Leaf Area Based Transpiration Factor for Phytopumping of High Organic... Concentration
by user
Comments
Transcript
Leaf Area Based Transpiration Factor for Phytopumping of High Organic... Concentration
Journal of A pplied Sciences Res earch, 5(10): 1416-1420, 2009 © 2009, INSInet Publication Leaf Area Based Transpiration Factor for Phytopumping of High Organic Matter Concentration 1 Yetrie Ludang and 2Sarw oko Mangkoedihardjo 1 Department of Forestry. Faculty of Agriculture, University of Palangka Raya, Jalan Yos Soedarso 11, Palangka Raya 73111, Central Kalimantan, Indonesia 2 Laboratory of Ecotoxicology, Department of Environmental Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia Abs tract: Trans piration factor was expres s ed in the ratio o f trans piration to leaf area (Tr/LA ) in combination with the ratio of evapotrans piration to evapora t ion (Et/E). W aterhyacinth was us ed to tes t evapotrans piration of glucos e and acetic acid. The res ult of Tr/LA was les s than 1 a n d Et/E was more than 1 for both s olutions containing high organic matter of more than 1000 mg/L. The two meas ures would be valuable in phytotreatment of was tewater containing high organic matter concentration. Key words : Evapotrans piration, evaporation, trans piration, leaf area, organic matter INTRODUCTION Phytopumping is defined as the capacity o f plants to trans pire s olution following abs orption through roots . A n upward flow through p lant roots , the s o called trans piration s tream plays an imp o rtant role aiming to divert s olutio n flo w into the air. The collective flow of trans piration s tream within the plant and evaporation (E) t o the air is the s o called evapotrans piration (Et). The level of phytopumping is nothing le s s than the trans piration factor which w as expres s ed as Et/E[1]. W aterhyacinth has been wellknown p lant that could abs orb s olutions mo re t h a n t h e a t mo s p h e ric evapora t ion [1-3], repres ented as Et/E of more than 1. Experiences s howed that was tewater quality c o uld affect plant parts of waterhyacinth [4-8]. Therefore . t he current s tudy w a s carried out with an aim to develop a me a s ure for integrated quantity and qualit y was terwater us ing phtyotre a t ment method. Effect of glucos e and acetic acid on tra n s p iration (Tr) and leaf area (LA ) were taken to be a cas e s tudy for the level of phytopumping us ing the ratio of Tr/LA . MATERIALS AND METHODS Te s t Preparation: Preliminary t e s t w a s s o me meas urement s of water depletion in tes t reactor. The reactor has a diameter of 60 cm with s urface area of 2826 s q-cm and net water dep t h of 30 cm and hence, Corresponding Author: the net capacity was 85 L. W ater depth dep le t ion for one cm was accounted for water volume d e p letion of 2.83 L that was confirmed in volumetric cylinder. W a t e rhyacinth was collected from natural waterbody and trans ferred into cont ro lled pond for growt h . Healthy plants were chos en and put in acclimatization chamber. Then, two propagules with the s ame height and leaf area were p u t in e ach of tes t reactors . Le af area was meas ured by means of n o n des tructive leaf are a correction factor. Sixty-four leaf area were drawn in a w h ite paper. having known area (A ) and weight (B). M eas ure the width (W ) and length (L) of the drawn leaf. Then the drawn leaf were cut and weighted (C). The leaf area correction factor (cLA ) was determined us ing the following equation: cLA = [(C/B)*A ]/(W *L) (1) Tes t s olution cons is ted of aquades t which was enriched with n u trient [5] as a control in addition to glucos e and acetic acid s olutions . The c ontrol s olution was us ed to dilute glucos e and acetic acid s o lu tions . Glucos e s olution was made o f glucos e monohydrate (M e rc k pro analys is ) for concentration in the range o f 20 – 1.500 mg/L. A cetic acid s olution was made of a c etic acid 99.8 %. 60.5 M (M erck pro analys is ) fo r concentration in the range of 100 – 3.000 mg/L. Sarwoko M angkoedihardjo, Laboratory of Ecot oxicology, Department of Environmental Engineering, Sepuluh Nopember Institute of Technology, Campus ITS Sukolilo, Surabay a 60111, Indonesia phone +62315948886, fax +62315928387, E-mail: [email protected] 1416 J. App. Sci. Res., 5(10): 1416-1420, 2009 Experiment: A greenhous e s tudy was performed as long as 6 mont h s . The s tudies were cons is ted of meas uring evaporation. evapotrans piration and leaf area of waterhyacinth in batch s cale reactors containing tes t s olutions . Each treatment was run for one and half mo nths and replicated four times . Evaporation s tudy was carrie d o u t by means of daily meas urement of the d e p le t e d s o lu t io n in free-h y a c in t h re a c t o rs . Evapotrans piration s tudy was conducted in hyacint h reactors that were treated at the s ame material and method as in free-hyacinth reactor. A t the ons et of the experiment, leaf area of hyacinth