Comments
Description
Transcript
Electric field
Electric field Submitted by: I.D. 310159025 The problem: Given a thin half-sphere, uniformly charged with density σ find the electric field at the center of the sphere. The solution: Because the symmetry of the half-sphere, the only field contributing component is the ẑ component (coinciding with the symmetry axis of the half sphere). Every point-area on the half-sphere contributes an electric field dE: ds = R2 sin θdθdϕ (1) dq = σds kdq cos θ kR2 σ sin θ cos θdθdϕ dE = = = kσ sin θ cos θdθdϕ R2 R2 (2) (3) where θ is the angle between the radius-vector and the z axis. Integration of the both sides gives: π Z2π Z2 E = kσ sin θ cos θdθ 0 dϕ = πkσ (4) 0 ~ = πkσẑ E (5) 1 Electric field Submitted by: I.D. 066370016 The problem: A thin wire of a length L is charged with an uniform electrical charge q. What is the electric field in points P,R and P’ ? The wire is on the X-axis (one edge is located at the origin and the other at point L) , point P is located at (L1 , h) , point R is at (L + L3 , 0) and point P’ is located at (L + h tan θ1 , h) The solution: 1. It is given that the thin wire is charged with an uniform electrical charge q so λ= q L (1) The vector to the point P is ~r = (L1 , h) (2) The vector to the element charge dq is ~r0 = (x0 , 0) (3) Subtracting ~r0 from ~r and calculating the norm ~r − ~r0 = (L1 − x0 , h) p ~r − ~r0 = (L1 − x0 )2 + h2 (4) (5) The element charge is dq = λdx (6) By using the electric field equation kdq L1 − x0 ~ dE = 3 h ((L1 − x0 )2 + h2 ) 2 Z Z L 0 kdq E L − x x 1 ~ = ~ = E = dE 3 Ey h 0 ((L1 − x0 )2 + h2 ) 2 So to find Ex Z L Ex = 0 kdq(L1 − x0 ) ((L1 − x0 )2 + h2 ) 3 2 1 = kλ( p h2 + L22 −p 1 h2 + L21 ) (7) (8) (9) Finding Ey Z Ey = kλh 0 L dx0 ((L1 − x0 )2 + h2 ) 3 2 = L2 L1 kλ (q +q ) h h2 + L22 h2 + L21 (10) 2. It is given that the thin wire is charged with an uniform electrical charge q so λ= q L (11) 1 The vector to the point R is ~r = (L3 + L, 0) (12) The vector to the element charge dq is ~r0 = (x0 , 0) (13) Subtracting ~r0 from ~r and calculating the norm ~r − ~r0 = (L3 + L − x0 , 0) p ~r − ~r0 = (L3 + L − x0 )2 + 02 = {0 ≤ x ≤ L} = L − x0 + L3 (14) (15) The element charge is dq = λdx (16) By using the electric field equation kdq L − x0 + L3 ~ dE = 0 (L − x0 + L3 )3 Z Z L kdq Ex L − x0 + L3 ~ = ~ = E = dE 3 0 Ey 0 0 (L − x + L3 ) (17) (18) Therefore Ey = 0 and Ex is: Z L dx(L − x0 + L3 ) Ex = kλ (L − x0 + L3 )3 0 q = k L3 (L + L3 ) (19) 3. It is given that the thin wire is charged with an uniform electrical charge q so q λ= L The vector to the point P is (21) (20) ~r = (L + h tan θ1 , h) (22) The vector to the element charge dq is ~r0 = (x0 , 0) (23) Subtracting ~r0 from ~r and calculating the norm ~r − ~r0 = (L + h tan θ1 − x0 , h) p ~r − ~r0 = (L + h tan θ1 − x0 )2 + h2 (24) (25) The element charge is dq = λdx (26) By using the electric field equation ~ = dE kdq 3 L + h tan θ1 − x0 h ((L + h tan θ1 − x0 )2 + h2 ) 2 Z Ex ~ ~ E = = dE Ey Z L kdq L + h tan θ1 − x0 ~ E = 3 h 0 ((L + h tan θ1 − x0 )2 + h2 ) 2 2 (27) (28) (29) So to find Ex Z kλdx(L + h tan θ1 − x0 ) L Ex = 3 ((L + h tan θ1 − x0 )2 + h2 ) 2 1 1 = kλ( p −p ) h2 + (h tan θ1 )2 h2 + (L + h tan θ1 )2 (30) 0 (31) Finding Ey L Z dx Ey = kλh 3 ((L + h tan θ1 − x0 )2 + h2 ) 2 kλ L + h tan θ1 L − h tan θ1 +p ) (p h ((L − h tan θ1 )2 + h2 ) ((L + h tan θ1 )2 + h2 ) (32) 0 = Appendix: calculating the integrals Part One Z L Z L kdq(L1 − x0 ) dx(L1 − x0 ) Ex = = kλ 3 3 0 ((L1 − x0 )2 + h2 ) 2 0 ((L1 − x0 )2 + h2 ) 2 1 t = ((L1 − x0 )2 + h2 )− 2 (L1 −x0 ) Z √ 1 √ 21 2 dx dt = 3 h +L2 h2 +L2 ((L1 −x0 )2 +h2 ) 2 2 dt = kλ[t] = = kλ 1 1 √ √ x = 0 =⇒ t = 1 √2 2 h2 +L2 h2 +L21 1 h +L 1 x = L =⇒ t = √ 1 2 2 (33) (34) (35) h +L2 1 Ex = kλ( p h2 Z + L22 1 −p h2 + L21 ) (36) dx0 L Ey = kλh 3 ((L1 − x0 )2 + h2 ) 2 0 = h tan t + L x 1 Z arctan L2 hdt h hdt 1 dx0 = cos 2t = = kλh −L1 3 0 −L1 cos2 t x = 0 =⇒ t = arctan 2 2 tan t + h2 ) 2 arctan h h (h 0 x = L =⇒ t = arctan Lh2 Z arctan L2 h hdt 1 = kλh 3 −L1 h3 cos2 t arctan h (tan2 t + 1) 2 Z arctan L2 h dt = kλh cos3 t 2 −L1 h cos2 t arctan (37) 0 (38) (39) (40) h = L kλ kλ L2 L1 arctan h2 [sin t] (q +q −L1 = ) arctan h h h h2 + L22 h2 + L21 Part Two 3 (41) L Z Ex = kλ 0 Z dx(L − x0 + L3 ) (L − x0 + L3 )3 (42) L 1 dx L 2 = kλ[ (L − x0 + L ) ]0 0 3 0 (L − x + L3 ) 1 1 λ = kλ( − ) = Lk (L − L + L3 ) (L − 0 + L3 ) L3 (L + L3 ) kqL q = =k LL3 (L + L3 ) L3 (L + L3 ) = kλ (43) (44) (45) Part Three Z kλdx(L + h tan θ1 − x0 ) L Ex = ((L + h tan θ1 − x0 )2 + h2 ) 0 3 2 = 1 t = ((L + h tan θ1 − x0 )2 + h2 )− 2 (L+h tan θ1 −x0 ) dt = 3 dx 0 2 2 1 x = 0 =⇒ t = √ 2 h +(L+h tan θ1 )2 1 x = L =⇒ t = √ ((L+h tan θ1 −x ) +h ) 2 h2 +(h tan θ1 )2 Z √ = kλ √ 1 h2 +(h tan θ1 )2 1 h2 +(L+h tan θ1 )2 √ dt = λ[t] √ 1 Ex = kλ( p h2 + (h tan θ1 )2 Z Ey = kλh 0 Z L arctan = = L−h tan θ1 h −(L+h tan θ1 ) h arctan = kλh = kλh h2 +(h tan θ1 )2 1 h2 +(L+h tan θ1 )2 1 h2 + (L + h tan θ1 )2 (47) ) arctan arctan Z 1 x = h tan t + L + h tan θ1 hdt dx = cos dx 2t −(L+h tan θ1 ) 3 = x = 0 =⇒ t = arctan 0 2 2 ((L + h tan θ1 − x ) + h ) 2 h x = L =⇒ t = arctan L−h htan θ1 = kλh Z −p L−h tan θ1 h −(L+h tan θ1 ) h arctan (46) (48) (49) hdt 1 2 cos t (h2 tan2 t + h2 ) 32 (50) hdt 1 h3 cos2 t (tan2 t + 1) 32 (51) L−h tan θ1 h dt h2 cos2 t −(L+h tan θ1 ) arctan h L−h tan θ1 arctan h −(L+h tan θ1 ) arctan h cos3 t kλ [sin t] h kλ L − h tan θ1 L + h tan θ1 (p +p ) 2 2 h ((L − h tan θ1 ) + h ) ((L + h tan θ1 )2 + h2 ) 4 (52) (53) (54) The electric field Submitted by: I.D. 040460479 The problem: An isolated electrical wire is charged uniformly with charge q and bent into a circular shape (radius R) with a small hole b R (where b is the arc length). What is the electrical field in the middle of the circle? The solution: The simple solution is to use superposition. The electric field in the middle of a complete ring is, of course, zero. Now we’ll sum up the field of a complete ring with the field of a very small wire of the same size and shape as the hole but with a negative charge. ~ = kλb x̂ Because b R the wire can be taken as a negative point charge and, therefore, the field is E R2 q (when we take the hole to be on the X axis and λ = 2πR ). It is also possible to calculate the field directly. Taking ~r = (0, 0, 0) and ~r0 = (R cos θ, R sin θ, 0) we have kdq (−R cos θ, −R sin θ, 0) R3 dq = λRdθ Z −α kλ kλRdθ0 ~ (−R cos θ0 , −R sin θ0 , 0) = (2 sin α, 0, 0) E = 3 R R α ~ = dE (1) (2) (3) where ±α are the angles of the edges of the bent wire (or, the upper and lower limits of the hole). Since b R we can approximate tan α ' sin α = b/2 R . Substituting into the expression for the field we obtain ~ = kλb x̂ E R2 (4) 1 Electric Field The problem: A thin ring is consists of two semi-rings, each of which is charged homogeneously but with the opposite charges, q and −q. Find the electric field on the ring axis. The solution: Let us choose the coordinates such that the z axis consides with the ring axis, and the ring lies in the x − y plane. Let ϕ be the angle in the x − y plane measured from the positive direction of the x axis. The charge desity is ( q , 0≤ϕ≤π λ = πR q (1) − πR , π ≤ ϕ ≤ 2π where R is the radius of the ring. Then Z π Z 2π kqR 0 0 0 0 Ex = − cos ϕ dϕ − cos ϕ dϕ = 0, π(R2 + z 2 )3/2 0 π Z π Z 2π kqR 4kqR 0 0 0 0 Ey = − sin ϕ dϕ − sin ϕ dϕ = − , 3/2 2 2 2 π(R + z ) π(R + z 2 )3/2 0 π Z π Z 2π kqz 0 0 dϕ − dϕ = 0 Ez = π(R2 + z 2 )3/2 0 π 1 (2) (3) (4)