Comments
Description
Transcript
Conic Sections Practice Test
ID: A Conic Sections Practice Test 1. Give the coordinates of the circle's center and it radius. (x − 2) ____ 2 + (y + 9) 2 =1 2. Find the equation of the circle graphed below. A) x B) y 2 2 +y =x 2 2 =4 C) x + 16 D) x 2 2 +y +y 2 2 1 = 16 =1 E) x 2 + y = 16 Name: ______________________ ____ ID: A 3. Graph the following equation. x 2 − 10x + y 2 = -9 A) C) B) ____ 4. Find the vertex and focus of the parabola. ÁÊË y − 2 ˜ˆ¯ 2 + 16 (x − 3) = 0 A) vertex: ÊÁË −3, −2 ˆ˜¯ focus: ÊÁË −3, 14 ˆ˜¯ B) vertex: ÁÊË −3, −2 ˜ˆ¯ focus: ÁÊË −3, −18 ˜ˆ¯ C) vertex: ÊÁË −3, −2 ˆ˜¯ focus: ÊÁË −7, −2 ˆ˜¯ D) vertex: ÊÁË 3, 2 ˆ˜¯ focus: ÊÁË −1, 2 ˆ˜¯ 2 Name: ______________________ ____ ID: A 5. Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. focus: (0, 7) A) x2 = 28y B) x2 = 7y ____ C) x2 = –7y D) y2 = 28x E) y2 = 7x 6. Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin. directrix: x = 1 A) x2 = –4y B) x2 = 4y ____ C) x2 = y D) y2 = x E) y2 = –4x 7. Find the vertex and focus of the parabola. = − 9x 8 ÊÁ ˆ˜ A) vertex: ÁÁÁÁ 0, − 5 ˜˜˜˜ ÁË 4 ˜¯ y 2 B) vertex: (0, 0) C) vertex: (0, 0) D) vertex: (0, 0) ____ ÊÁ ˆ˜ focus: ÁÁÁÁ − 9 , − 9 ˜˜˜˜ ÁË 8 8 ˜¯ ÊÁ ˆ˜ focus: ÁÁÁÁ 0, − 9 ˜˜˜˜ ÁË 8 ˜¯ ÊÁ ˆ˜ focus: ÁÁÁÁ − 9 , 0 ˜˜˜˜ ÁË 8 ˜¯ ÁÊ ˜ˆ focus: ÁÁÁÁ − 9 , 0 ˜˜˜˜ ÁË 32 ˜¯ 8. Find the equation of the parabola with vertex at (5, 4) and focus at (-3, 4). A) ( y − 4 ) B) (y − 4) C) (y + 4) 2 2 2 = − 32( x − 5 ) D) ( y + 4 ) = 32( x − 5 ) E) ( y − 4 ) 2 2 = − 32( x − 5 ) = 8( x − 5 ) = 32( x + 5 ) 9. Find the equation of the parabola with vertex at (0, 0) and focus at (0, 5). Express the equation in standard form. 3 Name: ______________________ ____ ID: A 10. Find the center and vertices of the ellipse. 2 2 x + y 49 4 A) B) C) D) ____ = 1 center: (7, 0) center: (0, 0) center: (0, 0) center: (0, 0) 11. Find the center and foci of the ellipse. (y + 9) (x + 5) 2 + 5 9 Ê ˆ A) center: ÁË 5, 9 ˜¯ B) center: ÊÁË −5, −9 ˆ˜¯ C) center: ÁÊË −5, −9 ˜ˆ¯ D) center: ÊÁË 5, 9 ˆ˜¯ ____ vertices: (0, –2), (0, 2) vertices: (–2, 0), (2, 0) vertices: (0, –7), (0, 7) vertices: (–7, 0), (7, 0) 2 foci: ÊÁË 5, 7 ˆ˜¯ , ÊÁË 5, 11 ˆ˜¯ foci: ÊÁË −5, −11 ˆ˜¯ , ÊÁË −5, −7 ˆ˜¯ foci: ÁÊË −7, −9 ˜ˆ¯ , ÁÊË −3, −9 ˜ˆ¯ foci: ÊÁË 3, −9 ˆ˜¯ , ÊÁË 7, −9 ˆ˜¯ 12. Find the center and vertices of the ellipse. 2 2 4x + 9y − 24x + 72y + 144 = 0 A) center: ÁÊË −4, 3 ˜ˆ¯ B) center: ÊÁË −3, 4 ˆ˜¯ C) center: ÊÁË 3, −4 ˆ˜¯ D) center: ÊÁË 3, −4 ˆ˜¯ E) center: ÁÊË −3, 4 ˜ˆ¯ vertices: ÊÁË −7, 3 ˜ˆ¯ , vertices: ÊÁË −5, 4 ˆ˜¯ , vertices: ÊÁË 1, −4 ˆ˜¯ , vertices: ÊÁË 0, −4 ˆ˜¯ , vertices: ÁÊË −6, 4 ˜ˆ¯ , 4 ÁÊË −1, 3 ˜ˆ¯ ÊÁ −1, 4 ˆ˜ Ë ¯ ÊÁ 5, −4 ˆ˜ Ë ¯ ÊÁ 6, −4 ˆ˜ Ë ¯ ÁÊË 0, 4 ˜ˆ¯ Name: ______________________ ____ ID: A 13. Identify the graph of the following ellipse. 2 2 x + y =1 16 4 A) C) B) ____ 14. Find the center and vertices of the hyperbola. 