...

Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system Francesco Muschitiello

by user

on
Category: Documents
17

views

Report

Comments

Transcript

Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system Francesco Muschitiello
Deglacial impact of the Scandinavian Ice Sheet on the
NorthAtlanticclimatesystem
FrancescoMuschitiello
©FrancescoMuschitiello,StockholmUniversity2016
ISBN978-91-7649-368-7
CoverpicturebyBjörnEriksson,
PrintedbyHolmbergs,Malmö2016
Distributor:DepartmentofGeologicalSciences
TomyfriendRoberto…….
ὑστέρῳδὲχρόνῳσεισμῶνἐξαισίωνκαὶκατακλυσμῶνγενομένων͵μιᾶςἡμέραςκαὶνυκτὸς
χαλεπῆςἐπελθούσης͵τότεπαρ΄ὑμῖνμάχιμονπᾶνἁθρόονἔδυκατὰγῆς͵ἥτεἈτλαντὶςνῆσος
ὡσαύτωςκατὰτῆςθαλάττηςδῦσαἠφανίσθη
Plato(Timaeus)
Abstract
ThelongwarmingtransitionfromtheLastIceAgeintothepresentInterglacialperiod,the
last deglaciation, holds the key to our understanding of future abrupt climate change. In
the last decades, a great effort has been put into deciphering the linkage between
freshwater fluxes from melting ice sheets and rapid shifts in global ocean-atmospheric
circulation that characterized this puzzling climate period. In particular, the regional
expressions of climate change in response to freshwater forcing are still largely
unresolved.
This projects aims at evaluating the environmental, hydro-climatic and oceanographic
responseintheEasternNorthAtlanticdomaintofreshwaterfluxesfromtheScandinavian
IceSheetduringthelastdeglaciation(∼19,000-11,000yearsago).Theresultspresentedin
this thesis involve an overview of the regional representations of climate change across
rapid climatic transitions and provide the groundwork to better understand spatial and
temporalpropagationsofpastatmosphericandoceanperturbations.
Specifically, this thesis comprises i) a comparison of pollenstratigraphic records from
densely 14C dated lake sediment sequences, which provides insight into the regional
sensitivityofNorthEuropeanvegetationtofreshwaterforcingintheNordicSeasaround
theonsetoftheYoungerDryasstadial(∼12,900yearsago);ii)areconstructionofNorth
Europeanhydro-climate,which,togetherwithtransientclimatesimulations,shedlighton
themechanismsandregionalityofclimateshortlypriortothetransitionintotheYounger
Dryasstadial;iii)studiesofa∼1250-yearlongglacialvarvechronology,whichprovidesan
accuratetimingforthesuddendrainageofproglacialfreshwaterstoredintheformericedammed Baltic Ice Lake into the North Atlantic Ocean; iv) a 5000-year long terrestrialmarinereconstructionofEasternNorthAtlantichydro-climateandoceanographicchanges
that clarifies the hitherto elusive relationship between freshwater forcing and the
transient behaviour of the North Atlantic overturning circulation system. The results
presented in this thesis provide new important temporal constraints on the events that
punctuatedthelastdeglaciationinNorthernEurope,andgiveaclearerunderstandingof
theocean–atmosphere–ice-sheetfeedbacksthatwereatworkintheNorthAtlantic.This
increasesourunderstandingofhowtheEarthclimatesystemfunctionsinmoreextreme
situations.
Svensksammanfattning
Den långa, successivt varmare övergångsperioden, avbruten av flera kalla episoder, från
den senaste istiden in i den nuvarande interglaciala värmeperioden, dvs den senaste
deglaciationen/isavsmältningen, har ledtrådar till vår förståelse av framtida abrupta
klimatförändringar. Under de senaste årtiondena har stora ansträngningar gjorts för att
dechiffrera kopplingar mellan sötvattenpulser från smältande inlandsisar och snabba
förändringar i den globala ocean-atmosfäriska cirkulationen, vilket var kännetecknande
fördennadelvisgåtfullaklimatperiod.Specielltärderegionalaklimatyttringarnaavstora
sötvattenflödenettolöstproblem.
Syftet med detta projekt har varit att utvärdera den miljömässiga, hydroklimatiska och
oceanografiska responsen i östra Nordatlanten på stora sötvattenflöden från den
Skandinaviskainlandsisenunderdensenastedeglaciationen,ca19,000till11,000årföre
nutid. Resultaten i avhandlingen innefattar en översikt av hur det regionala klimatet
påverkasvidsnabbaklimatiskaövergångsperioderochutgördärmedettunderlagföratt
bättre förstå hur störningar i dåtidens atmosfär och ocean kunde spridas, både rumsligt
ochtidsmässigt.
Mer specifikt innefattar denna avhandling, i) en jämförelse av olika pollenstratigrafiskt
undersökta och noggrant 14C daterade sjösediment, vilka ger inblick i den regionala
vegetationens sensitivitet för sötvattenflöden till de Nordiska haven i samband med att
denkallayngredryasperiodeninleddesförca12,900årsedan;ii)enrekonstruktionav
det nordvästeuropeiska hydroklimatet för ca 13,000 år sedan, vilket i kombination med
transientaklimatsimuleringarklarläggerklimatetsmekanismerochregionalitetstraxföre
övergångentillyngredryas;iii)undersökningaravenca1250årlångkronologibaserad
påglacialalervarv,vilkengerenexaktålderfördenplötsligadräneringen/tappningenav
sötvatten från den proglaciala Baltiska Issjön ut till Nordatlanten; iv) en 5000 år lång
terrester-marin rekonstruktion av östra Nordatlantens hydroklimat och oceanografiska
förändringar,vilkenklargördethittillsgäckandeförhållandetmellansötvattenflödenoch
de transienta processerna i Nordatlantens djupvattenbildning, den s.k. termohalina
cirkulationen.Resultateniavhandlingengernyaviktigatidsmässigabegränsningarförde
händelser som ideligen störde och avbröt utvecklingen i samband med den senaste
deglaciationen i Nordeuropa. Detta ger en ökad insikt i den dåvarande Nordatlantens
oceaniska,atmosfäriskaochglacialaåterkopplingsmekanismer,vilketökarförståelsenför
hurjordensklimatsystemfungerarundermerextremaförhållanden.
Listofpapersandauthorcontributions
This thesis consists of an overview of the main aims of this PhD project, the employed
methodologicalapproach,andsummariesofthekeyresults.Theappendiceslistedbelow
arealsoincluded.PaperI,IIandIIIhavebeenpublishedinthejournalsindicatedandare
reprintedunderpermissionoftherespectivepublishers.PaperIVisamanuscript.
I.
Muschitiello, F.andWohlfarth,B.,2015.Time-transgressiveenvironmentalshifts
across Northern Europe at the onset of the Younger Dryas. Quaternary Science
Reviews109,49-56.
II.
Muschitiello, F., Pausata, F.S.R., Watson, J.E., Smittenberg, R.H., Salih, A.A.M.,
Brooks, S.J., Whitehouse, N.J. Karlatou-Charalampopoulou, A., Wohlfarth, B., 2015.
FennoscandianfreshwatercontrolonGreenlandhydroclimateshiftsattheonsetof
theYoungerDryas.NatureCommunications6:8939.
III.
Muschitiello, F., Lea, J., Greenwood, S.L., Nick, F.M., Brunnberg, L., MacLeod, A.,
Wohlfarth,B.,2015.TimingofthefirstdrainageoftheBalticIceLakesynchronous
withtheonsetofGreenlandStadial1.Boreas10.1111/bor.12155.
IV. Muschitiello, F., Dokken, M.T., Väliranta, Björck, S., M., Davies, M.S., Luoto, T.,
Schenk,F.,Smittenberg,R.H.,Reimer,P.J.,Wohlfarth,B.NorthAtlanticoverturning
andclimateresponsetomeltwaterforcingduringthelastdeglaciation.
PaperI:F.M.conceivedthestudy,wasthemaincontributorintermsofanalyses,wrotethe
initial version of the paper and made the figures. B.W contributed with writing and
interpretationoftheresults.
Paper II: F.M. conceived the study, performed isotope and geochemical analyses on lake
sedimentcores,interpretedtheproxydata,performedstatisticalanalysis,wrotetheinitial
version of the paper and made the figures. F.S.R.P. analysed climate model output and
contributed to the interpretation of the proxy data. J.E.W. performed the chironomid
analysis. R.H.S. contributed to biomarker data evaluation. A.A.M.S. analysed the air back
trajectory data. S.J.B. and N.J.W. contributed to the temperature data evaluation. A.K.C.
performed the pollen analysis. B.W. led the fieldwork campaign, subsampling and
identification of samples for terrestrial 14C analysis, provided insight into regional
paleoenvironment and acquired financial support. All authors contributed with
interpretationoftheresultsandeditingofthemanuscript.
PaperIII:F.M.conceivedthestudy,performedgeochemicalanalysesofthesedimentsand
statistical analyses, wrote the initial version of the paper and made the figures. J.M.L.
designed and performed the ice-flow model analysis. F.M and J.M.L. led the fieldwork
campaignforthenewsedimentcoresandinterpretedthegeochemicalresults.S.L.G.was
the main contributor of Figure 1 and helped with the interpretation of the regional
paleogeography.F.M.N.providedtheiceflowmodel.L.B.providedtheclayvarvedataset
fromSandfjärden.A.M.contributedtovarvedataevaluation.B.W.providedtheclayvarve
data sets for Östergötland, varve thickness data and IRD counts, insight into regional
paleoenvironment and acquired financial support. All authors contributed with
interpretationoftheresultsandeditingofthemanuscript.
Paper IV: F.M. conceived the study, performed isotope and geochemical analyses on lake
sedimentcores,interpretedtheproxydata,performedstatisticalanalysis,wrotetheinitial
version of the paper and made the figures. T.M.D. performed the marine multi-proxy
analyses and provided the marine 14C data; M.V. contributed with the macrofossil data;
R.H.S.contributedtobiomarkerdataevaluation;S.B.,S.M.D,T.L.,F.S.,andP.J.R.helpedwith
interpretationofproxydata.B.W.ledthefieldworkcampaignfortheterrestrialstudysite,
subsamplingandidentificationofsamplesforterrestrial14Canalysis,providedinsightinto
regional paleoenvironment and acquired financial support. All authors contributed with
interpretationoftheresultsandeditingofthemanuscript.
Thefollowingpapersarenotincludedasapartofthisthesis:
1. Muschitiello, F., Zhang, Q., Sundqvist, H.S., Davies, F.J., Renssen, H., 2015. Arctic
climate response to the termination of the African Humid Period. Quaternary
ScienceReviews125,91-97.
2. Muschitiello, F., Andersson, A., Wohlfarth, B., Smittenberg, R.H., 2015. The C20
highlybranchedisoprenoidbiomarker–anewdiatom-sourcedproxyforsummer
trophicconditions?OrganicGeochemistry81,27-33.
3. Davies,F.J.,Renssen,H.,Blascheck,M.,Muschitiello,F.,2015.TheimpactofSahara
desertificationonArcticcoolingduringtheHolocene.ClimateofthePast11,571586.
4. Steinthorsdottir,M.,deBoer,A.,Oliver,I.C.,Muschitiello,F.,Blaauw,M.,Wohlfarth,
B., 2015. Response to: Comment on “Synchronous records of pCO2 and Δ14C
suggestrapid,ocean-derivedpCO2fluctuationsattheonsetoftheYoungerDryas”.
QuaternaryScienceReviews107,270-273.
5. Steinthorsdottir, M., de Boer, A., Oliver, I.C., Muschitiello, F., Blaauw, M., Reimer,
P.J.,andWohlfarth,B.,2014.SynchronousrecordsofpCO2andΔ14Csuggestrapid,
ocean-derived pCO2 fluctuations at the onset of the Younger Dryas. Quaternary
ScienceReviews99,84-96.
6. Muschitiello, F.,Wohlfarth,B.,Schwark,L.,Sturm,C.,Hammarlund,D.,2013.New
evidence of Holocene atmospheric circulation dynamics based on lake sediments
fromsouthernSweden:alinktotheSiberianHigh.QuaternaryScienceReviews77,
113-124.
Tableofcontents
1.Introduction....................................................................................................................................................................................................................................1
2.Thesisobjectivesandkeyresults................................................................................................................................................................4
3.Investigationarea..................................................................................................................................................................................................................5
3.1.Background...........................................................................................................................................................................................................................5
3.2.Previouswork....................................................................................................................................................................................................................6
4.Materials,methodsandapplications.....................................................................................................................................................7
4.1.Sampling....................................................................................................................................................................................................................................7
4.2.14Cdating..................................................................................................................................................................................................................................8
4.2.1.Bayesianage-depthmodelling................................................................................................................................................11
4.2.2.Reservoirageestimation................................................................................................................................................................12
4.3.Synchronizationofclimaterecords................................................................................................................................................13
4.4.Hydrogen-isotopiccompositionoflipidbiomarkerand
paleo-hydrologicalapplication..............................................................................................................................................................14
4.5.LipidextractionandδDanalysis.........................................................................................................................................................17
5.SummariesofPaperI-IV.........................................................................................................................................................................................17
5.1.PaperI.......................................................................................................................................................................................................................................17
5.2.PaperII....................................................................................................................................................................................................................................19
5.3.PaperIII..................................................................................................................................................................................................................................21
5.4.PaperIV..................................................................................................................................................................................................................................22
6.Terrestrial-marineproxycomparison............................................................................................................................................24
7.Currentworkandunpublisheddata...................................................................................................................................................30
7.1.ImpactoftheScandinavianIceSheetonregionalclimateusinga
spatiallyhigh-resolutionclimatemodel...................................................................................................................................30
7.2.SensitivityoftheScandinavianiceSheettovolcanicforcing.....................................................................30
7.3.Unpublisheddatasets........................................................................................................................................................................................31
8.Futurework.................................................................................................................................................................................................................................31
Acknowledgements.................................................................................................................................................................................................................34
References.............................................................................................................................................................................................................................................36
F. Muschitiello
1.Introduction
Characterisingtheimpactofmeltingicesheetsontheglobalclimatesysteminresponse
toglobalwarmingrequiresacomprehensiveunderstandingoftheinterplaybetweenthe
cryosphere,oceansandatmosphereatregionalscales.Specifically,asthestabilityofthe
GreenlandIceSheetandothersourcesoffreshwaterstoredovernorthernhigh-latitude
continental regions are under threat (Fig. 1) (Moon et al., 2012; Shepherd et al., 2012;
Hannaetal.,2013),largeuncertaintiesarecastuponthefateoftheAtlanticMeridional
OverturningCirculation(AMOC)–acriticalcomponentoftheEarth’ssystem.
In the North Atlantic Ocean – the key centre of action of the AMOC – warm and saline
surface waters carried from the subtropical sector rapidly cool and sink. The process
releases heat to the atmosphere with substantial impacts on hydro-climate and
temperaturesoverlargeregions,andmorecriticallyoverWesternandNorthernEurope.
Shifts in atmospheric circulation patterns are thus of central concern in the debate
surroundingthetransientbehaviouroftheAMOC,astheycanleadtoextremeweather
eventsovershorttimescalesduetothemovementoffronts,diversionofRossbywaves,
or persistent atmospheric patterns. Therefore, future changes in ocean thermohaline
properties owing to increasing meltwater discharge have the potential to drive
significant shifts in regional climates with profound consequences for ecosystems and
societies.
The diagnostic ability to understand and predict climate change can be aided by
knowledgeofpastclimateanalogues.Forinstance,thetransitionfromtheLastIceAgeto
thepresentwarmInterglacial,thelastdeglaciation(∼19,000-11,000yearsago),provides
an ideal natural laboratory to decipher the physical mechanisms behind rapid climate
change. The last deglaciation was a critical period of climate shifts during which every
component of the Earth’s system underwent numerous abrupt and rapid large-scale
changes(Fig.2)(Dentonetal.,2010;Clarketal.,2012).
Figure1.a,Globalanomalyofmean2mairtemperaturechange(T2m)estimatedwiththe
fullsetofGCMsfromtheCMIP5database.Valuesaresimulatedwithrespectto1970-1999
for experiments of the historical period (grey, 41 models), and the Representative
ConcentrationPathways(RCP)4.5(blue;42models)andRCP8.5(red;40models)scenarios
(Mossetal.,2010).Thefullensemblemeansaredisplayedasthicklines;verticalbarsrefer
to±1σforthereferenceperiod2071-2100.b,Sameas(a)butfortheArctic,definedasthe
region north of 60° N. c, Same as a but for the Greenland Ice Sheet (GIS) defined as the
regioncovering60-85°Nand20-70°Wandapplyingaland/seamaskfromeachGCMto
confinetheanalysistothelandarea.MassbalancetermsoftheGISarealsoshown(Boxand
Colgan,2013).Dataarepresentedascumulativeanomaliesrelativetothereferenceperiod
1840-1900.
1
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
2
F. Muschitiello
Figure 2. (previous page) Regionalandglobal climaterecordsofthelastdeglaciation.a,
Mapofborealsummerinsolationanomaliesrelativetopresent(Laskaretal.,2004);b,δ18O
valuesfromtheNorthGreenlandIceCoreProject(NGRIP;Rasmussenetal.,2006);c,Atlantic
MeridionalOverturningCirculationproxyreconstructionfromthesubtropicalNorthAtlantic
(McManus et al., 2004) presented with both analytical and chronological errors (±2σ); d,
atmospheric CH4 from the West Antarctic Ice Sheet Divide ice core (WDC; Marcott et al.,
2014);e,CO2concentrationfromtheWDCicecorewitherrormargins(±2σ);f,hemispheric
proxy-based temperature stacks (Shakun et al., 2012); g, observed relative global sea-level
change (Lambeck et al., 2014); h, δ18O values from WDC (WAIS Divide Project Members,
2013). LGM, Last Glacial Maximum; OD, Oldest Dryas; B/A, Bølling-Allerød; YD, Younger
Dryas,Hol,Holocene.
TheseshiftsweremostprominentlyexpressedintheNorthAtlanticregion(Björcketal.,
1996;Loweetal.,2008;Steffensenetal.,2008),butwithloweramplitudesintheSouthern
Hemisphere(Fig.2)(Barkeretal.,2009;Stennietal.,2011;Shakunetal.,2012).Thetwo
longestandcoldestclimatereversalsintheNorthernHemisphere,arecommonlytermed
YoungerDryas(YD;∼12,900-11,700yearsago)andOldestDryas(>14,700yearsBP),and
theinformalnameforthewarmerinterstadialpriortotheYDisBølling-Allerød(14,70012,900 years ago), in reference to earlier pollen-stratigraphic work in Scandinavia
(Iversen,1954;Mangerudetal.,1974;Wohlfarth,1996).
Theexplanationfortheoccurrenceofmultiplewarmandcoldintervalsattheendofthe
Last Ice Age, when northern summer insolation was steadily increasing, has presented a
majorchallengeforthepaleoclimatecommunity.Muchresearchduringthepastdecades
has therefore been placed on multi-proxy analyses of terrestrial, marine and ice core
archives and on correlations between the different archives to detect and quantify the
impactofthesedramaticclimaticshifts.However,precisecorrelationswere-andstillare-
difficultduetointrinsiclimitationswithdatingtechniquesandtheinsufficientresolution
ofexistingrecords(Laneetal.,2013;Blockleyetal.,2014;Rasmussenetal.,2014a).
Greenlandicecorerecordshoweverstandoutinthisrespectandhavethereforeplayeda
pivotalroleindiscussingtheunderlyingcausesofabruptclimatevariability.Theice-core
datasetsrecordpastclimaticchangesinamultitudeofatmosphericproxies(Steffensenet
al.,2008);provideacontinuousannualchronologythroughouttheLastInterglacial-Glacial
cycleintheNorthAtlanticregion(Rasmussenetal.,2014b);andcanbesynchronizedto
Antarcticicecoresusingmethanemeasurementsandvolcanicaerosolsignatures(Blunier
et al., 1998; Buizert et al., 2015; Sigl et al., 2015). Such synchronization allows a direct
correlationandcomparisonofNorthernandSouthernHemisphereclimaticchanges.This
has led to the hypothesis of the Atlantic bipolar seesaw mechanisms, which attributes a
large role to the AMOC in triggering abrupt global climate shifts, through an asymmetric
inter-hemispherictemperatureforcing(Broecker,1998; Knuttietal.,2004;Barkeretal.,
2009; Stenni et al., 2011; Cvijanovic et al., 2013). Critically, this mechanism, which
influenced climate in the Atlantic and neighbouring sectors, had a greater impact in
northernhigh-tomid-latitudesduringthelastdeglaciation(Shakunetal.,2012).
