Comments
Description
Transcript
Document 2438674
Gauge Institute Journal H. Vic Dannon Periodic Delta Function, and Fejer-Cesaro Summation of Fourier Series H. Vic Dannon [email protected] June, 2012 Abstract The Fejer Summation Theorem supplies the conditions under which the Fejer-Cesaro Summation of Fourier Series, associated with a function f (x ) equals f (x ) . It is believed to hold in the Calculus of Limits. In fact, The Theorem cannot be proved in the Calculus of Limits under any conditions, because the Fejer Summation requires integration of the singular Fejer Kernel. In Infinitesimal Calculus, the Fejer Kernel is the Periodic Delta Function, δperiodic (x ) = ... + δ(x + 4) + δ(x + 2) + δ(x ) + δ(x − 2) + δ(x − 4) + ... . This function violates the Calculus of Limits Conditions The Hyper-real δ(x ) , is not defined in the Calculus of Limits, and δ(x ) is not integrable in any bounded interval. 1 Gauge Institute Journal 1 2 H. Vic Dannon ( δ(x + 0) + δ(x − 0) ) = 0 does not replace δ(x ) at its discontinuity point, x = 0 . But δPeriodic (x ) equals its Fejer Summation, and the Fejer Summation associated with any periodic hyper-real f (x ) , equals f (x ) . Keywords: Infinitesimal, Infinite-Hyper-Real, Hyper-Real, infinite Hyper-real, Infinitesimal Calculus, Delta Function, Periodic Delta Function, Delta Comb, Fourier Series, Dirichlet Kernel, Fejer Kernel, Fejer-Cesaro Summation, Fejer Summation Theorem, 2000 Mathematics Subject Classification 26E35; 26E30; 26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15; 46S20; 97I40; 97I30 2 Gauge Institute Journal H. Vic Dannon Contents 0. The Origin of the Fejer Summation Theorem 1. The Divergence of the Fejer Kernel in the Calculus of Limits 2. Hyper-real line. 3. Integral of a Hyper-real Function 4. Delta Function 5. Periodic Delta Function, δperiodic (ξ − x ) 6. Convergent Series 7. Fejer Sequence and δperiodic (ξ − x ) 8. Fejer Kernel and δperiodic (ξ − x ) 9. Fejer Summation and δperiodic (ξ − x ) 10. Fejer Summation Theorem References 3 Gauge Institute Journal H. Vic Dannon The Origin of the Fejer-Cesaro Summation Theorem Let f (x ) be a function defined on [−1,1] , so that f (1) = f (−1) . The Fourier Coefficients of f (x ) are ξ =1 1 f (ξ )e−in πξd ξ ≡ cn , n = ..., −2, −1, 0,1, 2,... , ∫ 2 ξ =−1 The Fourier Series partial sums ξ =1 Sn { f (x )} = f (ξ ) { 12 e −in π(ξ −x ) + ... + 12 e −i π(ξ −x ) + 12 + 12 ei π(ξ −x ) + ... + 12 e in π(ξ −x ) }d ξ , ξ =−1 ∫ Dirichlet Sequence give rise to the Dirichlet Sequence Dn (x ) = 12 e −in πx + ... + 12 e −i πx + 12 + 12 e i πx + ... + 12 e in πx = = 1 2 + cos πx + cos 2πx + ... + cos n πx sin(n + 12 )πx 2 sin 12 πx , n = 0,1, 2,.. 0.1 Cesaro To assign a numerical value to the divergent series 1 − 1 + 1 − 1 + 1 − 1 + ... , Cesaro suggested to consider the convergence of the Arithmetic Means of its Partial Sums 4 Gauge Institute Journal H. Vic Dannon σ0 = s 0 = 1 , σ1 = σ2 = σ3 = s0 + s1 1 + (1 − 1) = 12 , = 2 2 s0 + s1 + s2 1 + (1 − 1) + (1 − 1 + 1) = = 3 3 2 3 , s 0 + s1 + s2 + s 3 1 + (1 − 1) + (1 − 1 + 1) + (1 − 1 + 1 − 1) = = 4 4 1 2 , …………………………………………………………………………….. Thus, σ2k +1 = 12 , σ2k = k +1 2k +1 → 1 2 and the series converges to 12 . we conclude that the infinite series 1 − 1 + 1 − 1 + 1 − 1 + ... has Cesaro Sum of For any series a0 + a1 + a2 + a3 + ... , with partial sums s 0 , s1, s2 ,... If s 0 + s1 + ... + sm →σ m +1 Then σ is the Cesaro Sum of a0 + a1 + a2 + a3 + ... 0.2 Fejer applied Cesaro summation to Fourier Series. The Fejer Summation partial sums are the Arithmetic Means 5 1 2 Gauge Institute Journal Fej Sn { f (x )} = ξ =1 = ∫ ξ =−1 f (ξ ) H. Vic Dannon S0 { f (x )} + S1 { f (x )} + ... + Sn { f (x )} n +1 1 {(n + 1) 12 + n cos[π(ξ − x )] + ... + cos[πn(ξ − x )]}d ξ . 