...

Transformed Linear Regression Vs. Copula Regression Rahul A. Parsa

by user

on
Category: Documents
17

views

Report

Comments

Transcript

Transformed Linear Regression Vs. Copula Regression Rahul A. Parsa
Transformed Linear Regression
Vs.
Copula Regression
Rahul A. Parsa
Drake University
&
Paul G.Ferrara, PhD FSA CERA
Homesite Insurance
&
Stuart Klugman
Outline of Talk
—  Copula Regression, OLS, GLM
—  Alternative Methodology
—  Examples
Notation
—  Notation:
—  Y – Dependent Variable
— 
X 1 , X 2 , X k Independent Variables
—  Assumption
—  Y is related to X’s in some functional form
E[Y | X 1 = x1  X n = xn ] = f ( X 1 , X 2 , X n )
OLS Regression
Y is linearly related to X’s
OLS Model
Yi = β0 + β1 X 1i + β 2 X 2i +  + β k X ki + ε i
OLS
Multivariate Normal Distribution
Assume Y , X 1 , X 2 ,  X k
Jointly follow a multivariate normal distribution
Then the conditional distribution of Y | X follows
normal distribution with mean and variance given by
E(Y | X = x) = µ y + ΣYX Σ ( x − µ x )
−1
XX
−1
XX
Variance = ΣYY − ΣYX Σ ΣYX
GLM
—  Y belongs to an exponential family of distributions
E (Y | X = x) = g ( β 0 + β1 x1 +  + β k xk )
−1
—  g is called the link function
—  x's are not random
—  Y|x belongs to the exponential family
—  Conditional variance is no longer constant
—  Parameters are estimated by MLE using numerical
methods
Copula Regression
—  Y can have any distribution
—  Each Xi can have any distribution
—  The joint distribution is described by a Copula
—  Estimate Y by E(Y|X=x) – conditional mean
MVN Copula
—  CDF for MVN is Copula is
−1
−1
F ( x1 , x2 ,, xn ) = G (Φ [ F ( x1 )], Φ [ F ( xn )])
—  Where G is the multivariate normal cdf with zero
mean, unit variance, and correlation matrix R.
—  Density of MVN Copula is
⎧ vT ( R −1 − I )v ⎫
−0.5
f ( x1 , x2 ,, xn ) = f ( x1 ) f ( x2 )  f ( xn ) exp⎨−
*
R
⎬
2
⎩
⎭
Where v is a vector with ith element vi = Φ −1[ F ( xi )]
Conditional Distribution in
MVN Copula
—  The conditional distribution of xn given x1 ….xn-1 is
⎧
⎫
⎡{F ( xn ) − r T Rn−−11vn−1}2
−1
2⎤
T −1
−0.5
f ( xn | x1  xn−1 ) = f ( xn ) * exp⎨− 0.5 * ⎢
−
{
Φ
[
F
(
x
)]}
*
(
1
−
r
R
r
)
⎬
n
n −1
⎥
T −1
(
1
−
r
R
r
)
n
−
1
⎣
⎦⎭
⎩
Where
vn−1 = (v1 ,vn−1 )
⎡ Rn −1
R=⎢ T
⎣r
r⎤
1⎥⎦
Alternative Method
—  Convert
Y , X 1 , X 2 ,......., X k to standard normal
Random Variable using
−1
U = Φ ( FY ( y))
−1
Vi = Φ ( FX ( xi ))
—  Note: U and V’s jointly follow Multivariate Normal
Distribution if Y and X’s ~ MVN Copula
Alternative Method
—  Regress U on the V’s.
—  Obtain U-hat.
—  Convert U-hat to Y-hat using
−1
ˆ
ˆ
YA = ( FY  Φ)(U )
Alternative Method
Advantages of this method.
—  Easy to implement – can be done in Excel
—  Easy to understand
—  Transformations are well understood in Regression
Difference in Approaches
—  Let
YˆC be the Copula Estimate.
—  Let
YˆA be the Alternative Method Estimate
—  Question: What is the difference between these two
estimates?
Jensen’s Inequality
−1
ˆ
YA = FY (Φ( E (U | V1 ,V2 ,.....,Vk ))
YˆC = E (Y | X 1 , X 2 ,....., X k )
Jensen’s Inequality:
[
]


E ( FY−1  Φ)(U | V ) ≥ ( FY−1  Φ )( E (U | V ))
Jensen’s Inequality
—  We considered the case of two variables
—  We show that (see the handout) that
[
]


−1
E ( FY  Φ)(U | V ) = E (Y | X )
Convexity Problem
−1
y
=
F
(Φ( x)) is a convex function for
—  Show that
Jensen’s inequality to hold (handout for proof).
—  That is
2
d
−1
F (Φ( x)) ≥ 0
2
dx
—  Or
—  Where
f 2 ( y) f ' ( y)
−
≥0
2
φ ( x) φ ' ( x)
−1
y = F (Φ( x))
Examples
—  F ~ Pareto Distribution:
α +1
f ' ( y) = − f ( y) *
y +θ
—  Convexity Condition:
α *θ α
f ( y) =
( y + θ )α +1
φ ' ( x) = − x * φ ( x)
f ( y)
α +1
≥
φ ( x) x * ( y + θ )
Graph - Pareto
y=F^-1(phi(x))
1000
900
800
700
600
500
y=F^-1(phi(x))
400
300
200
100
0
-6
-4
-2
0
2
4
6
Example
—  F~ Gamma
y
−
1
α −1
f ( y) =
* y *e θ
α
Γ(α ) *θ
⎡α − 1 1 ⎤
f ' ( y) = f ( y) * ⎢
− ⎥
θ⎦
⎣ y
—  Convexity Condition:
⎡α − 1 1 ⎤
− ⎥
⎢
y
θ⎦
f ( y)
⎣
≥−
φ ( x)
x
Graph - Gamma
y=F^-1(phi(x))
2500
2000
1500
y=F^-1(phi(x))
1000
500
0
-6
-4
-2
0
2
4
6
Example 1
—  Data was simulated
—  Y ~ Pareto (3,8) and X ~ Gamma (2,4)
—  2000 observations were generated
—  MLE’s were:
—  Error:
Alpha
Theta
Y~Pareto
2.849075
7.48509
X~Gamma
1.906755
4.234371
Copula
SSE
40,508.92
OLS
Transformed
42,844.31
45,337.45
Example 1
80
70
60
50
Y
40
Cop-Yhat
Yhat-Method 3
30
20
10
0
0
5
10
15
20
25
30
35
40
45
Example 2
—  Taken from Copula Regression Paper (Example 1)
—  Dependent – X3 - Gamma
—  Though X2 is simulated from Pareto, parameter
estimates do not converge, gamma model fit
Variables
X1-Pareto
X2-Pareto
X3-Gamma
Parameters
3, 100
4, 300
3, 100
3.44, 161.11
1.04, 112.003
3.77, 85.93
MLE
—  Error:
Copula
OLS
Transformed
590,000.5
637,172.8
597,552.6
Example From Copula Paper
800
700
600
500
Y
400
Yhat-Cop
Yhat-Trans
300
200
100
0
0
50
100
150
200
250
300
350
400
450
Example – Copula Paper
800
700
600
500
Y
400
Yhat-Cop
Yhat-Trans
300
200
100
0
0
50
100
150
200
250
300
350
400
450
500
Fly UP