North Atlantic marine reconstructions compellingly show that the AMOC system
underwentlargeperturbationsduringthelastdeglaciation(McManusetal.,2004;Roberts
et al., 2010). However, it remains an open question as to whether sudden AMOC
instabilities were a response to continental meltwater discharge from the North Atlantic
seaboard(Duplessyetal.,1992;Bard,2000;Clarketal.,2001),tochangesinregionalsea
3
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
ice distribution (Bradley and England, 2008), to an intrinsic threshold behaviour of the
coupledatmospheric-icesheetsystem(Zhangetal.,2014),ortoanintertwinementofthe
factorscitedabove.Moreimportantly,itislargelyunclearhowfreshwaterperturbations
mediated direct and indirect effects on regional shifts in climate and atmospheric
circulation. Furthermore, the temporal expressions of continental climate responses
relativetooceancirculationchangesintheNorthAtlanticarestillpoorlyresolved,thereby
limiting our understanding of the true driving mechanisms and the direction of physical
eventsassociatedwithrapidclimatechange.
2.Thesisobjectivesandkeyresults
Onewaytoexploretheissuesbroachedaboveistoimproveexistingregionalproxy-record
chronologies to create a broad spatial network of well-constrained climate
reconstructions. On the other hand, a means to directly investigate the mechanisms
driving the coupled ocean-atmosphere system is to generate isotope records of
precipitation from lake sediments, as the physical properties of precipitation associated
withregionalhydro-climatepatternsareexpectedtorespondwithoutdelaytolarge-scale
shifts in ocean and atmospheric circulation. If analysed at adequate resolution and
supportedbyprecisechronologies,lakesedimentisotopeanalysishasthusthepotentialto
provide temporal climate reconstructions that deliver information on both the
hydrographicandhydrologicalsystem.
In this thesis project I provide: i) a North European perspective on freshwater-driven
environmental, climatic and hydrological changes during the last deglaciation; ii) an
improvedunderstandingoftheocean–atmosphere–ice-sheetfeedbacksandmechanisms
at work in the Nordic Seas; and iii) better chronological constraints on key hydrological
andhydrographiceventsthatoccurredduringthelastdeglaciation.Altogether,thisstudy
discloses new research directions to generate more reliable marine chronologies in the
North Atlantic, thus aiding in the comparison of marine and terrestrial climatic
reconstructions.
Explicitly, I have applied geochronological models to a large set of marine and lake
sedimentrecordstoassignprecisetemporalconstraintstopastclimaticevents;generated
high-resolutionisotopeandothergeochemicaldatasetsfortwolakesedimentsequences
to reconstruct the deglacial hydro-climate; and assembled an extensive data set
comprising all available North European quantitative paleoclimatic reconstructions
spanning the last deglaciation. This overall approach was complemented with climate
modelsimulations.ThemostsignificantresultsofthisPhDworkare:
1 - The establishment of precise geo-chronologies for eight key terrestrial and marine
sedimentary records from Northern Europe and the Nordic Seas. I have reconstructed a
new deglacial 14C reservoir age record for the Nordic Seas, which constitutes the best
temporallyresolvedrecordofitskindandcanserveasafuturechronologicalbenchmark
forNorthAtlanticpaleoclimatereconstructions.
2 - The construction of a new 1250-year long glacial varve chronology, which tracks the
annualrecessionoftheScandinavianIceSheetinsouthernSweden.Thevarvechronology
wasplacedonanabsolutetimescale,andbyusinggeochemicalanalysesIidentifiedthe
first catastrophic drainage of the Baltic Ice Lake with an unprecedented precision (±2
years).
4
F. Muschitiello
3 - The generation of the first North European hydro-climate reconstructions based on
isotope analyses (δD) of specific molecular compounds from southern Swedish lake
sedimentsspanningthelastdeglaciation.
3.Investigationarea
3.1.Background
One of the central aims of this study is to investigate deglacial atmospheric circulation
dynamics over Northern Europe by using lake sediment stable isotope analyses. In
NorthernEuropethisinformationisscarceandmainlyreliesonbulksedimentaryorganic
matter(Ahlbergetal.,1996;O’Connelletal.,1999;Jonesetal.,2002;Marshalletal.,2002;
Diefendorfetal.,2006),whichmakesitdifficulttoextractclimatefactorsfromthenoiseof
lakeendogenicprocesses(LengandHenderson,2013).
InsouthernSweden,someoftheproblemsassociatedwithstableisotopeanalysesonbulk
sedimentary carbonates have been circumvented by using isotope measurements on
specificcarbonatecomponentsoflakesediments,suchasmolluscshells,ostracodvalves,
andalgaeencrustations(HammarlundandKeen,1994;HammarlundandLemdahl,1994;
Hammarlund,1999;Hammarlundetal.,1999).However,theserecordsarefragmentaryor
supported by poor chronological frameworks. Therefore, to fill this gap, new well-dated
isotopic records from southern Sweden based on lipid biomarker compounds were
generated (Fig. 3). The records were obtained from two lake sediment sequences,
HässeldalaPort(56°16’N;15°03’E,40ma.s.l.)andAtteköpsMosse(56°23’N;12°51’E,
180 m a.s.l.), located along the south-eastern and south-western coast of Sweden,
respectively(Fig.3).Thesesitesaretodaysmallpeatbogs,butcontainedlakesduringthe
lastdeglaciation.
Stableisotopesignaturesonlacustrinelipidcompoundshavebeensuccessfullyappliedto
reconstructpaleo-hydrologicalprocessesassociatedwiththelastdeglaciationinWestern
Europe (Rach et al., 2014). Precisely, these isotope records have allowed reconstructing
regional shifts in precipitation patterns and water vapour availability, providing
knowledgeonthedynamicsofNorthAtlanticstormtracksandthephysicalcharacteristics
ofNorthAtlanticOceanwaters.
Southern Sweden is an excellent area to employ these novel isotope proxies, as here
hydro-climate shifts scale in a linear fashion with upwind, near-field oceanographic
metrics(Fig.4a,b).Indeed,seasurfacetemperatures(SST)primarilycontroltheamount
of moisture delivered to the region by regulating the flux of moisture released from the
seawater to the atmosphere (Fig. 4a). Under modern conditions, the amount of
precipitationinsouthernSwedenistightlylinkedwiththeprevailingwesterlywindsthat
pick up moisture from the North Sea and the Skagerrak-Kattegat basin, which constitute
the main source of moisture for precipitation (Gustafsson et al., 2010). By contrast,
precipitation is less abundant during an anticyclonic regime (Fig. 4b) and moist air is
generally transported from the Baltic Sea only under exceptionally warm surface water
conditions(Gustafssonetal.,2010).
During the last deglaciation, the region was located south of the Scandinavian Ice Sheet
marginanddownwindofitsprimarydrainageroute.Therefore,itislikelythatmeltwater
dischargefromtheicesheettotheNorthSearesultedinlowerSSTsandfresherwaters.
This implies a lower water-to-air moisture uptake at times of increased meltwater
outflow, with relatively depleted isotope signatures of seawater as the moisture source
5
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
became fresher. Consequently, hydro-climate records on land are likely to capture the
meltwater signal as this instantaneously propagates downwind in the form of drier air
reachingthecoastalareaandlighterstableisotopicsignaturesofprecipitation.
Inturn,terrestrialhydro-climateproxyrecordsfromsouthernSwedenarenotonlyuseful
toreconstructregionalhydrologyandprecipitationpatterns,butpotentiallyidealtobetter
understandtheregionalcouplingbetweenice-sheet,oceanandatmosphere.Furthermore,
theseindirectfreshwaterreconstructionscanbenefitofrobustandatmospheric-based14C
chronologies obtained from terrestrial macrofossils, which circumvent the intrinsic
chronologicaluncertaintiesassociatedwithmarinereconstructions.
Figure3.Corelocationsthatformpartofthisthesisandmainsitesdiscussedinthetext.Red
circled dots indicate sites where new data were generated within the framework of this
thesis,i.e.AtteköpsMosse(ATK),HässeldalaPort(HÄ),marinecoreMD99-2284.Greendots
indicate sites used for comparative analysis and/or re-evaluation of available data. 1,
Sluggan Bog; 2, marine core HM79-6/4; 3, Meerfelder Maar; 4, Kvaltjern; 5, Kråkenes; 6,
Kulturmyra; 7, Lake Gammelmose; 8; Lake Madtjärn. The green rectangle in south-eastern
SwedenhighlightstheareaofinvestigationdealtwithinPaperIII.Thebluelinedenotesthe
approximate extension of the former Baltic Ice Lake (Björck et al., 1996) during the Late
Allerød (Riede et al., 2011). The white line indicates the estimated ice margin for the
ScandinavianIceSheetlimitat13,000yearsBP(Hughesetal.,2015).
3.2.Previouswork
The ancient lake of Hässeldala Port is located in Blekinge, southern Sweden (Fig. 3) and
filled in during the Early Holocene. The site is today a small peat bog covering ∼20 m2.
Complete sediment sequences of variable depth have been retrieved and analysed using
differentproxies(Daviesetal.,2003,2004;Wohlfarthetal.,2006;Kylanderetal.,2013;
Steinthorsdottiretal.,2013;Ampeletal.,2015;Muschitielloetal.,2015a).
6
F. Muschitiello
The basin contains a sedimentary sequence that covers the period between the Late
Bølling and Early Holocene pollen zone (∼14,500-9500 years ago). The sediments have
beenextensivelystudiedoverthelastdecadeusingavarietyofbiologicalandgeochemical
proxies.Thetephro-chronologicalframeworkofthesitewasfirstestablishedbyDavieset
al. (2004, 2003). The pollen- and litho-stratigraphy was established by Wohlfarth et al.
(2006).Morerecently,sedimentgeochemistry(Kylanderetal.,2013),fossilleafstomata
(Steinthorsdottir et al., 2013), diatom (Ampel et al., 2013), and biomarker records
(Muschitielloetal.,2015a)havebeeninvestigated.
TheancientlakeofAtteköpsMosseislocatedinsouthwesternSwedenclosetotheborder
betweentheprovincesofSkåneandHalland(Fig.3).Itisasmallbasinthatfilledinduring
the Early Holocene. The basin, which today is a peat bog covering ∼200 m2, has a full
deglacialandHolocenestratigraphicsequence(from∼16,000yearsagotopresent)(Veres,
2001).ThesitehasbeenpreviouslyinvestigatedbyVeres(2001),whoestablishedalithostratigraphy, analysed the sediments for loss-on-ignition, grain-size, magnetic
susceptibilityand14Cdating.
Figure 4. a, Modern moisture source distribution and transport to the main study area.
Summer (JJA) correlation between specific humidity in southern Sweden (averaged across
56-57°N and 12-16°W; HadCRUH) and sea-surface temperature over the adjacent seas
relativetotheperiod1974-2003(contour;HadSST1).Theyellowlinedelimitstheareawhere
the correlation is 95% CI. b, Summer (JJA) relationship of blocking circulation versus
precipitation(CRU-TS3.23)insouthernSweden(asdefinedina).Blockingcirculationishere
characterized as a pressure index defined by the 850 hPa atmospheric pressure difference
(Trenberth’s NH) between 10°E and 40°W at 65°N. A positive blocking index indicates
northward flow and negative values southward flow. Thick lines represent the 10-year
movingaverages.Precipitationdataisexpressedasananomalyrelativetotheperiod19742003 and presented on a reverse axis. Northward flow negatively correlates with
precipitation anomalies in the study area (R2= 0.50). The yellow dashed line indicates the
total observed freshwater (FW) storage anomaly of the Norwegian Sea relative to the
observationalperiod(Glessmeretal.,2014).
4.Materials,methodsandapplications
4.1.Sampling
AtHässeldalaPort,anumberofcoreshavebeencollectedovertheyearsandthepresent
isotopeanalysesrefertoCore5.Thesedimentsequenceswerecollectedin2011usinga
7
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Russian corer (10 cm diameter, 1 m length) with 0.5 m overlap between the successive
cores. The lithology of Core 5 is shown in Table 1. Core 5 was not only sub-sampled for
stableisotopeanalysesbutalsoforloss-on-ignition,fossil-leafstomatal,diatoms,and 14C
dating(Steinthorsdottiretal.,2013;Ampeletal.,2015).
ForthesiteofAtteköpsMosse,sedimentsequenceswerecollectedin2010usingaRussian
corer (7.5 and 5 cm diameter, 1 m length) with 0.5 m overlap between the successive
cores. The cores were first scanned for X-ray fluorescence analyses and the lithologies
were then described (Table 2). Based on these, a composite stratigraphy was created,
whichwasthebasisforfurthersub-sampling.Sub-samplesweretakenforloss-on-ignition,
carbon and nitrogen, chironomid, biomarker, ancient DNA, and tephra and 14C dating.
Table 1 – LithostratigraphicdescriptionoftheHässeldalasedimentsuccession.Sedimentunitsarenumbered
accordingtothereferencelithostratigraphyofWohlfarthetal.(2006).
Description
Unit
Depth(cm)
12-11
270.5-303.5
10
303.5-308.5
Darkbrowngyttja
9
308.5-322.5
Browngyttja
8a
322.5-332.5
Lightbrownalgaegyttjaclay/clayeyalgaegyttja
8b
332.5-334.5
Brownclayeysiltyalgaegyttja
8c
334.5-338.5
Lightbrownalgaegyttjaclayorclayeyalgaegyttja
7a
338.5-341.5
Bioturbatedzone;mixoftheupperlightbrownlayerandthelower
darkbrowngyttja
7b-6
341.5-348.5
Mediumbrownclayeyalgaegyttja;visibleplantmacros
5
348.5-358.5
Mediumbrowngyttjaclay/claygyttja
3a
358.5-362.5
Brownclayeyalgaegyttja
3b
362.5-364.5
Lightbrown-yellowishsiltyclay
2
364.5-369.5
Darkbrownpeatygyttjaorgyttjapeat
Yellowish-beigesiltyclay
4.2.14Cdating
Radiocarbon(14C)datingisthemostwidelyusedtechniquetoinferthedown-coreageof
lake and marine sedimentary records. 14C atoms are produced in the upper atmosphere,
wherecosmicraysleadtothecollisionoffreeneutronswithnitrogenatoms(14N)causing
adisplacementofprotonsthatturns 14Nin 14C. 14Catomsareoxidisedtocarbondioxide
(14CO2), mixed in the atmosphere and oceans, and taken up by living organisms via
metabolicactivity.Upondeathoftheorganism,CO2uptakeceases,whereastheradioactive
14Cslowlydecaysintothestableelement14N(Libby,1952).
Lake and marine sediments generally contain a certain amount of organic carbon in the
formoffossilmaterial(plantmacroremainsandforaminifera,respectively,amongmany
others), which can be dated by the radiocarbon method. This method allows measuring
the decay of 14C from the time of an organism’s death until present, i.e. the time of
measurement(Libby,1952).
The atmospheric 14C content varies over time due to changes in production rates and
owing to carbon exchange between different reservoirs, e.g. the oceans, atmosphere,
biosphere, and cryosphere. Therefore, to estimate the absolute age associated with a 14C
measurement,itisnecessarynotonlytoaccountfortherelateddecayfactor,butalsofor
8
F. Muschitiello
changes in past atmospheric 14C levels. This requires the use of a calibration curve,
whereby the atmospheric 14C content can be directly equated to a calendar age (Stuiver
andKra,1986;StuiverandBraziunas,1993).
TheinternationallyratifiedradiocarboncalibrationcurveIntCal13(Reimeretal.,2013)is
a calibration data set based on several absolutely dated records that have incorporated
carbon from the atmosphere at the time of formation. For the last deglaciation, the
IntCal13 curve is based on a number of independent records (Fig. 5a). After 13,900
calibratedyearsbefore1950AD(hereaftercal.yearsBP),thecalibrationcurveisdefined
by precise dendrochronological measurements (Hua et al., 2009; Friedrich et al., 2004;
Kromeretal.,2004).Priorto13,900cal.yearsBPthecurverelieson 14Cmeasurements
frommarinesediments(Bardetal.,2013;Hughenetal.,2006,2004),corals(Durandetal.,
2013; Fairbanks et al., 2005; Bard et al., 1990), speleothems (Southon et al., 2012;
Hoffmannetal.,2010;Becketal.,2001),andvarvedlakesediments(BronkRamseyetal.,
2012).
Table2–LithostratigraphicdescriptionoftheAtteköpsmossesedimentsuccession.
Description
Unit
Depth(cm)
9
402-462
8
462-510
Darkbrownfinedetritusgyttja
7e
510-511.5
Browntogreyishsiltygyttjalayer
7d
511.5-542
Mediumbrownsiltygyttja/algaegyttja
7c
542-549
Brownsilty/algaegyttja
7b
549-582.5
Darkbrownsiltyalgaegyttja
7a
582.5-590
Brownsiltygyttja/algaegyttja
6b
590-613.5
Brownsiltygyttja
6a
613.5-625
Siltydarkgreyclayeygyttja
5f
625-627.5
Brownish-greyclayeysilt
5e
627.5-629
Darkbrownclayeysilt
5d
629-655
Brownish-greyclayeysilt
5c
655-664
Brownish-orangeclayeysilt
5b
664-673
Brown-greyishsilt
5a
673-682
Darkbrownsilt
4
682-702
Alternatinglayerswithdarkbrownmossesandgreyish-brown
clayeysilt/siltclay
3d
702-704
Greysilt
3c
704-708
Greycoarsesand
3b
708-710
Greysandysiltwithmosses
3a
710-714.5
Greyfinesand
2
714.5-724
Alternatinglayersofdarkbrownmossesandgreyish-brownclayey
silt
1e
724-728
Brownish-greyclayeysilt
1d
728-731
Darkgreyfinesandlayer
1c
731-740
Greyclayeysilt
1b
740-744.5
Greysiltwiththinsandlayers(1mm)
1a
744.5-750
Darkbrowncoarsedetritusgyttjaorpeat
Greyfinesandlayers
9
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Figure5.RadiocarboncalibrationandBayesianage-depthmodeling.a,Deglacialportionof
the IntCal13 radiocarbon calibration curve; raw data composing the related database
(Reimeretal.,2013)iscolorcodedbythetypeofproxyandexpressedwitherrors(±2σ).b,
Exampleofacalibrationofaradiocarbondate.Theredprobabilitydistributionrepresents
the measured 14C value of the radiocarbon date. The grey-colored area indicates the
calibrated probability distribution of the radiocarbon date using the IntCal13 calibration
curve(yellow).Thethickblacklinesshowthecalibratedagerangesthatencompassthe95%
CIofthemeasured 14Cdate.Thedashedandsolidthinlinesillustratetheintersectionofthe
errors(±2σ)andthemeanofthe 14Cage,andthecalibrationcurve,respectively.c,Example
of a depositional process with sediment progressively accumulating over time (yellow
columns).Blackdotsshowchangesinaccumulationrateandtheblacklinereflectsthe“true”
age-depthhistoryofthesedimentaryrecord.Theredtrianglesrepresentradiocarbon-dated
samplesandtheredlinereflectsatentativeage-depthrelationbasedonlinearinterpolation
between the chronological constraints. d, Construction of a probabilistic age-depth model
(seetextfordetails).
Calibrationtotheatmospheric 14Ccurve(Fig.5a,b)isahighlysuitablemethodtoconvert
the 14C age of samples from terrestrial organisms to absolute age. For marine samples,
however,the 14Ccontentreflectsthe 14CO2dissolvedintheocean.Oceansaredepletedin
their 14C content relative to that of the atmosphere. This results in an apparent 14C age
differencebetweentheoceanwaterandthecontemporaneousatmosphere,whichisalso
referred to as radiocarbon reservoir age (Stuiver and Braziunas, 1993). During the last
deglaciation,themagnitudeofthereservoiragevariedovertimeandspaceprimarilyasa
function of the strength in the rate of ocean ventilation and terrestrial freshwater
discharge(Waelbroecketal.,2001;Björcketal.,2003;Bondeviketal.,2006;Thompsonet
al.,2011).Giventhatthelastdeglaciationwascharacterizedbylargeandrapidchangesin
oceancirculation(e.g.McManusetal.,2004),thetimingofwhichcanonlybeconstrained
10
F. Muschitiello
by means of marine radiocarbon chronologies, a regional assessment of changes in
reservoirageintheNorthAtlanticisstillachallengingendeavor.
Radiocarbon dating and calibration are not only the first step towards establishing the
age-depth relationship for lake and marine sedimentary sequences. The second step to
inferareliableage-depthrelationshipinvolvesprobabilisticage-depthmodeling.Thiscan
bebasedonBayesianstatistics,anapproachthathasbeenwidelyappliedinthisthesis.In
the following, the method and concepts behind Bayesian age-depth modeling are
discussed.Anoutlineofthemethodandcalculationstogeneratethemarine 14Creservoir
agerecordpresentedinthisthesisisalsoprovided.
