoining big areas of reed in order to introduce a linear flow. Objective 2: Update and improve the water quality model regarding eutrofication by introducing the BLOOM component. This task has been split into: (c) adapting the existing DANUBS module to the new model outline, redefining the process formulations for reed beds, implement recent monitoring results, calibrate the DANUBS module again, and finally (d) redefinition and calibration of DDNI-EUTRO by replacing the algae by BLOOM processes and introduction of a sediment layer and accompanying processes. • • • • • WL | Delft Hydraulics The DANUBS application is finished, actually is more than required for its goal. The BLOOM application is technically functioning and tested on the lakes Uzlina, Isacova and Cuibul cu Lebede for the period 1997-1998. Grazing is one of the key parameters in predicting algae contents. As a result of separating reed beds and open water it now is possible to create separate mass balances and study on process phenomena in reed beds and open water. Transport is on most of the locations and for most substances observed from a process scale the main contributor. Algae bloom in the open water bodies of the lakes is the exception and is for the greater part steered by nutrient availability (and light climate). The phosphorus release flux from the sediment may exceed the removal during long periods with low water levels. 5–1 Hydrology and Water Quality Modelling in the Danube Delta Part B 5.2 Q3230 December, 2002 Recommendations General model items: • It is important that the possibilities and limitations of the model are discussed and known to the people who use its results. It seems that several ecological studies have been based on the model results, without taking into account these limitations. • On the other hand, the present model is probably suitable to support more ongoing surveys then is the case at present. Hydrology model: • At the moment there are 5 data loggers in the field (Uzlina-Gorgova district) which will provide us with more detailed information regarding the water levels in the district. It is strongly advised to compare these data with the modelled data by the model for the same period. Adrian Constantinescu is fully capable performing this task. • During the June and September field missions cross section profiles were registered while performing flow measurements. Compared with the cross sections in the model, the areas seem to be significantly smaller. It is advised to check the cross sections for the channels once more, especially at the entrances of river water to the districts. • The present model is able to provide its user with information for each lake on (1) volumes in reed beds and open water, (2) exchange flows between reed and open water in lakes (mainly driven by meteorology). If information on this is required, the model may be a useful support tool, although the model has not been calibrated on these flows (no measurements available). Water Quality Model: • The DANUBS application is more then sufficient for its goal (predicting nutrient removal in the Lake districts on a large scale), the BLOOM application gives may provide its user in insight in specific process influence and relevance. Models can always be improved and developed further on. In our opinion the present model is a very suitable tool to support others with information, which might be useful for them. Especially the BLOOM application is and should give food to healthy discussions. Possibly this will raise questions to the model and if necessary wishes for further development or improvement. • Especially the definition of the reed bed processes is very interesting for further investigation. • If the present BLOOM application is used for other years then 1997-1998 or for other lake areas it is necessary to define new grazing biomasses as a function of time, based upon monitoring data from DDNI’s laboratory. • At present the model uses radiation data from Venice, due to lack of reliable own data. Although nutrient availability seems to be the number one component in limiting algae bloom, it is always prefered to use data from a meteorological station nearby. WL | Delft Hydraulics 5–2 Hydrology and Water Quality Modelling in the Danube Delta Part B • WL | Delft Hydraulics Q3230 December, 2002 The BLOOM application has been applied for a 2-year simulation, the DANUBS application for almost 10-year period. In the BLOOM application nutrient release from sediments has been described. It might be that the release flux now is overestimated, or the removal underestimated. This can be examined by performing a long year simulation, which at present has not been done. If long year simulations are wished, this has to be examined. 