Comments
Description
Transcript
8 INTRODUCTION TO TRIGONOMETRY CHAPTER
CHAPTER 8 J A INTRODUCTION TO TRIGONOMETRY Points to Remember : 1. If ABC is a right triangle right angled at B and BAC = , 0° 90°, we have : Base = AB, Perpendicular = BC and, Hypotenuse = AC here, ; AB Base cos = AC Hypotenuse BC Perpendicular AB Base ; cosec AC Hypotenuse AB Base ; cot tan = sec 2. We have, cosec T I 3. Values of various Trigonometric ratios : T-ratio 0° sin 0 M A cos 1 tan 0 cosec not defined sec 1 cot not defined 30° 1 2 3 2 1 3 2 C AC Hypotenuse = BC Perpendicular AB Base BC Perpendicular B 1 1 1 , sec , cot sin cos tan Also, tan sin , cot cos cos sin 132 J A BC Perpendicular sin = AC Hypotenuse B 90° A 45° 60° 90° 1 3 2 1 2 1 2 0 1 3 not defined 2 1 2 2 2 3 2 3 1 INTRODUCTION TO TRIGONOMETRY 3 2 1 3 1 not defined 0 MATHEMATICS–X 4. The value of sin increases from 0 to 1 as increases from 0 ° to 90°. Also, the value of cos decreases from 1 to 0 as increases from 0° to 90°. 5. If is an acute angle, then sin (90° – ) = cos , cos (90° – ) = sin tan (90° – ) = cot , cot (90° – ) = tan sec (90° – ) = cosec , cosec (90° – ) = sec 6. Basic trigonometric identities : J A (i) sin 2 cos 2 1 or 1 cos 2 sin 2 or 1 sin 2 cos 2 (ii) 1 tan 2 sec2 or sec2 tan 2 1 (iii) 1 cot 2 c osec2 or cosec2 – cot2 = 1 J A ILLUSTRATIVE EXAMPLES Example 1. In ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine : (i) sin A, cos A (ii) sin C, cos C [NCERT] Solution. In right angled ABC, we have AC2 = AB2 + BC2 AC2 = (24)2 + (7)2 AC2 = 576 + 49 AC2 = 625 AC = 25 (ii) sin A opposite side BC 7 hypotenuse AC 25 cos A adjacent side AB 24 hypotenuse AC 25 T I opposite side AB 24 sin C hypotenuse AC 25 B 7cm C adjacent side BC 7 hypotenuse AC 25 M A cosC B A 24 cm (i) 20 Example 2. Given : cot , find all other trigonometric ratios. 21 Solution. cot 20 Base 20 21 Perpendicular 21 Let Base (B) = 20 k, then perpendicular (P) = 21 k H = 29k Since P2 + B2 = H2 where H = hypotenuse H2 = (21 k)2 + (20 k)2 2 2 P = 21k B = 20k 2 = 441 k + 400 k = 841 k H 841 k 2 29 k MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY 133 sin P 21k 21 B 20k 20 ; cos H 29k 29 H 29k 29 tan P 21k 21 H 29k 29 ; cosec B 20k 20 P 21k 21 and sec Example 3. If 3 cot A = 4, check whether Solution. cot A 1 – tan2 A = cos 2 A – sin 2 A or not. 1+tan2 A 4 1 3 tan A 3 cot A 4 2 3 1 1 9 1 tan A 16 9 7 4 consider, 2 16 2 1 tan A 3 1 9 16 9 25 1 16 4 2 B In right ABC, AC2 = AB2 + BC2 = (4k)2 + (3k)2 = 16k2 + 9k2 = 25k2 AC 25k 2 5k Now, cos A AB 4k BC 3k and sin A AC 5k AC 5k T I 2 2 2 2 2 2 M A [NCERT] J A 16k 9k 7k 7 4k 3k cos A sin A 2 2 5 k 5 k 25 k 25 k 25 2 from above, we conclude that C 5k A 4k 3k B 1 tan 2 A cos 2 A sin 2 A . 1 tan 2 A 2 4sec 2 30° – tan 2 45° Example 4. Evaluate : 5cos 60° + sin 2 30° + cos 2 30° Solution. J A H 29k 29 B 20k 20 [NCERT] 5cos 2 60 4sec 2 30 tan 2 45 sin 2 30 cos 2 30 2 2 2 1 2 5 4 (1) 3 2 2 2 3 1 2 2 5 16 15 64 12 1 67 4 3 12 1 3 4 12 4 4 4 134 Ans. INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X Example 5. If tan (A + B) = 3 and tan (A – B) 1 ; 0° < A + B 90°; A > B, find A and B. 3 Solution. tan (A + B) = 3 = tan 60° A + B = 60° and, tan (A B) 1 cos 2 40 cos 2 50 sin 2 40 sin2 50 ...(2) J A (i) cos (40° – ) – sin (50° + ) + (ii) 2 sin 68 2 cot 15 3 tan 45 tan 20 tan 40 tan 50 tan 70 cos 22 5 tan 75 5 (i) We have, cos (40° – ) – sin (50° + ) + [CBSE 2002] B cos 2 40 sin 2 40 sin 2 40 cos 2 40 T I [CBSE 2004] cos 2 40 cos 2 50 sin 2 40 sin 2 50 cos 2 40 cos 2 (90 40) sin[90 (40 )] sin(50 ) sin 2 40 sin 2 (90 40) sin (50 ) sin(50 ) J A ...