w a s 15 – 25 s q-cm that was on average 30 % of s urface area. RES ULTS AND DIS CUS S ION A non-des tructive obs erv a tion was carried out for evapotrans piration (Table 1), evaporation (Table 2), trans piratio n (Table 3) and leaf area (Table 4). Trans piration was calculated b y means of s ubs tracting evapotrans p ira t ion with evaporation. The leaf area meas urements fo r the running experiment were carried out by means of meas urin g W a nd L weekly and multiplied by c LA (Equation 1) us ing Equation 2 as follows : LA = cLA *W *L (2) Res ults of the meas urements were evalu a t e d for trans piration factor (TRF) us ing Equation 3 a s follows : TRF = Et/E Trans piration factor in Equation 4 was introduced as follows : TRF = Tr/LA (4) where Tr was in volu metric unit and LA was leaf area. Since TRF is dimens ionle s s then Tr was trans formed into the ratio of trans piration to volume of tank depletion. LA was trans formed into the ratio of leaf area to s urface water area of the tank. The res ults clearly s howed that organic matter type and its concentra tion affected evapotrans piration, evaporation and le a f area of waterhycinth. This was confirmed with s tudy on waterhy a c inth for pollutant treatment[8-10]. The maximum amo u n t of trans piration for glucos e was achieved fas ter than acetic acid. Low molecular weight of organic matter was trans pired more than high molecular weight. In addition, increas ing organic matter concentration res ulted in a s ignificant decreas e of eavpotran s piration, trans piration and leaf area. Therefore, trans piration fact o r was evaluated by cons idering leaf area. The res ults of both TRF meas urements for glucos e s olu t io n was pres ented in Fig. 1 and for acetic acid s olution in Fig. 2. Data were plotted for s ignificantly different concentration of s olutions . TRF bas ed on evapotrans piration and evapora t io n clearly s hows that T RF s were more than 1. However, TRFs bas ed on trans p iration and leaf area were les s than 1 for high concnetration of more than 1000 mg/L. (3) where Et and E were evapotrans pirat ion (Table 1) and evaporation (Table 2) res pect ively and hence, TRF is dimes ionles s . Table 1: Volume of evapotranspirated solution affected by glucose and acetic acid T est solution (mg/L) Average volume of evapotranspirated solution (L) -----------------------------------------------------------------------------------------------------------7 days 14 days 21 days 28 days Aquadest 0 1.6 a 6.1 a 17.5 a 25.7 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose 20 1.3 b 4.5 b 12.7 b 17.1 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100 0.9 c 2.5 c 5.5 c 9.6 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 0.6 d 2.1 d 4.1 d 7.3 d -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 0.5 d 1.3 e 2.5 e 4.1 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.5 d 1.0 f 2.3 f 3.2 f Aquadest 0 1.9 a 6.2 a 17.7 a 25.9 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid 100 1.8 a 5.5 b 12.5 b 16.5 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 1.7 a 3.1 c 6.0 c 10.1 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 0.8 b 2.9 d 4.8 d 8.1 d -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.6 b 1.9 e 3.1 e 4.3 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000 0.4 b 1.6 f 2.7 f 3.3 e Numbers followed by the same letter at the same column are not significantly different (p = 0.01). 1417 35 days 27.8 a 19.0 b 11.0 c 9.4 d 4.8 e 3.4 f 28.0 a 17.4 b 10.6 c 9.4 d 5.0 e 3.8 f J. App. Sci. Res., 5(10): 1416-1420, 2009 Table 2: Volume of evaporated solution affected by glucose and acetic acid T est solution (mg/L) Average volume of evaporated solution (L) -----------------------------------------------------------------------------------------------------------7 days 14 days 21 days 28 days Aquadest 0 0.8 a 1.6 a 3.0 a 4.6 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose 20 0.8 a 1.6 a 2.8 ab 4.4 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100 0.6 b 1.4 b 2.4 b 3.8 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 0.4 c 1.2 c 1.8 c 3.2 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 0.4 c 1.0 d 1.8 c 3.0 cd -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.4 c 0.8 e 1.6 d 2.6 d Aquadest 0 0.8 a 1.6 a 3.2 a 4.8 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid 100 0.8 a 1.4 b 3.2 a 4.8 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 0.8 a 1.2 c 2.6 b 4.6 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 0.4 b 1.2 c 2.2 c 3.8 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.4 b 0.8 d 2.0 d 3.2 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000 0.2 b 0.8 d 2.0 d 2.8 d Numbers followed by the same letter at the same column are not significantly different (p = 0.01). 