Esercizi Integrali propri e impropri Calcolare i seguenti integrali: 1
by user
Comments
Transcript
Esercizi Integrali propri e impropri Calcolare i seguenti integrali: 1
Esercizi Integrali propri e impropri Calcolare i seguenti integrali: π 4 Z 1. 0 2 Z 2 1 − 2 x x 5. 1 1 Z 0 1 2 1 0 0 Z 2 10. 1 log x dx = log 4−1 2 Z 3 2 dx = log 2 x 0 Z 3 2 2 1 (x2 +1)e2x dx = 1 π 6 0 Z 0 −π 2 Z x Z 0 3 Z log 2 p 1 + x2 dx = 52 − 1 3 log 3 log 2 2 3π Z arctan x dx = π 2 Z 32. √ 24 √ 4 √ e2x 1 + ex dx = 3− 2 15 15 0 π 2 √ Z −π 4 1 1 2 Z 1 4 π 2 π 3 4 Z xex dx = 1 √ 1 + cos x π dx = 2( 3−1)− 1 − cos x 6 Z π 8 0 π 4 x3 + 1 19 4 dx = +log 2 x(x − 1) 12 3 1 33. 0 1 1 9 √ dx = log 4 x+ x 30. 36. sin2 x dx = π 0 24. Z tan x dx = 0 2π 0 21. Z π 4 18. Z 27. √ cos x dx = 2( 2 − 1) 1 + sin x 35. 1 dx = log 2 2x + 3 2x + 3 1 dx = +log 4 2 (x + 1) 2 Z π −log 4 4 8 7 x log x dx = log 2 − 3 9 1 1 dx = log 3 sin x 2 1 0 1 1 8 1 + 2ex dx = log 2x e −1 2 3 29. −1 Z 1 37 x−3 dx = log 11 x(x − 1)(x − 2) 2 2 26. 3 2 0 4 Z sin x 1 dx = log 13122 4 − 5 sin x 15 28. 31. 1 8. 14. 2 20. 23. 9 sin x cos x dx = log 2 8 sin x − 3 sin x + 2 25. 34. e2 (7e2 −3) 4 2 Z 1 2 Z x+1 1 8 dx = log √ x(x − 1)(x + 2) 2 3 35 0 3 x(log x) dx = log 2 (log 4 − 2) + 4 2 22. 2 Z 2 19. 3 11. 17. 0 Z 0 1 4 1 dx = log − 2 x (x − 1) 3 6 x sin x dx = π 2 1 dx = (x + 1)2 3 4. x dx = 1−log 2 x+1 Z 1 4 dx = log x(x + 1) 3 13. 1 7. π 16. 1 Z 6. Z 15. Z Z 1 dx = log 4− 2 2 Z 1 2 Z 50 (x + 2x) dx = 3 2 3. 0 x2 + 2x + 2 1 dx = (1 − log 48) 2 x −1 2 12. 3 Z x e dx = e − 1 2. 1 5 dx = 3 (x + 2) 72 9. Z Z 1 sin 2x dx = 2 1 1 dx = (cos 2x)2 2 x π 1 dx = − log 2 cos2 x 4 2 π 2 Z 37∗ . ex sin x dx = 0 Z 40. 1 2 Z 1 π (e 2 + 1) 2 e2 38. e √ π 9 3 − 16 + 144 72 x2 arcsin x dx = 0 Z 1 dx = log 2 x log x 1 2 Z √ 41. 0 1 2 √ 39. − 12 x3 dx = 0 1 − x2 √ π x2 3 dx = − 12 8 1 − x2 Dire se i seguenti integrali impropri convergono: 2 Z log x dx 1. ∞ Z 0 Z ∞ 9. 0 Z 1 ∞ √ 17. 1 ∞ √ x 1 x−2 e− x dx 1 10. 0 3. 0 Z Z 4. π 2 √ 0 1 dx 1 − sin x ∞ 8. 1 18∗∗ . Z 2 Z 21 . 1 ∞ 11. 0 ∞ ∞ Z sin x dx x 15. 1 1 dx x(log x)2 1 sin x arcsin dx x x2 0 Z 1 √ x3 sin x dx tan x − x 1 dx x2 log x 1 Z 19. 0 ∗∗ Z 22 . 1 x dx −x ∞ Z | sin x| dx 12. 0 ∞ Z 16. 2 √ x dx x − sin x ∞ √ 1 Z (x4 − x3 + 1)e−αx dx 7. 1 − cos x √ dx x2 x ∞ Z 14∗ . ∗ log x dx (x + 1)2 0 Z dx ∞ Z 0 sin x dx x2 x+1− x 1 dx 1 − x2 ∞ 6. 1 dx ex + e−x 13. Z Z arctan x √ dx x x 0 √ 2. 0 5. 1 Z 1 dx x log x Z 20. ∞ arcsin 1 1 dx x | sin x| dx x Soluzioni 1) Conv.; 2) C.; 3) C.; 4) N.C.; 5) C.; 6) C.; 7) C. se α > 0, N.C. se α ≤ 0; 8) N.C.; 9) C.; 10) C.; 11) C. ; 12) N.C.; 13) C.; 14) C.; 15) N.C.; 16) N.C.; 17) C.; 18) C.; 19) N.C.; 20) N.C.; 21) C.; 22) N.C. 2