(1) tan 30 A B 30 3 On adding (1) and (2), we get, 2A = 90° A = 45° subtracting (2) from (1), we get, 2B = 30° B = 15° So, A = 45° and B = 15° Ans. Example 6. Evaluate : Solution. [NCERT] [ cos sin (90 )] 1 0 1 Ans. [ sin2 + cos2 = 1] 1 2 sin 68 2 cot15 3 tan 45 tan 20 tan 40 tan 50 tan 70 (ii) We have, cos 22 5 tan 75 5 2sin(90 22) 2 cot15 3tan 45 tan 20 tan 40 tan (90 40) tan (90 20) cos 22 5 tan(90 15) 5 M A 2 cos 22 2 cot15 3.1.tan 20 tan 40 cot 40 cot 20 cos 22 5 cot15 5 [ sin (90° – ) = cos , tan (90° – ) = cot ] 1 2 3 tan 20 tan 40 cot 2 1 1 tan 5 5 tan 40 tan 20 2 3 2 1 2 1 1 Ans. 5 5 Example 7. If tan 2 A = cot (A – 18°), where 2A is an acute angle, find the value of A. [NCERT] Solution. We have, tan 2A = cot (A – 18°) = tan [90° – (A – 18°)] 2A = 108° – A 3A = 108° A MATHEMATICS–X [ cot tan (90 )] = tan (108° – A) 108 A = 36° Ans. 3 INTRODUCTION TO TRIGONOMETRY 135 A B +C Example 8. If A, B, C are the interior angles of a triangle ABC, show that sin = cos . 2 2 Solution. We know, in any ABC, A + B + C = 180° B + C = 180° – A [NCERT] J A B C 180 A A 90 2 2 2 taking sine to both sides, we get A BC sin sin 90 2 2 A BC sin cos 2 2 Hence shown. Example 9. Prove the following Trigonometric identities : J A [ sin (90 ) cos ] 1 cos cosec cot 1 cos (ii) (sin + cosec )2 + (cos + sec )2 = 7 + tan2 + cot2 (i) Solution. B [CBSE 2000] (iii) tan sec 1 1 sin tan sec 1 cos (iv) 1 1 1 1 – – cosec A – cot A sin A sin A co sec A cot A (v) tan A cot A 1 tan A cot A 1 sec A cosec A 1 cot A 1 tan A T I (i) We have, LHS = M A = [CBSE 2002] [CBSE 2002(C)] [CBSE 2002(C)] 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos (1 cos ) 2 (1 cos ) 2 2 1 cos sin 2 1 cos 1 cos sin sin sin = cosec + cot = RHS (ii) We have, LHS = (sin + cosec )2 + (cos + sec )2 = sin2 + cosec2 + 2 sin cosec + cos2 + sec2 + 2 cos sec 2 2 2 2 = (sin cos ) cosec sec 2 sin 1 1 2 cos sin cos 1 cosec2 sec2 2 2 136 1 1 2 2 sin cos 1, cosec sin , sec cos INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X = 5 + (1 + cot2) + (1 + tan2) = 7 + tan2 + cot2 = RHS [ cosec2 = 1 + cot2, sec2 = 1 + tan2] J A (iii) We have, LHS tan sec 1 tan sec 1 (tan sec ) 1 (tan sec ) 1 (sec tan ) (sec 2 tan 2 ) tan sec 1 (sec tan ) (sec tan )(sec tan ) tan sec 1 (sec tan )[1 (sec tan )] tan sec 1 (sec tan )(1 sec tan ) tan sec 1 sec tan 1 sin RHS cos T I (iv) We have, LHS M A B 1 sin cos cos 1 1 cos ec A cot A sin A 1 co sec A cot A 1 . cos ecA cot A cos ec A cot A sin A cosec A cot A cosec A cosec 2 A cot 2 A = cosec A + cot A – cosec A = cot A RHS [ cosec2 – cot2 = 1] ...(1) 1 1 sin A cosec A cot A 1 1 cos ec A cot A . sin A co sec A cot A cosec A cot A 1 cosec A cot A sin A cosec 2 cot 2 A cosec A (cosec A cot A) = cot A from (1) and (2), it follows that LHS = RHS. MATHEMATICS–X J A [ sec2 – tan2 = 1] [ cosec 2 cot 2 1] ...(2) INTRODUCTION TO TRIGONOMETRY 137 (v) We have, LHS tan A cot A 1 cot A 1 tan A 1 tan A tan A 1 1 tan A 1 tan A tan A 1 tan A 1 tan A(1 tan A) tan A 2 tan A 1 tan A 1 tan A(1 tan A) tan 2 A 1 tan A 1 tan A (tan A 1) tan 3 A 1 tan A(tan A 1) (tan A 1)(tan 2 A tan A 1) tan A (tan A 1) tan 2 A tan A 1 tan A T I J A 1 cot tan B J A [ a3 – b3 = (a – b) (a2 + ab + b2)] tan 2 A tan A 1 tan A tan A tan A = tan A + 1 + cot A = 1 + tan A + cot A 1 sin A cos A cos A sin A 1 sin 2 A cos 2 A cos A sin A 1 1 1 cosec A sec A = RHS sin A cos A M A Example 10. (i) If tan + sin = m and tan – sin = n, show that m2 n 2 4 mn . (ii) If sec + tan = p, show that Solution. 138 [CBSE 2000] p2 1 sin p2 1 (i) We have, LHS = m2 – n2 = (tan + sin )2 – (tan – sin )2 = (tan2 + sin2 + 2tan . sin ) – (tan2 + sin2 – 2 tan sin ) = 4 tan sin INTRODUCTION TO TRIGONOMETRY ...