...

Leaf Area Based Transpiration Factor for Phytopumping of High Organic... Concentration

by user

on
Category: Documents
7

views

Report

Comments

Transcript

Leaf Area Based Transpiration Factor for Phytopumping of High Organic... Concentration
Journal of A pplied Sciences Res earch, 5(10): 1416-1420, 2009
© 2009, INSInet Publication
Leaf Area Based Transpiration Factor for Phytopumping of High Organic Matter
Concentration
1
Yetrie Ludang and 2Sarw oko Mangkoedihardjo
1
Department of Forestry. Faculty of Agriculture, University of Palangka Raya, Jalan Yos Soedarso 11,
Palangka Raya 73111, Central Kalimantan, Indonesia
2
Laboratory of Ecotoxicology, Department of Environmental Engineering, Sepuluh Nopember Institute
of Technology, Surabaya 60111, Indonesia
Abs tract: Trans piration factor was expres s ed in the ratio o f trans piration to leaf area (Tr/LA ) in
combination with the ratio of evapotrans piration to evapora t ion (Et/E). W aterhyacinth was us ed to tes t
evapotrans piration of glucos e and acetic acid. The res ult of Tr/LA was les s than 1 a n d Et/E was more
than 1 for both s olutions containing high organic matter of more than 1000 mg/L. The two meas ures
would be valuable in phytotreatment of was tewater containing high organic matter concentration.
Key words : Evapotrans piration, evaporation, trans piration, leaf area, organic matter
INTRODUCTION
Phytopumping is defined as the capacity o f plants
to trans pire s olution following abs orption through roots .
A n upward flow through p lant roots , the s o called
trans piration s tream plays an imp o rtant role aiming to
divert s olutio n flo w into the air. The collective flow of
trans piration s tream within the plant and evaporation
(E) t o the air is the s o called evapotrans piration (Et).
The level of phytopumping is nothing le s s than the
trans piration factor which w as expres s ed as Et/E[1].
W aterhyacinth has been wellknown p lant that could
abs orb s olutions mo re t h a n t h e a t mo s p h e ric
evapora t ion [1-3], repres ented as Et/E of more than 1.
Experiences s howed that was tewater quality c o uld
affect plant parts of waterhyacinth [4-8]. Therefore . t he
current s tudy w a s carried out with an aim to develop
a me a s ure for integrated quantity and qualit y
was terwater us ing phtyotre a t ment method. Effect of
glucos e and acetic acid on tra n s p iration (Tr) and leaf
area (LA ) were taken to be a cas e s tudy for the level
of phytopumping us ing the ratio of Tr/LA .
MATERIALS AND METHODS
Te s t Preparation: Preliminary t e s t w a s s o me
meas urement s of water depletion in tes t reactor. The
reactor has a diameter of 60 cm with s urface area of
2826 s q-cm and net water dep t h of 30 cm and hence,
Corresponding Author:
the net capacity was 85 L. W ater depth dep le t ion for
one cm was accounted for water volume d e p letion of
2.83 L that was confirmed in volumetric cylinder.
W a t e rhyacinth was collected from natural
waterbody and trans ferred into cont ro lled pond for
growt h . Healthy plants were chos en and put in
acclimatization chamber. Then, two propagules with the
s ame height and leaf area were p u t in e ach of tes t
reactors .
Le af area was meas ured by means of n o n des tructive leaf are a correction factor. Sixty-four leaf
area were drawn in a w h ite paper. having known area
(A ) and weight (B). M eas ure the width (W ) and length
(L) of the drawn leaf. Then the drawn leaf were cut
and weighted (C). The leaf area correction factor (cLA )
was determined us ing the following equation:
cLA = [(C/B)*A ]/(W *L)
(1)
Tes t s olution cons is ted of aquades t which was
enriched with n u trient [5] as a control in addition to
glucos e and acetic acid s olutions . The c ontrol s olution
