Thermal Conductivity, Radiogenic Heat Production and Heat Flow of Some... Cretaceous Rock Units, North Western Desert, Egypt.
by user
Comments
Transcript
Thermal Conductivity, Radiogenic Heat Production and Heat Flow of Some... Cretaceous Rock Units, North Western Desert, Egypt.
Journal of Applied Sciences Research, 6(5): 483-510, 2010 © 2010, INSInet Publication Thermal Conductivity, Radiogenic Heat Production and Heat Flow of Some Upper Cretaceous Rock Units, North Western Desert, Egypt. Abubakr F. Maky and Mohamad A.M. Ramadan Egyptian petroleum research institute (EPRI) Nasr City-Cairo, Egypt Abstract: The estimation of thermal conductivity is of great importance for all studies on thermal evolution of sedimentary basins. Due to the paucity of core samples, the approach proposed here is the reconstruction of mineralogical model for the studied rock units by interpreting the well, logs data. Then, the determination of the response equations of the minerals present in each mineralogical model for extracting the frequency of existing minerals and total porosity of some Upper Cretaceous rock units, such as the Bahariya Formation and Abu Roash “D,E,F and G” Members at the north western part of Abu ElGharadig Basin, W estern Desert, Egypt. To estimate the thermal conductivity, from a mixing formula, the geometric average of the individual conductivities weighted by the volumetric proportion of each component; the radiogenic heat production and heat flow can be defined. The mineralogic model of Bahariya Formation indicated that, clay minerals as illite, kaolinite, smectite and quartz are the main minerals present in the studied wells, in combination with some calcite and dolomite. W hereas in A/R“G” M ember, it reflects that, clay minerals as illite, kaolinite and smectite are the main minerals in association with some quartz, calcite and dolomite, sometimes with glauconite. Calcite and quartz are the main minerals present in A/R“F” Member with some clay minerals as illite and kaolinite associated with dolomite and k-feldspars. The same mineral constituents are present in A/R“E” Member, but with higher content of clay minerals. At A/R“D” Member, the quartz and calcite are the main minerals with some clays as illite, kaolinite and smectite, in combination with some dolomite and k-feldspars. The calculated porosity is varied between low and high values, and filled with variable quantities of water and hydrocarbons. The average thermal conductivities (ThC) of the different lithologic intervals of Bahariya Formation; which is considered as a reservoir rock; are ranges between 1.57W /m/K in shaley and 2.78W /m/K in sandstone intervals. W hereas, these of A/R“G” Member are varies from1.37W /m/K in shaley to 3.32W /m/K in limestone intervales, A/R“F” (sandy limestone) Member ranges from 2.48W /m/K to 2.7 W /m/K. In A/R “E” Member (ThC), varies between 1.54W /m/K and 3.18W /m/K. Eventually, the A/R “D” Member has higher (ThC) ranges from 1.74W /m/K to 2.91W /m/K. The radiogenic heat production (Rhp) of Bahariya Formation varies between low values of 3.96µw/m 3 and reached maximum values attain from 7.48 to 9.09µw/m3 . In A/R “D” M ember, it ranged between 8.074 and 9.152µw/m 3 , eventually the (Rhp) of A/ R“F”, which mainly composed of limestone, is low (3.284µw/m 3 and 4.01µw/m3 ), whereas in A/R “E” Member, the lower part shows lower values, then increase again in some wells across the study area. The apparent heat flow (HF) of Bahariya Formation is ranged between 67.6 (shale) and 95.2mW /m2 and reached 102.4mW /m2 in limestone intervals; whereas in sandstone, the (HF) reached 134.7mW /m2 . The A/R“G” Member has (HF) ranged between 70.1 and 82.5, whereas reached 116.9mW /m2 and 158.4mW /m2 in some intervals. In A/R“F” Member, it ranged from 114.75 to 121.02mW /m2 . Eventually in A/R “E and D” Members, they possess higher values of (HF) 135.2 and 145.4mW /m2 in A/R “E” Member, and 124 and 125.8mW /m 2 in A/R “D” Member. Key wards: W estern Desert, Egypt, thermal conductivity, heat flow and radiogenic heat