4.2.1.Bayesianage-depthmodeling
Bayesian age-depth modeling has become increasingly popular in the last decades to
reconstruct accumulation histories of radiocarbon-dated geological records (Buck et al.,
1991; Blaauw and Christen, 2005; Parnell et al., 2008; Bronk Ramsey, 2008). Bayesian
statistics combine data and prior information to infer the posterior distributions, i.e.
predictive probability distributions that are conditional on the observed data. Bayesian
depositionalmodelsarethusconstructedbasedupontheavailableagemeasurementsand
usingexplicitpriorparameterconstraintssuchas–forinstance–positiveaccumulation,
meanaccumulationratesandmeanaccumulationratevariance.Inadepositionalcontext,
the approach aims at mathematically finding a representative set of possible ages
associated with each depth interval in a sedimentary record. The full mathematical
formalism for the model elaboration can be found in Blaauw and Christen (2005, 2011)
andBronkRamsey(2008).
The model operates via a Markov Chain Monte Carlo (MCMC) sampling method, which
simulatesadistributionofpossiblesolutions(Gilksetal.,1996),withaprobabilitythatisa
productofthepriordistributionofeachparameterandthelikelihoodprobabilitiesofthe
observed data. Therefore, the resulting posterior distributions are a probabilistic
representationofthedepositionalhistoryofthesedimentaryrecordthatfullyaccountsfor
theavailableagemeasurements.
InBayesianagemodels,radiocarbondatesaretreatedintheircalibratedform(Fig.5a,b).
Thecalibrationofa14CdateiwithvalueRianduncertaintyδRiisobtainedviacomparison
tothecalibrationcurve,whichprovidesacontinuousestimationofthe 14Cageovertime
R(ts) and the associated uncertainty δR(ts). The agreement between the 14C age and the
calibrationcurveateachpointintime,ts,canbeexpressedasalikelihood,Pi(ts).
exp −
𝑃i 𝑡s ∝
(𝑅i − 𝑅(𝑡s))!
2(δ𝑅i! + δ𝑅 𝑡s ! )
!
δ𝑅i + δ𝑅 𝑡s
(1)
!
This provides the calendar age probability distribution of a calibrated 14C date (Fig. 5b,
greypatch).
To simulatetheposteriordistributionswithMCMC,themodelisgenerallydrivenby the
Metropolis-Hastings sampler algorithm (Metropolis et al., 1953; Hastings, 1970). The
11
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
algorithm is used to obtain a candidate matrix Y from a probability density function
referred to as proposal distribution si(yi). The candidate point Y is then used as the new
statetofthechainwithaprobabilitygivenbyα:
𝑅 t =
𝑃!"#$% (𝑌! )
𝑃!"#$% (𝑌!!! )
withα = min 1, 𝑅 t .
(2)
IntheeventthecandidatematrixYisrejected,thechainstaysatthesamepointandthe
stateissettoXt=Xt-1.ThecandidatematrixYisacceptedif
𝑈 0,1 ≤ α
(3)
with𝑈 0,1 beingauniformrandomnumberbetween0and1.Whenα=0allcandidate
matricesareaccepted,whereaswhenα=1onlycandidateswithprobabilityequalto1are
accepted.Inasimplifiedconfiguration,themodelprobabilitycanbedefinedbythreemain
contributions–time(T),depth(D)andaccumulationrateconstraints(Z).
𝑃!"#$% = 𝑃! . 𝑃! . 𝑃! (4)
The full mathematical specification for each of the probabilities can be found in Bronk
Ramsey(2008).Themodelisguidedbyascoregivenintermsofthenegativelogarithmof
theposteriorprobability,whichprovidesanestimateofthemodelperformance,whilethe
convergence of the MCMC chain around the ‘true’ parameter values is monitored by
acceptedPmodelvalues.ForeachstepoftheMCMCchain(typicallymorethan106iterations
intotal)severalageestimationsforeveryinputandinterpolateddeptharegenerated(Fig.
5d). This allows to estimate age probability distributions for every given depth interval,
andfortheassociatedconfidenceintervals.
4.2.2.Reservoirageestimation
MarineradiocarbonreservoiragesareexpressedasR(t)andΔR(t)(StuiverandBraziunas,
1993). R(t) is defined as the departure of a measured marine 14C age, 14CM(t), from the
corresponding contemporaneous atmospheric 14C age, 14CATM(t), on the IntCal13
calibration curve (Reimer et al., 2013) at the calibrated age t of deposition of the 14C
samplematerial(equation5).
𝑅 𝑡! =
14C
M
𝑡! −
14C
ATM
𝑡! (5)
Thecalibratedagetcanbeinferredfroma 14Cdatefromaterrestrialsampleobtainedat
the same depth as the marine sample, or more accessibly using age output from a
depositionalmodel,asdescribedabove(e.g.PaperIV).
12
F. Muschitiello
Ontheotherhand,ΔRisdefinedasthedepartureofameasuredmarine 14Cage, 14CM(t),
from the corresponding contemporaneous global marine 14C age, 14CMAR(t), on the
Marine13calibrationcurve(Reimeretal.,2013)(equation6).
Δ𝑅 𝑡! =
14C
M
𝑡! −
14C
MAR
𝑡! (6)
The parameters 14CM, 14CATM, and 14CMAR are accompanied by errors, which are normally
distributed, i.e. the measured radiocarbon mean value and the associated uncertainty.
Calibrated ages ti can be obtained using MCMC output from an age-depth model and
probabilitydensityfunctionscanbecalculatedforeachR(t)andΔR(t)values(e.g.Olsenet
al.,2009,2014).
4.3.Synchronizationofclimaterecords
A meticulous stratigraphic alignment of proxy data from sediment cores is essential to
accurately transfer information across records recovered from the same sedimentary
basin (e.g. Paper II). The alignment can also be applied to records located within a
confined region, thereby allowing synchronization of less well-dated records to more
robustlydatedreconstructions.Thisreliesontheassumptionthatclimateconditionswere
similar throughout the region and that the resolution of at least one of the records is
coarser than the timing required for a climate event to propagate between the core
locations (e.g. Lane et al., 2013). In particular, the latter application can be particularly
helpfulinrefiningmarinechronologies(e.g.PaperIV),whicharegenerallypronetolarge
uncertaintiesassociatedwithoften-unknownregionalreservoiragecorrections.
The stratigraphic alignment of sediment sequences is commonly pursued through an
interactiveadjustmentoftimeseries,whichconsistsofmanuallylinkinguser-definedtie
points(Björcketal.,2003;Austinetal.,2011).Thisapproachisqualitativeandproneto
subjectivity,withlimitedreproducibility.Italsoimpliesassumingconstantsedimentation
ratesbetweentiepoints,whichinvolveserrorsthataredifficulttoassess.
However, over the last two decades a number of deterministic algorithms have been
developed to automate the alignment process (e.g. Lisiecki, 2002; Lisiecki and Herbert,
2007; Malinverno, 2013; Lin et al., 2014). Such approaches involve deformation of the
entirety of one proxy record onto a reference time series, thus allowing tuning multiple
sedimentary records in a more flexible fashion, which accounts for uneven compaction
and/orexpansionofsedimentsovertime.
Thestratigraphicalignmentalgorithmusedinthisthesis(AnderssonandMuschitiello,in
preparation) was largely inspired by the work of Malinverno (2013). The algorithm is
driven by a Markov-Hasting MCMC method (similar to that adopted for age modelling),
wherethealgorithmjumpsfromthecurrentstatetothenextstatebasedonastochastic
perturbationofthecurrentstateintroducedatarandompositioninthedepth/agescaleof
thereferenceproxyrecord.Ifthestochasticperturbationimprovesthefitbetweenthetwo
proxytimeseries–asmonitoredbyaprobabilitycriterion–thealgorithmacceptsthenew
state,wheretheacceptancecriterionisdescribedinequation(2)and(3).Thegoodnessof
thefit(F)oftheperturbedstaterelativetothatoftheunperturbedstateiscomputedas:
13
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
𝐹=
!
!!!
𝑌! (𝑖)!"#$%#&'$()* − 𝑌! 𝑖
𝑛
!
!"#$%&
(7)
wherenarethenumberofoverlappingdatapointsandYA(i)linearisthelinearinterpolation
ofthereferenceproxyrecordA,fittingthedepth/agescaleoftheperturbedrecordB.To
account for the finite differences between the reference and fitted proxy time series, an
analogousfit,fitFD,isalsocomputed.Thefitsareassumedtobenormallydistributed(with
standarddeviationσ)andthetotalprobabilityforthenewstate(i)isexpressedas:
𝑃 𝑖 =
𝑒 !!"#(!)/!!
!
2𝜋𝜎 !
∙
𝑒 !!"#!" (!)/!!
2𝜋𝜎 !
!
(8)
whereσistheparameterthatdefinestheexpectedsimilaritybetweenthetimeseries.
TheMCMCchainistypicallyrunformorethan106iterations.Thealgorithmisrelatively
fast and provides a robust method to find an optimal fit between two proxy time series
alsoaccountingfortheirlocalvariability(e.g.PaperIIandPaperIV).Afullaccountofthe
mathematical formulation associated with the algorithm will be presented elsewhere
(AnderssonandMuschitiello,inpreparation).
4.4.Hydrogen-isotopiccompositionoflipidbiomarkerandpaleo-hydrological
application
At the molecular level, the analysis of organic matter preserved in sedimentary records
can provide much more detailed environmental information as compared to bulk
sedimentarygeochemistry.Forinstance,specificmolecularcompoundscanberelatedto
particularprecursororganismsand/orgroupoforganismstherebyprovidinginsightsinto
theprevailingenvironmentalconditionswithindefinitebiologicalsystemsandecological
niches (e.g. Meyers and Ishiwatari, 1993; Didyk et al., 1978). This class of molecular
compoundsisalsoknownas‘biomarkers’.
In lake sediment studies, biomarker analysis on organic matter from photosynthesizing
organisms allows for the separation of aquatic and terrestrial sedimentary components,
which enables examining environmental conditions in the lake and the surrounding
catchment.Aswateristhemainsourceofhydrogenforphotosynthesizingorganisms,the
hydrogen-isotopic composition (δD) of sedimentary lipid biomarkers has emerged as a
powerfultoolinthestudyofancientenvironmentsandclimates(EstepandHoering,1980;
Sternberg,1988).
Amongthemostroutinelyusedlipidbiomarkersarethen-alkanehydrocarbons,whichare
ubiquitous constituents of biological systems and excellently preserved in sedimentary
records spanning a variety of geological time scales (Eglinton and Eglinton, 2008). Both
the membranes of algae and aquatic plants, and the cuticular waxes of higher terrestrial
plant leaves contain large amounts of n-alkanes, and specifically short-chain and longchainn-alkanes,respectively(e.g.Fickenetal.,2000).TheδDvaluesoftheseaquaticand
14
F. Muschitiello
terrestrial n-alkanes are generally offset from, and highly correlated with, the δD
composition of the source water used by the precursor organisms following hydrogentransfer reactions, i.e. intracellular water for algae and aquatic plants, and leaf water for
terrestrialplants(Fig.6)(e.g.Sessionsetal.,1999;Sachseetal.,2004).Thisistheresultof
a number of environmental parameters (e.g. precipitation amount and source,
temperature,relativehumidity)andphysiologicalprocessesinvolvingintracellularwater
(e.g. leaf physiology, salinity, light intensity, biosynthetic pathway) that control the
isotopicfractionationbetweenhydrogeninthesourcewaterandintheorganiclipids,also
knownasnetorapparentfractionation(Sachseetal.,2012).
Althoughmanyoftheseprocessesarestillamatterofstudy,theδDcompositionoflipid
biomarkers from lacustrine sediments has rapidly become an established proxy to
reconstructpaleo-hydrologicalconditionsandδDofprecipitation(e.g.Aichneretal.,2010;
Rachetal.,2014).Assuch,δDvaluesofshort-chainn-alkanes(n-C17-23)fromaquaticalgae
andsubmergedplantscollectedfromlake-surfacesedimentsalongclimaticgradientshave
revealedahighcorrelationwithlake-waterδDvalues(Fig.6)(Huangetal.,2004;Sachse
et al., 2004, 2006). Analogously, δD values of long-chain n-alkanes (n-C27-31) from leaf
waxesofterrestrialplantsextractedfromlake-surfacesedimentsalongclimaticgradients
arehighlycorrelatedwithprecipitationδDvalues(Fig.6a,b)(Huangetal.,2004;Sachseet
al.,2004;Garcinetal.,2012).
ThisfindingsuggestsagoodpreservationofthesourcewaterδDsignalwherebytemporal
andspatial(withinthecatchment)integrationmayreducethevariabilityassociatedwith
individual biological sources and specific processes. However, even though both aquatic
and terrestrial plants undergo isotopic fractionation, which depends on the specific
biosynthetic pathway, the net or apparent fractionation of the δD values of terrestrial nalkanes is strongly affected by two additional fractionation steps: soil-water evaporation
and leaf-water transpiration processes (Fig. 7) (e.g. Sachse et al., 2006, 2012). These
parameters,whicharecontrolledbyplantanatomyconditions,relativehumidityandsoil
moisture availability, can be framed into a mechanistic Craig-Gordon model (Craig and
Gordon,1965)foropenwaterbodieswhereleaf-waterevaporativeenrichment(ΔDe)can
beexpressedas:
ΔD! = 𝜀 ! + 𝜀! + (ΔD! − 𝜀! )
𝑒!
𝑒!
(9)
ε+isthetemperature-dependentliquid-to-vapourequilibriumfractionationatthewaterairinterface,εkisthekineticfractionationduringdiffusionofvapourfromtheintracellular
spaceintheleaftotheatmosphere,ΔDvistheisotopicenrichment/depletionofvapourin
the atmosphere relative to the source water, and ea/ei is the leaf-to-air vapour pressure
ratio, which is an expression of relative humidity, leaf temperature and air temperature
(Sachseetal.,2012).
Soil-water and leaf-water evapotranspiration are poorly understood owing to the large
numberofbiologicalunknownsandintegrationstepsassociatedwiththenetorapparent
fractionation, and due to the lack of experimental culture-based studies. Although an
empirical understanding of all the processes behind the net or apparent fractionation in
higherplantsmayhelptopavethewayforquantitativeapplicationstopaleo-hydrological
reconstructions, at present, the isotopic difference between terrestrial and aquatic n-
15
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
alkanes can only be employed as a qualitative indicator for reconstructing changes in
catchment evapotranspiration (Fig. 7). However, before using lipid biomarker δD values
for paleo-hydrological interpretations, it is advisable to characterize the ancient
environment using a multi-proxy approach. In particular, vegetation reconstructions
basedonpollenandmacrofossilinformationcanhelptofactoroutoraccountforpossible
biologicalshiftsthusallowingdisentanglingofclimaticversusphysiologicaleffectsonleafwaterδD.
Figure 6.Relationshipbetweensource-waterδDandn-alkaneδDvaluesfromlake-surface
sediments. The relationship is presented for long-chain n-alkanes (n-C29) (a) and short-tomid-chain n-alkanes (n-C17, n-C23) (b, c). The δD values of n-C23 alkanes of sediments are
compared to those from their primary biological source, Potamogeton plants, from the
respective lake sediments (data from Aichner et al. (2010)). δD values are given with their
±1σ uncertainty for replicate measurements (lipids and lake water), and errors are
calculated from precipitation or obtained from the Atomic Energy Agency GNIP database.
Errorbarspresentedincreflectthe±2σuncertainty.ModifiedafterSachseetal.(2012).
Figure 7. Conceptual overviewofthehydrogen-isotopicrelationshipbetweensourcewater
and sedimentary n-alkanes of aquatic and terrestrial plants (not to scale). The red dot
illustrates a hypothetical mixture of water pools within the leaf, constituting the ultimate
hydrogensourceforlipidbiosynthesis.εbio,biosynthetichydrogen-isotopicfractionation;εl/w,
isotopicfractionationbetweenlipidsandsourcewater.ModifiedfromSachseetal.(2012).
16
F. Muschitiello
4.5.LipidextractionandδDanalysis
Lipidextractionwasperformedonfreeze-driedsedimentsamples(2-8cm3)viasonication
withdichloromethane:methanol(9:1)for20minutes,andsubsequentcentrifugation.This
was repeated three times and supernatants were combined at each step. Aliphatic
hydrocarbon fractions were isolated from the total lipid extract using silica gel columns
(5%deactivated)thatwereelutedwithpurehexane.Thesaturatedhydrocarbonfraction
was desulphurized by elution through 10% AgNO3-impregnated silica gel using pure
hexaneaseluent.Saturatedhydrocarbonfractionswereanalysedbygaschromatography-
mass spectrometry for identification and quantification, using a Shimadzu QP2010 Ultra.
Shortandlong-chain(typicallyC19toC33)n-alkaneswereidentifiedbasedonmassspectra
from the literature and retention times. The concentration of individual compounds was
estimatedbasedonthecomparisonofpeakareasrelativetothatofsqualane,usedasan
internalstandardaddedtothesamplesbeforelipidextraction.
Isotope ratios R (R = D/H with 2H or D for deuterium and 1H or H for protium) are
expressed as δD values in per mil (‰), which reflect the relative deviation of R in the
samplefromastandard(ViennaStandardMeanOceanWaterwithδD=0‰).
δD =
𝑅!"#$%& − 𝑅!"#$%#&%
. 1000 𝑅!"#$%#&%
(10)
δDvaluesweredeterminedusingaThermoFinniganDeltaXLmassspectrometerandall
analyses were performed in triplicate. A standard mixture of n-alkanes with known δD
composition (mix A4, provided by A. Schimmelmann, Indiana University, USA) was run
severaltimesdailytocalibratethemeasuredδDvalueofareferencegasusedtobracket
all analyses. Only sample values that were characterised in the isotope-ratio mass
spectrometerchromatogramsbybaselineseparatedpeaksandwereofhighenoughpeak
sizetofallwithinthelinearityrangeoftheinstrumentwereusedfordatainterpretation.
5.SummariesofPaperI-IV
5.1. Paper I - On the timing of environmental shifts across Northern Europe at the
Allerød-YoungerDryastransition
TheAllerød-YoungerDryas(AL-YD)transitionisthelastmajorlarge-scaleclimateshiftto
severe cold conditions before the start of the present warm interglacial. Thanks to the
disposal of a large number of terrestrial proxy reconstructions supported by reasonably
good chronologies, the AL-YD transition constitutes an excellent workplace to explore
leadsandlagsinresponsetorapidclimatechange.
The onset of the YD in Northern Europe is defined by a distinct shift in pollen and
macrofossilrecordsfromlakesedimentsequences.Thepollen-stratigraphicboundaryhas
long been used as a common regional chronological constraint (Mangerud et al., 1974;
Wohlfarth, 1996; Björck et al., 1998; Lowe et al., 2008) in Northern Europe, since it was
assumedthatitreflectsarapidandsynchronousresponseoftheregionalvegetationtothe
cooling related with the YD. However, at fine chronological resolution, climate records
show that even though climate events may have been abrupt at a local scale, they can
spreadinatime-transgressivefashionoverwidergeographicalscales(Laneetal.,2013).
17
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Similarly, environmental changes do not necessarily respond linearly to climate shifts
(Claussenetal.,2013;Rachetal.,2014).
Therefore, if differences in the vegetation response time between sites existed, these
wouldnotbefullycapturedinlow-resolutionrecords.Furthermore,priortothearrivalof
thelatestradiocarboncalibrationcurveIntCal13(Reimeretal.,2013),theoccurrenceofa
longradiocarbonageplateauaround13,000-12,800cal.yearsBP(Reimeretal.,2009)had
madeitdifficulttoreasonablynarrowdowntheageuncertaintyofthepollen-stratigraphic
AL-YDboundary.
The new radiocarbon calibration curve (Fig. 5a) has significantly improved the accuracy
around the aforementioned radiocarbon age plateau, which is now constrained by treering 14Cdata(Huaetal.,2009).Thus,thenewcalibrationcurveofferstheopportunityto
re-examinesomeofthemostdenselydatedNorthEuropeanterrestrialchronologies.