was us ed to dilute glucos e and acetic acid s o lu tions .
Glucos e s olution was made o f glucos e monohydrate
(M e rc k pro analys is ) for concentration in the range o f
20 – 1.500 mg/L. A cetic acid s olution was made of
a c etic acid 99.8 %. 60.5 M (M erck pro analys is ) fo r
concentration in the range of 100 – 3.000 mg/L.
Sarwoko M angkoedihardjo, Laboratory of Ecot oxicology, Department of Environmental
Engineering, Sepuluh Nopember Institute of Technology, Campus ITS Sukolilo, Surabay a 60111,
Indonesia
phone +62315948886, fax +62315928387,
E-mail: [email protected]
1416
J. App. Sci. Res., 5(10): 1416-1420, 2009
Experiment: A greenhous e s tudy was performed as
long as 6 mont h s . The s tudies were cons is ted of
meas uring evaporation. evapotrans piration and leaf area
of waterhyacinth in batch s cale reactors containing tes t
s olutions . Each treatment was run for one and half
mo nths and replicated four times . Evaporation s tudy
was carrie d o u t by means of daily meas urement of the
d e p le t e d s o lu t io n in free-h y a c in t h re a c t o rs .
Evapotrans piration s tudy was conducted in hyacint h
reactors that were treated at the s ame material and
method as in free-hyacinth reactor. A t the ons et of the
experiment, leaf area of hyacinth w a s 15 – 25 s q-cm
that was on average 30 % of s urface area.
RES ULTS AND DIS CUS S ION
A non-des tructive obs erv a tion was carried out for
evapotrans piration (Table 1), evaporation (Table 2),
trans piratio n (Table 3) and leaf area (Table 4).
Trans piration was calculated b y means of s ubs tracting
evapotrans p ira t ion with evaporation. The leaf area
meas urements fo r the running experiment were carried
out by means of meas urin g W a nd L weekly and
multiplied by c LA (Equation 1) us ing Equation 2 as
follows :
LA = cLA *W *L
(2)
Res ults of the meas urements were evalu a t e d for
trans piration factor (TRF) us ing Equation 3 a s follows :
TRF = Et/E
Trans piration factor in Equation 4 was introduced
as follows :
TRF = Tr/LA
(4)
where Tr was in volu metric unit and LA was leaf
area. Since TRF is dimens ionle s s then Tr was
trans formed into the ratio of trans piration to volume of
tank depletion. LA was trans formed into the ratio of
leaf area to s urface water area of the tank.
The res ults clearly s howed that organic matter type
and its concentra tion affected evapotrans piration,
evaporation and le a f area of waterhycinth. This was
confirmed with s tudy on waterhy a c inth for pollutant
treatment[8-10]. The maximum amo u n t of trans piration
for glucos e was achieved fas ter than acetic acid. Low
molecular weight of organic matter was trans pired more
than high molecular weight. In addition, increas ing
organic matter concentration res ulted in a s ignificant
decreas e of eavpotran s piration, trans piration and leaf
area. Therefore, trans piration fact o r was evaluated by
cons idering leaf area.
The res ults of both TRF meas urements for glucos e
s olu t io n was pres ented in Fig. 1 and for acetic acid
s olution in Fig. 2. Data were plotted for s ignificantly
different concentration of s olutions . TRF bas ed on
evapotrans piration and evapora t io n clearly s hows that
T RF s were more than 1. However, TRFs bas ed on
trans p iration and leaf area were les s than 1 for high
concnetration of more than 1000 mg/L.
(3)
where Et and E were evapotrans pirat ion (Table 1)
and evaporation (Table 2) res pect ively and hence, TRF
is dimes ionles s .
Table 1: Volume of evapotranspirated solution affected by glucose and acetic acid
T est solution (mg/L)
Average volume of evapotranspirated solution (L)
-----------------------------------------------------------------------------------------------------------7 days