production. INTRODUCTION For understanding the thermal structure of sedimentary basin, it is important to determine thermal properties of the sediments, that constitute the basin. Thermal conductivity is perhaps the most important factor, that control the configuration of the isotherms and the flow of heat within the basin [1 6 ] . Radiogenic heat production in the sediments is known to vary over several orders of magnitude, with the lowest values in evaporates and carbonates and the highest values in black shales. [64 ] . The geothermal gradient in the lowconductivity shale section is elevated (which is the source rock) relative to the geothermal gradient in the high conductivity sections[21]. In this paper, we describe a procedure for calculating the thermal Corresponding Author: Abubakr F. Maky, Egyptian petroleum research institute (EPRI) Nasr City-Cairo, Egypt Email [email protected] 483 J. Appl. Sci. Res., 6(5): 483-510, 2010 conductivity, heat flow and radiogenic heat production of some Upper Cretaceous rock units, as Bahariya Formation and Abu Roash “D,E,F and G” Members in Raml-1, Raml-3, El-Faras-1 and El-Faras-3 wells in the north western part of Abu El-Gharadig basin, which is the main petroliferous resource in the north W estern Desert, Egypt. The major tectonic events of Abu El-Gharadig basin extended from Paleozoic to Tertiary periods, as follow: A phase of strong uplift and erosion of the Paleozoic clastic basin took place in the pre-Jurassic times. At the end of the Carboniferous age, the first uplift was active resulting in the major Hercynian unconformity and the non-deposition of the Permian and Triassic sediments. This movement was followed by the major Jurassic transgression. At the end of the Jurassic, the area was elevated again and another major u n c o n f o r m i t y d e v e lo p e d . T h e r e a fte r , d u r i n g Jurassic/Early Cretaceous times, the regional subsidence resumed with very little tectonic activity, resulting in a progressive tilting of the Sitra platform towards the north accompanied by minor faulting. The most effective tectonic cycles controlling the shape and development of the area began with the Early Cretaceous. In the Aptian–Albian times, the Qattara Ridge became uplifted and subjected to erosion or nondeposition, prior to the onlap of the Late Albian–Cenomanian clastics. The major fault zone, that separates the Qattara Ridge from Abu El-Gharadig basin, was actually already active during the Late Jurassic times, as well, as during the Aptian times. During Late Cretaceous times, the tectonics were very effective with a higher rate of displacement along the already existing faults, sometimes associated with lateral displacement. During this time, the tectonic was resulting in huge and contemporaneous faults, as well as large amount of Upper Cretaceous sediments and activity increased drastically. Extensional tectonic activity was terminated in the Late Cretaceous by the Syrian arc inversion phase [1 2 ,4 7 ]. The Tertiary was essentially a very quite period and the tectonic activity was limited to reactivation of the main faults and to a lesser extent further uplifting of the oblique ridges [6 9 ]. The Cenomanian Bahariya Formation consists mainly of fine- to medium- grained quartzitic sandstone, colorless to pink, occasionally medium to coarse grained with thin streaks of shales interbeds and carbonate inclusions [6 3 ] . Bahariya Formation (Early Cenomanian) is consisted of sandstone with shale intercalations and limestone interbeds of more maritime affinity (shallow marine environment), as shown by Abu El-Ata, [2 ] . This formation is considered as one of the most important reservoir rocks in the W estern Desert [6 1 ] . The Bahariya sandstones are the main gas and / or condensate pay in the Abu El-Gharadig basin. It represents a gradational phase of fining upwards to the overlying marine carbonates and shales of the Turonian -Coniacian Abu Roash Formation. Bahariya Formation conformably overlies the Burg El-Arab Formation and subdivided into