(1) MATHEMATICS–X RHS 4 mn 4 (tan sin )(tan sin ) J A 4 tan 2 sin 2 4 sin 2 sin 2 sin 2 cos 2 2 sin 4 cos 2 cos 2 4 sin 2 (1 cos 2 ) sin 2 .sin 2 4 cos 2 cos 2 sin 4 sin 2 sin 4. 4.sin . 2 cos cos cos = 4 sin tan = 4 tan . sin from (1) and (2), it follows LHS = RHS. 4. p 2 1 (sec tan ) 2 1 p 2 1 (sec tan ) 2 1 (ii) We have, LHS sec 2 tan 2 2sec tan 1 sec 2 tan 2 2sec tan 1 (sec 2 1) tan 2 2 sec tan sec 2 2 sec tan (1 tan 2 ) tan 2 tan 2 2sec tan sec 2 2sec tan sec 2 T I M A 2 tan 2 2sec tan 2sec 2 2sec tan 2 tan (tan sec ) 2sec (sec tan ) J A ...(2) B [ 1 tan 2 sec 2 ] tan sin sin sec cos .sec 1 = sin = RHS PRACTICE EXERCISE Question based on Trigonometric Ratios : 1. In ABC, right angled at B, if AB = 12 cm and BC = 5 cm, find (i) sin A and tan A (ii) sin C and cot C. 2. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios. (i) sin 3 4 15 17 (ii) cot 13 5 (v) cosec (iv) sec MATHEMATICS–X (iii) cos 41 9 (vi) tan 7 25 5 12 INTRODUCTION TO TRIGONOMETRY 139 3. If tan A 2 1, show that sin A.cos A 2 4 4. If cos A 12 35 , verify that sin A(1 tan A) . 13 156 5. If sin A 1 , verify that 3 cos A – 4 cos3 A = 0. 2 6. If sin 5 , verify that tan2 – sin2 = tan2 . sin2. 13 1 cos 1 . 1 cos 7 7. If 7 cot 24, prove that 5 tan sin 8. If sec , verify that 2 4 1 tan sec 9. If 4 cot 5, show that 5sin 3cos 7 5sin 2 cos 2 B 10. If 2 tan = 1, find the value of 3cos 2 sin . 2 cos sin 11. If cot 2 sin cos 13 , find the value of cos 2 sin 2 12 T I a cos sin 12. If tan , find the value of b cos sin 13. If sec 13 3cos 2sin , show that 3 5 9cos 4sin M A J A J A 14. In ABC, right angled at B, AC + BC = 25 cm and AB = 5 cm, find the value of sin2A + cos2A. 15. If 21 cosec = 29, find the value of : 2 (i) 2 cos sin 1 2sin 2 (ii) 2 cos 2 1 cos 2 sin 2 16. If tan 1 1 2; show that tan 2 2 tan tan 2 17. If sin A 1 1 3, find the value of sin 2 A sin A sin 2 A 18. If cot 3, show that : (i) 140 2 cos 2 11 2 sin 2 7 (ii) cosec2– cot2 = 1 INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X 19. If sec 3sin 4sin 3 3tan tan 3 5 verify that 4 4cos 3 3cos 1 3tan 2 J A 20. If B and Q are acute angles such that cos B = cos Q, show that B = Q. Questions based on Trigonometric ratios of some specific angles 21. Evaluate each of the following : (i) sin 60° cos 30° + cos 60° sin 30° (iii) 2 cos2 60 cot 30° + 6 sin2 30° cosec2 60° (v) cot 2 30 cos 30 sin 2 30 (ii) cos 60° cos 30° – sin 60° sin 30° (iv) 4 cot2 45° – sec2 60° + sin2 60° + cos2 90° (vi) 2 (vii) 2 (cos2 45° + tan2 60°) – 6 (sin245° – tan230°) (viii) tan 2 60 3sec 2 30 4 cos 2 45 5 cos 2 90 cosec 30 sec 60 cot 2 30 22. Verify each of the following : (i) sin 60° = 2 sin 30° cos 30° (iii) tan 60 2 tan 30 1 tan 2 30 2 tan 30 1 tan 2 30 23. Show that : T I (i) cosec2 30° sin2 45° – sec2 60° + 2 = 0 (iii) cos 2 60 3cos 60 2 1 sin 2 60 24. If = 30°, verify that : 2 tan 1 tan 2 2 tan (iii) tan 2 1 tan 2 25. If A = 45°, verify that : (i) sin 2 A = 2 sin A . cos A M A (i) sin 2 (iii) sin A 1 cos 2A 2 (v) tan(A B) MATHEMATICS–X tan A tan B 1 tan A.tan B B (ii) cos 60 cos 2 30 sin 2 30 1 tan 2 30 1 tan 2 30 2 2 2 (ii) 4 tan 30 sec 30 sin 45 13 6 (iv) 4 (sin2 30° + cos2 60°) – 3 (cos2 45° – tan245°) = (ii) cos2 7 2 1 tan 2 1 tan 2 (iv) sin 3 = 3 sin – 4 sin3 (ii) cos 2 A = 2 cos2 A – 1 (iv) cos A 26. If A= 60° and B = 30°, verify that : (i) sin (A + B) = sin A cos B + cos A sin B (iii) cos (A + B) = cos A cos B – sin A sin B J A 5sin 2 30 cos 2 45 4 tan 2 30 2sin 30 cos 30 tan 45 1 cos 2A 2 (ii) sin (A – B) = sin A cos B – cos A sin B (iv) cos (A – B) = cos A cos B + sin A sin B (vi) tan(A B) tan A tan B 1 tan A.tan B INTRODUCTION TO TRIGONOMETRY 141 27. Given that sin (A + B) = sin A cos B + cos A sin B, find the value of sin 75°. 