14 days
21 days
28 days
Aquadest
0
1.6 a
6.1 a
17.5 a
25.7 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose
20
1.3 b
4.5 b
12.7 b
17.1 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100
0.9 c
2.5 c
5.5 c
9.6 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
0.6 d
2.1 d
4.1 d
7.3 d
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
0.5 d
1.3 e
2.5 e
4.1 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.5 d
1.0 f
2.3 f
3.2 f
Aquadest
0
1.9 a
6.2 a
17.7 a
25.9 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid
100
1.8 a
5.5 b
12.5 b
16.5 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
1.7 a
3.1 c
6.0 c
10.1 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
0.8 b
2.9 d
4.8 d
8.1 d
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.6 b
1.9 e
3.1 e
4.3 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000
0.4 b
1.6 f
2.7 f
3.3 e
Numbers followed by the same letter at the same column are not significantly different (p = 0.01).
1417
35 days
27.8 a
19.0 b
11.0 c
9.4 d
4.8 e
3.4 f
28.0 a
17.4 b
10.6 c
9.4 d
5.0 e
3.8 f
J. App. Sci. Res., 5(10): 1416-1420, 2009
Table 2: Volume of evaporated solution affected by glucose and acetic acid
T est solution (mg/L)
Average volume of evaporated solution (L)
-----------------------------------------------------------------------------------------------------------7 days
14 days
21 days
28 days
Aquadest
0
0.8 a
1.6 a
3.0 a
4.6 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose
20
0.8 a
1.6 a
2.8 ab
4.4 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100
0.6 b
1.4 b
2.4 b
3.8 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
0.4 c
1.2 c
1.8 c
3.2 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
0.4 c
1.0 d
1.8 c
3.0 cd
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.4 c
0.8 e
1.6 d
2.6 d
Aquadest
0
0.8 a
1.6 a
3.2 a
4.8 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid
100
0.8 a
1.4 b
3.2 a
4.8 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
0.8 a
1.2 c
2.6 b
4.6 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
0.4 b
1.2 c
2.2 c
3.8 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.4 b
0.8 d
2.0 d
3.2 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000
0.2 b
0.8 d
2.0 d
2.8 d
Numbers followed by the same letter at the same column are not significantly different (p = 0.01).
35 days
5.4 a
4.8 b
4.2 c
4.0 c
3.2 d
2.8 e
5.8 a
5.4 ab
5.0 bc
4.6 c
3.8 d
3.2 e
Table 3: Volume of transpirated solution affected by glucose and acetic acid
T est solution (mg/L)
Evapotranspiration - evaporation (L)
-----------------------------------------------------------------------------------------------------------7 days
14 days
21 days
28 days
35 days
Aquadest
0
0.8 a
4.5 a
14.5 a
21.1 a
22.3 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose
20
0.7 b
2.9 b
9.9 b
12.7 b
14.2 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100
0.3 c
1.1 c
3.1 c
5.8 c
6.8 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
0.2 d
0.9 d
2.3 d
4.1 d
5.4 d
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 . 0 0 0
0.1 e
0.3 e
0.7 e
1.1 e
1.6 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.1 e
0.2 e
0.7 e
0.6 f
0.6 f
Aquadest
0
1.1 a
4.6 a
14.5 a
21.1 a
22.2 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid
100
1.0 b
4.1 b
9.3 b
11.7 b
12.0 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
0.9 c
1.9 c
3.4 c
5.6 c
5.6 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
0.4 d
1.7 d
2.6 d
4.3 d
4.8 d
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
0.2 e
1.1 e
1.1 e
1.1 e
1.2 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000
0.2 e
0.8 f
0.7 f
0.5 f
0.6 f
Numbers followed by the same letter at the same column are not significantly different (p = 0.01).
