Comments
Description
Transcript
Class Exercise
BGU Physics Dept. Introduction to Mathematical Methods in Physics Class Exercise Summary 1. Use de Moiver’s theorem to prove that tan 5θ = t5 − 10t3 + 5t 5t4 − 10t2 + 1 where t = tan θ. Deduce the values of tan(nπ/10) for n = 1, 2, 3, 4. Solution cos(5θ) + i sin(5θ) = (cos θ + i sin θ)5 = cos5 θ + 5i cos4 θ sin θ − 10 cos3 θ sin2 θ − 10i cos2 θ sin3 θ + 5 cos θ sin4 θ + i sin5 θ sin(5θ) = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ cos(5θ) = cos θ5 − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ tan(5θ) = sin(5θ) = cos(5θ) sin(5θ) cos5 θ cos(5θ) cos5 θ = tan5 θ − 10 tan3 θ + 5 tan θ 5 tan4 θ − 10 tan2 θ + 1 Finding the values of tan(nπ/10): For n = 1 we set θ = π/10 so tan(5θ) = tan(π/2) → ∞ which means that the denominator is zero s r 8 5t4 − 10t2 + 1 = 0 ⇒ t = ± 1 ± 10 we are interested in the positive solution (since both sin θ and cos θ is positive for 0 < θ < π/2, and in t < 1 since sin θ is smaller then cosθ for 0 < θ < π/4. So s r 8 tan(π/10) = 1 − . 10 For n = 3 we set θ = 3π/10 so tan(5θ) = tan(3π/2) → ∞ which means that the denominator is zero again, only this time we expect t > 1 since pi/4 < θ < π/2, hence s r 8 tan(3π/10) = 1 + . 10 For n = 2 and n = 4 we have tan(5θ) = 0 so now the nominator is zero q √ 5 3 t − 10t + 5t = 0 ⇒ t = 0, t = ± 5 ± 2 5 So q √ tan(2π/10) = 5 − 2 5 q √ tan(4π/10) = 5 + 2 5 1 2. By writing z = tan w in terms of exponentials show that 1 1 + iz −1 tan z = ln 2i 1 − iz Solution 1 e2iw − 1 sin w 1 eiw − e−iw = = cos w i eiw + e−iw i e2iw + 1 1 + iz 1 1 + iz 2iw 2iw 2iw ⇒ (e − 1)iz = (e + 1) ⇒ e = ⇒w= ln 1 − iz 2i 1 − iz z = tan w = 3. Identify the series ∞ X (−1)n+1 x2n n=1 (2n − 1)! , and then, by integration and differntiantion, deduce the values S of the following series: (a) (b) (c) (d) ∞ X (−1)n+1 n2 n=1 ∞ X n=1 ∞ X n=1 ∞ X n=1 (2n)! (−1)n+1 n (2n + 1)! (−1)n+1 nπ 2n 4n (2n − 1)! (−1)n (n + 1)π 2n (2n)! Solution f (x) = ∞ X (−1)n+1 x2n n=1 ∞ X =x n=1 (2n − 1)! (−1)n+1 x2n−1 (2n − 1)! x3 x5 =x x− + + ... 3! 5! = x sin(x) 2 (a) S = ∞ X (−1)n+1 n2 n=1 (2n)! 0 f (x) = f 00 (x) = = ∞ X (−1)n+1 2nx2n−1 n=1 ∞ X n=1 ∞ X n=1 (2n − 1)! (−1)n+1 2n(2n − 1)x2n−2 (2n − 1)! ∞ (−1)n+1 4n2 x2n−2 X (−1)n+1 2nx2n−2 − (2n − 1)! (2n − 1)! n=1 f 00 (1) + f 0 (1) f 00 (1) = 4S − f 0 (1) ⇒ S = 4 f 00 (x) + f 0 (x) 1 f (x) = x sin x ⇒ = (2 cos x + x cos x + sin x − x sin x) 4 4 3 cos(1) f 00 (1) + f 0 (1) = S= 4 4 (b) S = ∞ X (−1)n+1 n n=1 (2n + 1)! 0 f (x) = ∞ X (−1)n+1 2nx2n−1 n=1 ∞ X =2 =2 n0 =0 ∞ X (2n − 1)! 0 0 (−1)n +2 (n0 + 1)x2n +1 (2n0 + 1)! 0 ∞ 0 0 0 0 (−1)n +1 n0 x2n +1 = −2 n0 =0 ∞ X n0 =1 (2n0 + 1)! n =0 ∞ X +2 n=1 0 0 (−1)n +1 n0 x2n +1 (2n0 + 1)! (−1)n+1 x2n−1 (2n − 1)! + 2f (x) f 0 (1) = −2S + 2f (1) S= (c) S = 1 2f (1) − f 0 (1) = (− cos(1) + sin(1))) 2 2 ∞ X (−1)n+1 nπ 2n n=1 4n (2n − 1)! f 0 (x) = 1 0 xf (x) = 2 S= 0 X (−1)n +2 x2n +1 (−1)n +2 n0 x2n +1 + 2 (2n0 + 1)! (2n0 + 1)! 