Fluids Properties, Models and Applications Hydrocarbon UH&CSM
by user
Comments
Transcript
Fluids Properties, Models and Applications Hydrocarbon UH&CSM
Hydrocarbon Fluids Properties, Models and Applications Fluids/DHI consortium, Oct. 26, 2015 D. han (UH) &. M. Batzle (CSM) UH&CSM Fluid /DHI UH&CSM Fluid /DHI IT’s ALL ABOUT FLUIDS GEOPHYSICAL PROPERTIES of FLUIDS Colorado School of Mines - University of Houston “ FLUIDS” Consortium UH&CSM Fluid /DHI From Ivar Brevik, STATOIL UH&CSM CO2 Injection, Sleipner Field, Norway Fluid /DHI General A–B Trend with Fluid 0.2 0.1 -0.3 -0.2 -0.1 0.1 0.2 0.3 A -0.2 B UH&CSM Fluid /DHI King Kong vs. Lisa Anne •Green Canyon, GOM •Plio-Pleistocene •Target TVD 11800ft, OB 4100ft No one escape to drill dry holes. We are in risk business Gas UH&CSM Fizz Fluid /DHI (O’Brien, 2004) Mixture of brine (50000ppm) & gas (0.78) Modulas (Mpa) 3500 3000 6.9Mpa, 20C Water 2500 2000 1500 80% 1000 500 5% Gas 0 0 20 40 60 Brine Volume (% ) 80 100 At low pressure, for a light gas-brine mixture, the modulus is dependent mostly on the gas modulus. Only near 100% brine saturation does the modulus increase substantially. UH&CSM Fluid /DHI AVO Sw inversion 2D Line Patch B Gas UH&CSM Patch A Gas Wet Gas Fluid /DHI Chi and Han, 2007 Rulers Understand Physics Fluid is our target UH&CSM Fluid /DHI Fluid Effects UH&CSM Fluid /DHI Model Constrain: Gassmann’s Equation P-wave modulus (ф > 15%) rVp2 Md Gain Fluid Han & Batzle (2004) UH&CSM Fluid /DHI Shallow (1000 ft) and Deep (20,000 ft) Gas Effect UH&CSM Fluid /DHI 15 attributes to a water zone 1.200 1.000 0.800 0.600 0.400 0.200 0.000 1 2 3 4 5 6 7 8 Gas, 90% 10 11 12 13 14 15 Fizz, 10% Sensitivity of DHI (Deep) 1.200 1.000 0.800 0.600 0.400 0.200 0.000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DHI Attribute Gas, 90% UH&CSM 9 DHI Attribute to a water zone 1. Den 2. Vp 3. Vs 4. Vp/Vs 5. Zp 6. Zs 7. K 8. m 9. M 10. DK 11. l*r 12. m*r 13. r*DK 14. r*Kf 15. Kf Sensitivity of DHI (Shallow) Fizz, 10% Fluid /DHI AVO Response (Shallow) Rp 0 -0.05 0 -0.1 -0.15 -0.2 -0.25 10 20 30 Gas 40 50 W-S Water G-S Shallow F-S -0.3 -0.35 -0.4 Angle (degree) AVO Response (Deep) Deep 0 -0.05 10 20 30 40 50 -0.1 Rp DV Dr R0 0.5 * ( ) V r 0 W-D -0.15 Fizz -0.2 G-D F-D -0.25 -0.3 -0.35 Angle (degree) UH&CSM Fluid /DHI DURI FIELD STEAM FLOOD, SEISMIC TIME LAPSE UH&CSM Jenkins Fluid et al. (1997) /DHI DURI FIELD STEAM FLOOD, SEISMIC TIME LAPSE P , T variation with steam, oil, gas phase transition UH&CSM Jenkins et al. (1997) Fluid /DHI AVO Response Sw Pp Base P. Gas UH&CSM Fluid /DHI properties Fluid Properties -- It is the Key UH&CSM Fluid /DHI Working Hypothesis Uniformity (scaleless) - - Small sample Dynamic elasticity of fluids -- Can not obtained from PVT data -- Can be measured ultrasonic UH&CSM Fluid /DHI Working Hypothesis Investigate velocity & density of single phase fluid with constrain of the phase boundary Calculate velocity of multi-phase fluids with the wood equation UH&CSM