...

Esercizi Integrali propri e impropri Calcolare i seguenti integrali: 1

by user

on
Category: Documents
10

views

Report

Comments

Transcript

Esercizi Integrali propri e impropri Calcolare i seguenti integrali: 1
Esercizi
Integrali propri e impropri
Calcolare i seguenti integrali:
π
4
Z
1.
0
2
Z
2
1
− 2
x x
5.
1
1
Z
0
1
2
1
0
0
Z
2
10.
1
log x dx = log 4−1
2
Z
3
2 dx =
log 2
x
0
Z
3
2
2
1
(x2 +1)e2x dx =
1
π
6
0
Z
0
−π
2
Z
x
Z
0
3
Z
log 2
p
1 + x2 dx =
52 − 1
3
log 3
log 2
2
3π
Z
arctan x dx =
π
2
Z
32.
√
24 √
4 √
e2x 1 + ex dx =
3−
2
15
15
0
π
2
√
Z
−π
4
1
1
2
Z
1
4
π
2
π
3
4
Z
xex dx = 1
√
1 + cos x
π
dx = 2( 3−1)−
1 − cos x
6
Z
π
8
0
π
4
x3 + 1
19
4
dx =
+log
2
x(x − 1)
12
3
1
33.
0
1
1
9
√ dx = log
4
x+ x
30.
36.
sin2 x dx = π
0
24.
Z
tan x dx = 0
2π
0
21.
Z
π
4
18.
Z
27.
√
cos x
dx = 2( 2 − 1)
1 + sin x
35.
1
dx = log 2
2x + 3
2x + 3
1
dx = +log 4
2
(x + 1)
2
Z
π
−log 4
4
8
7
x log x dx = log 2 −
3
9
1
1
dx = log 3
sin x
2
1
0
1
1
8
1 + 2ex
dx = log
2x
e −1
2
3
29.
−1
Z
1
37
x−3
dx = log 11
x(x − 1)(x − 2)
2
2
26.
3
2
0
4
Z
sin x
1
dx =
log 13122
4 − 5 sin x
15
28.
31.
1
8.
14.
2
20.
23.
9
sin x cos x
dx = log
2
8
sin x − 3 sin x + 2
25.
34.
e2
(7e2 −3)
4
2
Z
1
2
Z
x+1
1
8
dx = log √
x(x − 1)(x + 2)
2
3 35
0
3
x(log x) dx = log 2 (log 4 − 2) +
4
2
22.
2
Z
2
19.
3
11.
17.
0
Z
0
1
4 1
dx = log −
2
x (x − 1)
3 6
x sin x dx = π
2
1
dx =
(x + 1)2
3
4.
x
dx = 1−log 2
x+1
Z
1
4
dx = log
x(x + 1)
3
13.
1
7.
π
16.
1
Z
6.
Z
15.
Z
Z
1
dx = log 4−
2
2
Z
1
2
Z
50
(x + 2x) dx =
3
2
3.
0
x2 + 2x + 2
1
dx = (1 − log 48)
2
x −1
2
12.
3
Z
x
e dx = e − 1
2.
1
5
dx =
3
(x + 2)
72
9.
Z
Z
1
sin 2x dx =
2
1
1
dx =
(cos 2x)2
2
x
π 1
dx = − log 2
cos2 x
4
2
π
2
Z
37∗ .
ex sin x dx =
0
Z
40.
1
2
Z
1 π
(e 2 + 1)
2
e2
38.
e
√
π
9 3 − 16
+
144
72
x2 arcsin x dx =
0
Z
1
dx = log 2
x log x
1
2
Z
√
41.
0
1
2
√
39.
− 12
x3
dx = 0
1 − x2
√
π
x2
3
dx =
−
12
8
1 − x2
Dire se i seguenti integrali impropri convergono:
2
Z
log x dx
1.
∞
Z
0
Z
∞
9.
0
Z
1
∞
√
17.
1
∞
√
x
1
x−2 e− x dx
1
10.
0
3.
0
Z
Z
4.
π
2
√
0
1
dx
1 − sin x
∞
8.
1
18∗∗ .
Z
2
Z
21 .
1
∞
11.
0
∞
∞
Z
sin x
dx
x
15.
1
1
dx
x(log x)2
1
sin x arcsin dx
x
x2
0
Z
1
√
x3 sin x
dx
tan x − x
1
dx
x2 log x
1
Z
19.
0
∗∗
Z
22 .
1
x
dx
−x
∞
Z
| sin x| dx
12.
0
∞
Z
16.
2
√
x
dx
x − sin x
∞
√
1
Z
(x4 − x3 + 1)e−αx dx
7.
1 − cos x
√
dx
x2 x
∞
Z
14∗ .
∗
log x
dx
(x + 1)2
0
Z
dx
∞
Z
0
sin x
dx
x2
x+1−
x
1
dx
1 − x2
∞
6.
1
dx
ex + e−x
13.
Z
Z
arctan x
√
dx
x x
0
√
2.
0
5.
1
Z
1
dx
x log x
Z
20.
∞
arcsin
1
1
dx
x
| sin x|
dx
x
Soluzioni
1) Conv.; 2) C.; 3) C.; 4) N.C.; 5) C.; 6) C.; 7) C. se α > 0, N.C. se α ≤ 0; 8) N.C.; 9) C.;
10) C.; 11) C. ; 12) N.C.; 13) C.; 14) C.; 15) N.C.; 16) N.C.; 17) C.; 18) C.; 19) N.C.;
20) N.C.; 21) C.; 22) N.C.
2
Fly UP