In Paper I, the radiocarbon chronologies of four key sites spanning the AL-YD transition
wererevisitedandcomparedbyconsistentlyconstructingnewBayesianage-depthmodels
foreachsedimentaryrecord.Thechronologiesofthefoursites–LakeKråkenes(Birkset
al.,2000),LakeMadtjärn(Björcketal.,1996),LakeGammelmose(Andresenetal.,2000),
andSlugganBog(Loweetal.,2004)–areunderpinnedbyalargenumberofAMS14Cdates
derived from terrestrial plant macrofossils and the local AL-YD pollen stratigraphic
boundary is finely constrained in terms of sampling resolution. The age-depth models
were produced using two different routines, OxCal (Bronk Ramsey, 2010) and Bacon
(Blaauw and Christen, 2011) after calibration with the IntCal13 data set (Reimer et al.,
2013). The results show a clear, geographically consistent and diachronous signal of
vegetation changes over Northern Europe, with an early AL-YD transition at ∼13,10012,900cal.yearsBPintheBritishIslesregionandDenmark,andalaterAL-YDtransition
at ∼12,750-12,600 cal. years BP in southern Sweden and western Norway (Fig. 8). It is
hypothesized that the early transition was associated with regional cooling owing to
increased freshwater outflow into the Nordic Seas from the southern margin of the
Scandinavian Ice Sheet. By contrast, the second phase was probably brought about by
large-scale cooling caused by a widespread climate reorganization associated with a
southwarddiversionoftheNorthAtlanticwesterlywindbelt(Braueretal.,2008;Rachet
al.,2014).
Apotentialdownsideofthisstudyisthattheresultsrelyheavilyontheoriginaldefinition
of the pollen zone boundary at each site. For instance, new vegetation reconstructions
from the site of Hasselø in Denmark suggest that here the AL-YD transition was
concomitant with that recorded at the Swedish and Norwegian sites (Mortensen et al.,
2015).WhilethesenewresultsdisagreewithourconclusionofanearlyAL-YDvegetation
shiftinDenmark,theageuncertaintiesthataccompanythelocalpollenzoneboundaryat
Hasseløprecludeanyconclusivesayonthismatter.
Chronologicalassessmentsofanumberofindependenttemperaturereconstructionsfrom
British sites point however at an early phase of cooling starting as early as ∼13,100 cal.
years BP (Elias and Matthews, 2014). This evidence strongly argues in favour of
potentially early vegetation shifts in the British Isles, thus supporting our results and
interpretations.
Paper I highlights the importance of establishing robust and coherent chronologies, but
also shows some of the limitations of relying on pollen data solely for climate
reconstructions.
18
F. Muschitiello
Figure 8. Allerød-Younger Dryas age estimates
inferredfromNorthEuropeanpollenstratigraphies.
K, Kråkenes; M, Madtjärn; HÄ, Hässeldala Port; LG,
Lake Gammelmose; SB, Sluggan Bog; MFM,
Meerfelder Maar. Age estimates for the onset of
Greenland Interstadial 1a (GI-1a) and Greenland
Stadial 1 (GS-1) are expressedontheIntCal13time
scale after synchronization with the Greenland Ice
CoreChronology2005(Muscheleretal.,2014).
5.2.PaperII-NorthAtlantichydro-climatepatternsaroundthestartoftheYounger
Dryasstadial
A number of studies have shown that hydrological and climate shifts spread rather
uniformlyacrosstheNorthAtlanticdomainattheonsetoftheYDcoldperiod(Grafenstein
etal.,1999;BirksandAmmann,2000;Rachetal.,2014;Bartoloméetal.,2015),resulting
insimilarsignsofchangesacrossEuropewithrespecttothoserecordedinGreenlandicecore proxies. This has generally been attributed to changes in sea-ice coverage over the
NorthAtlantic,whichcausedmid-latitudestormtrackstodivertacrossawideregion,thus
creating a tele-connective mechanism that linked the Greenland and European climate
systems(Braueretal.,2008).
Unsurprisingly, this conclusion has somewhat provided a justification for aligning
European climate records to ice-core isotope stratigraphies(e.g. Grafenstein et al., 1999;
Bakke et al., 2009; Lang et al., 2010). Such alignments have mainly been applied when
available chronologies were not sufficiently reliable to allow for an accurate temporal
comparison with events recorded in Greenland ice cores. This however has limited our
ability to investigate whether regional atmospheric patterns across the North Atlantic
werebroadlyconsistentornotduringthelastdeglaciation.
PaperIIaddressessomeoftheseissuesbystudyingnewwell-datedhydro-climate(δDon
lipid biomarkers) and temperature (chironomid inferred) data from a lake sediment
record from southern Sweden (Hässeldala Port – Fig. 3). The records were examined
relative to hydro-climate events recorded in Greenland ice cores. The chronological
comparisonwasalsofacilitatedbytherecentsynchronizationofthe 14Candice-coretime
scalesusingthecommoncosmogenicisotopevariationsintree-ringandice-corerecords
(Muscheleretal.,2014).Finally,theproxy-basedreconstructionswerecoupledtoclimate
model simulations in order to investigate the ocean and atmosphere parameters
responsiblefortheobservedspatialhydro-climatepatterns.
Theproxyrecordsindicateprogressivelydrierandcoldersummerconditionsinsouthern
SwedenduringthefewcenturiesprecedingthestartoftheYDstadial(∼13,100-12,880cal.
yearsBP)asopposedtowetterand/orwarmerconditionsobservedinGreenland(Fig.9a).
AstheδDrecordsareexpectedtoqualitativelytracktherateoffreshwaterdischargefrom
the southern margin of the Scandinavian Ice Sheet to the adjacent North and Norwegian
Seas(seesection2)–themainmoisturesourceofprecipitation–itissuggestedthatthis
period coincides with increased Scandinavian Ice Sheet meltwater forcing in the Nordic
Seas.
19
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Figure 9. Reconstructed and modeled climate change under Scandinavian Ice Sheet
freshwater forcing prior to the onset of the Younger Dryas stadial. a, GRIP snow
accumulation record (Johnsen et al., 1995) compared to Hässeldala catchment
evapotranspirationreconstruction.Recordsarepresentedwithshadingindicatingempirical
68% uncertainty bounds based on both analytical and age-model errors. Greenland
stratigraphic events (Rasmussen et al., 2006) and Hässeldala’s pollen zones are also
displayed. b, Modelled summer changes (JJA) in sea-level pressure preceding the abrupt
cooling associated with the Younger Dryas stadial. The area delimited in red shows the
locationwherefreshwaterforcingwasprescribed.Significancelevelsareindicatedbyblack
stippling(95%CI).
This hypothesis was tested by using a transient climate simulation performed with a
coupledatmosphere-oceanmodel(Liuetal.,2009;Heetal.,2013).Precisely,theregional
climate response to a weak freshening (0.011 Sv) of the North and Norwegian Seas was
investigated.Thefreshwaterforcinggeneratesasea-levelpressure(SLP)dipoleacrossthe
North Atlantic, with relatively higher SLP over Northern Europe and lower SLP over
Greenland (Fig. 9b). In the model, the dipole is a direct expression of increased sea-ice
coverintheNorwegianandBarentsSeasresultingfromthefreshwaterinput.
This physical mechanism is capable to fully explain the divergent hydro-climate and
temperatureshiftsrecordedshortlypriortotheonsetoftheYDstadialbothinsouthern
Sweden and Greenland. Interestingly, the hydro-climate dipole in the model is bound to
thepresenceoffreshwateranomaliesintheeasternsectoroftheNordicSeas,whichare
necessarytoaccountfortheshiftsobservedinthereconstructions.Infact,thedipoleisnot
simulatedwhenfreshwaterisreleasedfromNorthAmericansources.Moreover,themodel
results compellingly support the interpretation of the δD records in terms of regional
meltwaterforcing.
Inaddition,theseresultsimplythataligningNorthEuropeanrecordstoGreenlandclimate
signals is not a viable option if we are to understand leads-lags and spatial patterns of
climateresponsetofreshwaterforcing.
Inconclusion,thisstudyhighlightsapreviouslyunrecognizedsensitivityofNorthAtlantic
hydro-climate to Scandinavian Ice Sheet meltwater forcing. More importantly, it shows
thatScandinavianIceSheetmeltwaterdischargetotheNordicSeascancontrolthetiming
and signs of the isotopic shifts registered in Greenland ice cores shortly prior to the YD
20
F. Muschitiello
stadial. This is a potentially valid mechanism to explain the early vegetation shifts and
dropintemperaturesobservedintheBritishIslesandoutlinedinPaperI.
5.3. Paper III - Glacial varve evidence for a catastrophic outburst of meltwater
synchronouswiththeonsetoftheYoungerDryasstadial
Since the late 80’s, when Wallace Broecker and colleagues (Broecker et al., 1989)
hypothesizedthatacatastrophicmeltwaterpulsefromtheNorthAmericancontinentwas
themaintriggeringmechanismfortheonsetoftheYD,thesearchforthefloodpathway
hasbeenoneofthemostcontroversialtopicsinpaleoclimatesciences.
Yet,despitethatthedrainageorfloodhypothesisisatpresenttheclassicalexplanationfor
thestartoftheYD,thereconstructedtimingofthecatastrophicmeltwateroutburstfrom
the Laurentide Ice Sheet is still a matter of debate. Reconstructed ages for this event
(Lowelletal.,2005;Fisheretal.,2009;Murtonetal.,2010;NotandHillaire-Marcel,2012;
Breckenridge, 2015) are systematically too young or too uncertain with respect to the
hydro-climate shifts that mark the onset of the YD stadial as observed in Greenland icecorerecords,whereitisreferredtoasGreenlandStadial1(GS-1;12,846±69iceyearsat
1σ–Rasmussenetal.,2006).Thiscastssomedoubtsonthecausalrelationshipbetween
the drainage of proglacial lakes in North America and major shifts in atmospheric and
oceancirculationattheonsetoftheYDstadial.
TheScandinavianIceSheet,ontheothersideoftheNorthAtlanticOcean,isperhapsoneof
themostoverlookeddriversofdeglacialclimatechange.DuringtheLateAL(∼13,000cal.
years BP), the ice front was located south of the south central Swedish lowland area
(Björck,1995;LundqvistandWohlfarth,2000;Hughesetal.,2015)andtheBalticIceLake
(Fig.3)wasdammedup.Rapidrecessionoftheicemarginduringthisperiodatthewater
dividenearMt.Billingen(Fig.3)generatedaspillwaysystemthatconnectedtheBalticIce
Laketotheseainthewest,whichresultedinanabrupt5-10mloweringoftheBalticIce
Lake(Björck,1995;Björcketal.,1996).
The Baltic Ice Lake drainage has long been a contentious issue. However, new evidence
now confirms that a catastrophic outflow of meltwater actually took place near Mt.
Billingen (Swärd et al., 2015). However, these reconstructions lack a precise chronology
thatallowspinningdowntheexactageofthisevent.
Paper III constrains the timing of the Late AL drainage of the Baltic Ice Lake by reevaluating an annually resolved glacial varve chronology from southeastern Sweden
(Wohlfarth et al., 1998). The new composite 1257-year long varve chronology (∼13,20012,00 cal. years BP) is based on 57 records and provides insights into the timing of ice
recession and depositional events within the Baltic Ice Lake. In addition, the chronology
wasplacedonanabsolutetimescaleusingtheVeddeAshvolcanicmarkerandnew14Cage
modelling. This allowed comparing for the first time the melting history of the
ScandinavianIceSheettotheGreenlandice-coreandradiocarbontimescales(Rasmussen
etal.,2006;Reimeretal.,2013)withhighaccuracyandresolution.
Geochemicalandsedimentologicalanalysesoftheglacialvarverecordsindicatesarapid
change in sedimentation regime and a long-lasting disappearance of ice-rafted debris in
theBalticIceLake,respectively,whichcoincidedwiththestartofGS-1.Thisdepositional
eventtookplaceat12,847±2years(1σ)ontheice-coretimescaleandat12,876±22cal.
years (1σ) on the IntCal13 time scale. The event occurred 726 ± 2 years after the
depositionoftheVeddeAshascomparedto725±6yearsforthestartofGS-1inice-core
21
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
records. A simplified ice-sheet model indicates that the change in sedimentation regime
and especially the drop in ice-rafted debris transport can be explained by ice-margin
stabilizationinresponsetoalargedropintheBalticIceLakewaterlevel.
Figure 10. Radiocarbon calibrated age of the first
drainageoftheBalticIceLakeinferredfromawigglematching model underpinning the glacial varve
chronology from Östergötland (red). The related
probability is compared to the calibrated age of all
available 14Cdatesthatindirectlyconstrainthisevent.
Dates from Blekinge and Arkona Basin refer to the
timing of a major lowering of the Baltic Ice Lake.
DatesfromHunnebergconstrainthetimingwhenthe
spillwayatMt.Billingenbecameicefree.Thebluebar
indicatestheageprobabilityforthestartofGreenland
Stadial 1 (GS-1) on the IntCal13 time scale. A list of
referencestotherespectivedatesispresentedinPaper
II.
Resultsfromasystematicre-calibrationofallavailable 14Cdatesthatconstrainthetiming
ofdeglaciationattheMt.BillingenoutletandtherelatedBalticIceLakewaterleveldrop
(Muschitiello et al., 2015b, 2015c) argue in favour of our hypothesis (Fig. 10). A
mechanism,onlyhintedatinPaperII,isalsoproposed,forwhichacatastrophicoutflowof
meltwater may have induced excess sea ice in the Norwegian and Barents Seas, which
recirculatedintothesubpolarNorthAtlanticgyre.Itissuggestedthatsea-icerecirculation
in the Nordic Seas can cause the coupled atmosphere-ocean system to cross thresholds
beyond which a stadial climate regime is triggered. Critically, this is a robust feature in
Earth-SystemandGeneralCirculationmodels(Fig.11)(Drijfhoutetal.,2013;Lehneretal.,
2013) and thus provides a plausible physical mechanism for the inception of sustained
coldclimateeventsofthepast.
5.4.PaperIV–DeglacialAMOCandmeltwaterforcingintheNordicSeas:theocean
perspective
Thecommonexplanationfortheinceptionofsustainedcoldstadialperiodsduringthelast
deglaciation involves an abrupt weakening of the AMOC via freshwater forcing in the
North Atlantic Ocean (McManus et al., 2004; Praetorius et al., 2008; Clark et al., 2012).
However, paleoceanographic evidence for these abrupt ocean circulation changes and
their relationship with freshwater forcing remains elusive. Moreover, the representation
offreshwatersources,timingandmagnitudevariesbetweenclimatemodels(cf.Zhanget
al.,2014),asdoesthesensitivityofthesimulatedAMOCtofreshwaterperturbations(Fig.
12)(e.g.Rahmstorfetal.,2005).
Amongthemostcontroversialissuesthatarisewhensimulatingpastclimatechangeusing
proxy-based reconstructions, is that climate models require unrealistically large
freshwater perturbations and that the longevity of the simulated stadial is entirely
dependent upon the duration of the applied freshwater forcing (Ganopolski and
Rahmstorf, 2001; Knutti et al., 2004). This implies that the stability of the AMOC is
22
F. Muschitiello
systematically overestimated in climate models (Hofmann and Rahmstorf, 2009),
precludingthecomprehensionofpossiblebi-stableregimesoftheoverturningcirculation
system.
Figure11.AbruptsouthwardprogressionoftheNorthAtlanticsea-icemargininresponseto
enhanced sea-ice production in the Barents as simulated with the EC-Earth climate model
under Pre-Industrial boundary conditions. a, Averaged annual sea-ice anomalies for model
years430-450relativetotheclimatologyfortheyears200-400(justpriortothecoldevent).
b,asin(a)butfortheaveragedannualanomalyfortheyears450-550,duringthepeakof
the cold event. Values are expressed as a fraction of 1. c, Atlantic Meridional Overturning
Circulation time series in sverdrups (Sv= 106 m3 s-1). The black line shows the maximum
overturningandtheredlinetheoverturningstrengthat36°Natdeeperdepth(1600m).The
coloredareasshowtheperiodsofintegrationfor(a)and(b)aswellasthereferenceperiod
usedtoestimatetheanomalies.ModifiedafterDrijfhoutetal.(2013).
Figure 12. Sensitivity of the North Atlantic
thermo-haline circulation to freshwater forcing.
The panel shows hysteresis curves found in
coupled3-Dglobaloceanmodels.Circlesindicate
the present-day climate state of each model.
ModifiedfromRahmstorfetal.(2005).
23
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Therefore,littleisknownonthetransientbehaviouroftheAMOCanditstruesensitivity
tofreshwaterforcingduringthelastdeglaciation.Furthermore,duetolargeuncertainties
with the marine reservoir effect, it is still unclear whether shifts to a weak-state of the
AMOCarethetriggeroramereresponsetochangesassociatedwithothercomponentsof
theclimatesystem,infirstinstanceseaiceandatmosphericcirculation.
InPaperIV,thedeglacialhistoryoftheupperlimboftheAMOC–theNorthAtlanticinflow
totheNordicSeas–isreconstructedusingSSTandδ18OrecordsfrommarinecoreMD992284 (Fig. 3, 13), which is located at the gateway for transport of oceanic heat flux to
northern latitudes. By synchronizing the upwind SST signal to downwind hydro-climate
records (δD on lipid biomarkers) from the terrestrial site of Atteköps Mosse, it was
possible to provide core MD99-2284 with a precise atmospheric-based 14C chronology.
Moreover,weinfermeltwaterdischargefromtheScandinavianIceSheettotheadjacent
NordicSeasbyreconstructingtheregionalevolutionofthemarine 14Creservoirage(Fig.
13), a proxy indicating the contribution of continental freshwater containing dissolved
inorganiccarbonwithlow14Cactivity.
The reconstructions indicate a substantially unaltered strength of the North Atlantic
InflowandAMOCthroughoutthewarminterstadialphase(∼14,700-12,900cal.yearsBP).
This is surprising as the marine records suggest a significant and variable outflow of
freshwater from the Scandinavian Ice Sheet (Fig. 13), with a total ice-melt discharge
estimatedat∼2.8±0.3msea-levelequivalent(Hughesetal.,2015).
Bycontrast,synchronouslywiththestartofGS-1,theinflowofsalinesubtropicalwaters
criticallydecreasestogetherwithamajorweakeningoftheAMOC(Fig.13).Thisimpliesa
tight coupling between ocean and atmospheric perturbations within the North Atlantic
system.
Thepreviousstudy(PaperIII)providesevidenceforacatastrophicdrainageofmeltwater
fromtheScandinavianIceSheetandaplausiblephysicalmechanisminvolvinginjectionof
extraseaiceintothesubpolargyre.InthelightoftheapparentinertiaoftheAMOCsystem
tolong-termfreshwaterfluxes,itislikelythattheabruptshifttoaweakAMOCmodeat
the onset of GS-1 was the result of sea-ice–wind feedbacks rather than changes in
buoyancy forcing. In conclusion, despite sudden meltwater pulses from ice-dammed
continental lakes deliver only a fraction of freshwater to the oceans as compared to the
amount that decaying ice sheets can release over millennia altogether, the associated
feedbackshaveacrucialimpactontheAMOCmeanstateandcanlikelypushthesystem
overitstippingpoint.Thisnewframeworkforunderstandingrapidclimatemodeshiftsis
acriticalbenchmarkfordesigningfutureclimatemodelexperiments.
6.Terrestrial-marineproxycomparison
To evaluate the regional significance of the hydro-climate records generated within this
thesisproject,theδDvaluesderivedfromtheaquaticcomponents(δDaq)oflakesediments
from Hässeldala Port (HÄ) and Atteköps Mosse (ATK) are here compared to each other
andotherregionalmarinerecords.
In Paper II and III it was argued that, at least prior to the onset of the Holocene, the
ΔδDterrestrial-aquaticvaluesfromHÄandATKrecordsweremainlydependentuponthelocal
hydrological conditions rather than upon changes in local vegetation. Across the key
climatictransitionsdiscussedinthisthesis,e.g.attheonsetofALandYD,theΔδDterrestrial-
24
F. Muschitiello
Figure 13. a, Sea-surface temperatures (SST) and b, near-pycnocline ice-volume corrected
seawater δ18O from marine core MD99-2284 compared to Atlantic Meridional Overturning
Circulationproxyreconstruction(McManusetal.,2004).Shadingsreflectthe68%CIbased
on both analytical and chronological errors. c, Reconstructed North Atlantic surface ocean
reservoir 14Cages(ΔR).Whitedotsrefertore-evaluated 14Cdatafromthewesterncoastof
Norway (Bondevik et al., 2006) and red dots refer to 14C data obtained from marine core
MD99-2284. The shading reflects uncertainties in the reconstruction based on dating and
measurementerrors(95%CI).DarkershadingindicatesmorelikelyΔRvalues.Themeanis
shown as a red line. The white arrow shows the present-day ΔR (Bondevik et al., 2006). d,
Varve-(red)andradiocarbon-based(blue)ageestimates(±1σ)forthedrainageoftheBaltic
Ice Lake (Muschitiello et al., 2015b, 2015c). e, Volume evolution of the Eurasian ice sheets
expressedinmsea-levelequivalent(Hughesetal.,2015).SIS,ScandinavianIceSheet;SBKIS,
Svalbard, Barents and Kara Sea Ice Sheet; BIIS, British-Irish Ice Sheet. Greenland
stratigraphic events are displayed on the IntCal13 time scale. Colored bars show the two
majorphasesofsurface-watercoolingintheNorwegianSea.