Fluid /DHI Working Hypothesis Calculate velocity of multi-phase fluids with the wood equation Calculate density of multi-phase fluids with the Linear mixing law UH&CSM Fluid /DHI EFFECTIVE FLUID MIXTURE BULK MODULUS WOOD’S EQUATION (Reuss bound) P 1 = -1 KA VA B P A P DVA DP P 1 = Kmix A + KA (1 – A) KB Fluid mixtures can be calculated under the presumption of equal pressure. UH&CSM Fluid /DHI This result is often called Wood’s equation. Fluid Property Control GoM Fluid properties with Depth 500 Brine: 28,500 - 350,000 ppm NaCl Heavy Oil: API 10, GOR 0-105 L/L Medium Oil: API 30, GOR 0-210 L/L Light Oil: mw = 120 - 60 Condensate: mw = 50 Gas: mw = 25 Depth, m 1000 1500 2000 2500 3000 UH&CSM 0 1000 2000 3000 Bulk Modulus, MPa 4000 5000 Fluid /DHI GENERAL PHASE BEHAVIOR: PURE COMPOUND PRESSURE CRITICAL POINT LIQUID Water SOLID CO2 GAS Butane T.P. TEMPERATURE UH&CSM Fluid /DHI Fluid – Density 1200 Fluid Density [kg/m 3] 1000 Brine 800 CO2 600 Butane 400 200 0 UH&CSM 0 2 4 6 Fluid Pressure [MPa] 8 10 Fluid /DHI Fluid – Modulus 3000 Fluid Modulus Kf [MPa] 2500 Brine 2000 1500 1000 Butane 500 0 UH&CSM CO2 0 2 4 6 Fluid Pressure [MPa] 8 10 Fluid /DHI In situ Phase Relation UH&CSM Fluid /DHI Fluid Trend (Density Control) UH&CSM Fluid /DHI TYPES of PORE FLUIDS •WATER and BRINE (BRINE = H2O + Salt) •HYDROCARBONS Oil Gas Mixtures •HEVEY OIL •DRILLING MUD FILTRATE •PRODUCTION FLUIDS Steam Miscible Injectants (CO2, Dilute, …) Frac Fluids UH&CSM Fluid /DHI WATER a.k.a. H2O H H O 2.7 A d+ d- UH&CSM Fluid1980 /DHI Hinch, localized brine Properties UH&CSM Fluid /DHI False DHI Is dissolved gas reduce modulus of water and causes DHI? UH&CSM Fluid /DHI UH&CSM Baztle&Wang, 1992 Fluid /DHI Gas effects 'Live' and 'Dead' Water 1800 Live water dead water Velocity (m /s) 1750 60C 100C 150C 1700 25C 1650 GWR = 6.5 L/L B.P. = 69 MPa 1600 65 UH&CSM 75 85 Pressure (MPa) 95 105 Han & Batzle (2002) Fluid /DHI UH&CSM Baztle&Wang, 1992 Fluid /DHI Gas Phase near the Bubble Point Density as a function of pressure for live oils 0.79 0.72 100 c 0.77 40 c 0.68 Density (gm/cc) Density(gm/cc) 0.70 60 c 0.66 80 c 0.64 90 c 0.75 0.73 0.71 0.62 0.69 0.60 25 27 29 31 33 Pressure(MPa) UH&CSM 35 37 39 0 5 10 15 20 25 30 35 40 Pressure (MPa) Fluid /DHI Seismic Gas Effect PRESSURE IMPORTANCE OF PHASE TRANSITION To Seismic Data CRITICAL POINT TEMPERATURE UH&CSM Fluid /DHI TYPES of PORE FLUIDS •WATER and BRINE (BRINE = H2O + Salt) •HYDROCARBONS Oil Gas Mixtures •HEAVY OIL •DRILLING MUD FILTRATE •PRODUCTION FLUIDS Steam Miscible Injectants (CO2, Dilute, …) Frac Fluids UH&CSM Fluid /DHI Gas Hydrocarbons come in many flavors, each with specific properties. In addition, complex mixtures of thes components will change composition under differing conditions. UH&CSM Fluid /DHI Live Oil Properties API, GOR, G PRESSURE BLACK OIL VOLATILE OIL Liquid-Like Behavior RETROGRADE CONDENSATE DRY GAS CRITICAL POINT Two Phase Region Gas-Like Behavior TEMPERATURE UH&CSM Fluid /DHI Gas Properties Gas #5 (gravity of 0.7) 1400 Velocity (m/s) 1200 1000 26C 800 60C 100C 600 150C 400 20 UH&CSM 30 40 50 60 70 Pressure (MPa) 80 90 100 110 Fluid /DHI HEAVY GAS COMPRESSIONAL VELOCITY Gas gravity ~ 1 800 Velocity (m/s) 41 MPa 35 600 28 ? 