28. Given that cos (A – B) = cos A cos B + sin A sin B, find the value of cos 15°. 29. Find x in each of the following, if : (i) 2 cos x = 1 (ii) 2 sin 2x = 1 (iii) tan 3x 3 (iv) 2sin 3x 3 (v) (vi) 3 cot 3x 1 30. Find acute angle in each of the following cases; if, (i) sin (3 – 15°) = 1 2 (iii) sin J A (ii) 2 sin (3 – 15°) 3 1 4 (iv) 3 tan 2 1 0 (vi) cot 2 (2 5) 3 (v) cos (40° + ) = sin 30° 31. If sin (A 2B) 3 and cos (A + 4B) = 0, find the values of angles A and B. 2 32. If sin (A + B) = 1 and cos (A B) 33. If sin (A – B) J A x 3.sec 2 2 B 3 ; 0 A B 90, and A > B; find A and B. 2 1 1 and cos (A + B) ; 0 < A + B 90°, and A > B, find A and B. 2 2 T I M A 12 cm 34. ABC is a right triangle, right angled at C. If A = 30°, and AB = 40 units, find the remaining two sides and B of ABC. A E B 35. ABCD is a rectangle with AD =12 cm and DC = 20 cm as shown. The line segment DE is drawn making an angle of 30° with AD, intersecting AB in E. Find the 30° lengths of DE and AE. D 20 cm C Questions based on Trigonometric Identitities of Complementary Angles 36. Evaluate each of the following : (i) cos 49 sin 41 (ii) sec 32 cosec 58 37. Evaluate each of the following : (i) sin 54° – cos 36° (iii) cosec 47° – sec 43° (v) sin2 29° + sin2 61 38. Evaluate each of the following : (i) 142 cos10 cos 59cosec 31 sin 80 (iii) tan 21 cot 69 (ii) tan 62° – cot 28° (iv) sec2 31° – cot2 59° (vi) tan2 48° – cosec242° (ii) tan 53 cot 79 cot 37 tan11 INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X 3sin 62 sec 42 (iii) cos 28 cosec 48 (iv) 2 cos 67 tan 40 sin 90 sin 23 cot 50 J A 39. Evaluate each of the following : (i) 2 cos 2 20 cos 2 70 sin 2 57 sin 2 33 2 sin 27 cos 63 (ii) cos 63 sin 27 tan 36 cot 54 (iii) cot 54 tan 36 2 2 2 cosec 27 sec 63 (iv) sec 63 c osec 27 2 J A 40. Evaluate each of the following : (i) tan 5° tan 25° tan 30° tan 45° tan 65° tan 85° (ii) cot 12° cot 38° cot 52° cot 60° cot 78° (iii) sec (35° + A) – cosec (55° – A) (iv) cos (36° + A) – sin (54° – A) 41. Prove that : (i) cos (90 ) sin 2 sin cos (90 ) (ii) cos . cos (90° – ) + cos . sin (90° – ) = 1 (iii) (iv) B sin .cos (90 cos cos sin (90 ).sin 1 sin (90 ) cos (90 ) cos (90 ) . sec (90 ) . tan tan (90 ) 2 cos ec (90 ) sin (90 ) .cot (90 ) cot T I 42. Without using trigonometric tables, find the value of each of the following : (i) sin (50° + ) – cos (40° – ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° (ii) cos (40 ) sin (50 ) 2 cos 2 40 cos 2 50 sin 2 40 sin 2 50 [CBSE 2002] [CBSE 2002] 2 sin 47 cos 43 2 2 2 (iii) 4 cos 45 cosec 67 tan 23 cos 43 sin 47 M A sin15 cos 75 cos15 sin 75 (iv) sec 2 10 cot 2 80 cos sin(90 ) sin . cos (90 ) [CBSE 2002] (v) cot tan (90° – ) – sec (90° – ) cosec + sin2 25° + sin2 65° + 3 (tan 5° tan 45° tan 85°) (vi) (vii) 3tan 25 tan 40 tan 50 tan 65 1 tan 2 60 2 2 4 (cos 29 cos 61) 2 tan cot (90 ) sec cosec (90 ) sin 2 35 sin 2 55 tan10 tan 20 tan 45 tan 70 tan 80 cosec 2 (90 ) tan 2 2 tan 2 30 sec 2 52 sin 2 32 (viii) 4 (cos 2 48 cos 2 42) cosec 2 70 tan 2 20 MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY [CBSE 2004] [CBSE 2002 (C), 2005] [CBSE 2006] 143 2 2 tan 20 cot 20 (ix) 2 tan15 tan 37 tan 53 tan 60 tan 75 cosec70 sec 70 [CBSE 2003] sec 39 2 .tan17 tan 38 tan 60 tan 52 tan 73 3(sin 2 31 sin 2 59) cosec 51 3 (x) J A [CBSE 2006 (C)] 43. Express each of the following in terms of trigonometric ratios of angles between 0° and 45° : (i) sin 79° + cosec 83° (ii) tan 58° + sec 46° (iii) cosec 57° + cot 57° (iv) sin 82° + tan 82° 44. In any ABC, prove that : C AB (i) sin cos 2 2 45. 46. 47. 48. 