Comments
Description
Transcript
Q.M3 - Tirgul 7
Q.M3 - Tirgul 7 Roee Steiner Physics Department, Ben Gurion University of the Negev, BeerSheva 84105, Israel 10.12.2014 Contents 1 Review 1 2 Sakurai Q 3.26 1 3 Sakurai Q 3.28 3 4 Sakurai Q 3.27 5 1 Review Review base on Sakurai.... and on the review of Ben Baragiola http://info.phys.unm.edu/~ideutsch/classes/phys531f11/sphericaltensors. pdf 2 Sakurai Q 3.26 ¬ Construct a spherical tensor of rank 1 out of two different vectors U = (Ux , Uy , Uz ) and V = (Vx , Vy , Vz ). (1) b)Explicitly write T±1,0 in terms of Uxyz and Vxyz . c) Construct a spherical tensor of rank 2 out of two different vectors U and V. (2) Write down explicitly T±2,±1,0 in terms of Uxyz and Vxyz . Solution ~ and V ~ are vectors operators, then: a) Because U [Ui , Jj ] = i~Uk (1) [Vi , Jj ] = i~Vk (2) ∗ e-mail: ¬ In [email protected] the new addition 3.30 1 ∗ We have seen that for spherical vectors: [Jz , Uq(1) ] = ~qUq(1) p (1) [J± , Uq(1) ] = ~ (1 ∓ q)(1 ± q + 1)Uq±1 (3) (4) So (1) [Jz , Uz ] = [Jz , U0 ] = 0 (5) so (1) Uz = U0 (6) next: √ (1) (1) [J+ , U0 ] = ~ 2U1 = [J+ , Uz ] = [Jx + iJy , Uz ] = −i~Uy + ii~Ux (7) so (1) U1 −1 = √ (Ux + iUy ) 2 Following the same schema √ (1) (1) [J− , U0 ] = ~ 2U−1 = [J− , Uz ] = [Jx − iJy , Uz ] = −i~Uy − ii~Ux (8) (9) so 1 (1) U−1 = √ (Ux − iUy ) 2 (10) In the same way we can get that: (1) V0 (1) V1 (1) V−1 = Vz −1 = √ (Vx + iVy ) 2 1 = √ (Vx − iVy ) 2 (11) (12) (13) b) (1) (1) (1) We can contract form Uq and Vq the T0,±1 , by using the formula Tq(k) = X hk1 , k2 ; q1 , q2 |k1 , k2 ; k, qiXq(k1 1 ) Zq(k2 2 ) (14) q1 ,q2 In our case k1 = k2 = k = 1 so X Tq(1) = h1, 1; q1 , q2 |1, 1; 1, qiUq(1) Vq(1) 1 2 q1 ,q2 2 (15) where we need that q = q1 + q2 , so: (1) (1) (1) (1) (1) = h1, 1; 0, 1|1, 1; 1, 1iU0 V1 + h1, 1; 1, 0|1, 1; 1, 1iU1 V0 1 1 1 (1) (1) (1) (1) = √ (U1 V0 − U0 V1 ) = Uz (Vx + iVy ) − Vz (Ux + iUy ) 2 2 2 T1 (1) (1) (1) = h1, 1; 0, 0|1, 1; 1, 0iU0 V0 T0 (1) (1) (16) (1) + h1, 1; −1, 1|1, 1; 1, 0iU−1 V1 (1) (1) (1) + h1, 1; 1, −1|1, 1; 1, 0iU1 V−1 = h1, 1; −1, 1|1, 1; 1, 0iU−1 V1 1 1 (1) (1) (1) (1) (1) (1) + h1, 1; 1, −1|1, 1; 1, 0iU1 V−1 = √ (U1 V−1 − U1 V−1 ) = √ (Ux Vy − Uy Vx ) 2 2 (17) (1) (1) T−1 = h1, 1; 0, −1|1, 1; 1, −1iU0 1 (1) (1) (1) (1) = √ (U−1 V0 − U0 V−1 ) = 2 (1) (1) (1) V−1 + h1, 1; −1, 0|1, 1; 1, −1iU−1 V0 1 1 Uz (Vx − iVy ) − Vz (Ux − iUy ) 2 2 (18) c) In the same way we can find higher order: (2) T2 (1) (1) = h1, 1; 1, 1|1, 1; 2, 2iU1 V1 (1) (1) = U1 V1 = 1 (Ux + iUy )(Vx + iVy ) (19) 2 and (2) (1) (1) (1) (1) = h1, 1; 1, 0|1, 1; 2, 1iU1 V0 + h1, 1; 0, 1|1, 1; 2, 1iU0 V1 1 −1 (1) (1) (1) (1) = √ (U1 V0 + U0 V1 ) = (Uz Vx + Vz Ux + i(Uz Vy + Vz Uy )) 2 2 T1 (20) ..... 