35 days 5.4 a 4.8 b 4.2 c 4.0 c 3.2 d 2.8 e 5.8 a 5.4 ab 5.0 bc 4.6 c 3.8 d 3.2 e Table 3: Volume of transpirated solution affected by glucose and acetic acid T est solution (mg/L) Evapotranspiration - evaporation (L) -----------------------------------------------------------------------------------------------------------7 days 14 days 21 days 28 days 35 days Aquadest 0 0.8 a 4.5 a 14.5 a 21.1 a 22.3 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose 20 0.7 b 2.9 b 9.9 b 12.7 b 14.2 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100 0.3 c 1.1 c 3.1 c 5.8 c 6.8 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 0.2 d 0.9 d 2.3 d 4.1 d 5.4 d -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 . 0 0 0 0.1 e 0.3 e 0.7 e 1.1 e 1.6 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.1 e 0.2 e 0.7 e 0.6 f 0.6 f Aquadest 0 1.1 a 4.6 a 14.5 a 21.1 a 22.2 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid 100 1.0 b 4.1 b 9.3 b 11.7 b 12.0 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 0.9 c 1.9 c 3.4 c 5.6 c 5.6 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 0.4 d 1.7 d 2.6 d 4.3 d 4.8 d -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 0.2 e 1.1 e 1.1 e 1.1 e 1.2 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000 0.2 e 0.8 f 0.7 f 0.5 f 0.6 f Numbers followed by the same letter at the same column are not significantly different (p = 0.01). Table 4: Leaf area affected by glucose and acetic acid T est solution (mg/L) Average leaf area (cm 2) -----------------------------------------------------------------------------------------------------------7 days 14 days 21 days 28 days Aquadest 0 39.8 a 105.6 a 263.5 a 479.2 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Glucose 20 38.1 b 82.2 b 222.4 b 384.1 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------100 23.8 c 47.4 c 89.9 c 182.0 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 18.0 d 40.2 d 76.1 d 162.5 d 1418 35 days 809.3 a 596.7 b 279.5 c 239.8 d J. App. Sci. Res., 5(10): 1416-1420, 2009 Table 4: Continue 1.000 13.1 e 25.4 e 44.9 e 98.5 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 13.1 e 19.6 e 36.9 f 70.3 f Aquadest 0 37.6 a 111.2 a 281.2 a 508.8 a -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Acetic acid 100 30.7 b 56.9 b 154.4 b 262.8 b -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------500 26.9 c 45.5 c 96.6 c 169.5 c -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.000 13.7 d 31.6 d 65.7 d 127.1 d -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1.500 14.1 d 16.7 e 58.2 e 97.5 e -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3.000 14.0 d 16.4 e 42.8 f 66.6 f Numbers followed by the same letter at the same column are not significantly different (p = 0.01). 170.0 e 103.0 f 845.3 a 409.8 b 231.8 c 177.4 d 135.5 e 105.2 e Fig. 1: Trans piration factor for glucos e s olution Fig. 2: Trans piration factor for acetic acid s olution Conclus ion: The limit of organic matter c o ntaining s olution was 1000 mg/L in trans p iration factor evaluation. Trans piration factor as the ratio of Et/E as well as the ratio o f T r/LA was more than 1 for organic ma t ter of les s than 1000 mg/L. Beyond the limit of organic matter concentration, Et/E was cons is tent ly more than 1 but Tr/LA was les s than 1. Therefore, both trans piration factors s hould be calculated to evalu a t e t he ability of plants in abs orbing s olution for high org a nic matter concentration of more than 1000 mg/L. 1419 REFERENCES 1. 2. 3. Gopal, B. and K.P. Sharma, 1981. W aterHyac in t h (Eic h h o rn ia c ra s s ipes ) the mos t troubles ome weed of the worLA . Hindas ia Publ., pp: 128. Lit tle, E.C.S., 1967. Prog re s s re p o rt o n trans piration of s ome tropical water weeds . PA NS., 13: 127-132. Dunigan, E.P., Z.H. Shams uddin and R.A . Phelan, 1975. Can water-hyacinth eat pollution?. Compos t Sci., 16(2): 11. J. App. Sci. Res., 5(10): 1416-1420, 2009 4. 5. 6. Bich, N .N ., M .I. Yaziz and N.B.K. Bakti, 1999. Combination of Chlorella vulgaris and Eichhornia cras s ipes for W as tewater N Removal. W ater Res ., 33(10): 2357-2362. Coleman, J., K. H e n c h , K. Garbutt, A . Sexs tone, G. Bis s onnette and J. Skous en, 2001. Treatmen t o f domes tic was tewater by three plant s pecie s in cons tructed wet la n ds . W ater, A ir, and Soil Pollut., 128: 283-295. Toft, D., C. Simens tad and J. Cordell, 2003. T h e effects of introduced water hyacinth on habit at s tructure, invertebrate as s emblages , and fis h diets . Es tuaries , 26: 746-758. 1420 7. M a n g koedihardjo, S., 2006. Biodegradability Improvement of Indus trial W as tewater Us ing Hyacinth. Journal of A pplied Sciences , 6(6): 14091414. 8. M angkoedihardjo, S., 2007. Leaf A rea for Phytopumping of W as tewater. A pplied Ecology and Environmental Res earch, 5(1): 37-42. 9. SHA O-W EI LIA O and W EN-LIA N CHA NG, 2004. Heavy M e t al Phytoremediation by W ater Hyacinth at Cons tructed W etlands in Taiwan J. A quat. Plant M anage, 42: 60-68. 10. W ooteh, T.W . and J.D. Dodd, 1976. Gro wth of water hyacinth in treated s ewage effluent. Econ. Bot., 30: 29-37.