Comments
Transcript
E2173: Polarization of classical polar molecule
E2173: Polarization of classical polar molecule Submitted by: Arka Prabha Banik The problem: Find the polarization P̃ (ξ) and the electric susceptibility χ for gas of N classical molecules with dipole moment µ, The system’s temperature is T . The solution: This problem has been approached in different branches of Physics , let’s discuss it in the way of Statistical Mechanics . Suppose, each polar molecule of the cluster having Mass and Moment of Inertia m and I respectively is feeling an external Electric field E. we can write down the Lagrangian for each molecule in (r, θ, φ) co-ordinate 1 1 L(x, y, z, θ, φ) = m(ẋ2 + ẏ 2 + ż 2 ) + I(θ̇2 + sin2 θφ̇2 ) 2 2 next comes the Energy consideration : The conjugate momenta as we know are pj = ∂L ∂ q̇j where j = r, θ, φ furthar if we notice that we can write the Hamiltonian from Lagrangian with those conjugate momenta as , H0 = Σpj q̇j − L(r, θ, φ) With furthar simplification it yields H0 = p2φ 1 1 2 pr + p2θ + 2m 2I 2I sin2 θ or more specifically H0 = p2φ 1 1 2 (px + p2y + p2z ) + p2θ + 2m 2I 2I sin2 θ perturbation on the molecule due to the presence of external electric field Hperturb = −Eµ cos θ henceforth the modified Hamiltonian reads H1 = H0 + Hperturb = p2φ 1 2 1 (px + p2y + p2z ) + p2θ + − Eµ cos θ 2m 2I 2Isin2 θ we are now ready to write the single molecule Partition Function : 1 Z Z1 = Z dxdydzdpx dpy dpz (2π)3 .. Z Z dθdpθ 2π Z Z dφdpφ −βH1 e 2π now, Writing H1 explicitly , we ’ve Z Z1 = Z .. β 2 2 (p2 dxdydzdpx dpy dpz − 2m x +py +pz ) e (2π)3 Z Z dθdpθ − β p2 βEµ cos θ e 2I θ e 2π Z Z 2 dφdpφ −β pφ 2 e 2I sin θ = I1 .I2 .I3 2π the first Integral is as usual Z I1 = Z .. β 2 2 (p2 dxdydzdpx dpy dpz − 2m m 3/2 x +py +pz ) e =V( ) 3 (2π) 2πβ the second integral gives Z Z I2 = dθdpθ − β p2 βEµ cos θ 2πI 1/2 =( e 2I θ e ) 2π β Z dθ βEµ cos θ e 2π and the third integral yields Z Z I3 = 2 dφdpφ −β pφ 2 e 2I sin θ = 2π Z −β dpφ e p2 φ 2I sin2 θ =( 2πI sin2 θ 1/2 ) β hence , the single molecule partition function reads m 3/2 I ) Z1 = I1 .I2 .I3 = V ( 2πβ β Z sin θdθeβEµ cos θ = V ( m 3/2 2I sinh βµE ) 2πβ β βµE now Gibbs Prescription is to be followed , i.e, For N molecules the Partition function is ZN = 1 N Z N! 1 So that ZN = 1 N m 3N/2 2I N sinh βµE N V ( ) ( ) ( ) N! 2πβ β βµE since we’ve learned Polarisation and Electric fields are conjugate variables , so we can write : 1 ∂lnZN Pe = β ∂E hence in this particular problem , it becomes : Pe = N µ[coth(βµE) − 1 ] βµE Let’s define a function as , L(u) = coth(u) − 1 u 2 If we expand the function L(u) in the following Taylor expansion series : L(u) = coth(u) − 1 1 eu + e−u − = u −u u e −e u = (1 + u + 12 u2 + 16 u3 + ....) + (1 − u + 12 u2 − 61 u3 + ....) 1 − (1 + u + 21 u2 + 16 u3 + ....) − (1 − u + 12 u2 − 61 u3 + ....) u = 1 4 1 6 1 + 21 u2 + 24 u + 720 u + .... 1 − 1 3 1 5 u u + 6 u + 120 u + .... = 1 3 3u 1 5 1 7 + 30 u + 840 u + .... 1 5 1 3 u(u + 6 u + 120 u + ....) since , u = βµE is usually very small , so in this limit u → 0 L(u) = u/3 so that it yields , Pe → 31 N βµ2 E and hence ... Susceptibility, χ = N 3V βµ2 3