3 Sakurai Q 3.28 Write xy,xz, and (x2 − y 2 ) as components of a spherical (irreducible) tensor of rank 2. b) The expectation value Q = ehα, j, m = j|3z 2 − r2 |α, j, m = ji (21) is known as the quadrupole moment. Evaluate ehα, j, m0 |x2 − y 2 |α, j, m = ji (22) where m0 = j, j − 1, j − 2, · · · , in terms of Q and appropriate Clebsch-Gordan coefficients. 3 Solution a)We know that r r 15 15 2 ±2iφ = (sin (θ))e (sin2 (θ))(cos(φ) ± sin(φ))2 = 32π 32π r r 15 (x ± iy)2 15 x2 ± 2ixy − y 2 = = 32π r2 32π r2 Y2±2 (23) and r Y2±1 =∓ r r 15 15 z(x ± iy) 15 zx ± izy ±iφ =∓ (24) (sin(θ) cos(θ))e =∓ 8π 8π r2 8π r2 We can see that: r xy = i r xz = i 2π 2 −2 r (Y2 − Y22 ) 15 (25) 2π 2 −1 r (Y2 − Y21 ) 15 (26) and r x2 − y 2 = 8π 2 −2 r (Y2 + Y22 ) 15 (27) b) r 2 2 Q = ehα, j, m = j|3z − r |α, j, m = ji = ehα, j, j| 16π 0 2 Y r |α, j, ji 5 2 using Wigner-Eckart theorem r hα, j||Y2 r2 ||α, ji 16π √ Q=e hj2; j0|j2; jji 5 2j + 1 (28) (29) We have seen that: r 0 2 2 ehα, j, m |x − y |α, j, m = ji = e 8π hα, j, m0 |r2 (Y2−2 + Y22 )|α, j, m = ji 15 (30) and with Wigner-Eckart theorem ehα, j, m0 |x2 − y 2 |α, j, m = ji r 8π hα, j||Y2 r2 ||α, ji hα, j||Y2 r2 ||α, ji √ √ =e (hj, 2; j, 2|j2; jm0 i + hj, 2; j, −2|j2; jm0 i ) 15 2j + 1 2j + 1 (31) So it follows that: 1 hj, 2; j, −2|j2; jm0 i ehα, j, m0 |x2 − y 2 |α, j, m = ji = √ Q 2 hj2; j0|j2; jji 4 (32) 4 Sakurai Q 3.27 Consider a spinless particle bound to a fixed center by a central force potential. Relate, as much as possible, the matrix elements 1 hn0 , l0 , m0 | ∓ √ (x ± iy)|n, l, mi 2 and hn0 , l0 , m0 |z|n, l, mi using only the Wigner-Eckart theorem. Make sure to state under what conditions the matrix elements are non vanishing. Solution As we seen before r 1 3 ±1 ∓ √ (x ± iy) = Y (33) 4π 1 2 and r z= 3 0 Y 4π 1 (34) So r 1 3 ±1 0 0 0 hn , l ∓ √ (x ± iy)|n, l, m1 i = hn , l , m1 | Y1 |n, l, m1 i 4π 2 q 3 hn0 , l0 || 4π Y1 ||n, li √ = hl, 1; m1 , ±1|l, 1; l0 , m01 i 2l + 1 0 0 , m01 | and r 0 hn , l 0 , m02 |z|n, l, m2 i 0 = hn , l 0 , m02 | 3 0 Y |n, l, m2 i 4π 1 q 3 hn0 , l0 || 4π Y1 ||n, li 0 0 √ = hl, 1; m2 , 0|l, 1; l , m2 i 2l + 1 So hn0 , l0 , m01 | ∓ √1 (x ± iy)|n, l, m1 i 2 hn0 , l0 , m02 |z|n, l, m2 i = hl, 1; m1 , ±1|l, 1; l0 , m01 i hl, 1; m2 , 0|l, 1; l0 , m02 i (35) We didnt done all. We need to speak on selection roles. m0 = m + q 0 l = |l ± 1| In the new addition 3.31 5 (36) (37) in our case: m01 = m1 ± 1 (38) m02 = m2 (39) 6