5–3 Hydrology and Water Quality Modelling in the Danube Delta Part B A000 Q3230 December, 2002 Update on DANUBS module description processes The model equations for the variables mentioned above include a number of processes from SOBEK’s Processes Library, some of which are described below briefly. For a more extended description we refer to the Theoretical Reference Manual (TRM) for the individual processes of the Processes Library. It should be noted that in the greater part of the Danube Delta area transport has the biggest influence on the internal fluxes within the model. A good calibration of the hydrological model therefore is a pre-condition for the calibration of the water quality model. The most important processes in the DANUBS subset which are working on the variables are presented in the table below. Table a) The most important processes for the DANUBS subset. Variable OXY (+/-) + +/+/+ + + -/+ + + +/+ + NH4 NO3 PO4 AAP Si IM1 Diat DetC, DetSi WL | Delft Hydraulics DetN, +/DetP,+ - Processes acting on it Denitrification in water column Nitrification of ammonium Reaeration of oxygen Mineralisation detritus carbon Sediment oxygen demand (additional) Net primary production and mortality of algae Nitrification of ammonium Mineralisation detritus nitrogen Uptake of nutrients by growth of algae Release (nutrients/detritus) by mortality algae Denitrification in sediment (N-Removal in reed beds) Denitrification in water column (N-Removal in reed beds) Nitrification of ammonium Uptake of nutrients by growth of algae (although algae are NH4 preferent) Ad(De)Sorption ortho phosphorus to inorg. Matter Mineralisation detritus phosphorus Uptake of nutrients by growth of algae Release (nutrients/detritus) by mortality algae Ad(De)Sorption ortho phosphorus to inorg. Matter Sedimentation AAP (adsorbed PO4) Æ Removal of phosphorus Mineralisation detritus silica Uptake of nutrients by growth of algae Sedimentation Resuspension Æ only in lakes, as a zero order resuspension, for the rest is sedimentation a removal flux (incl. AAP) Net primary production and mortality green algae Mineralisation detritus Release (nutrients/detritus) by mortality algae Sedimentation detritus carbon (removal of nutrients out of system) A – 1 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 The interactions between the different substances and the processes involved are also presented in next figures. N2 Denitrification N2 NO3 Denitrification in reed beds Nitrification Org-N Mineralisation (Det) Growth uptake NH4 Algae Growth uptake C:N:P:Si (Diat) Mortality Sedimentation Figure 1 Sedimentation Nitrogen processes cycle in DANUBS subset (excl. transport and waste loads) Reaeration Det c/n/p/si Mineralisation O2 Denitrification NO3 --> N2 O2 consumption Nitrification O2 production NH4 --> NO3 Algae Sediment oxygen use AAP (IM1) Ad/desorption PO4 Mineralisation Org-P (Det) Growth uptake Algae C:N:P:Si (Diat) Mortality Sedimentation Figure 2 Processes in the oxygen balance Sedimentation Figure 3 Phorphorus balance More detailed information on the most important processes including some special remarks regarding the DANUBS subset is given in Annexes A till D. For more detailed information on the other processes reference is made to the SOBEK-WQ theoretical (or technical) reference manual, or the SOBEK help files. WL | Delft Hydraulics A – 2 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 coefficients There are principally four types of process coefficients that may be specified in the model input to be used in water quality modelling: • model constants • model parameters f(x) • model functions f(t) • segment functions f(x,t) (see section 2.2.4) Constants are constant for the whole area to be modelled and do not differ in time. Stoichiometric constants, temperature dependency constants for bacteriological processes and solubility constants can be examples. They are specified as a number of single values, one for each constant. Most processes can be fine tuned using the constants in the equations governing the process. In the table underneath an overview is given of the most