25
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
aquaticrecordsindicatehydrologicalshiftstowardsrelativelydrierconditionswithrespect
to the preceding period. These hydrological shifts would have enhanced evaporative
deuteriumenrichmentoflake-waterandthusofδDaq.However,theδDaqrecordsfromHÄ
andATKshowlargeisotopicshiftstowardsmorenegativevaluesatthestartofbothAL
andYD,andYD,respectively.Thisimpliesthatlocalhydrologicalprocessesoperatedinthe
opposite direction of the observed shifts in δDaq and were likely not a primary factor in
controllingtheδDcompositionoflake-water.Therefore,theδDaqrecordsshouldreflect,to
alargeextent,changesintheisotopiccompositionoftheprecipitationsource,whichare
primarilyrelatedtothesurfacehydrographyoftheeasternsectoroftheNordicSeas(see
section3.1.).
The δDaq signals, which only overlap for ∼2,000 years (∼14,000-12,000 cal. years BP),
display a systematic offset but also some differences, with HÄ showing a larger negative
shiftinδDaqvaluesatthetransitioninto,andduringthefirsthalfoftheYDrelativetoATK
(Fig.14).
TheδDaqvaluesatHÄare∼30-70‰lowerthanthoseatATK(∼60-100‰whencompared
withHÄ’sδDrecordfromC21alkanes).ThesystematicδDoffsetbetweenthetworecords
may arise from three possible reasons or from a combination of these: the Rayleigh
rainout effect (Gat, 1996); differences in the δD composition of the moisture source
contributing precipitation to each site; differences in the length of the thawing season
between the eastern and western coast. In southern Sweden, the first case is a common
phenomenon,wherebytheisotopicratiosofprecipitationdecreaseastheairmassesmove
eastwardsfromthewestcoast(Jonssonetal.,2010).Forinstance,instrumentaldatashow
that the present-day annual difference in δD values of precipitation across Northern
Europe(e.g.fromtheBritishIslestotheBalticcountries)rangesbetween-65and-110‰
(Bowen,2003).
Astothesecondreason,itisplausiblethataportionoftheprecipitationdeliveredtoHÄ–
especially in summer when the circulation was more anticylonic (Muschitiello et al.,
2015c) – was inherited from the leeward side of the Scandinavian Ice Sheet. Here, the
BalticIceLakeconstitutedamoisturesourcecharacterisedbyheavilydeuterium-depleted
meltwater as opposed to the North Sea seawater on the windward side of the ice sheet.
This could explain systematically lower δD values of precipitation integrated in HÄ’s
sedimentswithrespecttoATK.However,theisotopicsignalincorporatedbytheaquatic
vegetation reflects the δD composition of the lake-water during the growing season, i.e.
latespring/earlysummer(Sachseetal.,2004).Itwasdemonstratedthattheearlysummer
isotope signatures of lake-water in southern Sweden are strongly affected by the
replenishment of the local aquifer by meltwater associated with winter and spring
snowfall(Muschitielloetal.,2013).
It is therefore likely that δD values recorded in HÄ’s sediments are reminiscent of the
isotopiccompositionoftheprecipitationcarriedbythedominantwesterlywindsduring
thecoldseason,whenthecirculationwaszonal.Altogether,thiswouldmeanthattheδD
offsetobservedbetweenATKandHÄduringthelastdeglaciationisprobablymorerelated
to the distillation of moisture transported across southern Sweden from the sea to the
inlandratherthantoasignalfromeasternsources.
Another possible scenario involves relatively shorter summers at HÄ relative to ATK. In
fact,heretheproximitytothecoldBalticIceLakewaterbodymayhaveledtoalonger
26
F. Muschitiello
Figure 14. a, Schematic upper circulation of the North Sea and location of marine coring
sitesJM99-1200(EbbesenandHald,2004),MD99-2284(thisthesis),HM79-6/4(Karpuzand
Jansen, 1992), and terrestrial sites Atteköps Mosse, and Hässeldala Port (this thesis). b,
ComparisonbetweenterrestrialδDrecordsofprecipitation,annualsea-surfacetemperature
(SST) and spring sea-ice reconstructions from the Norwegian Sea. The data set of marine
coreMD99-2284wassynchronizedtoAtteköp’stimescaleasexplainedinPaperIV.Theage
models of core JM99-1200 (Ebbesen and Hald, 2004) and HM79-6/4 (Karpuz and Jansen,
1992) were established using the available 14C dates corrected for variations in regional
reservoirageasreconstructedinPaperIV.(Captioncontinuesonpage29)
27
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
thawing season and colder summers as compared to the western coast of Sweden. This
may have postponed and lengthened the inflow of deuterium-depleted snowmelt in the
lake discussed above, thereby resulting in relatively lower δDaq signature at HÄ. Such
hypothesis is supported by chironomid-inferred summer temperature records, which
indicate a minimum of 1-2 °C colder summers at HÄ (Muschitiello et al., 2015c) than at
ATK (not shown) during ∼14,000-12,000 cal. years BP. In particular, variable summer
temperature differences could also provide an explanation for the observed transient
discrepanciesinδDbetweenthetwosites.
FurthercluescanalsobedrawnbycomparingtheδDaqrecordstootherregionalmarine
proxyreconstructions,sinceweexpectthehydro-climatedatasetstoalsodependonthe
seasurfacetemperatureconditionsatthemarinesourceofprecipitation.Inthefollowing,
three precisely dated marine sediment records from the Norwegian Sea are introduced
(Fig.14a,b):coreJM99-1200(EbbesenandHald,2004),coreMD99-2284(PaperIV),and
coreHM79-6/4(KarpuzandJansen,1992).
ThechronologyofMD99-2284isbasedonthesynchronizationtoATK’sδDrecordsandit
hasbeendiscussedinPaperIV.TheradiocarbonchronologyofJM99-1200andHM79-6/4
have here been revisited by using a Bayesian age-depth model (Bacon), the Marine13
calibration curve, and by applying marine reservoir correction factors according to the
reconstructionpresentedinPaperIV.TheSSTreconstructionsfromcoreJM99-1200and
MD99-2284arebasedonforaminiferaassemblagesandindicatessub-surfaceconditions.
Bycontrast,theSSTreconstructionfromHM79-6/4isbasedondiatomassemblagesthat
yield temperature conditions at a shallower depth (in the photic zone). The core JM991200 has also been studied for biomarker-based reconstructions of sea ice conditions
(Cabedo-Sanzetal.,2012).
Ainterestingfeaturethatarisesfromthecomparisonbetweentheterrestrialandmarine
records is that the δD record from ATK tracks the sub-surface water temperature signal
reasonably well (Fig. 14b), which provided the foundations for the synchronization
discussedinPaperIV.Bycontrast,theshiftsinδDvaluesfromHÄsedimentsappeartobe
in better agreement with variations in seasonal sea-ice cover and surface water
temperatures in the Norwegian Sea at the start and throughout the YD (Fig. 14b).
Especially,thepre-YDcoolingstartingat∼13,000cal.yearsBP,whichhasbeenidentified
in the HÄ isotopic records (Paper II), is evident in the marine records, whereby a shift
towardsnear-permanentsea-iceconditions(Cabedo-Sanzetal.,2012)andcolderSSTsare
initiatedafewcenturiesearlierthanthestartofGS-1(Fig.14b).
Thequestionarisesastowhyhydro-climateproxiesfromATKaremoresensitivetosea
sub-surface conditions, while records from HÄ respond to surface dynamics. During the
deglaciation,ATKwaslocatedclosetothecoastattheheadofalongfjordsystem,whichis
today known as the Skagerrak-Kattegat (Fig. 3). Modern high-latitude fjords, such as in
Greenland or in Scandinavia, are highly stratified, with warm subtropical waters flowing
beneathashallowbrackishorfreshwaterlayer (Stigebrandt,1981;Straneoetal.,2010).
Thesurfacewatersareconstantlyreplenishedthroughoutthefjordsandatthehead,the
deeper seawater can be entrained in the shallow fresher layer owing to the turbulence
inducedbytheactionofwindandbyrunofffromland(Stigebrandt,1981).Thiscanresult
instrongmixingandupwellingofsub-surfacewatersattheheadofthefjord.
The presence of the Scandinavian Ice Sheet during the last deglaciation would have
promotedtheoccurrenceofdescendingkatabaticwinds,sweepingoffseaice,icebergsand
ultimately freshwater from the northern coasts of the Skagerrak. Moreover, a stronger
28
F. Muschitiello
anticyclonic circulation regime over the ice sheet during summer (Muschitiello et al.,
2015c) may have been more conducive to steer meltwater westwards, out from the
Skagerrak-Kattegat complex, into the Norwegian Sea and eventually northwards (Fig.
14a). In particular, this paleo-hydrographic flow associated with a stronger summer
meridional circulation is consistent with the spatial pattern recorded with instrumental
data(Fig.4b).
Suchapatternofcirculationwithinthefjord,withfreshoutflowatthesurfacebalancedby
saltier, sub-surface inflow and vertical mixing at the head, can explain why the δD
signatures of precipitation at ATK track the sub-surface water temperature. Bearing in
mind that the δD signal at ATK is broadly consistent with other independent lacustrine
δ18O records from the south-western coast of Sweden (Hammarlund and Keen, 1994;
Hammarlund and Lemdahl, 1994), this implies that the marine moisture source for ATK
andthesurroundingareawaspredominantlyassociatedwiththeheadoftheSkagerrakKattegat fjord. Conversely at HÄ, further to the east, the δD signatures of precipitation
probablyintegratedaseasurfacesignaloverarelativelywiderregion.
The mechanism involving the integration of vertical physical properties of different
seawater masses by precipitation in two independent terrestrial records would not just
provideanadditionalexplanationforthetransientdifferencesbetweenδDvaluesatATK
andHÄ.ItcouldalsoprovideafurtherexplanationfortheobservedoffsetinδDvaluesof
precipitation discussed above. Since the moisture carried to ATK was inherited from
relatively closer marine waters (i.e. relatively warmer and more saline), the associated
isotopic signatures were more enriched in D as compared to HÄ, where the moisture
originatedfromabroaderandoverallfreshersource.
Localversusregionalhydro-climatesensitivitybetweenthetwoSwedishsiteswouldalso
clarifywhyreconstructedsummertemperaturesatATK(chironomid-inferred;notshown)
donotagreewiththerecordfromHÄ(Muschitielloetal.,2015c)orotherNorthEuropean
deglacialtemperaturerecords(Heirietal.,2007;EliasandMatthews,2014).Incontrast,
thetemperaturerecordfromHÄ(Muschitielloetal.,2015c)isingoodagreementwiththe
summer temperature history in the British Isles (Elias and Matthews, 2014), thus
supportingtheregionalsignificanceoftheclimaterecordsgeneratedatthislattersite.
Figure14(continued).TheSSTrecordsfromcoreJM99-1200andMD99-2284arebasedon
foraminiferaassemblagecountsandreflectsub-surfaceconditions,whereastherecordfrom
core HM79-6/4 is based on diatoms and reflects surface conditions. Note the general
agreement between the two sub-surface temperature records. The sea-ice reconstruction
(Cabedo-Sanz et al., 2012) was obtained from the same sedimentary record of core JM991200 and is based on the PBIP25 index, defined as the abundance of the biomarker
brassicasterol versus IP25. Greenland stratigraphic events according to the IntCal13 time
scale(Muscheleretal.,2014)arealsodisplayed.IsotopeandSSTrecordsarepresentedwith
barsindicating±1σerrorassociatedwithbothanalyticalandchronologicaluncertainty.The
age uncertainties of the sea-ice record are the same as for the SST reconstruction of core
JM99-1200. The ages for the Vedde Ash and Saksunarvatn tephra used to construct the
chronologies were based on age-modeling results from Lohne et al. (2013). The interval
characterisedbyfrequentsea-icecoverandlowSSTsintheNorwegianSeaishighlightedin
grey.
29
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Inconclusion,thiscomparativeanalysisbringsupthecomplexityofinterpretingδDpaleorecordsasafunctionofhydro-climatefactorsandhighlightstheneedtocoupleempirical
reconstructionswithisotope-enabledclimatemodelsthatcanhelpaccountingforshiftsin
theprecipitationmoisturesource.
7.Currentworkandunpublisheddata
7.1.ImpactoftheScandinavianIceSheetonregionalclimateusingaspatiallyhighresolutionclimatemodel
The on-going work related to the research presented inthis thesis focuses on the use of
spatially high-resolution climate model simulations (using CESM1.0.5) to investigate YD
summer climate over Europe (Schenk et al., in preparation). The model simulations are
employed to understand the importance of northward heat transport and ocean-toatmosphereheatfluxovertheNorthAtlanticunderaweakAMOCregime,suchasduring
the YD (McManus et al., 2004). The main motivation of this study is to shed light on the
elusive regional climate impact of a cold North Atlantic Ocean during a period with high
and increasing insolation forcing (Fig. 1). Moreover, the simulations, which include new
data-calibrated ice-sheet model reconstructions, are being compared to an extensive
Europeandatasetofproxy-basedquantitativetemperaturerecords(chironomids,aquatic
pollen,terrestrialplantmacrofossils).
Preliminaryresults(Schenketal.,inpreparation)suggestthat,converselytoearliercoarse
resolution climate simulations of the YD (e.g. Renssen et al., 2015), the competition
betweenacoldoceanandhighorbitalforcingresultsinwarmersummerconditionsover
Eurasia,withtheexceptionofcoastalandhighelevationsites(Fig.15a).Inspiteof10°C
colderSSTsintheNorthAtlantic,thepresenceoftheScandinavianIceSheetsignificantly
impactstheregionalatmosphericflowpreventingcoldwesterlywindsfromtheAtlanticto
penetrateinland,resultinginnortherlyflowovertheNordicSeasandincreasedblocking
circulation over the ice sheet. In turn, this circulation pattern induces a high radiative
balance of surface energy fluxes, thus explaining the summer warming in continental
Europe,whereasthecoldoceanhasagreaterinfluencealongthecoastalregions(Fig.15a).
The plant macrofossil-based temperature reconstructions from the proxy compilation
(MinnaVälirantaandMaijaHeikkilä–UniversityofHelsinki)arebroadlyconsistentwith
the pattern of warming observed in the simulations (Schenk et al., in preparation).
However, chironomid-based reconstructions show summer cooling during the YD. The
simulationssuggestthatthiscanbeexplainedbyaprogressiveshorteningofthegrowing
season in summer (Fig. 15b). In particular, a longer and colder spring can postpone
meltingoflakeice,whichinturncoolslakesevenduringsummer.Hence,thissnowmelt
processmayhaveimportantimplicationsfortheinterpretationoflake-sedimentbiological
proxies.
7.2.SensitivityoftheScandinavianiceSheettovolcanicforcing
Further on-going work surrounds the comparison of the new annual glacial-varve
chronologypresentedinPaperIIIwithGreenlandglaciochemicalrecordsattheendofthe
lastdeglaciation.Theglacialvarvechronology(Muschitielloetal.,2015b),whichhasbeen
synchronizedtotheGreenlandIceCoreChronology2005(Rasmussenetal.,2006)viathe
common Vedde Ash time marker, offers for the first time the opportunity to compare
30
F. Muschitiello
meltingratevariationsoftheScandinavianIceSheettoice-corevolcanicrecordsatannual
resolution.
The comparison shows that years characterised by anomalous Scandinavian Ice Sheet
melting coincide in time with volcanic eruptions as recorded in ice-core aerosol loading
records(Fig.16)(Zielinskietal.,1996).Byusingoutputfromclimatemodelsimulations
(Jungclaus et al., 2010), it is shown that explosive volcanic eruptions can generate an
instantaneous climate response in the North Atlantic, which results in a substantial
decreaseinseasonalprecipitation.
Theseresultsmaysuggestthatice-sheetmeltanomaliesidentifiedinthevarverecordare
potentially a result of snow-albedo feedbacks that lowered the reflectance of bare ice
under reduced snow accumulation conditions, a mechanism particularly efficient in
drivingice-masslossinmodernglaciersandicesheets(Francouetal.,2003;VanTrichtet
al.,2016).
Thisanalysismayprovidethefirstevidenceforthesensitivityofcontinentalicemassesto
volcanicforcingduringiceageterminations.Thishasimportantimplicationswithrespect
to the tremendous amount of meltwater trapped by recessing ice sheets and its pivotal
roleonrapidclimatechange.
7.3.Unpublisheddatasets
InadditiontotheproxyrecordsandmodelsimulationspublishedinPaperIIandIVand
presented in this report, there is a large number of unaccounted data and model output
behindthisproject.InthefollowingIoutlinesomeoftheunpublishedproxydatasetsthat
weregeneratedduringmyPhD.
Hässeldala’ssedimentswerethoroughlyinvestigatedforisotopeandbiomarkeranalysis.
Unpublished data comprise δD records from C20 Highly Branched Isoprenoids, δ18O on
cellulose,d-excess,andδ13Conasuiteofn-alkanes.
UnpublisheddatafromAtteköp’ssedimentscompriseX-rayfluorescencedata,δDrecords
from C20 Highly Branched Isoprenoids and chironomid-based temperature records
(investigator: Tomi P. Luoto – University of Helsinki) and plant macrofossil-based
temperaturerecords(MinnaVäliranta–UniversityofHelsinki).
8.Futurework
Future work will primarily focus on a set of sensitivity climate experiments using the
CCSM3 model (Frederik Schenk – Stockholm University). The simulations will aim at a
betterunderstandingofphysicalprocessesbehindtheoccurrenceofan“earlycooling”in
NorthernEuropeandahydro-climatedipoleacrosstheNorthAtlanticduringtheLateAL,
asobservedinPaperIandIIofthisthesis,respectively.
Thesensitivityexperimentswillbedesignedbyprescribingdifferentamountsandratesof
freshwater forcing from the Laurentide Ice Sheet and Scandinavian Ice Sheet. Additional
sensitivityexperimentswillberuntobetterexaminetheimpactofseaiceanomaliesinthe
NorwegianSeaandBarentsSeaduringthesameperiod(FrancescoPausata–Stockholm
University).
Time slice experiments (12,000 versus 13,000 years BP) will also be run with the
ECHAMisomodel(JesperSjolte–LundUniversity)toallowforaisotopeproxy-model
31
Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system
Figure 15. a, Modeled July surface air temperature anomaly between the Younger Drays
stadialandtheprecedingwarmAllerødinterstadial(12,000minus13,000modelyearsBP).
b,Sameas(a)withsummertemperatureanomaliesfromproxydataoverlain.c,Sameas(a)
for Growing Season Length. Positive (negative) values in (c) indicate a longer (shorter)
growing season of land vegetation. The start (end) of the growing season is defined as the
periodcharacterizedbysixstraightdayswithatemperatureabove(below)5.5°C(Nemani
etal.,2003).Significancelevelsareindicatedbyblackstippling(95%CI).DatafromSchenk
etal.(inpreparation).
comparisonatthetransitionintotheYDstadial.
Finally, using the state-of-the-art, high resolution (1/6°, ∼18 km), coupled ocean sea-ice
circulationmodelMITgcm(AlanCondron–MassachusettsInstitutesofTechnology),aset
oftransientsimulationswillbeperformedtoresolvethecirculationoftheoceanandsea
iceassociatedwiththedrainageoftheBalticIceLakeattheonsetoftheYDstadial.These
32
F. Muschitiello
simulations will shed light on the trajectories of meltwater at a resolution 10-15 times
higherthanotherGCMsandhelptounderstandtheroleoftheBalticIceLakedrainageon
AMOCstability.
Future proxy analyses will focus on generating new isotope records from southern
Scandinavia that allow extending the terrestrial-marine synchronization discussed in
Paper IV and thus the chronology of marine core MD99-2284 into the Holocene. If this
attemptturnsouttobesuccessful,bydatingnew 14CsamplefromcoreMD99-2284,itwill
be possible to extend the North Atlantic marine reservoir age record into the Early
Holocene.