1 n + Fejer Sequence The Fejer Summation associated with the function f (x ) is clearly different from the Fourier Series associated with f (x ) , but it may nevertheless converge to f (x ) . The equality of the Fejer Summation associated with f (x ) , to f (x ) is the Fejer Summation Theorem. The question is under which conditions does the Theorem hold. 6 Gauge Institute Journal H. Vic Dannon 1. The Divergence of the Fejer Kernel in the Calculus of Limits The Fejer Summation is believed to converge to f (x ) provided that 1. f (x ) is integrable on [−1,1] 2. f (x ) is periodic with period T = 2 3. 1 ( f (x + 0) + f (x − 0) ) replaces f (x ) at a discontinuity point. 2 These Conditions reflect the belief that the equality depends only on the function, regardless of the singularity of the Fejer Kernel. The Fejer Summation Sn +1 = Sn + an+1 . is not an infinite series, where It has a singular Kernel, and it raises the question whether it equals f (x ) . In the Calculus of Limits, no smoothness of the function guarantees the convergence of the Fejer Summation. 1.1 The Fejer Kernel is either singular or zero In the Calculus of Limits, the Fejer Summation is the limit of the Fej Sn { f (x )} = n1 c−ne −in πx + ... + nn−1 c−1e−i πx + c0 + n n−1 c1ei πx + ... + n1 cnein πx 7 Gauge Institute Journal H. Vic Dannon ⎛ ξ =1 ⎞⎟ ⎛ ξ =1 ⎞⎟ ⎛ ξ =1 ⎞⎟ ⎜⎜ 1 ⎜⎜ 1 ⎜⎜ 1 ⎟ ⎟ in x in −in πξ π πξ = ⎜ 2n ∫ f (ξ )e + ... + ⎜ 2 ∫ f (ξ )d ξ ⎟⎟ + ... + ⎜ 2n ∫ f (ξ )e d ξ ⎟⎟⎟e −in πx d ξ ⎟⎟e ⎜⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟ ⎝ ξ =−1 ⎠ ⎝⎜ ξ =−1 ⎠⎟ ⎝⎜ ξ =−1 ⎠⎟ ξ =1 = f (ξ ) { 21n e −in π(ξ −x ) + ... + n2−n1 e −i π(ξ −x ) + 12 + n2−n1 e i π(ξ −x ) + ... + 21n ein π(ξ −x ) } d ξ . ξ =−1 ∫ Fejer Sequence As n → ∞ , the Fejer Sequence becomes the Fejer Kernel, which is singular, and diverges at any ξ − x = 2k . Thus, the Fejer Summation does not converge in the Calculus of Limits. Avoiding the singularity at ξ = x , by using the Cauchy Principal Value of the integral does not recover the Theorem, because at any ξ − x ≠ 2k , the Fejer Kernel vanishes, and the integral is identically zero, for any function f (x ) . Plots of the Fejer sequence confirm that In the Calculus of Limits, the Fejer Kernel is either singular or zero 1.2 Plots of Fejer Sequence plots the spikes at x = 0 , x = −2 , x = 2 8 Gauge Institute Journal H. Vic Dannon gives 9 spikes 9 Gauge Institute Journal H. Vic Dannon Thus, the Fejer Summation Theorem does not hold in the Calculus of Limits. 1.3 Infinitesimal Calculus Solution By resolving the problem of the infinitesimals [Dan2], we obtained the Infinite Hyper-reals that are strictly smaller than ∞ , and constitute the value of the Delta Function at the singularity. The controversy surrounding the Leibnitz Infinitesimals derailed the development of the Infinitesimal Calculus, and the Delta Function could not be defined and investigated properly. In Infinitesimal Calculus, [Dan3], we can differentiate over jump discontinuities, and integrate over singularities. The Delta Function, the idealization of an impulse in Radar circuits, is a Discontinuous Hyper-Real function which definition requires Infinite Hyper-reals, and which analysis requires Infinitesimal Calculus. In [Dan5], we show that in infinitesimal Calculus, the hyper-real ω =∞ 1 δ(x ) = ei ωxd ω ∫ 2π ω =−∞ is zero for any x ≠ 0 , 10 Gauge Institute Journal H. Vic Dannon it spikes at x = 0 , so that its Infinitesimal Calculus x =∞ integral is ∫ δ(x )dx = 1 , x =−∞ and δ(0) = 1 < ∞. dx Here, we show that in Infinitesimal calculus, the Fejer Kernel is the periodic hyper-real Delta Function: A periodic train of Delta Functions. And the Fejer Summation Fej S { f (x )} associated with a Hyperreal periodic function f (x ) , equals f (x ) . 