six units, based on lithological and electrical logs, of which the unit I is Geologic Setting: The W estern Desert can be subdivided, from south to north, into five tectonic units; Craton, Stable Shelf, Unstable Shelf, Hinge Zone and Miogeosyncline [6 1 ]. The sedimentary basins of the northern W estern Desert occupy two provinces separated by the E-W to ENE-W SW trending Ras Qattara-North Sinai uplift zone. The northern province includes Shushan, Matruh and Alamein basins of Late Jurassic– Early Cretaceous age. The southern province, south of the uplift, includes mainly Abu El-Gharadig basin of Late Cretaceous and younger age. Abu El-Gharadig basin is an E –W oriented intracratonic graben with 300 km long and 60 km wide. It is bounded by the Sitra platform to the south and by the Qattara Ridge to the north. The basin is subdivided into several structural units, separated by NE-SW trending "oblique ridges" of varying importance named from E to W : the Mubarak High, Abu El-Gharadig Anticline and the Mid Basin Arch [1 2 ]. The most durable phase of tectonism in the W estern Desert was the Late Cretaceous (Laramian) event. At some places in the northern W estern Desert, the Late Cretaceous rocks nonconformably rest directly on the Jurassic or Paleozoic or even the Basement. Moreover, at many places, the upper Cretaceous rocks rest conformably on the lower Cretaceous rocks. The faulting stage during the late Early and Late Cretaceous resulted block faults in en-echelon pattern and bordered by dip-slip faults is an important feature of Abu ElGharadig field, which is a faulted basin located at the northern central part of the W estern Desert and trended E-W , [4] . Two main tectonic forces affected the region: the first is a sinistral shear, which resulted in a regional NW -SE tectonic feature affected both provinces in the Jurassic – Early Cretaceous age. The second is a dextral shear, which resulted in a regional ENE-W SW tectonics affected the southern provinces [5 1 ] . Six major geotectonic cycles or phases can be recognized in the W estern Desert; these are: the Caledonian cycle (Cambrian – Devonian), VariscanHercynian (Late Paleozoic), Cimmerian / Tethyian (Triassic – Early Cretaceous), Sub Hercynian – Early Syrian Arc (Turonian – Santonian), Syrian Arc main phase (Paleogene) and the Red Sea phase (OligoceneMiocene) [5 0 ] . These cycles are illustrated in Figure (1). 484 J. Appl. Sci. Res., 6(5): 483-510, 2010 the upper pay and the unit IV is the lower pay [4 2 ] . In the study area, the crude oil is produced from different intervals of argillaceous sandstone and sands. Also, Abu Roash Formation is a very significant reservoir and source rocks in the W estern Desert (Late Cenomanian – Turonian – Senonian) and is divided into informal seven members (A,B,C,D,E,F and G), as shown by Schlumberger (1984). Abu Roash Formation is formed of arenaceous-argillaceous limestone section of shallow to open marine environments [2 ]. Generally, it is appeared that, clay minerals as smectite and kaolinite are the main clays, in association with some calcite and sandstone of lower API values. In case of Abu Roash “D” Member, the prevailing minerals (Fig. 4B), are calcite and quartz, in association with clays (smectite, kaolinite and illite), specially in El-Faras-1 well,. There is a valuable quantity of clay minerals, such as smectite and kaolinite with some illite in Raml-1& 3 and El-Faras-3 wells, as indicated from the higher API values associated with sands and cemented by calcite, and with some secondary dolomite. In case of Abu Roash “F” Member, which represents carbonate rock unit of low gamma-ray intensity with little clay content, it is composed mainly of calcite and sometimes dolomite, and clay mineral represented by illite, as shown in Fig. (5A). W hile in Abu Roash “E” Member, the quantities of clay minerals increase in the form of smectite and kaolinite with some illite of higher API values, in combination with quartz and calcite. Eventually, In case of Abu Roash “D” Member, the clay minerals are