...

Fluids Properties, Models and Applications Hydrocarbon UH&CSM

by user

on
Category: Documents
19

views

Report

Comments

Transcript

Fluids Properties, Models and Applications Hydrocarbon UH&CSM
Hydrocarbon Fluids Properties,
Models and Applications
Fluids/DHI consortium, Oct. 26, 2015
D. han (UH) &. M. Batzle (CSM)
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
IT’s
ALL
ABOUT
FLUIDS
GEOPHYSICAL PROPERTIES of FLUIDS
Colorado School of Mines - University of Houston
“ FLUIDS” Consortium
UH&CSM
Fluid /DHI
From Ivar Brevik, STATOIL
UH&CSM
CO2 Injection, Sleipner Field, Norway
Fluid /DHI
General A–B Trend with Fluid
0.2
0.1
-0.3
-0.2
-0.1
0.1
0.2
0.3
A
-0.2
B
UH&CSM
Fluid /DHI
King Kong vs. Lisa Anne
•Green Canyon, GOM
•Plio-Pleistocene
•Target TVD 11800ft, OB 4100ft
No one escape to drill dry holes.
We are in risk business
Gas
UH&CSM
Fizz
Fluid /DHI
(O’Brien, 2004)
Mixture of brine (50000ppm) & gas (0.78)
Modulas (Mpa)
3500
3000
6.9Mpa, 20C
Water
2500
2000
1500
80%
1000
500
5%
Gas
0
0
20
40
60
Brine Volume (% )
80
100
At low pressure, for a light gas-brine mixture, the modulus is dependent mostly on the gas
modulus. Only near 100% brine saturation does the modulus increase substantially.
UH&CSM
Fluid /DHI
AVO Sw inversion
2D Line
Patch B
Gas
UH&CSM
Patch A
Gas
Wet
Gas
Fluid /DHI
Chi and Han, 2007
Rulers
Understand Physics
Fluid is our target
UH&CSM
Fluid /DHI
Fluid Effects
UH&CSM
Fluid /DHI
Model Constrain: Gassmann’s Equation
P-wave modulus (ф > 15%)
rVp2
Md
Gain
Fluid
Han & Batzle (2004)
UH&CSM
Fluid /DHI
Shallow (1000 ft) and Deep (20,000 ft) Gas Effect
UH&CSM
Fluid /DHI
15 attributes
to a water zone
1.200
1.000
0.800
0.600
0.400
0.200
0.000
1
2
3
4
5
6
7
8
Gas, 90%
10 11 12 13 14 15
Fizz, 10%
Sensitivity of DHI (Deep)
1.200
1.000
0.800
0.600
0.400
0.200
0.000
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
DHI Attribute
Gas, 90%
UH&CSM
9
DHI Attribute
to a water zone
1. Den
2. Vp
3. Vs
4. Vp/Vs
5. Zp
6. Zs
7. K
8. m
9. M
10. DK
11. l*r
12. m*r
13. r*DK
14. r*Kf
15. Kf
Sensitivity of DHI (Shallow)
Fizz, 10%
Fluid /DHI
AVO Response (Shallow)
Rp
0
-0.05 0
-0.1
-0.15
-0.2
-0.25
10
20
30
Gas
40
50
W-S
Water
G-S
Shallow
F-S
-0.3
-0.35
-0.4
Angle (degree)
AVO Response (Deep)
Deep
0
-0.05
10
20
30
40
50
-0.1
Rp
DV Dr
R0  0.5 * (