relevant process constants of the DANUBS subset that can be modified by the user (in the "Processes Library Coefficient Editor"). The present values used in the DANUBS project are presented in table 4. Understanding the parameter id’s of the water quality model is a matter of experience. However some mnemomics for the user could be helpful for a start: • Tc…. is always a Temperature Coefficient • C…. is always a Critical variable (e.g. temperature or oxygen) coefficient • Rc…. is always a reaction Rate Constant • V…. is always related to a Velocity • S1/S2 is always related to a Sediment layer 1 or 2 (note: no sediment in this application) • SW…. is always a switch to select a formula (the WQ library often offers different formulas to compute a process(flux) WL | Delft Hydraulics A – 3 Hydrology and Water Quality Modelling in the Danube Delta Part B Table b) Q3230 December, 2002 Model constants Model Parameter id Description Unit phorphorus ad/desorption SWAdsP RcAdPO4AAP KdPO4AAP Switch formulation <0=Kd|1=Langmuir|2=GEM> Rate constant for adsorption PO4->AAP 1/d Partition coefficient PO4-AAP m3/gDM Suggested Value 0 0.5 1.0 nitrification/denitrification in surface water RcDenWat First-order denit. rate in water (N-removal) TcDenWat Temp. coefficient for denitrification OOXDEN Optimum oxygen conc. for denitrification COXDEN Critical oxygen conc. for denitrification CTDEN Ctritical temp. for denitrification RcNit First-order nitrification rate constant TcNit Temperature coefficient for nitrification OOXNIT Optimum oxygen conc. for nitrification COXNIT Critical oxygen conc. for nitrification CTNit Ctritical temperature for nitrification 1/d g/m3 g/m3 oC 1/d g/m3 g/m3 oC f(x) – parameter 1.07 1 3 2 0.1 1.07 f(x) – parameter f(x) – parameter 3 denitrification in sediment (reed bed N-removal) ZDenSed Zeroth-order denit. flux in bottom RcDenSed First-order denit. rate const. Bottom TcDen Temp. coefficient for denitrification CTDen Critical temperature for denitrification gN/m2/d m/d degrees 0 f(x) – parameter 1.12 2 reaeration and sediment oxygen demand SWRear Switch for oxygen reaeration formulation <1-11> KLRear Reaeration transfer coefficient TCRear Reaeration temperature coefficient fSOD zeroth-order oxygen demand flux RcSOD decay reaction rate SOD at 20 oC m/d gO2/m2/d 1/d 4 f(x) – parameter 1.02 f(x) – parameter 0.1 sedimentation (in)organic matter (is removal in this application) VSedDetC sedimentation velocity DetC TauCSDetC critical shear stress sedimentation DetC VSedIM1 sedimentation velocity IM1 TaucSIM1 critical shear stress sedimentation IM1 fResS1DM resuspension flux dry matter from S1 SWTau Switch <1=Tamminga|2=Bijker> m/d N/m2 m/d N/m2 gDM/m2/d - f(x) – parameter f(x) – parameter f(x) – parameter f(x) – parameter f(x) – parameter 1 mineralisation organic matter RcDetC TcDetC RcDetN TcDetN RcDetP TcDetP RcDetSi TcDetSi CTMin 1/d 1/d 1/d 1/d oC f(x) – parameter 1.08 f(x) – parameter 1.08 f(x) – parameter 1.08 f(x) – parameter 1.08 3 WL | Delft Hydraulics first-order mineralisation rate constant temperature coefficient for mineralisation first-order mineralisation rate constant temperature coefficient for mineralisation first-order mineralisation rate constant temperature coefficient for mineralisation first-order mineralisation rate constant temperature coefficient for mineralisation critical temperature for mineralisation A – 4 Hydrology and Water Quality Modelling in the Danube Delta Part B Table b) (continued) Q3230 December, 2002 Model constants Model Parameter id Description Unit Suggested Value Algae related coefficients PPMaxDiat MrespDiat GrespDiat Mort0Diat PrfNH4diat NCRatDiat PCRatDiat SCRatDiat TcGroDiat TcDecDiat OptDLDiat RadSatDiat ExtVlDiat ExtVlDetC ExtVlIM1 ExtVlBak pot. max. pr. prod. rc. diatoms st.temp maintenance respiration diatoms st.temp growth respiration factor diatoms mortality rc of diatoms st. temp ammonium preferency over nitrate diatatoms Nitrogen-Carbon ratio in diatoms Phosphorus-Carbon ratio in diatoms Silicate-Carbon ratio in diatoms temp. coeff. for growth processes diatoms temp. coeff. for resp./mort. diatatoms daylength for growth saturation diatoms total radiation growth saturation diatoms Vl specific extinction Diats Vl specific extinction coefficent DetC Vl specific extinction coefficent IM1 background extinction visible light 1/d 1/d gN/gC gP/gC gSi/gC d W/m2 m2/gC m2/gC m2/gDM 1/m 2.3 0.036 0.11 0.3 1.0 0.16 0.02 