11 Gauge Institute Journal H. Vic Dannon 2. Hyper-real Line Each real number α can be represented by a Cauchy sequence of rational numbers, (r1, r2 , r3 ,...) so that rn → α . The constant sequence (α, α, α,...) is a constant hyper-real. In [Dan2] we established that, 1. Any totally ordered set of positive, monotonically decreasing to zero sequences (ι1, ι2 , ι3 ,...) constitutes a family of infinitesimal hyper-reals. 2. The infinitesimals are smaller than any real number, yet strictly greater than zero. 3. Their reciprocals ( 1 1 1 , , ι1 ι2 ι3 ) ,... are the infinite hyper-reals. 4. The infinite hyper-reals are greater than any real number, yet strictly smaller than infinity. 5. The infinite hyper-reals with negative signs are smaller than any real number, yet strictly greater than −∞ . 6. The sum of a real number with an infinitesimal is a non-constant hyper-real. 7. The Hyper-reals are the totality of constant hyper-reals, a family of infinitesimals, a family of infinitesimals with 12 Gauge Institute Journal H. Vic Dannon negative sign, a family of infinite hyper-reals, a family of infinite hyper-reals with negative sign, and non-constant hyper-reals. 8. The hyper-reals are totally ordered, and aligned along a line: the Hyper-real Line. 9. That line includes the real numbers separated by the nonconstant hyper-reals. Each real number is the center of an interval of hyper-reals, that includes no other real number. 10. In particular, zero is separated from any positive real by the infinitesimals, and from any negative real by the infinitesimals with negative signs, −dx . 11. Zero is not an infinitesimal, because zero is not strictly greater than zero. 12. We do not add infinity to the hyper-real line. 13. The infinitesimals, the infinitesimals with negative signs, the infinite hyper-reals, and the infinite hyper-reals with negative signs are semi-groups with respect to addition. Neither set includes zero. 14. The hyper-real line is embedded in \∞ , and is not homeomorphic to the real line. There is no bi-continuous one-one mapping from the hyper-real onto the real line. 13 Gauge Institute Journal 15. H. Vic Dannon In particular, there are no points on the real line that can be assigned uniquely to the infinitesimal hyper-reals, or to the infinite hyper-reals, or to the non-constant hyperreals. 16. No neighbourhood of a hyper-real is homeomorphic to an \n ball. Therefore, the hyper-real line is not a manifold. 17. The hyper-real line is totally ordered like a line, but it is not spanned by one element, and it is not one-dimensional. 14 Gauge Institute Journal H. Vic Dannon 3. Integral of a Hyper-real Function In [Dan3], we defined the integral of a Hyper-real Function. Let f (x ) be a hyper-real function on the interval [a, b ] . The interval may not be bounded. f (x ) may take infinite hyper-real values, and need not be bounded. At each a ≤ x ≤b, there is a rectangle with base [x − dx2 , x + dx2 ] , height f (x ) , and area f (x )dx . We form the Integration Sum of all the areas for the x ’s that start at x = a , and end at x = b , ∑ f (x )dx . x ∈[a ,b ] If for any infinitesimal dx , the Integration Sum has the same hyper-real value, then f (x ) is integrable over the interval [a,b ] . Then, we call the Integration Sum the integral of f (x ) from x = a , to x = b , and denote it by 15 Gauge Institute Journal H. Vic Dannon x =b ∫ f (x )dx . x =a If the hyper-real is infinite, then