2 2 11x − 25y + 22x + 250y − 889 = 0 A) center: (1, –5), vertices: (1, –10), (1, 0) B) center: (–1, 5), vertices: (–1, 0), (–1, 10) C) center: (–1, 5), vertices: (–6, 5), (4,5) D) center: (1,–5), vertices: (–4, –5), (6, –5) 5 Name: ______________________ ____ 15. Find the vertices and asymptotes of the hyperbola. 2 9y − 16x 2 = 144 A) vertices: ÊÁË 0, ±4 ˆ˜¯ B) vertices: ÊÁË 0, ±4 ˆ˜¯ C) vertices: ÊÁË ±4, 0 ˆ˜¯ D) vertices: ÁÊË ±4, 0 ˜ˆ¯ ____ ID: A asymptote: y = ± 4 x 3 asymptote: y = ± 3 x 4 asymptote: y = ± 4 x 3 asymptote: y = ± 3 x 4 16. Find the standard form of the equation of the hyperbola with the given characteristics. vertices: ÊÁË 0, ±6 ˆ˜¯ A) B) y 2 y 2 foci: ÊÁË 0, ±7 ˆ˜¯ 2 2 − x = 1 36 49 C) 2 x − y = 1 36 13 D) 2 x − y = 49 36 13 2 2 − x = 1 36 13 6 Name: ______________________ ____ 17. Find the graph of the following ellipse. 9x ____ 2 2 + 16y − 36x − 64y + -44 = 0 A) C) B) D) 18. Write the equation of the ellipse that has its center at the origin with focus at (0, 4) and vertex at (0, 7). A) B) ____ ID: A 2 2 x + y =1 49 33 2 2 x − y =1 33 49 C) D) 2 2 x + y = −1 33 49 2 2 x + y =1 33 49 19. Find the center and vertices of the ellipse. 2 2 x + 9y + 16x − 54y + 136 = 0 A) B) C) D) E) center: (3, –8) center: (8, –3) center: (–8, 3) center: (–8, 3) center: (8, –3) vertices: (0, –8), (6, –8) vertices: (7, –3), (9, –3) vertices: (–9, 3), (–7, 3) vertices: (–11, 3), (–5, 3) vertices: (5, –3), (11, –3) 7 Name: ______________________ ____ ID: A 20. Find the standard form of the equation of the ellipse with the following characteristics. foci: ÊÁË ±4, 0 ˆ˜¯ major axis of length: 12 2 A) 2 x + y = 1 36 20 B) 2 x + y = 1 36 16 C) 2 x + y = 1 16 36 2 D) 2 y x + = 1 144 16 E) 2 y x + = 1 144 128 2 2 2 ____ 21. Find the standard form of the equation of the hyperbola with the given characteristics. vertices: (–2, –4), (–2, 6) ÊÁ y − 1 ˆ˜ 2 2 Ë ¯ (x + 2) − =1 25 11 ÊÁ y + 1 ˆ˜ 2 2 Ë ¯ (x − 2) − =1 25 11 A) B) ____ foci: (–2, –5), (–2, 7) C) D) 22. Graph the hyperbola. 9x 2 − 9y 2 = 81 A) C) B) D) 8 ÊÁ y − 2 ˆ˜ 2 2 Ë ¯ (x + 1) − =1 11 25 ÊÁ y − 1 ˆ˜ 2 2 Ë ¯ (x + 2) − =1 25 36 Name: ______________________ ____ ID: A 23. Identify the conic by writing the equation in standard form. 2 2 10y − 20x + 60y + 160x − 255 = 0 ÊÁ y − 3 ˆ˜ 2 2 Ë ¯ (x − 4) A) − = 1; hyperbola 5 5 2 4 2 2 ÁÊË y + 3 ˜ˆ¯ (x − 4) B) − = 1; hyperbola 5 5 2 4 2 ÊÁ y + 3 ˆ˜ 2 Ë ¯ (x − 4) C) − = 1; hyperbola 97 97 2 4 ____ 24. Identify the conic by writing the equation in standard form. 2 2 4x + 4y + 40x + 16y + 40 = 0 2 2 A) (x + 5) + ÊÁË y + 2 ˆ˜¯ = 19; circle 2 2 B) (x + 5) + ÊÁË y + 2 ˆ˜¯ = 39; circle C) (x + 5) 11 4 2 ÊÁ y + 2 ˆ˜ 2 Ë ¯ + = 1; ellipse 11 4 9 ID: A Conic Sections Practice Test Answer Section 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. (2, −9), r = 1 C B D A E D A 2 x = 20y D B D A C A B B D D A A C B A 1