0.49 1.06 1.05 0.65 90 0.3 0.47 0.03 f(x) – parameter General other coefficients Latitude RefDay Cl latitude of study area (Danube Delta) daynumber at start of the simulation Chloride degrees d g/m3 45 0 30.0 Notes: • Some of the items in the table are printed bold; these are coefficients, which are either specific for Romania (like the Latitude value), or used for the calibration procedure. • Some of the coefficients in the table are defined as a parameter or function in the DANUBS application. Nevertheless they are in this table to give an overview of the most important process coefficients which are related to the processes mentioned. Parameters are constant in time but may differ for the computational elements. If they are used, they need to be specified for all computational elements or for element types. In the Danube Delta model outline 4 geographically based surface water types have been defined, in order to be able to define specific conditions for each type of water. In the DANUBS application currently the parameter settings as presented in table c) are used: WL | Delft Hydraulics A – 5 Hydrology and Water Quality Modelling in the Danube Delta Part B Table c). Surface water types KLRear fSOD ExtVLBak VSedDetC TauCSDetC VSedIM1 TaucSIM1 fResS1DM RcNit COXNIT OOXNIT RcDenWat RcDenSed RcDetC RcDetN RcDetP RcDetSi Q3230 Parameter settings for DANUBS application Normal DanubeDistrictLakesriver Channels Open-water 1 1 1 1.5 0 0 0.5 0.5 1 1.5 1.5 1 0.03 0 0 0 0.001 0.001 0.001 1 0.5 0 0.1 0.1 0.01 0.01 0.01 10 0 0 0 2 0.1 0.1 0.1 0.1 1 1 1 1 5 5 5 5 0.1 0.1 0.1 0.1 0 0 0.01 0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 December, 2002 Lakesreed 0 1 999 0.1 1 0.3 10 0 0.2 -1 0 0.2 0.06 0.2 0.2 0.2 0.2 These parameters are related to oxygen climate, light, sedimentation behaviour, (de)nitrification and mineralisation. Oxygen: KLRear fSOD = = reaeration transfer coefficient. zeroth order sediment oxygen demand flux KLRear has been made space dependent (= parameter) to be able to define different exchange velocities with the atmosphere. At present the reaeration formulation uses a scaled version of the Connor O’ Dobbins equations to derive its exchange flux. The scale factor is the KLRear. KLRear has a default value of 1 (which means the original Connor O’Dobbins is used), but has been put to 0 in reed beds and uses a higher value for lakes. The zero value is chosen to disable the exchange with the atmosphere in reed beds, because the surface water is covered. The higher value for lakes is chosen to compensate for the extra exchange caused by wind and waves, which is not part of the equation. (With respect to this formula number 7 in the library would be more suitable for a model outline including rivers and lakes, but with this formula it is impossible to switch of the rearation in reed beds). fSOD, the additional sediment oxygen demand, has been made space dependent to be able to reckon with different types of sediments. For example in a peat layer normally the sediment oxygen demand will be higher in comparison with a mineral sediment type. Light climate: ExtVLBak = background extinction ExtVLBak has been made space dependent to be able to include the effect of different concentrations of humified acids and non modelled suspended particles on the light climate and the effect of reed beds and other vegetation on the limitation of light availability for algae bloom. The high value for reed beds is chosen to switch of all possibilities for algae bloom in reed beds. Sediment behaviour: WL | Delft Hydraulics A – 6 Hydrology and Water Quality Modelling in the Danube Delta Part B VSedDetC TauCSDetC VsedIM1 TauCSIM1 FResS1DM = = = = = Q3230 December, 2002 sedimentation velocity of detritus carbon critical shear stress for sedimentation of detritus carbon sedimentation velocity of inorganic suspended matter critical shear stress for sedimentation of inorganic suspended matter zero order resuspension flux Regarding sedimentation it is assumed that organic matter only is due to sedimentation in reed bed areas. Inorganic matter settles also in the channels and lakes (more or less to lose adsorbed phosphorus), but has a higher sedimentation rate in reed beds. Regarding the critical shear stress values of organic and inorganic matter reference is made to the section “main characteristics”, “shear stress”. The higher value (factor 1000) is related to the extreme value of the