)
V
r
0
W-D
-0.15
Fizz
-0.2
G-D
F-D
-0.25
-0.3
-0.35
Angle (degree)
UH&CSM
Fluid /DHI
DURI FIELD STEAM FLOOD, SEISMIC TIME LAPSE
UH&CSM
Jenkins Fluid
et al. (1997)
/DHI
DURI FIELD STEAM FLOOD, SEISMIC TIME LAPSE
P , T variation with steam,
oil, gas phase transition
UH&CSM
Jenkins et al. (1997)
Fluid /DHI
AVO Response
Sw
Pp
Base P.
Gas
UH&CSM
Fluid /DHI
properties
Fluid Properties
-- It is the Key
UH&CSM
Fluid /DHI
Working Hypothesis
Uniformity (scaleless)
- - Small sample
Dynamic elasticity of fluids
-- Can not obtained from PVT data
-- Can be measured ultrasonic
UH&CSM
Fluid /DHI
Working Hypothesis
Investigate velocity & density
of single phase fluid with
constrain of the phase boundary
Calculate velocity
of multi-phase fluids with the
wood equation
UH&CSM
Fluid /DHI
Working Hypothesis
Calculate velocity
of multi-phase fluids with the
wood equation
Calculate density
of multi-phase fluids with the
Linear mixing law
UH&CSM
Fluid /DHI
EFFECTIVE FLUID MIXTURE BULK MODULUS
WOOD’S EQUATION (Reuss bound)
P
1
= -1
KA
VA
B
P
A
P
DVA
DP
P
1
=
Kmix
A
+
KA
(1 – A)
KB
Fluid mixtures can be calculated under
the presumption of equal pressure.
UH&CSM
Fluid /DHI
This result is often called Wood’s
equation.
Fluid Property Control
GoM Fluid properties with Depth
500
Brine: 28,500 - 350,000 ppm NaCl
Heavy Oil: API 10, GOR 0-105 L/L
Medium Oil: API 30, GOR 0-210 L/L
Light Oil: mw = 120 - 60
Condensate: mw = 50
Gas: mw = 25
Depth, m
1000
1500
2000
2500
3000
UH&CSM
0
1000
2000
3000
Bulk Modulus, MPa
4000
5000
Fluid /DHI
GENERAL PHASE BEHAVIOR:
PURE COMPOUND
PRESSURE
CRITICAL
POINT
LIQUID
Water
SOLID
CO2
GAS
Butane
T.P.
TEMPERATURE
UH&CSM
Fluid /DHI
Fluid – Density
1200
Fluid Density [kg/m 3]
1000
Brine
800
CO2
600
Butane
400
200
0
UH&CSM
0
2
4
6
Fluid Pressure [MPa]
8
10
Fluid /DHI
Fluid – Modulus
3000
Fluid Modulus Kf [MPa]
2500
Brine
2000
1500
1000
Butane
500
0
UH&CSM
CO2
0
2
4
6
Fluid Pressure [MPa]
8
10
Fluid /DHI
In situ Phase Relation
UH&CSM
Fluid /DHI
Fluid Trend (Density Control)
UH&CSM
Fluid /DHI
TYPES of PORE FLUIDS
•WATER and BRINE
(BRINE = H2O + Salt)
•HYDROCARBONS
Oil
Gas
Mixtures
•HEVEY OIL
•DRILLING MUD FILTRATE
•PRODUCTION FLUIDS
Steam
Miscible Injectants
(CO2, Dilute, …)
Frac Fluids
UH&CSM
Fluid /DHI
WATER a.k.a. H2O
H
H
O
2.7 A
d+
d-
UH&CSM
Fluid1980
/DHI
Hinch,
localized brine Properties
UH&CSM
Fluid /DHI
False DHI
Is dissolved gas reduce modulus
of water and causes DHI?
UH&CSM
Fluid /DHI
UH&CSM
Baztle&Wang, 1992
Fluid /DHI
Gas effects
'Live' and 'Dead' Water
1800
Live water
dead water
Velocity (m /s)
1750
60C
100C
150C
1700
25C
1650
GWR = 6.5 L/L
B.P. = 69 MPa
1600
65
UH&CSM
75
85
Pressure (MPa)
95
105
Han & Batzle (2002)
Fluid /DHI
UH&CSM
Baztle&Wang, 1992
Fluid /DHI
Gas Phase near the Bubble Point
Density as a function of pressure for live oils
0.79
0.72
100 c
0.77
40 c
0.68
Density (gm/cc)
Density(gm/cc)
0.70
60 c
0.66
80 c
0.64
90 c
0.75
0.73
0.71
0.62
0.69
0.60
25
27
29
31
33
Pressure(MPa)
UH&CSM
35
37
39
0
5
10
15
20
25
30
35
40
Pressure (MPa)
Fluid /DHI
Seismic Gas Effect
PRESSURE
IMPORTANCE OF PHASE TRANSITION
To Seismic Data
CRITICAL POINT
TEMPERATURE
UH&CSM
Fluid /DHI
TYPES of PORE FLUIDS
•WATER and BRINE
(BRINE = H2O + Salt)
•HYDROCARBONS
Oil
Gas
Mixtures
•HEAVY OIL