Figure 16. Comparison between the new Late Glacial varve-clay chronology from
Östergötland and Greenland ice-core volcanic records. a, Varve thickness standardized
anomalies of the portion of the varve chronology composed of 55 overlapping varve
diagrams(Muschitielloetal.,2015b).b,VolcanicsignalrecordedinGISP2(SO42-)andNGRIP
(H+)icecores.VolcanicaerosolsulphatesdepositedattheGISP2sitearepresentedbothas
absolute values (orange) and as flux (red). The GISP2 record was synchronized to the
GreenlandIceCoreChronology2005timescaleviacommonvolcanicmarkers(Rasmussenet
al., 2007, 2008). c, Results from Monte Carlo significance tests of synchronicity between
exceptionallythickvarveyearsandvolcanicevents.Intheleft-handpanelsynchronicitywas
tested using 1,000 permutations of the varve thickness anomalies. In the right-hand panel
synchronicity was tested using 1,000 individual realizations of the varve thickness record
withsimilarrednoisespectralcharacteristics.Thegreenareaindicatestheregionabovethe
95th percentile and the red stars indicate the estimated agreement (%) between varve
anomaliesandvolcanicevents.Exceptionallythickvarveyearscorrespondingtoanomaliesin
atmospheric sulphate loading and the related volcanic event are also indicated. The ‘b2k’
conventionoftheGreenlandIceCoreChronology2005ishereconvertedintoBP(1950years
AD).
33
Acknowledgements
Funding for this project was provided by the Swedish Nuclear Waste Management
Company(SKB).AdditionalfundingwasprovidedforvariousactivitiesbytheBolinCentre
for Climate Research and the Department of Geological Sciences, Stockholm University. I
wouldalsoliketoacknowledgefinancialsupportthroughINTIMATEcost-action.
Alongwithinstitutions,therearepeople.Firstandforemost,Iwouldliketothankmyteam
of advisors. Barbara, like the last deglaciation, our relationship has been a bumpy road
withalotofupsanddowns.IamawareIhaven’tbeentheeasieststudenttodealwithand
due to my temper and my over-enthusiasm I caused you, to put it mildly, quite some
annoyance.Still,youalwaysremainedprofessional,supportedme,advisedmewisely,and
eventually even indulged to some of my wacky ideas. You have also been my harshest
criticandreviewer.Ibelievethishasmademeamorethoroughresearcherandcertainlya
betterwriter.NowIknowthatifIcansellyouanidea,well,thenIcansellittoanyone.I
willalwaysbegratefultoyouforlettingmeplaywiththemudinyoursandbox,whichhas
madetheselastfouryearsoneofthemostfantasticexperienceofmylife.
Thank you Rienk for passing the “art” forward to me, for the passionate training and
discussionsinsideandoutsidethelaboratoryrooms.Isotopesruleandwillalwaysdo!
A great thanks to my parents for their love and the ceaseless support throughout my
elevenlongyearsasauniversitystudent.Mom,IpromiseI’llfindajobnow.
I would also like to thank another very special group of people: the Saarikoskis. Sure
enough,youarelikeasecondfamilytome.Thankyouforallthelove(andtheawesome
breakfasts).
Thanks to all my friends. I apologize I cannot name you all here one by one. However, I
must mention some leading figures. Robert, I could have not possibly accomplished this
PhDwithoutyou.Youhavebeenagreatsourceofmotivationformywork.Thankyoufor
all the English synonyms, the “sandwiches”, the endless party nights and all the
(mis)adventures we have been through together. Please, forgive me for the noise in
Norway. Thank you James for never declining an invitation to the pub. With you I had
some of the most exciting (and productive) science talks in front of a pint that I’ve ever
had. Cat, Lisa, Patrik, you have been true friends and definitely a constant that have
accompaniedmethroughoutthisjourney.Thankyouforallthefunyoubrought.
Among my colleagues, there are a number of awesome characters that I would like to
acknowledge.Innoparticularorder:thehard-workingandrelentlessguysfromthefourth
floor,Hugsy,Reuby,Cliff,littleAlex,andBarbarella;myofficematesNatalia,Pedro,Francis,
Liselott,andthebeautifulprincessMoo;andofcoursethesilicafriendsWimandPatrick.
OutsidethedepartmentIhavealsobeenfortunatetomakesomegreatfriendswhohave
remindedmethatlifeisnotjustaboutpaleo-problems.ThankyouJustine,Elissa,Matilda,
Friedman,Nico,Jan,Riccard,JosefandMarco.
Onalesshumannote,Imustthankanumberofanthropomorphicdeitiesfortheconstant
presencewhenthingswentwrong,aswellassushiandnachosforthenecessaryboostof
nutrientsthathelpedmetodeliverthejob.
To these folks and the rest of the departmental staff: this time would not have been the
same without you. A special thank goes to Jane, Carina, Anna and Heike for the help in
gettingmylaboratoryworkmovingdayafterday.Thankyouforcopingwithanannoying
andattimescrankyItalianwhodoesnotalwaysfeelcomfortableinalabcoat.
34
IwouldliketothankSvanteBjörckfortheinspirationandfruitfuldiscussionsthroughthe
last years (and also for writing my Swedish abstract!). A huge thanks to Eve for always
havinganopendoorandagoodpieceofadvice.I’malsoverygratefultoMartinJakobsson,
who granted a young and unskilled limnologist with the opportunity to experience an
unforgettableresearchcruiseacrosstheArcticOcean.
Lastbutcertainlynotleast,Pilvi,mymosttreasuredjoy.Thankyouforeverything.
35
References
Ahlberg,K.,Almgren,E.,Wright,H.E.,Ito,E.,Hobbie,S.,1996.Oxygen-isotoperecordof
late-glacialclimaticchangeinwesternIreland.Boreas25,257–267.
doi:10.1111/j.1502-3885.1996.tb00641.x
Aichner,B.,Herzschuh,U.,Wilkes,H.,Vieth,A.,Böhner,J.,2010.δDvaluesofn-alkanesin
Tibetanlakesedimentsandaquaticmacrophytes–Asurfacesedimentstudyand
applicationtoa16karecordfromLakeKoucha.OrganicGeochemistry41,779–790.
doi:10.1016/j.orggeochem.2010.05.010
Ampel,L.,Kylander,M.E.,Steinthorsdottir,M.,Wohlfarth,B.,2015.Abruptclimatechange
andearlylakedevelopment–theLateglacialdiatomfloraatHässeldalaPort,
southeasternSweden.Boreas44,94–102.
Andersson,A.,Muschitiello,F.,inpreparation.Atwo-stepMonteCarloalgorithmfor
stratigraphicalignmentofsedimentrecords.
Andresen,C.S.A.,Björck,S.,Bennike,O.,Heinemeier,J.,Kromer,B.,2000.WhatdoD14C
changesacrosstheGerzenseeoscillation/GI-1beventimplyfordeglacialoscillations?
JournalofQuaternaryScience15,203–214.doi:10.1002/(SICI)10991417(200003)15:3<203::AID-JQS514>3.0.CO;2-8
Austin,W.E.N.,Telford,R.J.,Ninnemann,U.S.,Brown,L.,Wilson,L.J.,Small,D.P.,Bryant,C.L.,
2011.NorthAtlanticreservoirageslinkedtohighYoungerDryasatmospheric
radiocarbonconcentrations.GlobalandPlanetaryChange79,226–233.
doi:10.1016/j.gloplacha.2011.06.011
Bakke,J.,Lie,Ø.,Heegaard,E.,Dokken,T.,Haug,G.H.,Birks,H.H.,Dulski,P.,Nilsen,T.,2009.
RapidoceanicandatmosphericchangesduringtheYoungerDryascoldperiod.Nature
Geoscience2,202–205.doi:10.1038/ngeo439
Bard,E.,Hamelin,B.,Fairbanks,R.G.,Zindler,A.,1990.Calibrationofthe14Ctimescale
overthepast30,000yearsusingmassspectrometricU–ThagesfromBarbadoscorals.
Nature345,405–410.
Bard,E.,2000.HydrologicalImpactofHeinrichEventsintheSubtropicalNortheast
Atlantic.Science289,1321–1324.doi:10.1126/science.289.5483.1321
Bard,E.,Ménot,G.,Rostek,F.,Licari,L.,Böning,P.,Edwards,R.L.,Cheng,H.,Wang,Y.J.,
Heaton,T.J.,2013.Radiocarboncalibration/comparisonrecordsbasedonmarine
sedimentsfromthePakistanandIberianmargins.Radiocarbon55,1999–2019.
Barker,S.,Diz,P.,Vautravers,M.J.,Pike,J.,Knorr,G.,Hall,I.R.,Broecker,W.S.,2009.
InterhemisphericAtlanticseesawresponseduringthelastdeglaciation.Nature457,
1097–1102.doi:10.1038/nature07770
Bartolomé,M.,Moreno,A.,Sancho,C.,Stoll,H.M.,Cacho,I.,Spötl,C.,Belmonte,Á.,Edwards,
R.L.,Cheng,H.,Hellstrom,J.C.,2015.HydrologicalchangeinSouthernEurope
respondingtoincreasingNorthAtlanticoverturningduringGreenlandStadial1.
ProceedingsoftheNationalAcademyofSciences201503990.
doi:10.1073/pnas.1503990112
Beck,J.W.,Richards,D.A.,Lawrence,R.,Silverman,B.W.,Smart,P.L.,Donahue,D.J.,HererraOsterheld,S.,Burr,G.S.,Calsoyas,L.,Timothy,A.J.,2001.Extremelylargevariationsof
atmospheric14Cconcentrationduringthelastglacialperiod.Science292,2453–
36
2458.
Birks,H.H.,Ammann,B.,2000.Twoterrestrialrecordsofrapidclimaticchangeduringthe
glacial-Holocenetransition(14,000-9,000calendaryearsB.P.)fromEurope.
ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica97,
1390–1394.doi:10.1073/pnas.97.4.1390
Birks,H.H.,Battarbee,R.W.,Birks,H.J.B.,2000.Thedevelopmentoftheaquaticecosystem
atKrakenesLake,westernNorway,duringthelateglacialandearlyHolocene-a
synthesis.JournalofPaleolimnology23,91–114.doi:10.1023/a:1008079725596
Björck,S.,1995.AreviewofthehistoryoftheBalticSea,13.0-8.0kaBP.Quaternary
International27,19–40.
Björck,S.,Kromer,B.,Johnsen,S.,Bennike,O.,Hammarlund,D.,Lemdahl,G.,Possnert,G.,
Rasmussen,T.L.,Wohlfarth,B.,Hammer,C.U.,Spurk,M.,1996.Synchronized
TerrestrialAtmosphericDeglacialRecordsAroundtheNorthAtlantic.Science274,
1155–1160.doi:10.1126/science.274.5290.1155
Björck,S.,Walker,M.J.C.,Cwynar,L.C.,Johnsen,S.,Knudsen,K.-L.,Lowe,J.J.,Wohlfarth,B.,
1998.AneventstratigraphyfortheLastTerminationintheNorthAtlanticregion
basedontheGreenlandice-corerecord:aproposalbytheINTIMATEgroup.Journalof
QuaternaryScience13,283–292.doi:10.1002/(SICI)10991417(199807/08)13:4<283::AID-JQS386>3.0.CO;2-A
Björck,S.,Koç,N.,Skog,G.,2003.Consistentlylargemarinereservoiragesinthe
NorwegianSeaduringtheLastDeglaciation.QuaternaryScienceReviews22,429–
435.doi:10.1016/S0277-3791(03)00002-7
Blaauw,M.,Christen,J.A.,2005.Radiocarbonpeatchronologiesandenvironmentalchange.
JournaloftheRoyalStatisticalSociety.SeriesC:AppliedStatistics54,805–816.
doi:10.1111/j.1467-9876.2005.00516.x
Blaauw,M.,Christen,J.A.,2011.Flexiblepaleoclimateage-depthmodelsusingan
autoregressivegammaprocess.BayesianAnalysis6,457–474.doi:10.1214/11-BA618
Blockley,S.P.E.,Bourne,A.J.,Brauer,A.,Davies,S.M.,Hardiman,M.,Harding,P.R.,Lane,C.S.,
MacLeod,A.,Matthews,I.P.,Pyne-O’Donnell,S.D.F.,Rasmussen,S.O.,Wulf,S.,
Zanchetta,G.,2014.Tephrochronologyandtheextendedintimate(integrationoficecore,marineandterrestrialrecords)eventstratigraphy8–128kab2k.Quaternary
ScienceReviews106,88–100.doi:http://dx.doi.org/10.1016/j.quascirev.2014.11.002
Blunier,T.,Chappellaz,J.,Schwander,J.,Dällenbach,A.,Stauffer,B.,Stocker,T.F.,Raynaud,
D.,Jouzel,J.,Clausen,H.B.,Hammer,C.U.,Johnsen,S.J.,1998.AsynchronyofAntarctic
andGreenlandclimatechangeduringthelastglacialperiod.Nature394,739–743.
doi:10.1038/29447
Bondevik,S.,Mangerud,J.,Birks,H.H.,Gulliksen,S.,Reimer,P.,2006.Changesinnorth
AtlanticRadiocarbonReservoirAgesDuringtheAllerodandYoungerDryas.Science
312,1514–1517.doi:10.1126/science.1123300
Bowen,G.J.,2003.Interpolatingtheisotopiccompositionofmodernmeteoric
precipitation.WaterResourcesResearch39,1299.doi:10.1029/2003WR002086
Box,J.E.,Colgan,W.,2013.Greenlandicesheetmassbalancereconstruction.PartIII:
Marineicelossandtotalmassbalance(1840-2010).JournalofClimate26,6990–
7002.doi:10.1175/JCLI-D-12-00546.1
37
Bradley,R.S.,England,J.H.,2008.TheYoungerDryasandtheSeaofAncientIce.
QuaternaryResearch70,1–10.doi:10.1016/j.yqres.2008.03.002
Brauer,A.,Haug,G.H.,Dulski,P.,Sigman,D.M.,Negendank,J.F.W.,2008.Anabruptwind
shiftinwesternEuropeattheonsetoftheYoungerDryascoldperiod.Nature
Geoscience1,520–523.doi:10.1038/ngeo263
Breckenridge,A.,2015.TheTintah-CampbellgapandimplicationsforglacialLakeAgassiz
drainageduringtheYoungerDryascoldinterval.QuaternaryScienceReviews117,
124–134.
Broecker,W.S.,Kennett,J.P.,Flower,B.P.,Teller,J.T.,Trumbore,S.,Bonani,G.,Wolfli,W.,
1989.RoutingofmeltwaterfromtheLaurentideIceSheetduringtheYoungerDryas
coldepisode.Nature341,318–321.
Broecker,W.S.,1998.Paleoceancirculationduringthelastdeglaciation:abipolarseesaw?
Paleoceanography13,119–121.
BronkRamsey,C.,2008.Depositionmodelsforchronologicalrecords.QuaternaryScience
Reviews27,42–60.
BronkRamsey,C.,2010.OxCalProgram,v.4.1.7,Radiocarbonacceleratorunit,University
ofOxford,UK.
BronkRamsey,C.,Staff,R.A.,Bryant,C.L.,Brock,F.,Kitagawa,H.,VanDerPlicht,J.,
Schlolaut,G.,Marshall,M.H.,Brauer,A.,Lamb,H.F.,2012.Acompleteterrestrial
radiocarbonrecordfor11.2to52.8kyrBP.Science338,370–374.
Buck,C.E.,Kenworthy,J.B.,Litton,C.D.,Smith,A.F.M.,1991.Combiningarchaeologicaland
radiocarboninformation:aBayesianapproachtocalibration.Antiquity65,808–821.
Buizert,C.,Adrian,B.,Ahn,J.,Albert,M.,Alley,R.B.,Baggenstos,D.,Bauska,T.K.,Bay,R.C.,
Bencivengo,B.B.,Bentley,C.R.,Brook,E.J.,Chellman,N.J.,Clow,G.D.,Cole-Dai,J.,
Conway,H.,Cravens,E.,Cuffey,K.M.,Dunbar,N.W.,Edwards,J.S.,Fegyveresi,J.M.,
Ferris,D.G.,Fitzpatrick,J.J.,Fudge,T.J.,Gibson,C.J.,Gkinis,V.,Goetz,J.J.,Gregory,S.,
Hargreaves,G.M.,Iverson,N.,Johnson,J.a.,Jones,T.R.,Kalk,M.L.,Kippenhan,M.J.,
Koffman,B.G.,Kreutz,K.,Kuhl,T.W.,Lebar,D.a.,Lee,J.E.,Marcott,S.a.,Markle,B.R.,
Maselli,O.J.,McConnell,J.R.,McGwire,K.C.,Mitchell,L.E.,Mortensen,N.B.,Neff,P.D.,
Nishiizumi,K.,Nunn,R.M.,Orsi,A.J.,Pasteris,D.R.,Pedro,J.B.,Pettit,E.C.,BufordPrice,
P.,Priscu,J.C.,Rhodes,R.H.,Rosen,J.L.,Schauer,A.J.,Schoenemann,S.W.,Sendelbach,
P.J.,Severinghaus,J.P.,Shturmakov,A.J.,Sigl,M.,Slawny,K.R.,Souney,J.M.,Sowers,T.
a.,Spencer,M.K.,Steig,E.J.,Taylor,K.C.,Twickler,M.S.,Vaughn,B.H.,Voigt,D.E.,
Waddington,E.D.,Welten,K.C.,Wendricks,A.W.,White,J.W.C.,Winstrup,M.,Wong,
G.J.,Woodruff,T.E.,2015.Preciseinterpolarphasingofabruptclimatechangeduring
thelasticeage.Nature520,661–665.doi:10.1038/nature14401
Cabedo-Sanz,P.,Belt,S.T.,Knies,J.,Husum,K.,2012.Identificationofcontrastingseasonal
seaiceconditionsduringtheYoungerDryas.QuaternaryScienceReviews79,74–86.
doi:10.1016/j.quascirev.2012.10.028
Clark,P.U.,Marshall,S.J.,Clarke,G.K.,Hostetler,S.W.,Licciardi,J.M.,Teller,J.T.,2001.
Freshwaterforcingofabruptclimatechangeduringthelastglaciation.Science293,
283–287.doi:10.1126/science.1062517
Clark,P.U.,Shakun,J.D.,Baker,P.A.,Bartlein,P.J.,Brewer,S.,Brook,E.,Carlson,A.E.,Cheng,
H.,Kaufman,D.S.,Liu,Z.,Marchitto,T.M.,Mix,A.C.,Morrill,C.,Otto-Bliesner,B.L.,
38
Pahnke,K.,Russell,J.M.,Whitlock,C.,Adkins,J.F.,Blois,J.L.,Clark,J.,Colman,S.M.,
Curry,W.B.,Flower,B.P.,He,F.,Johnson,T.C.,Lynch-Stieglitz,J.,Markgraf,V.,
McManus,J.,Mitrovica,J.X.,Moreno,P.I.,Williams,J.W.,2012.Globalclimateevolution
duringthelastdeglaciation.ProceedingsoftheNationalAcademyofSciencesofthe
UnitedStatesofAmerica109,E1134–42.doi:10.1073/pnas.1116619109
Claussen,M.,Bathiany,S.,Brovkin,V.,Kleinen,T.,2013.Simulatedclimate-vegetation
interactioninsemi-aridregionsaffectedbyplantdiversity.NatureGeoscience6,954–
958.doi:10.1038/ngeo1962
Craig,H.,Gordon,L.I.,1965.Deuteriumandoxygen18variationsintheoceanandthe
marineatmosphere,in:ETongiori(Ed.),StableIsotopesinOceanographicStudiesand
Paleotemperatures.Consiglionazionaledellericherche,Laboratoriodegeologia
nucleare,PisaCNR,pp.9–130.
Cvijanovic,I.,Langen,P.L.,Kaas,E.,Ditlevsen,P.D.,2013.Southwardintertropical
convergencezoneshiftsandimplicationsforanatmosphericbipolarseesaw.Journal
ofClimate26,4121–4137.
Davies,S.M.,Wastegård,S.,Wohlfarth,B.,2003.ExtendingthelimitsoftheBorrobol
TephratoScandinaviaanddetectionofnewearlyHolocenetephras.Quaternary
Research59,345–352.
Davies,S.M.,Wohlfarth,B.,Wastegård,S.,Andersson,M.,Blockley,S.,Possnert,G.,2004.
WeretheretwoBorrobolTephrasduringtheearlyLateglacialperiod:Implicationsfor
tephrochronology?QuaternaryScienceReviews23,581–589.
doi:10.1016/j.quascirev.2003.11.006
Denton,G.H.,Anderson,R.F.,Toggweiler,J.R.,Edwards,R.L.,Schaefer,J.M.,Putnam,aE.,
2010.Thelastglacialtermination.Science328,1652–1656.
doi:10.1126/science.1184119
Didyk,B.M.,Simoneit,B.R.T.,Brassell,S.C.,Eglinton,G.,1978.Organicgeochemical
indicatorsofpalaeoenvironmentalconditionsofsedimentation.Nature272,216–222.
doi:10.1038/272216a0
Diefendorf,A.F.,Patterson,W.P.,Mullins,H.T.,Tibert,N.,Martini,A.,2006.Evidencefor
high-frequencylateGlacialtomid-Holocene(16,800to5500calyrB.P.)climate
variabilityfromoxygenisotopevaluesofLoughInchiquin,Ireland.Quaternary
Research65,78–86.doi:10.1016/j.yqres.2005.08.001
Drijfhout,S.,Gleeson,E.,Dijkstra,H.A.,Livina,V.,2013.Spontaneousabruptclimatechange
duetoanatmosphericblocking-sea-ice-oceanfeedbackinanunforcedclimatemodel
simulation.ProceedingsoftheNationalAcademyofSciences110,19713–19718.
doi:10.1073/pnas.1304912110
Duplessy,J.C.,Labeyrie,L.,Arnold,M.,Paterne,M.,Duprat,J.,vanWeering,T.C.E.,1992.