Manning roughness value, which has been used in lakes for the calibration of the hydrology. Finally, a resuspension flux has been introduced in the lakes. No sediment layer has been modelled in this application, but is it known that resuspension due to wind does occur. In this application it has been chosen to use a constant factor for resuspension. This eventually results in a more constant suspended solids content in the lakes in comparison with the monitoring data, but its goal is to model average values. Nitrification and denitrification: RcNit = first order nitrification rate COXNit = critical oxygen content for nitrification OOXNit = optimal oxygen content for nitrification RcDenWat = first order denitrification rate for surface water RcDenSed = first order denitrification rate for sediment The nitrification rate in reed beds is assumed to be twice the rate of the surface water. Also, with help of the COXNit and OOXNit values it has been adjusted for reed beds to have nitrification in lower oxygen conditions in comparison with the open water (it is known that the nitrification process continues due to transport of oxygen via the reed to the sediment layer). The denitrification rates in surface water and in sediments are used to simulate the nitrogen removal in the districts. Most of the removal will be due to denitrification in reed beds, explaining the higher values used in these cases. Using the 0.06 value for RcDenSed, the removal fluxes as in the old application are approached. Mineralisation: RcDetC = RcDetN RcDetP = RcDetSi first order mineralisation rate for detritus carbon contents = first order mineralisation rate for detritus nirtrogen first order mineralisation rate for detritus phosphorus = first order mineralisation rate for detritus silicate For mineralisation regular literature values have been used. Only for reed beds higher values have been chosen (to stimulate nutrient removal). Functions are constant all over the area, but follow a prescribed sequence over time. Most common examples are temperature and solar radiation, both defined within the Meteo data task. No additional functions are used within the DANUBS application. Table d). Parameter id WL | Delft Hydraulics Model functions Description Recommended value Unit A – 7 Hydrology and Water Quality Modelling in the Danube Delta Part B Temp Rad WL | Delft Hydraulics Q3230 Water temperature Solar radiation at the water surface December, 2002 f(t) f(t) deg C W/m2 A – 8 Hydrology and Water Quality Modelling in the Danube Delta Part B B000 Q3230 December, 2002 BLOOM subset details Underneath more detailed information regarding the processes of the DDNI-BLOOM subset is given. Nitrogen N2 = Transport Denitrification N2 OON NO3 Denitrification in reed beds DetN Nitrification Uptake &Release Mineralisation NH4 Growth uptake Growth uptake Algae Algae Grazing by zooplankton C:N:P:Si Resuspension (2 diatoms) Mortality Mortality and Grazing release (3 greens) (3 bluegreens) Sedimentation (3 microcystes) Mineralisation DetNS1 Burial Substance DetN + + DetNS1 - BLOOM_P WM_DetN SedN_Det ResN_Det CONSBL SedDetC BMS1_DetN + + - SedN_Det SedPhBlo_P ResN_Det BurS1N_Det + CONSBL NH4 +/- BLOOM_P + Nitrif_NH4 BMS1_DetN + + +/- WM_DetN WM_OON GroMrt_DS1 + WL | Delft Hydraulics Processes CONSBL Description Detritus Nitrogen (DetN) BLOOM II algae module Mineralisation detritus nitrogen Sedim. Nutrients in detritus Resuspension nutrients in detritus Grazing module Sedimentation detritus carbon DetN in sediment 1 Mineralisation detritus nitrogen in sediment S1 Sedim. nutrients in detritus Sum sedimentation of algae – Bloom Resuspension nutrients in detritus Burial nutrients in detritus from sediment S1 Grazing module Ammonium (NH4) BLOOM II algae module unit (gN/m3) remark (gN) (gN/m3) + autolysis, - primary production Nitrification of ammonium Mineralisation detritus nitrogen in sediment S1 Mineralisation detritus nitrogen Mineralisation other organic nitrogen Nett primary production and mortality diatoms Grazing module B – 1 Hydrology and Water Quality Modelling in the Danube Delta Part B Substance NO3 + +/OON + - Q3230 December, 2002 Processes Description Nitrate (NO3) BLOOM_P BLOOM II algae module DenSed_NO3 Denitrification in sediment DenWat_NO3 Denitrification in water column Nitrif_NH4 Nitrification of ammonium GroMrt_DS1 Nett primary production and mortality diatoms Other Organic Nitrogen (OON) BLOOM_P BLOOM II