•DRILLING MUD FILTRATE
•PRODUCTION FLUIDS
Steam
Miscible Injectants
(CO2, Dilute, …)
Frac Fluids
UH&CSM
Fluid /DHI
Gas
Hydrocarbons come in many flavors, each with specific properties. In addition, complex mixtures of thes
components will change composition under differing conditions.
UH&CSM
Fluid /DHI
Live Oil Properties API, GOR, G
PRESSURE
BLACK
OIL
VOLATILE
OIL
Liquid-Like
Behavior
RETROGRADE
CONDENSATE
DRY GAS
CRITICAL POINT
Two Phase
Region
Gas-Like
Behavior
TEMPERATURE
UH&CSM
Fluid /DHI
Gas Properties
Gas #5 (gravity of 0.7)
1400
Velocity (m/s)
1200
1000
26C
800
60C
100C
600
150C
400
20
UH&CSM
30
40
50
60
70
Pressure (MPa)
80
90
100
110
Fluid /DHI
HEAVY GAS COMPRESSIONAL VELOCITY
Gas gravity ~ 1
800
Velocity (m/s)
41 MPa
35
600
28
?
15
400
10
~2 km depth
20
30
50
70
90
110
Temperature (c)
UH&CSM
Fluid /DHI
Reinecke (Dead Oil: API 46.6)
Vp (m/s) = A - B * T + C * P + D * T * P
1600
1500
Velocity (m/s)
1400
1300
T=21c
1200
T=40c
T=60c
1100
1000
900
800
0.00
T=80c
Model
V=1340-3.52*T+4.61*P+0.0137*T*P
(R2 > 0.99)
10.00
20.00
30.00
40.00
50.00
60.00
Pressure (Mpa)
UH&CSM
Fluid /DHI
Reinecke Dead & Live Oil
GOR = 1300 cuft/stb, B.P. = 1900 psi at 60 C
1600
Velocity (m/s)
1400
T=21 c(d)
T=40 c(d)
T=60 c(d)
T=80 c(d)
T=23.8c(L)
T=40c(L)
T=60c(L)
T=80c(L)
T=100c(L)
1200
1000
800
600
Vp = 936.7 - 4.688 * T + 7.659 * P + 0.0456 * T * P
400
0
10
20
30
40
50
60
Pressure (Mpa)
UH&CSM
Fluid /DHI
Reinecke Live Oil
Velocity vs. GOR at 60C
1400
1300
Velocity (m/s)
1200
1100
1000
900
P=13.79Mpa(2000psi)
800
P=20.69Mps(3000psi)
P=27.58Mpa(4000psi)
700
P=34.47Mpa(5000psi)
600
P=41.37Mpa(6000psi)
500
0
250
500
750
1000
1250
1500
GOR (scf/stb)
UH&CSM
Fluid /DHI
Velocity versus Depth (km)
V = A - B * Z * 30 + C * Z * 10.5 + D * Z2 * 315
1500
V(30c/km)-Re.
Velocity (m/s )
1400
I ndoni si a
V(20c/km)-Re.
V(30c/km)-Indo.
1300
Jnoc
V(20c/km)-Indo.
1200
V(30c/km)-C2
V(20c/km)-C2
1100
St at oi l C-2
V(30c/km)-Jnoc
V(20c/km)-Jnoc
1000
Rei necke
900
800
0
1
2
3
4
5
Depth (km)
UH&CSM
Fluid /DHI
Velocity Models (H-B 1)
Two step regression
1. Fit velocity data with equation
V = A (VP0) - B * T + C * P + D * T * P (R~0.99)
2. Fit coefficient A, B, C, D with GOR, API, and gas
gravity
Works for dead oil (no Rs, G), but not for live oil
UH&CSM
Fluid /DHI
V-Model using Pseudoliquid Density
Pseudoliquid density and Pseudovelocity
2000
Pseudovelocity (m /s)
1800
1600
1400
1200
Dead oil
1000
Live oil
Wang's data (dead)
800
Model 1
600
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
Pseudoliquid density (gm /cc)
UH&CSM
Fluid /DHI
VP0 for H-B Model
2200
Vp0=1900.273*psuD^0.64773-256.216
Vp0 (m/s)
1800
Model 1
1400
dead oil
live oil
Pure oil
1000
Wang's data (dead)
Model
600
0.4
0.6
0.8
1.0
1.2
1.4
psuD
UH&CSM
Fluid /DHI
Model Comparison
1300
1200
Reinecke
GOR=231.5L/L
API=45.6
Gasgravity=0.914
T=23.8 C,Measured
T=23.8 C,Model1
Velocity (m/s)
1100
T=23.8 C,Model 2
T=60 C,Measured
1000
T=60 C,Model 1
T=60 C,model 2
T=100 C,Measured
900
T=100 C,Model 1
T=100 C,Model 2
800
T=23.8 C,B-W Model
T=60 C,B-W Mode
700
600
15.00
T=100 C,B-W Model
20.00
25.00
30.00
35.00
40.00
45.00
Pressure (MPa)
UH&CSM
Fluid /DHI
Program Name in FLAG14
FLuid Application of Geophysics
Program name Fluids
Poil14-xyy
Pgas14-xyy
Pbrine14-xyy
Psteam14-xyy