Table 4: Leaf area affected by glucose and acetic acid
T est solution (mg/L)
Average leaf area (cm 2)
-----------------------------------------------------------------------------------------------------------7 days
14 days
21 days
28 days
Aquadest
0
39.8 a
105.6 a
263.5 a
479.2 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose
20
38.1 b
82.2 b
222.4 b
384.1 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100
23.8 c
47.4 c
89.9 c
182.0 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
18.0 d
40.2 d
76.1 d
162.5 d
1418
35 days
809.3 a
596.7 b
279.5 c
239.8 d
J. App. Sci. Res., 5(10): 1416-1420, 2009
Table 4: Continue
1.000
13.1 e
25.4 e
44.9 e
98.5 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
13.1 e
19.6 e
36.9 f
70.3 f
Aquadest
0
37.6 a
111.2 a
281.2 a
508.8 a
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid
100
30.7 b
56.9 b
154.4 b
262.8 b
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500
26.9 c
45.5 c
96.6 c
169.5 c
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000
13.7 d
31.6 d
65.7 d
127.1 d
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500
14.1 d
16.7 e
58.2 e
97.5 e
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000
14.0 d
16.4 e
42.8 f
66.6 f
Numbers followed by the same letter at the same column are not significantly different (p = 0.01).
170.0 e
103.0 f
845.3 a
409.8 b
231.8 c
177.4 d
135.5 e
105.2 e
Fig. 1: Trans piration factor for glucos e s olution
Fig. 2: Trans piration factor for acetic acid s olution
Conclus ion: The limit of organic matter c o ntaining
s olution was 1000 mg/L in trans p iration factor
evaluation. Trans piration factor as the ratio of Et/E as
well as the ratio o f T r/LA was more than 1 for organic
ma t ter of les s than 1000 mg/L. Beyond the limit of
organic matter concentration, Et/E was cons is tent ly
more than 1 but Tr/LA was les s than 1. Therefore,
both trans piration factors s hould be calculated to
evalu a t e t he ability of plants in abs orbing s olution for
high org a nic matter concentration of more than 1000
mg/L.
1419
REFERENCES
1.
2.
3.
Gopal, B. and K.P. Sharma, 1981.
W aterHyac in t h (Eic h h o rn ia c ra s s ipes ) the mos t
troubles ome weed of the worLA . Hindas ia Publ.,
pp: 128.
Lit tle, E.C.S., 1967. Prog re s s
re p o rt o n
trans piration of s ome tropical water weeds . PA NS.,
13: 127-132.
Dunigan, E.P., Z.H. Shams uddin and R.A . Phelan,
1975. Can water-hyacinth eat pollution?. Compos t
Sci., 16(2): 11.
J. App. Sci. Res., 5(10): 1416-1420, 2009
4.
5.
6.
Bich, N .N ., M .I. Yaziz and N.B.K. Bakti, 1999.
Combination of Chlorella vulgaris and Eichhornia
cras s ipes for W as tewater N Removal. W ater Res .,
33(10): 2357-2362.
Coleman, J., K. H e n c h , K. Garbutt, A . Sexs tone,
G. Bis s onnette and J. Skous en, 2001. Treatmen t o f
domes tic was tewater by three plant s pecie s in
cons tructed wet la n ds . W ater, A ir, and Soil Pollut.,
128: 283-295.
Toft, D., C. Simens tad and J. Cordell, 2003. T h e
effects of introduced water hyacinth on habit at
s tructure, invertebrate as s emblages , and fis h diets .
Es tuaries , 26: 746-758.
1420
7.
M a n g koedihardjo, S., 2006. Biodegradability
Improvement of Indus trial W as tewater Us ing
Hyacinth. Journal of A pplied Sciences , 6(6): 14091414.
8. M angkoedihardjo, S., 2007. Leaf A rea for
Phytopumping of W as tewater. A pplied Ecology
and Environmental Res earch, 5(1): 37-42.
9. SHA O-W EI LIA O and W EN-LIA N CHA NG,
2004. Heavy M e t al Phytoremediation by W ater
Hyacinth at Cons tructed W etlands in Taiwan J.
A quat. Plant M anage, 42: 60-68.
10. W ooteh, T.W . and J.D. Dodd, 1976. Gro wth of
water hyacinth in treated s ewage effluent. Econ.
Bot., 30: 29-37.
Fly UP