algae module WM_OON Mineralisation other organic nitrogen SedN_OOC Sedim. nutrients in OOC Sed_OOC BLUEGRN FDIATOMS GREENS MICROCY S +/BLOOM_P - SEDALG - CONSBL unit (gN/m3) remark (gN/m3) sedimentation of other organic matter is zero sedimentation of other organic matter is zero Sedimentation other organic carbon Blue green algae Freshwater diatoms Green algae Microcystis (gC/m3) (gC/m3) (gC/m3) (gC/m3) BLOOM II algae module + primary production, - mortality & respiration sedimentation of other organic matter is zero Sedimentation of algae species Grazing module Phosphorus = Transport PAP Decay OOP Uptake &Release NH4 PO Mineralisation DetP Ad/desorption IM1 IM2 Growth uptake AAP Mortality release Algae Algae (2 diatoms) Sedimentation / Resuspension Desorption and release (3 greens) (3 bluegreens) (3 microcystes) IM1S1 AAPS1 IM2S1 Burial WL | Delft Hydraulics Mineralisation Grazing by zooplankton C:N:P:Si Resuspension Mortality Sedimentation DetPS1 Burial B – 2 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 substance Processes description unit Remark AAP adsorbed ortho phosphorus (gP/m3) +/AdsPO4AA Ad(De)Sorption ortho phosphorus P to inorg. matter Sed_AAP Sedimentation AAP (adsorbed PO4) + Res_AAP Resuspension AAP (adsorbed PO4) AAPS1 adsorbed O-PO4 in sediment 1 (gP) Deso_AAP Desorption of adsorbed phosphates S1 in sediment S1 + Sed_AAP Sedimentation AAP (adsorbed PO4) + Sed_PAP Sedimentation PAP (adsorbed PO4) Res_AAP Resuspension AAP (adsorbed PO4) BurS1_AA Burial of AAP (adsorbed PO4) P from sediment S1 DetP Detritus phosphorus (DetP) (gP/m3) + BLOOM_P BLOOM II algae module WM_DetP Mineralisation detritus phosphorus SedN_Det Sedim. nutrients in detritus + ResN_Det Resuspension nutrients in detritus + CONSBL Grazing module SedDetC Sedimentation detritus carbon DetPS1 DetP in sediment layer 1 (gP) BMS1_Det Mineralisation detritus phosphorus P in sediment S1 + SedN_Det Sedim. nutrients in detritus + SedPhBlo_PSum sedimentation of algae Bloom ResN_Det Resuspension nutrients in detritus BurS1N_De Burial nutrients in detritus from t sediment S1 CONSBL Grazing module OOP Other Organic Phosphorus (OOP) (gN/m3) + BLOOM_P BLOOM II algae module WM_OOP Mineralisation other organic phosphorus SedN_OOC Sedim. nutrients in OOC sedimentation of other organic matter is zero Sed_OOC Sedimentation other organic carbon sedimentation of other organic matter is zero PAP adsorbed ortho phosphorus (gP/m3) (irreversible) WM_PAP Mineralisation (desorption) irreversible particula Sed_PAP Sedimentation PAP (adsorbed PO4) PO4 Ortho Phosphorus (O-PO4) (gP/m3) +/BLOOM_P BLOOM II algae module + autolysis, - primary production +/AdsPO4AA Ad(De)Sorption ortho phosphorus P to inorg. matter + WM_PAP Mineralisation (desorption) irreversible particula WL | Delft Hydraulics B – 3 Hydrology and Water Quality Modelling in the Danube Delta Part B Q3230 December, 2002 substance Processes + BMS1_Det P + Deso_AAP S1 + WM_DetP + WM_OOP description unit Remark Mineralisation detritus phosphorus in sediment S1 Desorption of adsorbed phosphates in sediment S1 Mineralisation detritus phosphorus Mineralisation other organic phosphorus +/GroMrt_DS Nett primary production and 1 mortality diatoms + CONSBL Grazing module Blue green algae (gC/m3) BLUEGR N FDIATOM Freshwater diatoms (gC/m3) S GREENS Green algae (gC/m3) MICROCY Microcystis (gC/m3) S +/BLOOM_P BLOOM II algae module + primary production, mortality & respiration SEDALG Sedimentation of algae species sedimentation of other organic matter is zero CONSBL Grazing module IM1 inorganic matter (IM1) (gDW/m 3) Sed_IM1 Sedimentation IM1 + Res_IM1 Resuspension 1th inorganic matter IM1S1 IM1 in sediment 1 (gDW) + Sed_IM1 Sedimentation IM1 Res_IM1 Resuspension 1th inorganic matter BurS1_IM1 Burial 1th-inorganic matter from S1 IM2 inorganic matter (IM2) (gDW/m 3) Sed_IM2 Sedimentation IM2 + Res_IM2 Resuspension 2th inorganic matter IM2S1 IM2 in sediment 1 (gDW) + Sed_IM2 Sedimentation IM2 Res_IM2 Resuspension 2th inorganic matter BurS1_IM2 Burial 2th inorganic matter from S1 Oxygen OXY +/- BLOOM_P + DenWat_NO 3 - Nitrif_NH4 +/- RearOXY - BMS1_DetC - WL | Delft Hydraulics WM_DetC WM_OOC Oxygen BLOOM II algae module (g/m3) + primary production, - mortality & respiration Denitrification in water column Nitrification of ammonium Reaeration of oxygen Mineralisation detritus carbon in sediment S1 Mineralisation detritus carbon Mineralisation other organic carbon B – 4