49. J A A BC (ii) tan cot 2 2 If sin 3 = cos ( – 6°), where 3 and – 6°) are acute angles, find the value of . If tan 2 = cot ( + 6°), where 2 and + 6° are acute angles, find the value of . If sec 5 = cosec ( – 36°), where 5 is an acute angle, find the value of . If sin A = cos B, prove that A + B = 90°. Prove that : (i) tan 1° tan 2° tan 3° ..... tan 89° = 1 B 19 . 2 50. If A and B are acute angles and sin (A + B) = cos (A – B), show that A = 45°. (ii) sin2 5 + sin2 10° + sin2 15° + ..... + sin2 85° + sin2 90° T I Questions based on Trigonometric Identities : 51. Using trigonometric identities, write the following expressions as an integer : (i) 5 cot2 A – 5 cosec2 A (ii) 4 tan2 – 4 sec2 (iii) 7 cos2 + 7 sin2 (iv) 3 sec2 – 3 tan2 52. Simplify the following expressions : M A (i) (1 + cos ) (cosec – cot ) (iii) (v) 1 1 1 sin A 1 sin A 1 tan 2 cot 2 1 sin 3 cos3 (ii) sin cos (iv) sin 4 A cos 4 A sin 2 A cos 2 A (vi) cosec (1+ cos ) (cosec – cot ) Prove that following identities (53–100) : 53. cos2 (1 + tan2) = 1 55. 144 sin 2 cos 2 tan cot sin cos 54. cosec2 + sec2 = cosec2 . sec2 2 56. (cot cosec ) INTRODUCTION TO TRIGONOMETRY [CBSE 2001] 1 cos 1 cos MATHEMATICS–X 57. (1 + tan2 ) (1 + sin ) (1 – sin ) = 1 2sin 2 1 sin cos 58. sin A cosec A cot A 1 cos A 60. 1 1 2cosec 2 1 cos 1 cos 59. tan cot 61. tan sin sec 1 tan sin sec 1 62. sec A (1 – sin A) (sec A + tan A) = 1 63. 1 sin cos 2 sec cos 1 sin 1 tan 2 1 tan 64. 1 cot 2 1 cot 65. tan cot 1 tan cot 1 sec cosec 1 cot 1 tan 66. 1 cos 1 cos sin 1 cos 67. 68. 1 cot 2 sin 2 1 cot 4 69. 2 J A [CBSE 2002 (C)] 1 cot A sin A cos A 1 cot A sin A cos A 1 sin A sec A tan A 1 sin A B 70. 1 sin A cos A 1 sin A 1 sin A 71. 72. 1 cos cosec cot 1 cos 1 73. cosec cot cosec cot 74. 1 cos 1 cos 2 cosec 1 cos 1 cos T I J A 2 1 cos cosec cot 1 cos 75. (sin + sec )2 + (cos + cosec )2 = (1 + sec cosec )2 76. sin A cos A sin A cos A 2 2 2 2 2 sin A cos A sin A cos A sin A cos A 2 sin A 1 77. sin 2sin 3 tan 2cos3 cos M A [CBSE 2000] sin sin 78. cot cosec 2 cot c osec [CBSE 2000] 79. (1 + cot – cosec ) (1 + tan + sec ) = 2 80. 81. 82. 83. [CBSE 2000 (C)] [CBSE 2000] cosec cosec 2sec2 cosec 1 cosec 1 1 1 1 1 1 2 2 2 4 tan A cot A sin A sin A 1 1 1 1 sec A tan A cos A cos A sec A tan A 1 1 1 1 cosec A cot A sin A sin A c osec A cot A MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY [CBSE 2006(C), 2007] [CBSE 2005] [CBSE 2002C, 2006] 145 84. sec A tan A 1 1 sin A tan A sec A 1 cos A 86. sin cos 1 1 sin sin cos 1 cos cot A cosec A 1 1 cos A 85. cot A – cosec A + 1 sin A 87. sec tan 1 sec tan sec tan sec tan 88. sec tan 1 sec tan sec tan sec tan 90. cos 2 sin 3 1 sin cos 1 tan sin cos 91. 1 cos sin 2 cot sin (1 cos ) 92. tan tan 1 1 cot 2 cosec 2 tan 2 A tan 2 B [CBSE 2000(C)] [CBSE 2003] B 93. sec2 A cosec2 A tan A cot A cos 2 B cos 2 A sin 2 A sin 2 B cos 2 B.cos 2 A cos 2 A cos 2 B T I 96. 2 (sin6 + cos6 ) – 3 (sin4 + cos4) + 1 = 0 sec 1 sec 1 2 cosec sec 1 sec 1 97. 98. sin sin cos cos 0 cos cos sin sin M A 100. J A 89. sec4 – sec2 = tan4 + tan2 94. 2 sec2 – sec4 – 2 cosec2 + cosec4 = cot4 – tan4 95. J A [CBSE 2001(C)] 99. [CBSE 2000] [CBSE 2005] [CBSE 2001, 2006(C)] sin 2 cos3 1 sin cos 1 cot cos sin sin A cos A 1 sec A tan A 1 cosec A cot A 1 101. If cos + sin = 2 cos , show that cos – sin = 2 sin [CBSE 2002(C)] 102. If sin + cos = p and sec + cosec = q, show that q ( p 2 1) 2 p 103. If x = a sec + b tan and y = a tan + b sec , prove that x2 – y2 = a2 – b2. 2000 (C)] 104. If [CBSE 2001, cos cos m and n, show that (m2 + n2) cos2 = n2 cos sin 105. If a cos + b sin = m and a sin – b cos = n prove that a2 + b2 = m2 + n2. 