ChangesinsurfacesalinityoftheNorthAtlanticOceanduringthelastdeglaciation.
Nature358,487–487.doi:10.1038/358485a0
Durand,N.,Deschamps,P.,Bard,E.,Hamelin,B.,Camoin,G.,Thomas,A.L.,Henderson,G.M.,
Yokoyama,Y.,Matsuzaki,H.,2013.Comparisonof14CandU-Thagesincoralsfrom
IODP#310coresoffshoreTahiti.Radiocarbon55,1947–1974.
Ebbesen,H.,Hald,M.,2004.UnstableYoungerDryasclimateinthenortheastNorth
Atlantic.Geology32,673–676.
39
Eglinton,T.I.,Eglinton,G.,2008.Molecularproxiesforpaleoclimatology.Earthand
PlanetaryScienceLetters275,1–16.doi:10.1016/j.epsl.2008.07.012
Elias,S.A.,Matthews,I.P.,2014.Acomparisonofreconstructionsbasedonaquaticand
terrestrialbeetleassemblages:Lateglacial–EarlyHolocenetemperature
reconstructionsfortheBritishIsles.QuaternaryInternational341,69–79.
Estep,M.F.,Hoering,T.C.,1980.Biogeochemistryofthestablehydrogenisotopes.
GeochimicaetCosmochimicaActa44,1197–1206.doi:10.1016/00167037(80)90073-3
Fairbanks,R.G.,Mortlock,R.A.,Chiu,T.-C.,Cao,L.,Kaplan,A.,Guilderson,T.P.,Fairbanks,
T.W.,Bloom,A.L.,Grootes,P.M.,Nadeau,M.-J.,2005.Radiocarboncalibrationcurve
spanning0to50,000yearsBPbasedonpaired230Th/234U/238Uand14Cdates
onpristinecorals.QuaternaryScienceReviews24,1781–1796.
Ficken,K.J.,Li,B.,Swain,D.L.,Eglinton,G.,2000.Ann-alkaneproxyforthesedimentary
inputofsubmerged/floatingfreshwateraquaticmacrophytes.OrganicGeochemistry
31,745–749.
Fisher,T.G.,Waterson,N.,Lowell,T.V.,Hajdas,I.,2009.Deglaciationagesandmeltwater
routingintheFortMcMurrayregion,northeasternAlbertaandnorthwestern
Saskatchewan,Canada.QuaternaryScienceReviews28,1608–1624.
doi:10.1016/j.quascirev.2009.02.003
Francou,B.,Vuille,M.,Wagnon,P.,Mendoza,J.,Sicart,J.,2003.Tropicalclimatechange
recordedbyaglacierinthecentralAndesduringthelastdecadesofthetwentieth
century:Chacaltaya,Bolivia,16S.JournalofGeophysicalResearch:Atmospheres
(1984–2012)108.
Friedrich,M.,Remmele,S.,Kromer,B.,Hofmann,J.,Spurk,M.,Kaiser,K.F.,Orcel,C.,
Küppers,M.,2004.The12,460-yearHohenheimoakandpinetree-ringchronology
fromcentralEurope—auniqueannualrecordforradiocarboncalibrationand
paleoenvironmentreconstructions.Radiocarbon46,1111–1122.
Ganopolski,A.,Rahmstorf,S.,2001.Rapidchangesofglacialclimatesimulatedinacoupled
climatemodel.Nature409,153–158.doi:10.1038/35051500
Garcin,Y.,Melnick,D.,Strecker,M.R.,Olago,D.,Tiercelin,J.-J.,2012.EastAfricanmidHolocenewet–drytransitionrecordedinpalaeo-shorelinesofLakeTurkana,northern
KenyaRift.EarthandPlanetaryScienceLetters331,322–334.
Gat,J.R.,1996.Oxygenandhydrogenisotopesinthehydrologiccycle.AnnualReviewof
EarthandPlanetarySciences24,225–262.
Gilks,W.R.,Richardson,S.,Spiegelhalter,D.J.,1996.MarkovChainMonteCarloinPractice.
Technometrics.doi:10.2307/1271145
Glessmer,M.S.,Eldevik,T.,Våge,K.,ØieNilsen,J.E.,Behrens,E.,2014.Atlanticoriginof
observedandmodelledfreshwateranomaliesintheNordicSeas.NatureGeoscience7,
801–805.doi:10.1038/ngeo2259
Grafenstein,U.Von,Erlenkeuser,H.,Brauer,A.,Jouzel,J.,Johnsen,S.J.,vonGrafenstein,U.,
1999.AMid-EuropeanDecadalIsotope-ClimateRecordfrom15,500to5000YearsB
.P.Science1654,1654–1657.doi:10.1126/science.284.5420.1654
Gustafsson,M.,Rayner,D.,Chen,D.,2010.ExtremerainfalleventsinsouthernSweden:
40
Wheredoesthemoisturecomefrom?Tellus,SeriesA:DynamicMeteorologyand
Oceanography62,605–616.doi:10.1111/j.1600-0870.2010.00456.x
Hammarlund,D.,Keen,D.H.,1994.AlateWeichselianstableisotopeandmolluscan
stratigraphyfromsouthernSweden.Gff116,235–248.
doi:10.1080/11035899409546189
Hammarlund,D.,Lemdahl,G.,1994.ALateWeichselianstableisotopestratigraphy
comparedwithbiostratigraphicaldata:AcasestudyfromsouthernSweden.Journal
ofQuaternaryScience9,13–31.doi:http://dx.doi.org/10.1002/jqs.3390090103
Hammarlund,D.,1999.Ostracodstableisotoperecordsfromadeglacialisolationsequence
insouthernSweden.Boreas28,564–574.doi:10.1111/j.1502-3885.1999.tb00242.x
Hammarlund,D.,Edwards,T.W.D.,Bjoerck,S.,Buchardt,B.,Wohlfarth,B.,1999.Climate
andenvironmentduringtheYoungerDryas(GS-1)asreflectedbycompositestable
isotoperecordsoflacustrinecarbonatesatTorreberga,southernSweden.Journalof
QuaternaryScience14,17–28.
Hanna,E.,Navarro,F.J.,Pattyn,F.,Domingues,C.M.,Fettweis,X.,Ivins,E.R.,Nicholls,R.J.,
Ritz,C.,Smith,B.,Tulaczyk,S.,Whitehouse,P.L.,Zwally,H.J.,2013.Ice-sheetmass
balanceandclimatechange.Nature498,51–59.doi:10.1038/nature12238
Hastings,W.K.,1970.MonteCarloSamplingMethodsUsingMarkovChainsandTheir
Applications.Biometrika57,97–109.doi:10.2307/2334940
He,F.,Shakun,J.D.,Clark,P.U.,Carlson,A.E.,Liu,Z.,Otto-Bliesner,B.L.,Kutzbach,J.E.,2013.
NorthernHemisphereforcingofSouthernHemisphereclimateduringthelast
deglaciation.Nature494,81–85.doi:10.1038/nature11822
Heiri,O.,Cremer,H.,Engels,S.,Hoek,W.Z.,Peeters,W.,Lotter,A.F.,2007.Lateglacial
summertemperaturesintheNorthwestEuropeanlowlands:achironomidrecord
fromHijkermeer,theNetherlands.QuaternaryScienceReviews26,2420–2437.
doi:10.1016/j.quascirev.2007.06.017
Hoffmann,D.L.,Beck,J.W.,Richards,D.A.,Smart,P.L.,Singarayer,J.S.,Ketchmark,T.,
Hawkesworth,C.J.,2010.Towardsradiocarboncalibrationbeyond28kausing
speleothemsfromtheBahamas.EarthandPlanetaryScienceLetters289,1–10.
Hofmann,M.,Rahmstorf,S.,2009.OnthestabilityoftheAtlanticmeridionaloverturning
circulation.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof
America106,20584–20589.doi:10.1073/pnas.0909146106
Hua,Q.,Barbetti,M.,Fink,D.,Kaiser,K.F.,Friedrich,M.,Kromer,B.,Levchenko,V.A.,Zoppi,
U.,Smith,A.M.,Bertuch,F.,2009.Atmospheric14Cvariationsderivedfromtreerings
duringtheearlyYoungerDryas.QuaternaryScienceReviews28,2982–2990.
doi:10.1016/j.quascirev.2009.08.013
Huang,Y.,Shuman,B.,Wang,Y.,Webb,T.,2004.Hydrogenisotoperatiosofindividual
lipidsinlakesedimentsasnoveltracersofclimaticandenvironmentalchange:A
surfacesedimenttest.JournalofPaleolimnology31,363–375.
doi:10.1023/B:JOPL.0000021855.80535.13
Hughen,K.A.,Baillie,M.G.L.,Bard,E.,Beck,J.W.,Bertrand,C.J.H.,Blackwell,P.G.,Buck,C.E.,
Burr,G.S.,Cutler,K.B.,Damon,P.E.,2004.Marine04marineradiocarbonage
calibration,0-26calkyrBP.Radiocarbon46,1059–1086.
41
Hughen,K.,Southon,J.,Lehman,S.,Bertrand,C.,Turnbull,J.,2006.Marine-derived14C
calibrationandactivityrecordforthepast50,000yearsupdatedfromtheCariaco
Basin.QuaternaryScienceReviews25,3216–3227.
Hughes,A.L.C.,Gyllencreutz,R.,Lohne,Ø.S.,Mangerud,J.,Svendsen,J.I.,2015.Thelast
Eurasianicesheets-achronologicaldatabaseandtime-slicereconstruction,DATED1.Boreasn/a–n/a.doi:10.1111/bor.12142
Iversen,J.,1954.Thelate-glacialfloraofDenmarkanditsrelationtoclimateandsoil.
Danmarksgeologiskeundersøgelse2,87–119.
Johnsen,S.J.,Dahl-Jensen,D.,Dansgaard,W.,Gundestrup,N.,1995.Greenland
palaeotemperaturesderivedfromGRIPboreholetemperatureandicecoreisotope
profiles.TellusB47,624–629.
Jones,R.T.,Marshall,J.D.,Crowley,S.F.,Bedford,A.,Richardson,N.,Bloemendal,J.,Oldfield,
F.,2002.Ahighresolution,multiproxyLate-glaciarecordofclimatechangeand
intrasystemresponsesinnorthwestEngland.JournalofQuaternaryScience17,329–
340.doi:10.1002/jqs.683
Jonsson,C.E.,Andersson,S.,Rosqvist,G.C.,Leng,M.J.,2010.Reconstructingpast
atmosphericcirculationchangesusingoxygenisotopesinlakesedimentsfrom
Sweden.ClimateOfThePast6,49–62.doi:10.5194/cp-6-49-2010
Jungclaus,J.H.,Lorenz,S.J.,Timmreck,C.,Reick,C.H.,Brovkin,V.,Six,K.,Segschneider,J.,
Giorgetta,M.a.,Crowley,T.J.,Pongratz,J.,Krivova,N.a.,Vieira,L.E.,Solanki,S.K.,
Klocke,D.,Botzet,M.,Esch,M.,Gayler,V.,Haak,H.,Raddatz,T.J.,Roeckner,E.,Schnur,
R.,Widmann,H.,Claussen,M.,Stevens,B.,Marotzke,J.,2010.Climateandcarbon-cycle
variabilityoverthelastmillennium.ClimateofthePast6,723–737.doi:10.5194/cp-6723-2010
Karpuz,N.K.,Jansen,E.,1992.Ahigh-resolutiondiatomrecordofthelastdeglaciationfrom
theSENorwegianSea:Documentationofrapidclimaticchanges.Paleoceanography7,
499–520.
Knutti,R.,Flückiger,J.,Stocker,T.F.,Timmermann,a,2004.Stronghemisphericcoupling
ofglacialclimatethroughfreshwaterdischargeandoceancirculation.Nature430,
851–6.doi:10.1038/nature02786
Kromer,B.,Friedrich,M.,Hughen,K.A.,Kaiser,F.,Remmele,S.,Schaub,M.,Talamo,S.,2004.
Lateglacial14Cagesfromafloating,1382-ringpinechronology.Radiocarbon46,
1117–1126.
Kylander,M.E.,Klaminder,J.,Wohlfarth,B.,Löwemark,L.,2013.Geochemicalresponsesto
paleoclimaticchangesinsouthernSwedensincethelateglacial:theHässeldalaPort
lakesedimentrecord.Journalofpaleolimnology50,57–70.
Lambeck,K.,Rouby,H.,Purcell,A.,Sun,Y.,Sambridge,M.,2014.Sealevelandglobalice
volumesfromtheLastGlacialMaximumtotheHolocene.ProceedingsoftheNational
AcademyofSciences111,15296–15303.doi:10.1073/pnas.1411762111
Lane,C.S.,Brauer,A.,Blockley,S.P.E.,Dulski,P.,2013.VolcanicashrevealstimetransgressiveabruptclimatechangeduringtheYoungerDryas.Geology41,1251–
1254.doi:10.1130/G34867.1
Lang,B.,Brooks,S.J.,Bedford,A.,Jones,R.T.,Birks,H.J.B.,Marshall,J.D.,2010.Regional
consistencyinLateglacialchironomid-inferredtemperaturesfromfivesitesinnorth
42
westEngland.QuaternaryScienceReviews29,1528–1538.
doi:10.1016/j.quascirev.2009.02.023
Laskar,J.,Robutel,P.,Joutel,F.,Gastineau,M.,Correia,a.C.M.,Levrard,B.,2004.AlongtermnumericalsolutionfortheinsolationquantitiesoftheEarth.Astronomyand
Astrophysics428,261–285.doi:10.1051/0004-6361:20041335
Lehner,F.,Born,A.,Raible,C.C.,Stocker,T.F.,2013.AmplifiedInceptionofEuropeanLittle
IceAgebySeaIce–Ocean–AtmosphereFeedbacks.JournalofClimate26,7586–7602.
doi:10.1175/JCLI-D-12-00690.1
Leng,M.J.,Henderson,A.C.G.,2013.Recentadvancesinisotopesaspalaeolimnological
proxies.JournalofPaleolimnology49,481–496.doi:10.1007/s10933-012-9667-5
Libby,W.F.,1952.Radiocarbondating,UniversityofChicagoPress.
Lin,L.,Khider,D.,Lisiecki,L.E.,Lawrence,C.E.,2014.Probabilisticsequencealignmentof
stratigraphicrecords.Paleoceanography29,976–989.
Lisiecki,L.E.,2002.Applicationofdynamicprogrammingtothecorrelationofpaleoclimate
records.Paleoceanography17,1–12.doi:10.1029/2001PA000733
Lisiecki,L.E.,Herbert,T.D.,2007.Automatedcompositedepthscaleconstructionand
estimatesofsedimentcoreextension.Paleoceanography22,PA4213.
doi:10.1029/2006PA001401
Liu,Z.,Otto-Bliesner,B.L.,He,F.,Brady,E.C.,Tomas,R.,Clark,P.U.,Carlson,A.E.,LynchStieglitz,J.,Curry,W.,Brook,E.,2009.Transientsimulationoflastdeglaciationwitha
newmechanismforBølling-Allerødwarming.Science325,310–314.
Lohne,O.S.,Mangerud,J.,Birks,H.H.,2013.Precise14CagesoftheVeddeand
SaksunarvatnashesandtheYoungerDryasboundariesfromwesternNorwayand
theircomparisonwiththeGreenlandIceCore(GICC05)chronology.Journalof
QuaternaryScience28,490–500.doi:10.1002/jqs.2640
Lowe,J.J.,Walker,M.J.C.,Scott,E.M.,Harkness,D.D.,Bryant,C.L.,Davies,S.M.,2004.A
coherenthigh-precisionradiocarbonchronologyfortheLate-glacialsequenceat
SlugganBog,Co.Antrim,NorthernIreland.JournalofQuaternaryScience19,147–
158.doi:10.1002/jqs.814
Lowe,J.J.,Rasmussen,S.O.,Björck,S.,Hoek,W.Z.,Steffensen,J.P.,Walker,M.J.C.,Yu,Z.C.,
2008.SynchronisationofpalaeoenvironmentaleventsintheNorthAtlanticregion
duringtheLastTermination:arevisedprotocolrecommendedbytheINTIMATE
group.QuaternaryScienceReviews27,6–17.
doi:http://dx.doi.org/10.1016/j.quascirev.2007.09.016
Lowell,T.,Waterson,N.,Fisher,T.,Loope,H.,Glover,K.,Comer,G.,Hajdas,I.,Denton,G.,
Schaefer,J.,Rinterknecht,V.,2005.TestingtheLakeAgassizmeltwatertriggerforthe
YoungerDryas.Eos,TransactionsAmericanGeophysicalUnion86,365–372.
Lundqvist,J.,Wohlfarth,B.,2000.Timingandeast–westcorrelationofsouthSwedishice
marginallinesduringtheLateWeichselian.QuaternaryScienceReviews20,1127–
1148.
Malinverno,A.,2013.Datareport:MonteCarlocorrelationofsedimentrecordsfromcore
anddownholelogmeasurementsatSitesU1337andU1338(IODPExpedition321).
Pälike,H.,Lyle,M.,Nishi,H.,Raffi,I.,Gamage,K.,Klaus,A.,andtheExpedition320,
43
321.
Mangerud,J.A.N.,Andersen,S.T.,BERGLUND,B.E.,Donner,J.J.,1974.Quaternary
stratigraphyofNorden,aproposalforterminologyandclassification.Boreas3,109–
126.
Marcott,S.A.,Bauska,T.K.,Buizert,C.,Steig,E.J.,Rosen,J.L.,Cuffey,K.M.,Fudge,T.J.,
Severinghaus,J.P.,Ahn,J.,Kalk,M.L.,2014.Centennial-scalechangesintheglobal
carboncycleduringthelastdeglaciation.Nature514,616–619.
Marshall,J.D.,Jones,R.T.,Crowley,S.F.,Oldfield,F.,Nash,S.,Bedford,A.,2002.Ahigh
resolutionLate-GlacialisotopicrecordfromHawesWater,NorthwestEngland.
Climaticoscillations:Calibrationandcomparisonofpalaeotemperatureproxies.
Palaeogeography,Palaeoclimatology,Palaeoecology185,25–40.doi:10.1016/S00310182(02)00422-4
McManus,J.F.,Francois,R.,Gherardi,J.-M.,Keigwin,L.D.,Brown-Leger,S.,2004.Collapse
andrapidresumptionofAtlanticmeridionalcirculationlinkedtodeglacialclimate
changes.Nature428,834–837.doi:10.1038/nature02494
Metropolis,N.,Rosenbluth,A.W.,Rosenbluth,M.N.,Teller,A.H.,Teller,E.,1953.Equationof
StateCalculationsbyFastComputingMachines.TheJournalofChemicalPhysics21,
1087–1092.doi:doi:10.1063/1.1699114
Meyers,P.A.,Ishiwatari,R.,1993.Lacustrineorganicgeochemistry-anoverviewof
indicatorsoforganicmattersourcesanddiagenesisinlakesediments.Organic
Geochemistry20,867–900.doi:10.1016/0146-6380(93)90100-P
Moon,T.,Joughin,I.,Smith,B.,Howat,I.,2012.21st-CenturyEvolutionofGreenlandOutlet
GlacierVelocities.Science336,576–578.doi:10.1126/science.1219985
Mortensen,M.F.,Henriksen,P.S.,Christensen,C.,Petersen,P.V.,Olsen,J.,2015.Vegetation
developmentinsouth-eastDenmarkduringtheWeichselianLateGlacial:
palaeoenvironmentalstudiesclosetothePalaeolithicsiteofHasselø.DanishJournal
ofArchaeology3,33–51.