present in valuable fraction around the area of Raml-1 well, as shown in Fig (5B), but there is an increase of quartz content on the account of clay minerals and carbonates, specially in Raml -3 well (Fig 5C). M ineralogic Identification M odels: This study aims to determine the mineralogic models of the studied rock units; such as Bahariya Formation and Abu Roash “D, E, F and G” Members in El-Faras-1, El-Faras-3, Raml1 and Raml-3 wells, that distributed in the northwestern part of Abu El-Gharadig basin, W estern Desert, Egypt, as shown in Fig. (3). The study of mineralogic models and the determination of their volumetric distribution were done by many authors, as: [3,5,6,7,8,9,10,49,58]. The reconstruction of the mineralogic models and fluid contents of these rock units from the available well log data, such as ñ b, ÄT and Ö N is the main target of this study. Crossplots assist in the selection of the interpretation parameters and the identification of the trends and problems of mineralogic models. These crossplots are sometimes two-dimensional and in other times are three-dimensional. The formerly mentioned crossplots are based on knowing and plotting the matrix coefficient of any mineral, which helps in driving the mineral constituents of the studied rock intervals. The minerals present in these rock units are identified through different crossplots such as: M Lith- N Lith (M -n) Plot: this type of plots depends essentially on the fluid and log parameters, which are incorporated together in three porosity logs (ñ b, ÄT and Ö N). From these values, two functions (M and N) are calculated, which are independent of the primary porosity [18 ] . By using the M-N plot for matrix identification, the lithologic content for each zone can be defined, with respect to the standard M and N values of the common minerals and rocks, as shown by Abu El-Ata and Ismail [3 ]. In this study, we concentrated the logging analysis on the mineralogical identification present in the studied rock units, which helps in the volumetric detection of each mineral present in each interval. The studied Bahariya Formation is characterized by the presence of kaolinite and illite as the main clay minerals with smectite in all of the studied wells, in combination with quartz and kfeldspars, while calcite is the main carbonate mineral with few dolomite, as shown in Fig (6A). The clay minerals (illite and kaolinite) trend is the main trend in case of Abu Roash “G” Member with increasing the calcite content and sometimes the increase of feldspars, as shown in Fig (6B). Abu Roash “F” Member has carbonate trend, where the present clay mineral is directed toward smectite than other clays, as shown in Fig (7A), which reflects that, this formation is mainly composed of argillaceous limestone. W hereas the “E and D” Members are characterized by the increase of shale content, as kaolinite and illite trend with the appearance of some dolomite, as shown in Fig (7 B&C). ñb, vs Ö N with GR Z-plot: This type of plots has three lines, sandstone line, limestone line and dolomite line, with points of clay minerals such as illite, smectite and kaolinite, with gamma ray values in API units to differentiate between the shaley parts, which have higher API units of more than 40 API and characterized by the presence of clay M inerals, such as illite, smectite and kaolinite; from carbonates, such as limestone (calcite) and dolomite of lower API units. Crossplots study and analysis of Bahariya Formation (Fig 4 A) revealed that, this formation in Raml 1&3 wells is composed of clay minerals as smectite, kaolinite and illite, in combination with calcite, dolomite and sandstone, which is represented by quartz. The presence of higher carbonates reflects maritime conditions during the deposition of Bahariya Formation. W hereas in the area around El-Faras-1 and 3 wells, the quartz content increases, in association with clay minerals, such as smectite, kaolinite and illite on the account of carbonate minerals as calcite and dolomite, so the limy shale, sandy shale and calcareous shale are prevalent. 