146 INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X 106. If a cos = x and b cot = y, show that 107. If a2 b2 1 x2 y 2 J A x2 y2 x y x y 2 2 cos sin m and sin cos n, prove that 2 2 m n . a b a b a b 108. If sec x 1 1 , prove that sec + tan = 2x or 2x 4x 109. If sec tan p, prove that [CBSE 2001] p 2 1 sin p2 1 J A [CBSE 2004] 110. If tan + sin = m and tan – sin = n, prove that m2 n2 4 mn . [CBSE 2000, 2002(C), 2004(C)] 111. If a cos – b sin = c, prove that a sin b cos a 2 b 2 c 2 112. If 3sin 5cos 5, prove that 5sin 3cos 3 113. If sin + sin2 = 1, prove that cos2+ cos4 = 1 [CBSE 2001(C)] [CBSE 2002(C)] B 114. If (sec A + tan A) (sec B + tan B) (sec C + tan C) = (sec A – tan A) (sec B – tan B) . (sec C – tan C), prove that each side is equal to ± 1. 115. If x = r sin cos , y = r sin sin and z = r cos , then show that x2 + y2 + z2 = r2. HINTS TO SELECTED QUESTIONS 5sin 3cos 5 9. here, cot . Consider LHS = 5sin 2 cos 4 T I dividing numerator and denominator by sin , we get 5 3cot LHS 5 2 cot 5 5 3 4 7 5 2 5 2 4 M A 16. tan 1 2. Squaring both sides, tan tan 2 1 1 2.tan . 4 2 tan tan tan 2 1 4 2 2. tan 2 20. Consider two right triangles ACB and PRQ. BC QR We have, cos B , cos Q AB PQ Since, cos B cos Q MATHEMATICS–X BC QR k , say ...(1) AB PQ A C P B INTRODUCTION TO TRIGONOMETRY R Q 147 Now, AC PR AB2 BC2 2 PQ QR 2 AB2 k 2 AB2 2 2 PQ k PQ 2 AB PQ J A Thus, In ACB and PRQ, we have AC AB BC ACB PRQ B Q. PR PQ QR 27. sin 75° = sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30° 31. 3 sin 60 A 2B 60 2 and, cos (A + 4B) = 0 = cos 90° A + 4B = 90° sin (A 2B) ...(1) J A ...(2) solve (1) and (2) now. 49. (ii) sin2 5° + sin2 10° + sin2 15° + .... + sin2 85° + sin2 90° (sin 2 5 sin 2 85) (sin 2 10 sin 2 80) ... (sin 2 40 sin 2 50) sin 2 45 sin 2 90 (sin 2 5 cos 2 5) (sin 2 10 cos 2 10) ... (sin 2 40 cos 2 40) sin 2 45 sin 2 90 2 1 1 19 2 1 1 ..... 1 (1) 8 1 2 2 2 8 times 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 1 cos 74. LHS T I B 2 (1 cos )2 (1 cos ) 2 1 cos 1 cos 2cosec RHS 2 2 sin 1 cos 1 cos sin sin 86. LHS sin cos 1 dividing numerator and denominator by cos , sin cos 1 tan 1 sec tan sec 1 tan 1 sec tan sec 1 M A LHS 90. LHS = 148 2 (tan sec ) (sec tan 2 ) tan sec 1 (tan sec ) (sec tan )(sec tan ) tan sec 1 (tan sec )(1 sec tan ) = tan + sec sin 1 1 sin RHS tan sec 1 cos cos cos cos 2 sin 3 1 tan sin cos INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X cos 2 sin 3 cos 2 sin 3 sin sin cos cos sin cos sin 1 cos J A cos3 sin 3 (cos sin )(cos 2 sin 2 cos sin ) cos sin cos sin = 1 + sin cos = RHS 96. sin 6 cos6 (sin 2 ) 3 (cos 2 ) 3 J A (sin 2 cos 2 ) [(sin 2 ) 2 (cos 2 ) 2 (sin 2 )(cos 2 )] [ a 3 b 3 ( a b)( a 2 b 2 ab)] 1.[(sin 2 ) 2 (cos 2 ) 2 2 sin 2 cos 2 3sin 2 cos 2 ] (sin 2 cos 2 ) 2 3sin 2 cos 2 1 3sin 2 cos 2 also, sin4 + cos4 = (sin2 )2 + (cos2 )2 + 2 sin2 cos2 – 2 sin2 cos2 B = (sin2 + cos2 )2 – 2 sin2 cos2 = 1 – 2 sin2 cos2 Now, put these values in LHS and simplify. 101. cos + sin = 2 cos sin = ( 2 1) cos cos cos sin . 1 2 1 T I 2 1 2 1 cos ( 2 1).sin 1 1 1 tan x 1 x 4x 4x 4x M A sec x .sin cos 2 sin sin cos sin 2 sin 2 108. 1 2 1 1 tan x 4x 2 1 1 1 Now, when tan x , then sec + tan x x 2x 4x 4x 4x 1 1 1 1 and, when tan x , then sec tan x x 4x 4x 4x 2 x 111. Consider, (a cos – b sin )2 + (a sin + b cos )2 a 2 cos2 b 2 sin 2 2ab sin cos a 2 sin 2 b2 cos2 2ab sin cos a 2 (cos 2 sin 2 ) b 2 (cos 2 sin 2 ) a 2 b 2 MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY 149 c 2 (a sin b cos ) 2 a 2 b 2 J A a sin b cos a 2 b 2 c 2 114. We have, (sec A + tan A) (sec B + tan B) (sec C + tan C) = (sec A – tan A) (sec B – tan B) . (sec C – tan C). Multiplying both sides by (sec A – tan A) (sec B – tan B) (sec C – tan C), we get (sec2A – tan2A) (sec2B – tan2B) (sec2C – tan2C) = [(sec A – tan A) (sec B – tan B) (sec C – tan C)]2 (sec A – tan A) (sec B – tan B) (sec C – tan C) = ± 1 Similarly, multiplying by (sec A + tan A) (sec B + tan B) (sec C + tan C), we get (sec A + tan A) (sec B + tan B) (sec C + tan C) = ± 1. 