VHO14-xyy
Version Information
The year of the annual
meeting for releasing
UH&CSM
Others
EstVs14-xyy
PAVO14-xyy
Pgasm14-xyy
x is series number. 3 means series
3 (used under EXCEL 2003), and
7 means series 7 (used under
EXCEL 2007).
yy is version number
Fluid /DHI
Oil Model with Phase Transition
UH&CSM
Fluid /DHI
TYPES of PORE FLUIDS
•WATER and BRINE
(BRINE = H2O + Salt)
•HYDROCARBONS
Oil
Gas
Mixtures
•HEAVY OIL
•DRILLING MUD FILTRATE
•PRODUCTION FLUIDS
Steam
Miscible Injectants
(CO2, Dilute, …)
Frac Fluids
UH&CSM
Fluid /DHI
Heavy Oil Map of World
UH&CSM
Fluid /DHI
Map courtesy of Schlumberger: slb.com
Heavy Oil
High Density
High Viscosity
API gravity
22.3º
920 kg/m3
Heavy Oil
10.0º
1000 kg/m3
Extraheavy Oil
* Definition by US Department of Energy
UH&CSM
Thermal
Diluting
Fluid /DHI
Molecular Structure of
Asphaltene Proposed for 510C
Residue of Venezuelan Crude
by Carbognani [INTEVEP S.A.
Tech. Rept., 1992]
UH&CSM
3D Picture of Carbognani's Model of
Venezuelan Crude Asphaltene Molecule
(Courtesy of Prof. J. Murgich)
Fluid /DHI
UH&CSM
Fluid /DHI
Michael Jardine
Velocity vs. temperature of heavy oil
V
Glass
Quasi-Solid
Liquid
Glass P.
Liquid P.
UH&CSM
Figure 1. Schematic of Velocity trend for heavy oil.
T
Fluid /DHI
Temperature Effects
Liquid P.
UH&CSM
Figure 1. Measure Vp and Vs data versus temperature on two heavy oil sample.
Fluid /DHI
Gas Bubble out at Higher Temperature
‘Flag’ Calculator
API: 8.0
GOR: 3
UH&CSM
Fluid /DHI
F – T effects on Vp ( API = 9.38)
UH&CSM
Fluid /DHI
Experiment design
UH&CSM
Fluid /DHI
Velocity and density of oil (water)
with dissolved CH4 and CO2
2013
De-hua Han, University of Houston
UH&CSM
Fluid /DHI
Component property
Gas-free oil
CO2
Gas-free oil
CH4
CO2
UH&CSM
CH4
Fluid /DHI
Gas effect comparison: HC vs. CO2
CO2
Dead oil
Oil-CO2
Oil-HC
Dead oil
Oil-CO2
Oil-HC
HC
CO2
UH&CSM
Oil: API 32.84
GOR: 200L/L
T: 60° C
G (HC): 0.9112
G (CO2): 1.5281
HC
Fluid /DHI
Our models for oil-HC-CO2 mixture
Oil:
oil: ρ00 = 0.861 g/cc ( 32.84 API )
FLAG
60°
60°
CC
FLAG
Dead
Deadoil
oil
Oil+CO2(97.83L/L)
Oil+CO2(97.83L/L)
Oil-HC-CO2
Oil+HC(201.91L/L)
Oil+HC(201.91L/L)
Oil+CO2(100.86L/L)+HC(201.91L/L)
Oil+CO2(100.86L/L)+HC(201.91L/L)
CH
CH44
CO22( FLAG)
CO
UH&CSM
symbols: measured data
lines: models
Fluid /DHI
Geophysical Characterization
Of Tight Oil Reservoirs
July. 2015
De-hua Han (UH), Luanxiao Zhao & Geng Jianhua (Tongji)
UH&CSM
Fluid /DHI
Viscosity : oil > gas*10^3
Modulus: oil > gas*10^4
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
Production is controlled by Darcy’s law
UH&CSM
Fluid /DHI
Hydro-frac: key to enhance (A) production
UH&CSM
Fluid /DHI
Production is fluid control
Hydrocarbon Fluid
and Pressure
Sweet
spots
Permeability: Matrix
permeability,
Natural
Fluid properties: Low API and Viscosity, High GOR
fractures…
UH&CSM
Fluid /DHI
UH&CSM
74
Fluid /DHI
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
Thank You!
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
UH&CSM
Fluid /DHI
Sponsors (~ 20…)
• Fluids/DHI Consortium/UH & CSM (21 years)
Anadarko, Apache, BP, BHP, CGGVeritas, Chevron,
Cenoves, ConocoPhillips, Encana, Eni, ExxonMobil,
Hess, Ikon, JOGMEC, Marathon, Maerskoil, Nexen,
Paradigm, Petrobras, Shell, SINOPEC, Statoil, Total…
UH&CSM
Fluid /DHI
Fly UP