485 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 1: Regional tectonic highlighting the major geotectonic phases or cycles (after Meshref, 1990) Fig. 2: Generalized stratigraphic column of Abu El-Gharadig Basin, north W estern Desert, Egypt. (after shell, 2001) 486 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 3: Location map of the study area northwest of Abu El-Gharadig Basin. 487 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 4: Density versus phi neutron with GR Z plot for Bahariya Formation and Abu Roash "G" Member in the studied wells, W estern Desert. 488 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 5: Density versus phi neutron with GR Z plot for Abu Roash "D,E and F" M embers in the studied wells, W estern Desert. 489 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 6: M Lith N Lith crossplot for Bahariya Formation and Abu Roash "G" Member in the studied wells. Fig. 7: M Lith N Lith crossplot for Abu Roash "F,E and D" Members in the studied wells. 490 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 8: MID plot for Bahariya Formation and Abu Roash "G" Member in the studied wells. 491 J. Appl. Sci. Res., 6(5): 483-510, 2010 c-ñ (m a )a vs ÄT (m a )a M ID plot: Such a plot is considered as complementary way for identifying the lithology, gas and secondary porosity. It depends on the apparent matrix parameters as ñ (m a)a and ÄT (m a)a for clean and shaley zones. They are used in the MID plot to define the association of essential and accessory minerals, that form the background of matrix in the analyzed rocks of the considered zones, as shown by Abu El-Ata and Ismail[3] . Ñb= 2.65 VQ + 2.52 VI + 2.41 VK + 2.12 VSem + 2.71 VCa + 2.88 VDol + 1.1 ÖN = -0.02 VQ + 0.3 VI + 0.37 VK + 0.44 VSem - 0.01 VCa + 0.01 VDol + 185 ÄT = 55.5 VQ + 110.0 VI + 95 VK + 120VSem + 48 VCa + 43.2 VDol + 100 1= VQ + VI + VK + VSem + VCa + VDol + V where. VQ is the volume of quartz fraction. VI is the volume of illite fraction. VK is the volume of kaolinite fraction. Vsem is the volume of smectite fraction. VCa is the volume of calcite fraction. VDol is the volume of dolomite fraction. V is the total porosity. The resulted frequency distribution of the volumes of rocks forming minerals and the volumes of fluids present in the pores of these rock units are used for calculating the thermal conductivities of these rock intervals and also the heat flow. Bahariya Formation: Based on the mineralogic models of Bahariya Formation in the four studied wells, the mathematical response equations are shown as follow: In Raml-1 well, the mineralogic model includes quartz, illite, kaolinite, smectite and calcite. The response equations for this model are as follow: Ñb= 2.65 VQ + 2.52 VI + 2.41 VK + 2.12 VSem + 2.71 VCa + 1.1 ÖN = -0.02 VQ + 0.3 VI + 0.37 VK + 0.44 VSem - 0.01 VCa + 185 ÄT = 55.5 VQ + 110.0 VI + 95 VK + 120VSem + 48 VCa + 100 1= VQ + VI + VK + VSem + VCa + V b- In Raml-3 and El-Faras-1 &3 wells, the mineralogic model includes quartz, illite, kaolinite, smectite, calcite and dolomite. The response equations for this model are as follow: Ñb= 2.65 VQ + 2.52 VI + 2.41 VK + 2.12 VSem + 2.71 VCa + 2.88 VDol + 1.1 ÖN = -0.02 VQ + 0.3 VI + 0.37 VK + 0.44 VSem - 0.01 VCa + 0.01 VDol + 185 ÄT = 55.5 VQ + 110.0 VI + 95 VK + 120VSem + 48 VCa + 43.2 VDol + 100 1= VQ + VI + VK + VSem + VCa + VDol + V Thermal Conductivity: The thermal structure of a sedimentary basin is controlled by its thermal conductivity, its boundary conditions, water flow, rate of sedimentation and erosion, and radiogenic heat sources. The radiogenic heat production in the sediments is known to vary over several orders of magnitudes, with the lowest values in evaporites and carbonates and the highest values in black shales [6 4 ]. Studying the heat flow and its influences is one of the prerequisites for modeling the thermal structure of sedimentary basins and allows the determination of the geodynamic state, and the composition and structure of the underlying basement [3 4 ] . As