it is the integral over [a, b ] , If the hyper-real is finite, x =b ∫ f (x )dx = real part of the hyper-real . , x =a 3.1 The countability of the Integration Sum In [Dan1], we established the equality of all positive infinities: We proved that the number of the Natural Numbers, Card` , equals the number of Real Numbers, Card \ = 2Card ` , and we have Card ` Card ` = (Card `)2 = .... = 2Card ` = 22 = ... ≡ ∞ . In particular, we demonstrated that the real numbers may be well-ordered. Consequently, there are countably many real numbers in the interval [a, b ] , and the Integration Sum has countably many terms. While we do not sequence the real numbers in the interval, the summation takes place over countably many f (x )dx . The Lower Integral is the Integration Sum where f (x ) is replaced 16 Gauge Institute Journal H. Vic Dannon by its lowest value on each interval [x − dx2 , x + dx2 ] 3.2 ∑ x ∈[a ,b ] ⎛ ⎞ ⎜⎜ inf f (t ) ⎟⎟⎟dx ⎜⎝ x −dx ≤t ≤x + dx ⎠⎟ 2 2 The Upper Integral is the Integration Sum where f (x ) is replaced by its largest value on each interval [x − dx2 , x + dx2 ] 3.3 ⎛ ⎞⎟ ⎜⎜ f (t ) ⎟⎟dx ∑ ⎜⎜ x −dxsup ⎟ dx ≤t ≤x + ⎠⎟ x ∈[a ,b ] ⎝ 2 2 If the integral is a finite hyper-real, we have 3.4 A hyper-real function has a finite integral if and only if its upper integral and its lower integral are finite, and differ by an infinitesimal. 17 Gauge Institute Journal H. Vic Dannon 4. Delta Function In [Dan5], we have defined the Delta Function, and established its properties 1. The Delta Function is a hyper-real function defined from the ⎧ ⎫ ⎪ 1 ⎪ hyper-real line into the set of two hyper-reals ⎪ ⎬ . The ⎨ 0, ⎪ ⎪ ⎪ dx ⎪⎭ ⎪ ⎩ 0, 0, 0,... . The infinite hyper- hyper-real 0 is the sequence real 1 depends on our choice of dx . dx 2. We will usually choose the family of infinitesimals that is spanned by the sequences 1 1 1 , , ,… It is a n n2 n3 semigroup with respect to vector addition, and includes all the scalar multiples of the generating sequences that are non-zero. That is, the family includes infinitesimals with 1 will mean the sequence n . dx negative sign. Therefore, Alternatively, we may choose the family spanned by the sequences 1 2n , 1 3n , 1 4n 18 ,… Then, 1 dx will mean the Gauge Institute Journal H. Vic Dannon sequence 2n . Once we determined the basic infinitesimal dx , we will use it in the Infinite Riemann Sum that defines an Integral in Infinitesimal Calculus. 3. The Delta Function is strictly smaller than ∞ 1 dx δ(x ) ≡ 4. We define, where χ ⎡ −dx , dx ⎤ (x ) , ⎢⎣ 2 2 ⎥⎦ χ ⎧1, x ∈ ⎡ − dx , dx ⎤ ⎪ ⎢⎣ 2 2 ⎥⎦ . ⎪ ⎡ −dx , dx ⎤ (x ) = ⎨ ⎪ ⎣⎢ 2 2 ⎦⎥ 0, otherwise ⎪ ⎩ 5. Hence, for x < 0 , δ(x ) = 0 at x = − 1 dx , δ(x ) jumps from 0 to , dx 2 1 . x ∈ ⎡⎢⎣ − dx2 , dx2 ⎤⎦⎥ , δ(x ) = dx for at x = 0 , at x = δ(0) = 1 dx 1 dx , δ(x ) drops from to 0 . dx 2 for x > 0 , δ(x ) = 0 . x δ(x ) = 0 6. If dx = 7. If dx = 1 n 2 n , δ(x ) = , δ(x ) = χ χ (x ), 2 [− 1 , 1 ] 2 2 1 , χ (x ), 3 [− 1 , 1 ] 4 4 2 , (x )... [− 1 , 1 ] 6 6 3 2 cosh2 x 2 cosh2 2x 2 cosh2 3x 19 ,... Gauge Institute Journal 8. If dx = 1 n H. Vic Dannon , δ(x ) = e −x χ[0,∞), 2e−2x χ[0,∞), 3e−3x χ[0,∞),... x =∞ 9. ∫ δ(x )dx = 1 . x =−∞ In [Dan6], we obtained k =∞ 10. 1 δ(ξ − x ) = e −ik (ξ −x )dk ∫ 2π k =−∞ In [Dan8], we defined the Periodic Delta Function, and obtained 11. δPeriodic (x ) = ... + δ(x + 4) + δ(x + 2) + δ(x ) + δ(x − 2) + δ(x − 4) + ... = ... + 12 e −in πx + ... + 12 e −i πx + 20 1 2 + 12 e i πx + ... + 12 e in πx + ... Gauge Institute Journal H. Vic Dannon 5. Periodic Delta Function δperiodic (ξ − x ) 5.1 Periodic Delta Function δPeriodic (ξ − x ) = ... + δ(ξ − x + 2) + δ(ξ − x ) + δ(ξ − x − 2) + ... is a periodic hyper-real Delta function, with period T = 2 . In [Dan8], we obtained δPeriodic (ξ − x ) = .. + 12 e −in π(ξ −x ) + .. + 12 e −i π(ξ −x ) + 12 + 12 e i π(ξ −x ) + .. + 12 e in π(ξ −x ) + .. 