Moss,R.H.,Edmonds,J.a,Hibbard,K.a,Manning,M.R.,Rose,S.K.,vanVuuren,D.P.,Carter,
T.R.,Emori,S.,Kainuma,M.,Kram,T.,Meehl,G.a,Mitchell,J.F.B.,Nakicenovic,N.,Riahi,
K.,Smith,S.J.,Stouffer,R.J.,Thomson,A.M.,Weyant,J.P.,Wilbanks,T.J.,2010.Thenext
generationofscenariosforclimatechangeresearchandassessment.Nature463,
747–756.doi:10.1038/nature08823
Murton,J.B.,Bateman,M.D.,Dallimore,S.R.,Teller,J.T.,Yang,Z.,2010.Identificationof
YoungerDryasoutburstfloodpathfromLakeAgassiztotheArcticOcean.Nature464,
740–743.doi:10.1038/nature08954
Muscheler,R.,Adolphi,F.,Knudsen,M.F.,2014.Assessingthedifferencesbetweenthe
IntCalandGreenlandice-coretimescalesforthelast14,000yearsviathecommon
cosmogenicradionuclidevariations.QuaternaryScienceReviews106,81–87.
Muschitiello,F.,Schwark,L.,Wohlfarth,B.,Sturm,C.,Hammarlund,D.,2013.Newevidence
ofHoloceneatmosphericcirculationdynamicsbasedonlakesedimentsfrom
southernSweden:AlinktotheSiberianHigh.QuaternaryScienceReviews77,113–
124.doi:10.1016/j.quascirev.2013.07.026
Muschitiello,F.,Andersson,A.,Wohlfarth,B.,Smittenberg,R.H.,2015a.TheC20highly
branchedisoprenoidbiomarker–Anewdiatom-sourcedproxyforsummertrophic
44
conditions?OrganicGeochemistry81,27–33.doi:10.1016/j.orggeochem.2015.01.007
Muschitiello,F.,Lea,J.M.,Greenwood,S.L.,Nick,F.M.,Brunnberg,L.,MacLeod,A.,
Wohlfarth,B.,2015b.TimingofthefirstdrainageoftheBalticIceLakesynchronous
withtheonsetofGreenlandStadial1.Boreas.doi:10.11111/bor.12155
Muschitiello,F.,Pausata,F.S.R.,Watson,J.E.,Smittenberg,R.H.,Salih,A.A.M.,Brooks,S.J.,
Whitehouse,N.J.,Karlatou-Charalampopoulou,A.,Wohlfarth,B.,2015c.
FennoscandianfreshwatercontrolonGreenlandhydroclimateshiftsattheonsetof
theYoungerDryas.NatureCommunications6,1–8.doi:10.1038/ncomms9939
Nemani,R.R.,Keeling,C.D.,Hashimoto,H.,Jolly,W.M.,Piper,S.C.,Tucker,C.J.,Myneni,R.B.,
Running,S.W.,2003.Climate-drivenincreasesinglobalterrestrialnetprimary
productionfrom1982to1999.Science300,1560–3.doi:10.1126/science.1082750
Not,C.,Hillaire-Marcel,C.,2012.Enhancedsea-iceexportfromtheArcticduringthe
YoungerDryas.NatureCommunications3,647.doi:10.1038/ncomms1658
O’Connell,M.,Huang,C.C.,Eicher,U.,1999.Multidisciplinaryinvestigations,including
stable-isotopestudies,ofthickLate-glacialsedimentsfromToryHill,Co.Limerick,
westernIreland.Palaeogeography,Palaeoclimatology,Palaeoecology147,169–208.
doi:10.1016/S0031-0182(98)00101-1
Olsen,J.,Rasmussen,P.,Heinemeier,J.,2009.Holocenetemporalandspatialvariationin
theradiocarbonreservoirageofthreeDanishfjords.Boreas38,458–470.
Olsen,J.,Rasmussen,T.L.,Reimer,P.J.,Olsen,J.,Rasmussen,T.L.,Reimer,P.J.,2014.North
AtlanticmarineradiocarbonreservoiragesthroughHeinricheventH4 :anew
methodformarineagemodelconstruction.GeologicalSociety,London,Special
Publications398.doi:10.1144/SP398.2
Parnell,A.C.,Haslett,J.,Allen,J.R.M.,Buck,C.E.,Huntley,B.,2008.Aflexibleapproachto
assessingsynchroneityofpasteventsusingBayesianreconstructionsof
sedimentationhistory.QuaternaryScienceReviews27,1872–1885.
Praetorius,S.K.,McManus,J.F.,Oppo,D.W.,Curry,W.B.,2008.Episodicreductionsin
bottom-watercurrentssincethelasticeage.NatureGeoscience1,449–452.
doi:10.1038/ngeo227
Rach,O.,Brauer,a.,Wilkes,H.,Sachse,D.,2014.Delayedhydrologicalresponseto
GreenlandcoolingattheonsetoftheYoungerDryasinwesternEurope.Nature
Geoscience7,109–112.doi:10.1038/ngeo2053
Rahmstorf,S.,Crucifix,M.,Ganopolski,A.,Goosse,H.,Kamenkovich,I.,Knutti,R.,Lohmann,
G.,Marsh,R.,Mysak,L.a.,Wang,Z.,Weaver,A.J.,2005.Thermohalinecirculation
hysteresis:Amodelintercomparison.GeophysicalResearchLetters32,L23605.
doi:10.1029/2005GL023655
Rasmussen,S.O.,Andersen,K.K.,Svensson,A.M.,Steffensen,J.P.,Vinther,B.M.,Clausen,
H.B.,Siggaard-Andersen,M.L.,Johnsen,S.J.,Larsen,L.B.,Dahl-Jensen,D.,Bigler,M.,
Röthlisberger,R.,Fischer,H.,Goto-Azuma,K.,Hansson,M.E.,Ruth,U.,2006.Anew
Greenlandicecorechronologyforthelastglacialtermination.JournalofGeophysical
Research:Atmospheres111.doi:10.1029/2005JD006079
Rasmussen,S.O.,Seierstad,I.K.,Andersen,K.K.,Bigler,M.,Dahl-Jensen,D.,Johnse,S.J.,2008.
SynchronizationoftheNGRIP,GRIP,andGISP2icecoresacrossMIS2and
paleoclimaticimplications.QuaternaryScienceReviews,27,18–28.
45
Rasmussen,S.O.,Bigler,M.,Blunier,T.,Buchardt,S.L.,Clausen,H.B.,Cvijanovic,I.,Johnsen,
S.J.,Fischer,H.,Gkinis,V.,Guillevic,M.,Hoek,W.Z.,Lowe,J.J.,Pedro,J.B.,Popp,T.,
Seierstad,I.K.,Steffensen,J.P.,Svensson,A.M.,Vallelonga,P.,Vinther,B.M.,Wheatley,
J.J.,Winstrup,M.,Blockley,S.P.,Blunier,T.,Buchardt,S.L.,Clausen,H.B.,Cvijanovic,I.,
Dahl-Jensen,D.,Johnsen,S.J.,Fischer,H.,Gkinis,V.,Guillevic,M.,Hoek,W.Z.,Lowe,J.J.,
Pedro,J.B.,Popp,T.,Seierstad,I.K.,Steffensen,J.P.,Svensson,A.M.,Vallelonga,P.,
Vinther,B.M.,Walker,M.J.C.,Wheatley,J.J.,Winstrup,M.,2014a.Astratigraphic
frameworkforrobustnamingandcorrelationofabuptclimaticchangesduringthe
lastglacialperiodbasedonthreesynchronizedGreenlandicecorerecords.
QuaternaryScienceReviews106,14–28.doi:10.1016/j.quascirev.2014.09.007
Rasmussen,S.O.,Birks,H.H.,Blockley,S.P.E.,Brauer,A.,Hajdas,I.,Hoek,W.Z.,Lowe,J.J.,
Moreno,A.,Renssen,H.,Roche,D.M.,2014b.Dating,synthesis,andinterpretationof
palaeoclimaticrecordsoftheLastGlacialcycleandmodel-dataintegration:advances
bytheINTIMATE(INTegrationofIce-core,MArineandTErrestrialrecords)COST
ActionES0907.QuaternaryScienceReviews106,1–13.
Reimer,P.J.,Baillie,M.G.L.,Bard,E.,Bayliss,A.,Beck,J.W.,Blackwell,P.G.,BronkRamsey,C.,
Buck,C.E.,Burr,G.S.,Edwards,R.L.,Friedrich,M.,Grootes,P.M.,Guilderson,T.P.,
Hajdas,I.,Heaton,T.J.,Hogg,A.G.,Hughen,K.A.,Kaiser,K.F.,Kromer,B.,McCormac,
F.G.,Manning,S.W.,Reimer,R.W.,Richards,D.A.,Southon,J.R.,Talamo,S.,Turney,
C.S.M.,VanDerPlicht,J.,Weyhenmeyer,C.E.,2009.IntCal09andMarine09
radiocarbonagecalibrationcurves,0-50,000yeatscalBP.Radiocarbon51,1111–
1150.doi:10.2458/rc.v51i4.3569
Reimer,P.J.,Bard,E.,Bayliss,A.,Beck,J.W.,Blackwell,P.G.,BronkRamsey,C.,Buck,C.E.,
Cheng,H.,Edwards,R.L.,Friedrich,M.,2013.IntCal13andMarine13radiocarbonage
calibrationcurves0-50,000yearscalBP.Radiocarbon55,1869–1887.
Renssen,H.,Mairesse,A.,Goosse,H.,Mathiot,P.,Heiri,O.,Roche,D.M.,Nisancioglu,K.H.,
Valdes,P.J.,2015.MultiplecausesoftheYoungerDryascoldperiod.Nature
Geoscience8,946–949.doi:10.1038/ngeo2557
Riede,F.,Bazely,O.,Newton,A.J.,Lane,C.S.,2011.ALaacherSee-eruptionsupplementto
Tephrabase:Investigatingdistaltephrafalloutdynamics.QuaternaryInternational
246,134–144.doi:10.1016/j.quaint.2011.06.029
Roberts,N.L.,Piotrowski,A.M.,McManus,J.F.,Keigwin,L.D.,2010.Synchronousdeglacial
overturningandwatermasssourcechanges.Science327,75–78.
doi:10.1126/science.1178068
Sachse,D.,Radke,J.,Gleixner,G.,2004.Hydrogenisotoperatiosofrecentlacustrine
sedimentaryn-alkanesrecordmodernclimatevariability.Geochimicaet
CosmochimicaActa68,4877–4889.doi:10.1016/j.gca.2004.06.004
Sachse,D.,Radke,J.,Gleixner,G.,2006.δDvaluesofindividualn-alkanesfromterrestrial
plantsalongaclimaticgradient–Implicationsforthesedimentarybiomarkerrecord.
OrganicGeochemistry37,469–483.doi:10.1016/j.orggeochem.2005.12.003
Sachse,D.,Billault,I.,Bowen,G.J.,Chikaraishi,Y.,Dawson,T.E.,Feakins,S.J.,Freeman,K.H.,
Magill,C.R.,McInerney,F.a.,vanderMeer,M.T.J.,Polissar,P.,Robins,R.J.,Sachs,J.P.,
Schmidt,H.-L.,Sessions,A.L.,White,J.W.C.,West,J.B.,Kahmen,A.,2012.Molecular
Paleohydrology:InterpretingtheHydrogen-IsotopicCompositionofLipidBiomarkers
fromPhotosynthesizingOrganisms.AnnualReviewofEarthandPlanetarySciences
46
40,221–249.doi:10.1146/annurev-earth-042711-105535
Schenk,F.,Muschitiello,F.,Heikkilä,M.,Tarasov,L.,Väliranta,M.,Brandefelt,J.,Johannson,
A.,Näslund,J.O.,Wohlfarth,B.,inpreparation.WarmsummersduringtheYounger
DryascoldreversalacrossEurasia.
Sessions,A.L.,Burgoyne,T.W.,Schimmelmann,A.,Hayes,J.M.,1999.Fractionationof
hydrogenisotopesinlipidbiosynthesis.OrganicGeochemistry30,1193–1200.
doi:10.1016/S0146-6380(99)00094-7
Shakun,J.D.,Clark,P.U.,He,F.,Marcott,S.a.,Mix,A.C.,Liu,Z.,Otto-Bliesner,B.,Schmittner,
A.,Bard,E.,2012.Globalwarmingprecededbyincreasingcarbondioxide
concentrationsduringthelastdeglaciation.Nature484,49–54.
doi:10.1038/nature10915
Shepherd,A.,Ivins,E.R.,a,G.,Barletta,V.R.,Bentley,M.J.,Bettadpur,S.,Briggs,K.H.,
Bromwich,D.H.,Forsberg,R.,Galin,N.,Horwath,M.,Jacobs,S.,Joughin,I.,King,M.a,
Lenaerts,J.T.M.,Li,J.,Ligtenberg,S.R.M.,Luckman,A.,Luthcke,S.B.,McMillan,M.,
Meister,R.,Milne,G.,Mouginot,J.,Muir,A.,Nicolas,J.P.,Paden,J.,Payne,A.J.,Pritchard,
H.,Rignot,E.,Rott,H.,Sørensen,L.S.,Scambos,T.a,Scheuchl,B.,Schrama,E.J.O.,Smith,
B.,Sundal,A.V,vanAngelen,J.H.,vandeBerg,W.J.,vandenBroeke,M.R.,Vaughan,
D.G.,Velicogna,I.,Wahr,J.,Whitehouse,P.L.,Wingham,D.J.,Yi,D.,Young,D.,Zwally,
H.J.,2012.Areconciledestimateofice-sheetmassbalance.Science338,1183–9.
doi:10.1126/science.1228102
Sigl,M.,Winstrup,M.,McConnell,J.R.,Welten,K.C.,Plunkett,G.,Ludlow,F.,Büntgen,U.,
Caffee,M.,Chellman,N.,Dahl-Jensen,D.,Fischer,H.,Kipfstuhl,S.,Kostick,C.,Maselli,
O.J.,Mekhaldi,F.,Mulvaney,R.,Muscheler,R.,Pasteris,D.R.,Pilcher,J.R.,Salzer,M.,
Schüpbach,S.,Steffensen,J.P.,Vinther,B.M.,Woodruff,T.E.,2015.Timingandclimate
forcingofvolcaniceruptionsforthepast2,500years.Nature523,543–549.
doi:10.1038/nature14565
Southon,J.,Noronha,A.L.,Cheng,H.,Edwards,R.L.,Wang,Y.,2012.Ahigh-resolution
recordofatmospheric14CbasedonHuluCavespeleothemH82.QuaternaryScience
Reviews33,32–41.
Steffensen,J.P.,Andersen,K.K.,Bigler,M.,Clausen,H.B.,Dahl-Jensen,D.,Fischer,H.,GotoAzuma,K.,Hansson,M.,Johnsen,S.J.,Jouzel,J.,Masson-Delmotte,V.,Popp,T.,
Rasmussen,S.O.,Rothlisberger,R.,Ruth,U.,Stauffer,B.,Siggaard-Andersen,M.-L.,
Sveinbjornsdottir,A.E.,Svensson,A.,White,J.W.C.,2008.High-ResolutionGreenland
IceCoreDataShowAbruptClimateChangeHappensinFewYears.Science321,680–
684.doi:10.1126/science.1157707
Steinthorsdottir,M.,Wohlfarth,B.,Kylander,M.E.,Blaauw,M.,Reimer,P.J.,2013.Stomatal
proxyrecordofCO2concentrationsfromthelastterminationsuggestsanimportant
roleforCO2atclimatechangetransitions.QuaternaryScienceReviews68,43–58.
Stenni,B.,Buiron,D.,Frezzotti,M.,Albani,S.,Barbante,C.,Bard,E.,Barnola,J.M.,Baroni,M.,
Baumgartner,M.,Bonazza,M.,Capron,E.,Castellano,E.,Chappellaz,J.,Delmonte,B.,
Falourd,S.,Genoni,L.,Iacumin,P.,Jouzel,J.,Kipfstuhl,S.,Landais,a.,Lemieux-Dudon,
B.,Maggi,V.,Masson-Delmotte,V.,Mazzola,C.,Minster,B.,Montagnat,M.,Mulvaney,
R.,Narcisi,B.,Oerter,H.,Parrenin,F.,Petit,J.R.,Ritz,C.,Scarchilli,C.,Schilt,a.,
Schüpbach,S.,Schwander,J.,Selmo,E.,Severi,M.,Stocker,T.F.,Udisti,R.,2011.
Expressionofthebipolarsee-sawinAntarcticclimaterecordsduringthelast
47
deglaciation.NatureGeoscience3,1–4.doi:10.1038/ngeo1026
Sternberg,L.daS.L.,1988.D/HratiosofenvironmentalwaterrecordedbyD/Hratiosof
plantlipids.Nature333,59–61.
Stigebrandt,A.,1981.Amechanismgoverningtheestuarinecirculationindeep,strongly
stratifiedfjords.Estuarine,CoastalandShelfScience13,197–211.
doi:10.1016/S0302-3524(81)80076-X
Straneo,F.,Hamilton,G.S.,Sutherland,D.a.,Stearns,L.a.,Davidson,F.,Hammill,M.O.,
Stenson,G.B.,Rosing-Asvid,A.,2010.Rapidcirculationofwarmsubtropicalwatersin
amajorglacialfjordinEastGreenland.NatureGeoscience3,182–186.
doi:10.1038/ngeo764
Stuiver,M.,Braziunas,T.F.,1993.ModelingAtmospheric14CInfluencesand14CAgesof
MarineSamplesto10,000BC.Radiocarbon35,137–189.
Stuiver,M.,Kra,R.S.,1986.CalibrationIssue:Proceedingsofthe12thInternational
RadiocarbonConference,Trondheim,Norway.Radiocarbon28,805–1030.
Swärd,H.,O’Regan,M.,Ampel,L.,Ananyev,R.,Chernykh,D.,Floden,T.,Greenwood,S.L.,
Kylander,M.E.,Mörth,C.M.,Preto,P.,2015.Regionaldeglaciationandpostglaciallake
developmentasreflectedina74msedimentaryrecordfromLakeVättern,southern
Sweden.GFF1–19.
Thompson,W.B.,Griggs,C.B.,Miller,N.G.,Nelson,R.E.,Weddle,T.K.,Kilian,T.M.,2011.
Associatedterrestrialandmarinefossilsinthelate-glacialPresumpscotFormation,
southernMaine,USA,andthemarinereservoireffectonradiocarbonages.
QuaternaryResearch75,552–565.doi:10.1016/j.yqres.2011.02.002
VanTricht,K.,Lhermitte,S.,Lenaerts,J.T.M.,Gorodetskaya,I.V,L’Ecuyer,T.S.,Noël,B.,van
denBroeke,M.R.,Turner,D.D.,vanLipzig,N.P.M.,2016.CloudsenhanceGreenlandice
sheetmeltwaterrunoff.NatureCommunications7,10266.
doi:10.1038/ncomms10266
Veres,D.-S.,2001.Acomparativestudybetweenlossonignitionandtotalcarbonanalysis
onLateGlacialsedimentsfromAtteköpsmosse,southwesternSweden,andtheir
tentativecorrelationwiththeGRIPeventstratigraphy.DissertationsinGeologyat
LundUniversity145.
Waelbroeck,C.,Duplessy,J.C.,Michel,E.,Labeyrie,L.,Paillard,D.,Duprat,J.,2001.The
timingofthelastdeglaciationinNorthAtlanticclimaterecords.Nature412,724–727.
doi:10.1038/35106623
WAISDivideProjectMembers,2013.OnsetofdeglacialwarminginWestAntarcticadriven
bylocalorbitalforcing.Nature500,440–4.doi:10.1038/nature12376
Wohlfarth,B.,1996.Thechronologyofthelasttermination:areviewofradiocarbon-dated,
high-resolutionterrestrialstratigraphies.QuaternaryScienceReviews15,267–284.
Wohlfarth,B.,Bjorck,S.,Possnert,G.,Holmquist,A.N.D.B.,1998.800-yearlong,
radiocarbon-datedvarvechronologyfromsouth-easternSweden.Boreas27,243–
257.
Wohlfarth,B.,Blaauw,M.,Davies,S.M.,Andersson,M.,Wastegård,S.,Hormes,a.,Possnert,
G.,2006.ConstrainingtheageofLateglacialandearlyHolocenepollenzonesand
tephrahorizonsinsouthernSwedenwithBayesianprobabilitymethods.Journalof
48
QuaternaryScience21,321–334.doi:10.1002/jqs.996
Zhang,X.,Lohmann,G.,Knorr,G.,Purcell,C.,2014.Abruptglacialclimateshiftscontrolled
byicesheetchanges.Nature512,290–294.doi:10.1038/nature13592
Zielinski,G.,Mayewski,P.a.,Meeker,L.D.,Whitlow,S.,Twickler,M.S.,1996.A110,000-Yr
RecordofExplosiveVolcanismfromtheGISP2(Greenland)IceCore.Quaternary
Research45,109–118.doi:10.1006/qres.1996.0013
49
Fly UP