15 400 10 ~2 km depth 20 30 50 70 90 110 Temperature (c) UH&CSM Fluid /DHI Reinecke (Dead Oil: API 46.6) Vp (m/s) = A - B * T + C * P + D * T * P 1600 1500 Velocity (m/s) 1400 1300 T=21c 1200 T=40c T=60c 1100 1000 900 800 0.00 T=80c Model V=1340-3.52*T+4.61*P+0.0137*T*P (R2 > 0.99) 10.00 20.00 30.00 40.00 50.00 60.00 Pressure (Mpa) UH&CSM Fluid /DHI Reinecke Dead & Live Oil GOR = 1300 cuft/stb, B.P. = 1900 psi at 60 C 1600 Velocity (m/s) 1400 T=21 c(d) T=40 c(d) T=60 c(d) T=80 c(d) T=23.8c(L) T=40c(L) T=60c(L) T=80c(L) T=100c(L) 1200 1000 800 600 Vp = 936.7 - 4.688 * T + 7.659 * P + 0.0456 * T * P 400 0 10 20 30 40 50 60 Pressure (Mpa) UH&CSM Fluid /DHI Reinecke Live Oil Velocity vs. GOR at 60C 1400 1300 Velocity (m/s) 1200 1100 1000 900 P=13.79Mpa(2000psi) 800 P=20.69Mps(3000psi) P=27.58Mpa(4000psi) 700 P=34.47Mpa(5000psi) 600 P=41.37Mpa(6000psi) 500 0 250 500 750 1000 1250 1500 GOR (scf/stb) UH&CSM Fluid /DHI Velocity versus Depth (km) V = A - B * Z * 30 + C * Z * 10.5 + D * Z2 * 315 1500 V(30c/km)-Re. Velocity (m/s ) 1400 I ndoni si a V(20c/km)-Re. V(30c/km)-Indo. 1300 Jnoc V(20c/km)-Indo. 1200 V(30c/km)-C2 V(20c/km)-C2 1100 St at oi l C-2 V(30c/km)-Jnoc V(20c/km)-Jnoc 1000 Rei necke 900 800 0 1 2 3 4 5 Depth (km) UH&CSM Fluid /DHI Velocity Models (H-B 1) Two step regression 1. Fit velocity data with equation V = A (VP0) - B * T + C * P + D * T * P (R~0.99) 2. Fit coefficient A, B, C, D with GOR, API, and gas gravity Works for dead oil (no Rs, G), but not for live oil UH&CSM Fluid /DHI V-Model using Pseudoliquid Density Pseudoliquid density and Pseudovelocity 2000 Pseudovelocity (m /s) 1800 1600 1400 1200 Dead oil 1000 Live oil Wang's data (dead) 800 Model 1 600 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Pseudoliquid density (gm /cc) UH&CSM Fluid /DHI VP0 for H-B Model 2200 Vp0=1900.273*psuD^0.64773-256.216 Vp0 (m/s) 1800 Model 1 1400 dead oil live oil Pure oil 1000 Wang's data (dead) Model 600 0.4 0.6 0.8 1.0 1.2 1.4 psuD UH&CSM Fluid /DHI Model Comparison 1300 1200 Reinecke GOR=231.5L/L API=45.6 Gasgravity=0.914 T=23.8 C,Measured T=23.8 C,Model1 Velocity (m/s) 1100 T=23.8 C,Model 2 T=60 C,Measured 1000 T=60 C,Model 1 T=60 C,model 2 T=100 C,Measured 900 T=100 C,Model 1 T=100 C,Model 2 800 T=23.8 C,B-W Model T=60 C,B-W Mode 700 600 15.00 T=100 C,B-W Model 20.00 25.00 30.00 35.00 40.00 45.00 Pressure (MPa) UH&CSM Fluid /DHI Program Name in FLAG14 FLuid Application of Geophysics Program name Fluids Poil14-xyy Pgas14-xyy Pbrine14-xyy Psteam14-xyy VHO14-xyy Version Information The year of the annual meeting for releasing UH&CSM Others EstVs14-xyy PAVO14-xyy Pgasm14-xyy x is series number. 