21 Gauge Institute Journal H. Vic Dannon 6. Convergent Series In [Dan10], we defined convergence of infinite series in Infinitesimal Calculus 6.1 Sequence Convergence to a finite hyper-real a an → a iff 6.2 Sequence Convergence to an infinite hyper-real A an → A iff 6.3 an represents the infinite hyper-real A . Series Convergence to a finite hyper-real s a1 + a2 + ... → s iff 6.4 an − a = infinitesimal . a1 + ... + an − s = infinitesimal . Series Convergence to an Infinite Hyper-real S a1 + a2 + ... → S iff a1 + ... + an represents the infinite hyper-real S . 22 Gauge Institute Journal H. Vic Dannon 7. Fejer Sequence and δperiodic (ξ − x ) 7.1 Fejer Sequence Definition Let f (x ) be an integrable function on [−1,1] . Then, for each n = ..., −3, −2, −1, 0,1, 2, 3,... , the integrals ξ =1 1 f (ξ )e−in πξd ξ ≡ cn ∫ 2 ξ =−1 are the Fourier Coefficients of f (x ) . The Fourier Series partial sums ξ =1 Sn { f (x )} = f (ξ ) { 12 e −in π(ξ −x ) + ... + 12 e −i π(ξ −x ) + 12 + 12 e i π(ξ −x ) + ... + 12 e in π(ξ −x ) }d ξ , ξ =−1 ∫ Dirichlet Sequence give rise to the Dirichlet Sequence Dn (x ) = 12 e −in πx + ... + 12 e −i πx + 12 + 12 ei πx + ... + 12 e in πx = = 1 2 + cos πx + cos 2πx + ... + cos n πx sin(n + 12 )πx 2 sin 12 πx , n = 0,1, 2,.. The Fejer Summation partial sums are the Arithmetic Means Fej Sn { f (x )} = S0 { f (x )} + S1 { f (x )} + ... + Sn { f (x )} n +1 23 Gauge Institute Journal ξ =1 = ∫ f (ξ ) ξ =−1 H. Vic Dannon 1 {(n + 1) 12 + n cos[π(ξ − x )] + ... + cos[πn(ξ − x )]}d ξ . n +1 Fejer Sequence They give rise to the Fejer Sequence Fn (x ) = 7.2 Fm −1(x ) = = 1 2 1 2 + n n+1 cos[π(ξ − x )] + ... + + mm−1 cos πx + ... + 1 cos[πn(ξ n +1 m −(m −1) cos(m m − x )] − 1)πx , D0(x ) + D1(x ) + ...Dm −1(x ) , m 2 1 1 sin ( 2 m πx ) = , 2m sin2 (1 πx ) 2 m = 1, 2,.. Proof: Fm −1(x ) = D0(x ) + D1(x ) + ...Dm −1(x ) m 1 sin 23 πx sin(m − 12 )πx ⎫⎪⎪ 1 ⎧⎪⎪ sin 2 πx = ⎨ + + ... + ⎬ 1 πx ⎪⎪ m ⎪⎪ 2 sin 1 πx 2 sin 1 πx 2 sin 2 2 2 ⎩ ⎭ = 1 sin 12 πx + sin 23 πx + ... + sin(m − 12 )πx } { 1 2m sin 2 πx = 1 2m sin 12 πx = { 1 4m sin2 12 πx cos 0−cos πx 2 sin 1 πx 2 + cos πx −cos 2 πx 2 sin 1 πx 2 {1 − cos m πx } 24 + ... + cos(m −1)πx −cos m πx 2 sin 1 πx 2 } Gauge Institute Journal H. Vic Dannon 2 1 1 sin ( 2 m πx ) = ., 2m sin2 ( 1 πx ) 2 7.3 Fejer Sequence is a Periodic Delta Sequence, and represents a Periodic Delta Function 2 1 1 sin ( 2 m πx ) , m = 1, 2, 3,... Each Fm −1(x ) = 2m sin2 (1 πx ) 2 1. has the sifting property on each interval, x =−3 ... ∫ x =−1 Fm −1(x )dx = 1 ; x =−5 ∫ x =1 Fm −1(x )dx = 1 ; x =−3 ∫ Fm −1(x )dx = 1 … x =−1 2. is a continuous function 3. peaks on each of these intervals to lim Fm (x ) = 12 m . x →2k Proof of (1) x =1 ∫ x =1 Fm −1(x )dx = x =−1 ∫ x =−1 ⎡ 1 + m −1 cos πx + ... + 1 cos(m − 1)πx ⎤ dx ⎢⎣ 2 ⎥⎦ m m x =1 = ⎡⎢ 12 x + mm−π1 sin πx + ... + m(m1−1)π sin(m − 1)πx ⎤⎥ ⎣ ⎦ x =−1 = 1 ., Proof of (3) As x → 0 , 2 1 1 sin ( 2 m πx ) 0 → 2m sin2 (1 πx ) 0 2 25 Gauge Institute Journal H. Vic Dannon Applying Bernoulli’s rule, 1 2m ⎡ sin2 1 m πx ⎤ ' 1 1 1 1 (2 sin 2 m πx )cos 2 m πx ( 2 m π) ⎢⎣ ⎥⎦ 2 → ⎡ sin2 1 πx ⎤ ' x →0 2m (2 sin 1 πx )cos 1 πx ( 1 π) 2 2 2 2 x =0 ⎣⎢ ⎦⎥ = 1 sin m πx 2 sin πx Applying Bernoulli’s rule to = x =0 0 0 1 sin m πx , 2 sin πx 1 [sin m πx ]' 1 πm cos m πx → 2 [sin πx ]' x →0 2 π cos πx x =0 = 12 m . , 7.4 Fejer Sequence Represents a Periodic Delta Function δperiodic (ξ − x ) = 2 m 1 ⎜⎛ sin 2 π(ξ − x ) ⎞⎟⎟ ⎜ ⎟ 2m ⎜⎜⎝ sin 1 π(ξ − x ) ⎠⎟⎟ 2 26 Gauge Institute Journal H. Vic Dannon 8. Fejer Kernel and δperiodic (ξ − x ) 8.1 Fejer Kernel in the Calculus of Limits 2 1 1 sin 2 m π(ξ − x ) Fejer (ξ − x ) = lim m →∞ 2m sin2 1 π(ξ − x ) 2 = lim m →∞ { 1 2 + mm−1 cos π(ξ − x ) + ... + m −(m −1) cos(m m − 1)π(ξ − x ) } 8.2 In the Calculus of Limits, the Fejer Kernel does not have the sifting property Proof: By 4.3, as ξ − x → 2k , 2 1 1 sin 2 m π(ξ − x ) → 12 m . 