...

Using Beamer A Seminar Robb T. Koether Brian Lins

by user

on
Category: Documents
11

views

Report

Comments

Transcript

Using Beamer A Seminar Robb T. Koether Brian Lins
Using Beamer
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
Using Beamer
A Seminar
Lists
Mathematics
Display
Mathematics
Theorems
Robb T. Koether
Brian Lins
Hampden-Sydney College
Wed, Nov 11, 2009
Using Beamer
Outline
Robb T.
Koether,
Brian Lins
The Beamer
Class
1 The Beamer Class
Frames
Title Page
2 Frames
Themes
Lists
3 Title Page
Mathematics
Display
Mathematics
Theorems
4 Themes
5 Lists
6 Mathematics
Display Mathematics
Theorems
Using Beamer
Introduction
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• An excellent resource for creating Beamer files is the
Beamer User Guide, available from CTAN (Comprehensive
TeX Archive Network).
• Click here to download the file.
Using Beamer
Hello, World!
Robb T.
Koether,
Brian Lins
Your first presentation
The Beamer
Class
Frames
Title Page
Themes
Lists
• Create the Hello, World! Beamer presentation.
Mathematics
Display
Mathematics
Theorems
\documentclass{beamer}
\begin{document}
Hello, World!
\end{document}
Using Beamer
Frames
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Each Beamer slide is a frame.
• Rewrite Hello, World! as a frame.
\begin{frame}{My First Slide}
Hello, World!
\end{frame}
Using Beamer
A Title Page
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
• The tag \titlepage in a frame will create a title page.
Lists
• But it needs some info.
Mathematics
• Before \begin{document}, add
Display
Mathematics
Theorems
• \title{My First Beamer Presentation}
• \author{John Doe} (use your name)
• \institute{Hampden-Sydney College}
Using Beamer
Themes
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• A Beamer presentation uses themes.
• Presentation theme
• Color theme
• Font theme
• Inner theme
• Outer theme
• Add
\usetheme{Hannover}
\usecolortheme{crane}
\usefonttheme{professionalfonts}
Using Beamer
Robb T.
Koether,
Brian Lins
Itemized Lists
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Add a frame with an itemized list to your presentation
\begin{itemize}
\item Little Red Riding Hood
\item Grandma
\item The Big Bad Wolf
\item The hunter
\end{itemize}
Using Beamer
Robb T.
Koether,
Brian Lins
Itemized Lists
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Add an itemized sublist right after Grandma.
\begin{itemize}
\item Eaten by the wolf
\item Saved by the hunter
\end{itemize}
Using Beamer
Robb T.
Koether,
Brian Lins
Enumerated Lists
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Change itemize to enumerate.
Using Beamer
Mathematics
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Inline math expressions are delimited by $...$.
• Create a new frame titled Math.
• Create an itemized list including
•
•
•
•
•
$x_1^2+x_2^2+x_3^2$
$\frac{\sigma}{\sqrt{n}}$
$\sum_{k=1}^n{k}=\frac{n(n+1)}{2}$
$\lim_{x\rightarrow\infty}{\frac{1}{x}}=0$
$\int_0^1{x^2\ dx}=\frac13$
Using Beamer
Robb T.
Koether,
Brian Lins
Mathematics
The Beamer
Class
Frames
Title Page
Themes
Lists
Mathematics
Display
Mathematics
Theorems
• Display math expressions are delimited by $$...$$.
• In your math slide, change every $ to $$.
Using Beamer
Theorems
Robb T.
Koether,
Brian Lins
The Beamer
Class
Frames
Title Page
Themes
• The theorem environment is used to display theorems.
\begin{theorem}[name of theorem]
Statement of the theorem
\end{theorem}
Lists
Mathematics
Display
Mathematics
Theorems
• Create one more slide that contains the following theorem
Theorem (Mean Value Theorem)
Let f be a function that is continuous on [a, b] and
differentiable on (a, b). Then there exists a real number
c ∈ (a, b) such that
f 0 (c) =
f (b) − f (a)
.
b−a
Fly UP