Comments
Description
Transcript
KV JMO 2002 SOLUTIONS Q1. (a) 4025
KV JMO 2002 SOLUTIONS Q1. (a) 4025 (b) 56 : 3 (c) 6.25 (d) 123457 (e) 20 cm Q2. (a) All the four digit number , which can be formed are :1121, 1112, 1122 2221, 2211, 2212 1221, 1212, 1211, 1222 2121, 2112, 2111, 2122 i.e. a total of 14 numbers (b) First L.C.M. of 2, 3, 4, 5, 6, and 7 = 420 Now the largest four – digit multiple of 420 is :420 x 23 = 9660 The req. number is = 9660 – 1 = 9659 Ans. Q3. (a) F (x) = ax7 + bx5 + cx3 - 6 f (-9) = 3 f (-9) = a (-9)7 + b (-9)5 + c (-9)3 – 6 a (-9)7 + b (-9)5 + c (-9)3 – 6 = 3 -a (9)7 + b (-9)5 + -c (9)3 = 9 -a (9)7 - b (9)5 - c (9)3 = 9 a (9)7 + b (9)5 + c (9)3 = (b) f (9) = - 9 a (9)7 + b (9)5 + c (9)3 – 6 = -9-6 = -15 Ans. (2002)3 (1002)3 (1000)3 3 x (1002) x (1000) (2002 1002) [( 2002)2 (2002) (1002) (1002)2 ] (1000)3 = 3 x (1002) x (1000) 1000 [( 2002 1002 ) 2 3 (2002 ) (1002 )] (1000 )3 = 3 x (1002 ) x (1000 ) (1000 ) 2 3 (2002 ) (1002 ) (1000 ) 2 = 3 x (1002 ) 3 (2002 ) (1002 ) = 3 x (1002 ) = 2002 Ans. 1 x4 + Q4.(a) = 47 x4 2 2 2 1 (x ) + 2 + 2. (x2) 12 - (x2) 12 = 47 x x x 2 2 1 x 2 x 2 2 1 x 2 x 2 x2 1 x2 - 2 = 47 = 49 =7 2 1 1 x 2. ( x ) x x 1 x x x =7 2 =7+2 1 9 x =3 x3 1 x3 1 1 1 x x 2 ( x ) x 2 x x x 1 1 x x 2 2 1 x x = (3) (7 - 1) = 3x6 = 18 Ans. 82x = 16 1 – 2x 82x = (82)1 – 2x (8)2x = (8)2 – 4x 2x = 2–4x 2x+4x = 2 6x = 2 x = 1 3 37x (b) 1 = = = 37 x 3 (3) 3x 3 7 3 1 3 1 3 = 3x x3 3 3 3 (3 x 3 x 3 ) 1 3 3x x3 1 3 5. = 3 x3 x 3 3 = 93 3 37x = A. 9 3 3 Ans. . . C D 70 km 35 km Let, the train’s speed = y = 70 x y Total time Case I :Total time = .B 70 x 3 y y 4 = 70 4x y 3y = 210 4x 3y 70 x 210 4x 1 = + 1 3 3y y 210 4x 210 3x 3y y = 3y 3y x 210 + 4x = 210 + 3x + 4y x – 4y = 0 -------------- (i) Case II :Total time = 70 35 x 35 3 y y 4 = 70 35 4x 140 y 3y = 105 X 3 4x 140 3y = 315 140 4x 3y = 175 4x 3y 175 4x 3y = 70 x 1 y 175 4x 3y = 70 x y y 175 + 4x = 210 + 3x + 3y 4x – 3x – 3y = 210 - 175 x – 3y = 45 We have, (i) x – 4y = 0 (ii) (ii) x – 3y = 45 x – 4y = 0 x – 3y = 45 - + - -y = -45 y = 45 km/h Speed of train = 45 km / h Q6. P Q 60o 60o 30o U 45o T S R Considering UQR, Q 30o 10 cm 105o U 45o R Sin QUR = sine 105o = sin (60 + 45) = sin 60 cos 45 + sin 45 cos 60 = = = 3 1 1 1 x x 2 2 2 2 3 1 2 2 2 2 3 1 2 2 In QUR, By the law of sine, we have, UQ QR UR = = sin URQ sin QUR sin UQR UQ 10 UR o = o = sin 45 sin 105 sin 30 o 10 UQ = sin 45 sin 105 10. sin 45 UQ = sin 105 1 2 3 1 2 2 10 x = = 10 x 1 2 2 x 2 3 1 = 20 3 1 x 3 1 3 1 20( 3 1) 20( 3 1) = 2 2 3 1 ( 3) 1 UQ = 10 = 10 3 1 3 1 cm We know that, Area of a triangle = ½ bc sin A In QUR, ar (UQR) = ½ x UQ x QR x sin UQR = ½ x 10 3 1 x 10 x sin 30 = 50 3 1 x = 25 (3 = (75 – 25 ar (UQR) Q7. 3 3 2 3) ) cm2 = = (75 – 25 3 ) cm2 64cm 32cm 32cm side of the 1st square = 64 cm side of the 2nd square = 322 322 = 2x322 = 2 x 32 = 32 = 64 2 2x 2 2 32 2 16 2 16 2 Side of the 3rd square = (16 2 ) 2 (16 2 ) 2 2 = 2 (16 2 ) = (16 2 ) x 2 = 32 x = 2 2 64 64 2 ( 2 )2 Side of the 1st square = 64 cm Side of the 2rd square = 64 cm 2 Side of the 3rd square = 64 cm ( 2 )2 In the similar fashion, side of the 11th square 64 ( 2 )10 = 64 25 = 2 x 2 x 2 x 2 x 2 x 2 2 x 2 x 2 x 2 x 2 = 2 cm Q8. Let, each side of a cube = a There are 7 cubes in the given solid, Total volume of the given solid = 7a3 7a3 = 448 448 7 a3 = a3 = 64 a = 3 64 = 4 cm In the given solid, We are able to see 5 surfaces of 6 cubes Total S.A. of the solid = 5a2 x 6 = 30 x 42 = 30 x 16 = 480 cm2 Q9. Let, us consider two cases, when Anil is a Rabbit and when Anil is a Fox, CASE I : When Anil is a Rabbit, We have, Anil is a Rabbit/Fox. Chintoo is a Fox Eashwar is a Fox Bhauna is a Rabbit Dolly is a Rabbit In this case Anil may be a Rabbit or Fox. This is not possible CASE II : When Anil is a Fox We have, Anil is a Fox Chintoo is a Rabbit Eashwar is a Fox Bhauna is a Fox Dolly is a Fox There are 4 foxes. Q10. Q x P By using the principle of Pascal’s triangle, we have, x No. of shortest possible routes = 14