3 means series 3 (used under EXCEL 2003), and 7 means series 7 (used under EXCEL 2007). yy is version number Fluid /DHI Oil Model with Phase Transition UH&CSM Fluid /DHI TYPES of PORE FLUIDS •WATER and BRINE (BRINE = H2O + Salt) •HYDROCARBONS Oil Gas Mixtures •HEAVY OIL •DRILLING MUD FILTRATE •PRODUCTION FLUIDS Steam Miscible Injectants (CO2, Dilute, …) Frac Fluids UH&CSM Fluid /DHI Heavy Oil Map of World UH&CSM Fluid /DHI Map courtesy of Schlumberger: slb.com Heavy Oil High Density High Viscosity API gravity 22.3º 920 kg/m3 Heavy Oil 10.0º 1000 kg/m3 Extraheavy Oil * Definition by US Department of Energy UH&CSM Thermal Diluting Fluid /DHI Molecular Structure of Asphaltene Proposed for 510C Residue of Venezuelan Crude by Carbognani [INTEVEP S.A. Tech. Rept., 1992] UH&CSM 3D Picture of Carbognani's Model of Venezuelan Crude Asphaltene Molecule (Courtesy of Prof. J. Murgich) Fluid /DHI UH&CSM Fluid /DHI Michael Jardine Velocity vs. temperature of heavy oil V Glass Quasi-Solid Liquid Glass P. Liquid P. UH&CSM Figure 1. Schematic of Velocity trend for heavy oil. T Fluid /DHI Temperature Effects Liquid P. UH&CSM Figure 1. Measure Vp and Vs data versus temperature on two heavy oil sample. Fluid /DHI Gas Bubble out at Higher Temperature ‘Flag’ Calculator API: 8.0 GOR: 3 UH&CSM Fluid /DHI F – T effects on Vp ( API = 9.38) UH&CSM Fluid /DHI Experiment design UH&CSM Fluid /DHI Velocity and density of oil (water) with dissolved CH4 and CO2 2013 De-hua Han, University of Houston UH&CSM Fluid /DHI Component property Gas-free oil CO2 Gas-free oil CH4 CO2 UH&CSM CH4 Fluid /DHI Gas effect comparison: HC vs. CO2 CO2 Dead oil Oil-CO2 Oil-HC Dead oil Oil-CO2 Oil-HC HC CO2 UH&CSM Oil: API 32.84 GOR: 200L/L T: 60° C G (HC): 0.9112 G (CO2): 1.5281 HC Fluid /DHI Our models for oil-HC-CO2 mixture Oil: oil: ρ00 = 0.861 g/cc ( 32.84 API ) FLAG 60° 60° CC FLAG Dead Deadoil oil Oil+CO2(97.83L/L) Oil+CO2(97.83L/L) Oil-HC-CO2 Oil+HC(201.91L/L) Oil+HC(201.91L/L) Oil+CO2(100.86L/L)+HC(201.91L/L) Oil+CO2(100.86L/L)+HC(201.91L/L) CH CH44 CO22( FLAG) CO UH&CSM symbols: measured data lines: models Fluid /DHI Geophysical Characterization Of Tight Oil Reservoirs July. 2015 De-hua Han (UH), Luanxiao Zhao & Geng Jianhua (Tongji) UH&CSM Fluid /DHI Viscosity : oil > gas*10^3 Modulus: oil > gas*10^4 UH&CSM Fluid /DHI UH&CSM Fluid /DHI Production is controlled by Darcy’s law UH&CSM Fluid /DHI Hydro-frac: key to enhance (A) production UH&CSM Fluid /DHI Production is fluid control Hydrocarbon Fluid and Pressure Sweet spots Permeability: Matrix permeability, Natural Fluid properties: Low API and Viscosity, High GOR fractures… UH&CSM Fluid /DHI UH&CSM 74 Fluid /DHI UH&CSM Fluid /DHI UH&CSM Fluid /DHI UH&CSM Fluid /DHI Thank You! UH&CSM Fluid /DHI UH&CSM Fluid /DHI UH&CSM Fluid /DHI UH&CSM Fluid /DHI Sponsors (~ 20…) • Fluids/DHI Consortium/UH & CSM (21 years) Anadarko, Apache, BP, BHP, CGGVeritas, Chevron, Cenoves, ConocoPhillips, Encana, Eni, ExxonMobil, Hess, Ikon, JOGMEC, Marathon, Maerskoil, Nexen, Paradigm, Petrobras, Shell, SINOPEC, Statoil, Total… UH&CSM Fluid /DHI