2 2m sin 1 π(ξ − x ) 2 Hence, 2 1 1 sin 2 m π(ξ − x ) → lim 12 m = ∞ . , lim lim m →∞ ξ −x →2k 2m sin2 1 π(ξ − x ) m →∞ 2 8.3 Hyper-real Fejer Kernel in Infinitesimal Calculus ⎧⎪ Fejer (ξ − x ) = ⎪⎨ ⎪⎪ ⎩ 1 n 2 , ξ − x = 2k . 0, ξ − x ≠ 2k 27 Gauge Institute Journal H. Vic Dannon Proof: at any ξ − x = 2k , 2 1 1 sin 2 m π(ξ − x ) 2m sin2 1 π(ξ − x ) 2 = 1m 2 ., ξ −x =2k For ξ − x ≠ 2k , and for any m , sin2 12 m π(ξ − x ) sin2 12 π(ξ − x ) is bounded by M (x ) . Therefore, 21 1 sin 2 m π(ξ − x ) ≤ 0≤ 2m sin2 1 π(ξ − x ) 1 2m M (ξ − x ) 2 Hence, for ξ − x ≠ 2k , 2 1 1 sin 2 m π(ξ − x ) = infinitesimal . , 2m sin2 1 π(ξ − x ) 2 8.4 Let 1 N 2 = 1 dx be an infinite Hyper-real. Then, 2 1 1 sin 2 N π(ξ − x ) Fejer (ξ − x ) = 2N sin2 1 π(ξ − x ) 2 = 1 2 + N −1 cos π(ξ N − x ) + ... + N −(N −1) cos(N N − 1)π(ξ − x ) = ... + δ(ξ − x + 2) + δ(ξ − x ) + δ(ξ − x − 2) + ... = δperiodic (ξ − x ) Proof: Fejer (ξ − x ) = 1 2 + N −1 cos π(ξ N − x ) + ... + 28 N −(N −1) cos(N N − 1)π(ξ − x ) Gauge Institute Journal H. Vic Dannon By 8.3, ⎧⎪ N , ξ − x = −2 ⎧⎪ N , ξ = x ⎧⎪ N , ξ − x = 2 = ... + ⎨⎪ 2 + ⎨⎪ 2 + ⎨⎪ 2 + ... ⎪⎪ 0, ξ − x ≠ −2 ⎪⎪ 0, ξ ≠ x ⎪⎪ 0, ξ − x ≠ 2 ⎩ ⎩ ⎩ ⎪⎧⎪ 1 , ξ − x = −2 ⎪⎧⎪ 1 , ξ = x ⎪⎧⎪ 1 , ξ − x = 2 = ... + ⎨ dx + ⎨ dx + ⎨ dx + ... ⎪⎪ 0, ξ − x ≠ −2 ⎪⎪ 0, ξ ≠ x ⎪⎪ 0, ξ − x ≠ 2 ⎩ ⎩ ⎩ = ... + δ(ξ − x + 2) + δ(ξ − x ) + δ(ξ − x − 2) + ... = δPeriodic (ξ − x ) . , 29 Gauge Institute Journal H. Vic Dannon 9. Fejer Summation and δperiodic (ξ − x ) 9.1 Fejer Summation of a Hyper-real Function Let f (x ) be a hyper-real function integrable on [−1,1] . Then, for each n = ..., −3, −2, −1, 0,1, 2, 3,... , the integrals ξ =1 1 f (ξ )e−in πξd ξ ≡ cn ∫ 2 ξ =−1 exist, with finite, or infinite hyper-real values. The cn are the Fourier Coefficients of f (x ) . The Fourier Series partial sums ξ =1 Sn { f (x )} = f (ξ ) { 12 e −in π(ξ −x ) + ... + 12 e −i π(ξ −x ) + 12 + 12 ei π(ξ −x ) + ... + 12 e in π(ξ −x ) } d ξ , ξ =−1 ∫ Dirichlet Sequence give rise to the Dirichlet Sequence Dn (x ) = 12 e −in πx + ... + 12 e −i πx + 12 + 12 ei πx + ... + 12 e in πx = = 1 2 + cos πx + cos 2πx + ... + cos n πx sin(n + 12 )πx 2 sin 12 πx , n = 0,1, 2,.. The Fejer Summation partial sums are the Arithmetic Means 30 Gauge Institute Journal H. Vic Dannon Fej Sn { f (x )} = ξ =1 = ∫ f (ξ ) ξ =−1 S0 { f (x )} + S1 { f (x )} + ... + Sn { f (x )} n +1 1 {(n + 1) 12 + n cos[π(ξ − x )] + ... + cos[πn(ξ − x )]}d ξ . 1 n + Fejer Sequence They give rise to the Fejer Sequence Fn (x ) = 1 2 1 cos[ πn(ξ − x )] + n n+1 cos[π(ξ − x )] + ... + n + 1 By 4.2, for m = 1, 2,.. , Fm −1(x ) = = 1 2 + m −1 cos πx m + ... + 1 m cos(m − 1)πx , D0(x ) + D1(x ) + ...Dm −1(x ) , m 2 1 1 sin ( 2 m πx ) = . 2m sin2 (1 πx ) 2 Let 1 N 2 = 1 dx be an infinite Hyper-real. The Hyper-real Fejer Kernel is Fejer (x ) = 1 2 + N −1 cos πx N + ... + 1 N cos(N − 1)πx = ... + δ(x + 4) + δ(x + 2) + δ(x ) + δ(x − 2) + δ(x + 4)... The Fejer Summation associated with f (x ) is Fejer S { f (x )} = 1 c e −Ni πx N −N + ... + N −1 c e −i πx −1 N + c0 + N −1 c e i πx 1 N + ... + 1 N cN e Ni πx For each x , it may assume finite or infinite hyper-real values. 