2 2 2 115. LHS = x + y + z = r2 sin2 cos2 + r2 sin2 sin2 + r2cos2 = r 2 sin 2 (cos 2 sin 2 ) r 2 cos 2 r 2 sin 2 r 2 cos 2 r 2 (sin 2 cos 2 ) r 2 RHS. B J A MULTIPLE CHOICE QUESTIONS Mark the correct alternative in each of the following : 1. If 3 tan = 4, then the value of (a) 1 (b) 1 sin is : 1 sin T I 1 2 2. If 5 sin – 3 = 0, then the value of (a) 1 4 (b) 1 8 M A 3. If tan (a) a2 b2 a 2 b2 2 3 5. If sin (a) 1 150 1 3 (d) 2 3 cosec cot is : 2 cot (c) 3 4 (d) 7 8 (c) ab a b (d) a–b ab (c) 1 6 (d) 5 2 (c) 7 4 (d) 28 29 a a sin b cos , then the value of is b a sin b cos (b) a 2 b2 a2 b2 4. If 5 tan 4 0 , then the value of (a) (c) (b) 5sin 3cos is 5sin 2 cos 1 3 4 4 tan 5 cos , then the value of is 5 sec cot (b) 5 8 INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X 6. The value of 4 cot245° – sec260° + sin260° + cos290° is 1 2 3 (b) (c) 4 4 4 7. If tan 3x = sin 45° cos 45° + sin 30°, then the value of x is : (a) (a) 15° (b) 30° 4 (d) 1 (c) 45° 4 2 J A (d) 60° 2 8. The value of 4 (sin 30° + cos 30°) – 3 (sin 45° – 2 cos 45°) is (a) 0 9. The value of (a) 0 (b) 1 (c) 4 sin 2 63 sin 2 27 is cos 2 17 cos 2 73 (b) 1 (c) 2 10. The value of tan 5° tan 10° tan 15° tan 75° tan 80° tan 85° is : (a) –1 11. The value of (a) –1 (b) 0 (c) 1 sin 75 sin12 cos18cosec 72 is : cos15 cos 78 (b) 0 (c) 1 2 2 B sin 35 cos55 12. The value of 2 cos 60 is : cos 55 sin 35 (a) 0 (b) 1 (c) –1 13. The value of (a) 0 sin 75 sin15 is : cos15 cos 75 (b) –1 T I 14. If sin cos 4, then the value of is : (a) 18° 15. The value of (b) 36° J A (c) 45° (d) none of these (d) none of these (d) none of these (d) 2 (d) none of these (d) none of these sec cosec (90 ) tan cot (90 ) (sin 2 35 sin 2 55) is tan10 tan 20 tan 45 tan 70 tan 80 (b) –1 (c) 2 (d) 3 M A (a) 1 (c) 1 (d) none of these 16. (cosec A – sin A) (sec A – cos A) (tan A + cot A) is equal to : (a) 1 17. (b) –1 (c) 2 (d) –2 cosec 1 cosec 1 is equal to : cosec 1 cosec 1 1 cos 18. If x = r sin cos , y = r sin sin and z = r cos , then (a) cos (b) 2 cos (c) (a) x 2 y 2 z 2 r 2 (b) x 2 y 2 z 2 r 2 (c) x 2 y 2 z 2 r 2 (d) z 2 y 2 x 2 r 2 (d) 2 cos 19. If a cot + b cosec = p and b cot + a cosec = q, then p2 – q2 is equal to : (a) a2 – b2 (b) b2 – a2 (c) a2 + b2 (d) a + b MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY 151 20. If (1 + cos ) (1 + cos ) (1 + cos ) = (1 – cos ) (1 – cos ) (1 – cos ), then each of the expression is equal to : (a) sin sin sin (b) cos cos cos (c) ± sin sin sin (d) ± cos cos cos J A VERY SHORT ANSWER TYPE QUESTIONS (1 MARK QUESTIONS) 1. What is the maximum value of 2. If sin 2 1 ? cosec 3 , find the value of cos . 2 3. If sin cos 1, the find the value of sin cos . J A 15 and 90 , find the value of sec . 7 5. What is the value cos 1° cos 2° cos 3° .... cos 89° cos 90° ...... cos 180°? 4. If cosec = 6. If 7 sin2 + 3 cos2 = 4, find the value of tan if 0° 90°. 7. Write the value of sin2 68° + sin2 22° – 1. 8. If A and B are acute angles and sin B = cos A, then write the value of A + B. 9. Write the value of sin (55° + ) – cos (35° – ). 10. Express tan 87° + sin 63° in terms of trigonometric ratios of angles between 0° and 45°. 11. Write the value of tan 5° tan 35° tan 45° tan 55° tan 85°. T I B sin cos 12. Write the simplest form of sec (90 ) cosec (90 ) . 13. If tan ( – 36°) = cot 2; 2 and ( – 36°) are acute angles, then find . 14. If cosec2 (1 + cos ) (1 – cos ) = k, then find the value of k. 15. If sin 2 = cos 3, then find the value of . 