0 n0 =0 ∞ X = −2 = n = n0 + 1 ∞ X (−1)n+1 2nx2n−1 n=1 ∞ X n=1 ∞ X n=1 (2n − 1)! (−1)n+1 nx2n (2n − 1)! (−1)n+1 nπ 2n 1π 0 π = f (π/2) = n 4 (2n − 1)! 22 4 3 (d) ∞ X (−1)n (n + 1)π 2n (2n)! n=1 00 f (x) = = ∞ X (−1)n+1 2n(2n − 1)x2n−2 n=1 ∞ X (2n − 1)! (−1)n+1 2nx2n−2 = n = n0 + 1 (2n − 2)! n=1 ∞ X 0 =2 n0 =0 (−1)n +2 (n0 + 1)x2n (2n0 )! 0 0 0 ∞ X (−1)n +1 (n0 + 1)x2n =2 x− (2n0 )! 0 " # n =1 f 00 (π) = 2 [π − S] f 00 (π) =1+π 2 S=π− 4. By noting that for 0 ≤ η ≤ 1, η 1/2 ≥ η 3/4 ≥ η prove that Z a 2 1 π ≤ 5/2 (a2 − x2 )3/4 dx ≤ 3 4 a 0 Solution 1 Z a 2 2 3/4 1 Z 1 2 3/4 Z 1 dx = {x = at} 5/2 a (1 − t ) adt = (1 − t2 )3/4 dt a5/2 0 a 0 0 Z 1 Z 1 Z 1 0 < t < 1 ⇒ (1 − t2 ) < 1 ⇒ (1 − t2 )dt < (1 − t2 )3/4 dt < (1 − t2 )1/2 dt 0 0 0 Z 1 1 2 (1 − t2 )dt = 1 − = 3 3 0 Z 1 Z π/2 Z π/2 π 2 1/2 2 1/2 (1 − t ) dt = (1 − sin z) cos zdz = cos2 zdz = 4 0 0 0 (a − x ) 3/2 5. The gamma function Γ(n) is defined for all n > 1 by Z ∞ Γ(n + 1) = xn e−x dx 0 (a) Find a recurrence relation connecting Γ(n + 1) and Γ(n). (b) Deduce the value of Γ(n + 1) when n is a non-negative integer. √ (c) Find the value of Γ(7/2), given that Γ(1/2) = π. (d) Taking factorial m for any m to be defined by m! = Γ(m + 1), evaluate (3/2)! Solution (a) Z Γ(n + 1) = 0 ∞ ∞ xn e−x dx = − xn e−x 0 + 4 Z 0 ∞ nxn−1 e−x dx = nΓ(n) (b) Z ∞ n = 0 ⇒ Γ(1) = e−x dx = 1 0 n = k ⇒ Γ(k + 1) = kΓ(k) = k(k − 1)Γ(k − 1) = k · (k − 1) · · · 3 · 2 · 1 · Γ(1) = k! (c) Find the value of Γ(7/2), given that Γ(1/2) = √ π. (d) Taking factorial m for any m to be defined by m! = Γ(m + 1), evaluate (3/2)! 6. Evaluate the Laplacian of the function ψ(x, y, z) = x2 zx2 + y2 + z2 (a) Directly in Cartesian coordinates. (b) After changing to a spherical polar coordinate system. (c) Verify that, as they must, the two methods give the same result. Solution (a) ∇2 f (x, y, z) = 2z (−4x2 +y 2 +z 2 ) (x2 +y 2 +z 2 )2 (b) f˜(r, θ, ϕ) = f (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) = r cos θ sin2 θ cos2 ϕ cos θ(2 cos2 θ−(3+5 cos 2ϕ) sin2 θ) ∇2 f˜(r, θ, ϕ) = r 7. Maxwells equations for electromagnetism in free space can be written as ~ =0 (i)∇ · B ~ =0 (ii)∇ · E ~ ~ = 1 ∂E (iii)∇ × B 2 c ∂t ~ ~ = − ∂B (iv)∇ × E ∂t ~ is defined by B ~ = ∇ × A, ~ and a scalar ϕ by E ~ = −∇ · ϕ − A vector A condition ~ ∂A ∂t . Show that if the ~ + 1 ∂ϕ = 0 (v)∇ · A c2 ∂t ~ and ϕ satisfy wave equations is imposed (this is known as choosing the Lorentz gauge), then A as follows: 1 ∂2ϕ =0 c2 ∂t2 2~ ~− 1 ∂ A =0 (vii)∇2 A c2 ∂t2 (vi)∇2 ϕ − 5 ! ~ ∂ A ~ = 0 ⇒ ∇2 ϕ + ∇ (ii)∇ · E ∂t ∂ ~ =0 ⇒ ∇2 ϕ + ∇A ∂t 1 ∂2ϕ ⇒ (v) ⇒ ∇2 ϕ − 2 2 = 0 c ∂t ~ ~ ∂ E 1 ~ = ~ = 1 ∂E (iii)∇ × B ⇒ ∇ × (∇ × A) 2 2 c ∂t c ∂t ! ~ ∂ A 1 ∂ ~ + ∇(∇ · A) ~ = −∇ϕ − ⇒ −∇2 A c2 ∂t ∂t ! ~ ∂ϕ 1 ∂ ∂ A 1 ~−∇ = 2 −∇ϕ − ⇒ (v) ⇒ −∇2 A c2 ∂t c ∂t ∂t ~− ⇒ ∇2 A ~ 1 ∂2A =0 2 2 c ∂t if any typos or corrections found please let me know: Ben Yellin [email protected] 6