31 Gauge Institute Journal H. Vic Dannon Fejer S { δPeriodic (ξ − x )} = δPeriodic (ξ − x ) 9.2 Proof: Let N be an infinite hyper-real. Fejer S { δPeriodic (ξ − x )} = 1c e −Ni π(ξ −x ) N −N +c0 + + .. + N −1 c e −i π(ξ −x ) −1 N N −1 c1e i π(ξ −x ) N + .. + 1 N cN e Ni π(ξ −x ) , where u =1 N −n c n N = 1 2 ∫ δPeriodic (u )e−in πudu , u =−1 T = 2 is the period, and c = 0 . For δPeriodic (u ) with T = 2 , u =1 N −n cn N = 1 2 ∫ ⎡ ... + δ(u + 2) + δ(u ) + δ(u − 2) + ... ⎤e −in πudu ⎣ ⎦ u =−1 u =1 = 1 2 ∫ u =−1 δ(u )e −in πudu = 12 . Therefore, Fejer S { δPeriodic (ξ − x )} = 12 e −iN π(ξ −x ) + ... + 12 e−i π(ξ −x ) + 12 + 12 e i π(ξ −x ) + ... + 12 e iN π(ξ −x ) , = δPeriodic (ξ − x ) , by 5. , 32 Gauge Institute Journal H. Vic Dannon 10. Fejer Summation Theorem The Fejer Summation Theorem for a hyper-real function, f (x ) , is the Fundamental Theorem of Fejer Summation. It supplies the conditions under which the Fejer Summation associated with f (x ) equals f (x ) . It is believed to hold in the Calculus of Limits under some Conditions. In fact, The Theorem cannot be proved in the Calculus of Limits under any conditions, because the Fejer Summation requires integration of the singular Fejer Kernel. 10.1 Fejer Summation Theorem cannot be proved in the Calculus of Limits Proof: Take L = 1 , and c = 0 . In the Calculus of Limits, the Fejer Summation is the limit of Fej Sn { f (x )} = n1 c−ne −in πx + ... + nn−1 c−1e −i πx +c0 + nn−1 c1e i πx + ... + n1 cnein πx , 33 Gauge Institute Journal H. Vic Dannon ξ =1 ⎛ ξ =1 ⎞⎟ ⎛ ⎞⎟ ⎜⎜ 1 ⎜⎜ n −1 ⎟ in πξ in x − π = ⎜ 2n ∫ f (ξ )e d ξ ⎟⎟e + ... + ⎜ 2n ∫ f (ξ )ei πξd ξ ⎟⎟⎟e −i πx ⎜⎜ ⎜ ⎟ ⎟ ⎠⎟ ⎝ ξ =−1 ⎠⎟ ⎝⎜ ξ =−1 ξ =1 ⎛ ξ =1 ⎞⎟ ⎛ ⎞⎟ ⎛ ξ =1 ⎞⎟ ⎜⎜ 1 ⎜⎜ n −1 ⎜⎜ 1 ⎟ ⎟ i i x in − πξ π − πξ d ξ ⎟⎟⎟ein πx + ⎜ 2 ∫ f (ξ )d ξ ⎟⎟ + ⎜ 2n ∫ f (ξ )e d ξ ⎟⎟e + ... + ⎜ 2n ∫ f (ξ )e ⎜⎜ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎟ ⎝ ξ =−1 ⎠ ⎝ ⎠ ⎝ ξ =−1 ⎠⎟ ξ =−1 ξ =1 = ∫ ξ =−1 f (ξ ) { 21n ein π(ξ −x ) + ... + n2−n1 ei π(ξ −x ) + 12 + + n2−n1 e−i π(ξ −x ) + ... + 1 e −in π(ξ −x ) 2n }d ξ . As n → ∞ , the Fejer Sequence Fn (ξ − x ) = 1 in π(ξ −x ) e 2n + ... + n2−n1 e i π(ξ −x ) + 12 + n2−n1 e −i π(ξ −x ) + ... + 1 e −in π(ξ −x ) 2n becomes the Fejer Kernel, the infinite series ... + 1 in π(ξ −x ) e 2n + ... + n2−n1 e i π(ξ −x ) + 12 + By 8.2, 1 e −i π(ξ −x ) 2n + ... + n −1 e −in π(ξ −x ) 2n + ... , The Fejer Kernel is singular whenever ξ − x = 2k , and the Fejer Summation diverges in the Calculus of Limits. Avoiding the singularity at ξ − x = 2k , by using the Cauchy Principal Value of the integral does not recover the Theorem, because at any ξ − x ≠ 2k , the Fejer Kernel is zero, and the integral is identically zero, for any function f (x ) . 34 Gauge Institute Journal H. Vic Dannon Thus, the Fejer Summation Theorem cannot be proved the Calculus of Limits. , 10.2 Calculus of Limits Conditions are irrelevant to Fejer Summation Theorem Proof: The Fejer Conditions are 1. f (x ) is integrable on [c − L, c + L ] 2. f (x ) is periodic with period T = 2L 3. 1 ( f (x + 0) + f (x − 0) ) replaces f (x ) at a discontinuity point. 2 It is clear from 10.1 that the Fejer conditions on f (x ) do not resolve the singularity of the Fejer kernel, and are not sufficient for the Fejer Summation Theorem. , In Infinitesimal Calculus, by 8.4, the Fejer Kernel is the Periodic Delta Function, and by 9.2, it equals its Fejer Summation. Then, the Fejer Summation Theorem holds for any periodic integrable Hyper-Real Function: 10.3 Fejer Summation Theorem for Hyper-real f (x ) If f (x ) is hyper-real function integrable on [c − L, c + L ] , so that f (c − L) = f (c + L) 35 Gauge Institute Journal H. Vic Dannon f (x ) = Fejer S { f (x )} Then, Proof: Take L = 1 , c = 0 , and 12 N = 1 dx an infinite Hyper- real. ξ =1 f (x ) = ∫ ξ =−1 f (ξ ) {... + δ(ξ − x + 2) + δ(ξ − x ) + δ(ξ − x − 2) + ...