16. Find the value of cos cos3 . sin sin 3 M A 17. If tan A 1 and sin B 1 , find the value of A + B. 3 2 18. If cos 3 = 1, then find the value of tan . BC 19. If A, B and C are the angles of a triangle, then find the value of cot in terms of A. 2 20. If tan2 – 5 tan + 1 = 0, find the value of tan + cot . PRACTICE TEST M.M : 30 Time : 1 hour General Instructions : Q. 1-4 carry 2 marks, Q. 5-8 carry 3 marks and Q. 9-10 carry 5 marks each. 152 INTRODUCTION TO TRIGONOMETRY MATHEMATICS–X 4 sin 3cos . 2 sin 6 cos 2. Evaluate : 4 cot2 45° + sin2 60° + cos2 90° – sec2 60°. 1. If 3 cot = 2, find the value of J A 3. If sin ( + 36°) = cos , where + 36° and are acute angles, find the value of . 4. If cosec + cot = a and cosec – cot = b, prove that ab = 1. 5. In OPQ, right angled at P, OP = 7 cm, OQ – PQ = 1 cm. Determine the values of sin Q and cos Q. 1 tan 2 . 1 tan 2 7. Without using trigonometric tables, evaluate : 6. If = 30°, verify that cos 2 2 2 sin 20 sin 70 sin (90 )sin cos (90 ).cos cos 2 20 cos 2 70 tan cot 8. Prove that : J A tan A cot A 1 sec A . cosec A 1 cot A 1 tan A 9. A contractor plans to instal two slides for the children to play in a park. For the children below the age of 6 years, he prefers to have a slide, which is inclined to an angle of 30° to the ground, whereas for elder children, he wants to have a steep slide, inclined at an angle of 60° to the ground. The length of the slide in both cases is 3m. What should be the required length of the ladder, in each case, to reach the top of the slide and at what distance should it be placed from the base of the slide? B 10. If tan A + sin A = m and tan A – sin A = n, prove that (m2 – n2)2 = 16 mn. T I ANSWERS OF PRACTICE EXERCISE 1. (i) 5 5 , 13 12 (ii) 12 5 , 13 12 8 15 17 17 8 , tan , cosec , sec , cot 17 8 15 8 15 2. (i) cos M A (ii) sin 4 3 4 5 5 , cos , tan , cosec , sec 5 5 3 4 3 (iii) sin 24 24 25 25 7 , tan , sec , cosec , cot 25 7 7 24 24 (iv) sin 12 5 12 13 5 , cos , tan , cosec , cot 13 13 5 12 12 (v) sin 9 40 9 41 40 , cos , tan , sec , cot 41 41 40 40 9 (vi) sin 5 12 13 13 12 , cos , cosec , sec , cot 13 13 5 12 5 MATHEMATICS–X INTRODUCTION TO TRIGONOMETRY 153 10. 8 3 312 25 11. 17. 11 21. (i) 1 (ii) 0 (iii) 3 1 27. 12. 28. 2 2 b a ba 3 34 (iv) 4 2 3 1 2 2 14. 1 (v) 6 (vi) 5 (2 3) (vii) 6 6 33. A = 45°, B = 15° 31. A = 30°, B = 15° J A 34. AC = 20 3 units, BC = 20 units and B = 60° 35. DE = 8 3 cm, AE = 4 3 cm 36. (i) 1 (ii) 1 (iii) 1 37. (i) 0 (ii) 0 (iii) 0 (iv) 1 (v) 1 (vi) –1 38. (i) 2 (ii) 0 (iii) 2 39. (i) 1 (ii) 2 (iii) 2 (iv) 0 40. (i) 1 3 (ii) 1 B 3 (iv) 0 (iii) 0 (iv) 0 3 5 3 (vi) 4 (vii) 2 (viii) 12 (ix) 1 2 3 (x) 0 42. (i) 1 (ii) 1 (iii) 1 (iv) 2 (v) J A (viii) 9 29. (i) 60° (ii) 15° (iii) 20° (iv) 20° (v) 20° (vi) 60° 30. (i) 35° (ii) 25° (iii) 30° (iv) 30° (v) 20° (vi) 17.5° 32. A = 60°, B = 30° 15. (i) 1 (ii) 1 43. (i) cos 11° + sec 9° (ii) cot 32° + cosec 44° (iii) sec 33° + tan 33° (iv) cos 8° + cot 8° 45. 24° 46. 28° 47. 21° 51. (i) –5 (ii) –4 (iii) 7 (iv) 3 2 52. (i) sin (ii) 1 – sin cos (iii) 2 sec A (iv) 1 (v) tan2 (vi) 1 T I ANSWERS OF MULTIPLE CHOICE QUESTIONS 1. 6. 11. 16. (c) (c) (c) (a) 2. (b) 7. (a) 12. (b) 17. (d) M A 3. (b) 8. (c) 13. (c) 18. (a) 4. (c) 9. (b) 14. (a) 19. (b) 5. (d) 10. (c) 15. (c) 20. (c) ANSWERS OF VERY SHORT ANSWER TYPE QUESTIONS 1. 1 2. 3 2 15 7 3. 0 4. 7. 0 8. 90° 9. 0 10. cot 3° + cos 27° 11. 1 12. 1 13. 42° 14. 1 15. 18° 16. tan 17. 75° 18. 0 19. tan 1 6. 3 5. 0 A 2 20. 5 ANSWERS OF PRACTICE TEST 154 1. 1 3 7. 2 3 7 24 INTRODUCTION TO TRIGONOMETRY 2. 3. 27° 5. sin , cos MATHEMATICS–X 4 25 25 9. 2 3 m, 3 m