}dξ δPeriodic (ξ −x ), where the period of Delta is T=2 By 8.4, δPeriodic (ξ − x ) = Fej (ξ − x ) ξ =1 = ∫ f (ξ ) { 21N eiN π(ξ −x ) + ... + N −1 e i π(ξ −x ) 2N + 12 + ξ =−1 + N2N−1 e −i π(ξ −x ) + ... + 1 2N e−iN π(ξ −x ) } d ξ . In [Dan6], we established that the Fourier Transform, ξ =∞ ∫ f (ξ )e −i 2πνξd ξ , ξ =−∞ exists for any Hyper-real function f (x ) . That is, the summation ξ =∞ ∑ f (ξ )e −i 2πνξd ξ ξ =−∞ exists for any Hyper-real function f (x ) . Consequently, the summations over intervals exist, and we may write the integral as the sum of integrals over intervals = 1 N ⎛ ξ =1 ⎞⎟ ⎜ iN πξ d ξ ⎟⎟⎟e−iN πx + ... + ⎜⎜⎜ 12 ∫ f (ξ )e ⎟⎟ ⎜⎝ ξ =−1 ⎠ ⎛ ⎜ ⎞⎟ ⎛ ξ =1 ⎞⎟ ⎜⎜ 1 ⎟ ⎟⎟ + i x − π ⎟ f ( ξ ) e d ξ e f ( ξ ) d ξ + ⎜ ⎟⎟ ⎟⎟ ∫ 2 ∫ ⎜ ⎟ ⎝⎜ ⎠⎟ ⎝⎜ ⎠ ξ =−1 ξ =−1 N −1 ⎜ 1 ⎜ 2N ⎜ 2 c−N ξ =1 i πξ c−1 36 c0 Gauge Institute Journal H. Vic Dannon ⎛ ⎜ ⎞⎟ f (ξ )e d ξ ⎟⎟⎟e i πx + ... + ∫ ⎟ ⎝⎜ ξ =−1 ⎠⎟ + N2N−1 ⎜⎜ 12 ⎜ ξ =1 −i πξ 1 2N ⎛ ξ =1 ⎞⎟ ⎜⎜ 1 −iN πξ d ξ ⎟⎟⎟e iN πx ⎜⎜ 2 ∫ f (ξ )e ⎟ ⎝⎜ ξ =−1 ⎠⎟ c1 = −iN πx 1 c e − N N + ... + cN −i πx N −1 c e 1 − N + c0 + i πx N −1 c e 1 N + ... + iN πx 1 c e N N = Fej S { f (x )} . , In particular, the Periodic Delta Function violates the Fejer Conditions The Hyper-real δ(x ) , is not defined in the Calculus of Limits, and δ(x ) is not integrable in any bounded interval. 1 2 ( δ(x + 0) + δ(x − 0) ) = 0 does not replace δ(x ) at its discontinuity point, x = 0 . But by 9.2, δPeriodic (x ) satisfies the Fejer Summation Theorem. 37 Gauge Institute Journal H. Vic Dannon References [Achieser] Achieser, N. I., Theory of Approximation, Ungar, 1956. [Carslaw] Carslaw, H. S., “Introduction to the Theory of Fourier Series and integrals” Third Edition, Macmillan, 1930. [Dan1] Dannon, H. Vic, “Well-Ordering of the Reals, Equality of all Infinities, and the Continuum Hypothesis” in Gauge Institute Journal Vol. 6 No. 2, May 2010; [Dan2] Dannon, H. Vic, “Infinitesimals” in Gauge Institute Journal Vol.6 No. 4, November 2010; [Dan3] Dannon, H. Vic, “Infinitesimal Calculus” in Gauge Institute Journal Vol. 7 No. 4, November 2011; [Dan4] Dannon, H. Vic, “Riemann’s Zeta Function: the Riemann Hypothesis Origin, the Factorization Error, and the Count of the Primes”, in Gauge Institute Journal of Math and Physics, Vol. 5, No. 4, November 2009. [Dan5] Dannon, H. Vic, “The Delta Function” in Gauge Institute Journal Vol. 8, No. 1, February, 2012; [Dan6] Dannon, H. Vic, “Delta Function, the Fourier Transform, and the Fourier Integral Theorem” in Gauge Institute Journal Vol. 8, No. 2, May, 2012; [Dan7] Dannon, H. Vic, “Riemannian Trigonometric Series”, Gauge Institute Journal, Volume 7, No. 3, August 2011. [Dan8] Dannon, H. Vic, “Periodic Delta Function and Dirichlet Summation of Fourier Series” posted to www.gauge-institue.org; [Dan9] Dannon, H. Vic, “Lebesgue Integration” Gauge Institute Journal Vol.7 No. 1, February 2011; 38 Gauge Institute Journal H. Vic Dannon [Dan10] Dannon, H. Vic, “Infinite Series with Infinite Hyper-real Sum ” in Gauge Institute Journal Vol. 8, No. 3, August, 2012; [Davis] Davis, Philip, “Interpolation and Approximation” Blaisdell, 1963. [Hardy] Hardy, G. H., Divergent Series, Chelsea 1991. [Kreider] Kreider, Kuller, Ostberg, Perkins, “an introduction to real analysis” Addison Wesley, 1966 [Natanson] Natanson, I. P., “Constructive Function Theory” Ungar, 1964. [Rogosinski] Rogosinski, Werner, “Fourier Series” Chelsea, 1950. [Tolstov] Tolstov, Georgi, “Fourier Series” Prentice-Hall,1962 [Zygmund] Zygmund, A., “Trigonometric Series”, Second Edition, Cambridge University Press, 1968. 39