an important aspect of basin analysis, thermal parameters such as thermal gradient, radiogenic heat production and heat flow are crucial to modeling of the thermal maturation of oilsource rocks and the dynamic evolution of a basin [6 6 ]. The hydrocarbon maturation and diagenesis of sedimentary organic matter are functions of the thermal history of the host sediments or sedimentary rocks [5 1 ]. The presence of organic matter in the rock matrix can reduce the rock heat conductivity and so increase the formation temperature [2 9 ] . Thermal conductivity is dependent on the composition and geometry of the rock matrix, on porosity, and on pore medium water or hydrocarbons. Additional influences in the situation of a deeply buried rock are pressure and temperature [6 2 ]. Replacement of pore water by gaseous hydrocarbons results in reduction of heat conductivity and increase of sediments temperature [3 3 ,3 0] . The geothermal gradient in the low conductivity shale sections is elevated relative to the geothermal gradient in the high conductivity “washing granite” [4 5 ] . The formation of significant amount of free gas, gas condensate and condensate Abu Roash Formation: Based on the mineralogic models of Abu Roash Formation in the four studied wells, the mathematical response equations are as follow: In Raml-1 well, the mineralogic model includes quartz, illite, kaolinite, smectite and calcite. The response equations for this model are as follow: Ñb= 2.65 VQ + 2.52 VI + 2.41 VK + 2.12 VSem + 2.71 VCa + 1.1 ÖN = -0.02 VQ + 0.3 VI + 0.37 VK + 0.44 VSem - 0.01 VCa + 185 ÄT = 55.5 VQ + 110.0 VI + 95 VK + 120VSem + 48 VCa + 100 1= VQ + VI + VK + VSem + VCa + V In Raml-3 and El-Faras-1&3 wells, the mineralogic model includes quartz, illite, kaolinite, smectite, calcite and dolomite. The response equations for this model are as follow: 492 J. Appl. Sci. Res., 6(5): 483-510, 2010 from organic matter lead to a substantial increase in temperature up to 5-15ºC. This results from the reduction of thermal conductivity of the rock as a result of the lower thermal conductivity of these hydrocarbon products and the change in heat conductivity of rocks with dispersed organic matter can increase the temperature of sedimentary rocks by 3-5ºC and the rock maturity by not more than 0.02% Ro [3 7 ]. The variability in thermal conductivity of the sedimentary rocks has to be attributed to the change in mineral composition (grains and cement) and the rocks, in which clay cements prevail show distinctively lower values than rock with silica cement[5 3 ]. Measurements of thermal conductivity cover a wide spectrum of techniques, that can be subdivided into direct (laboratory) and indirect (well logging) approaches. In the past, the most used direct method was the steady-state divided-bar technique, where either saturated or non-saturated rock was investigated. Other techniques use transient heat sources. For example, line sources are deployed in the pulsed line-source approach [4 6 ] , in the needle-probe technique and in the half-space line-source methods. The two latter two techniques are described and referenced in more detail by Blackwell, and Steele [13 ] and Pribnow and Sass, [5 7 ] . A varying type of direct method recently introduced is termed ‘‘optical scanning’’ [5 4 ] . This method is based on scanning a sample surface with a focused and movable heat source, in combination with a temperature sensor. The thermal conductivity distribution enables a detailed study of the heterogeneity of the sample. Therefore, the technique is also of special interest for studying the physical properties of porous sedimentary rocks under dry and fluid-saturated conditions [5 5,3 8 ] . Some studies focused on determining the thermal conductivity from well logs. [1 6 ] , based on the detailed lithologic description together with sonic and neutron logs, were digitized and used for estimating the thermal conductivity. This study also makes extensive use of the previously published thermal conductivity measurements of rocks from Utah [1 4 ,2 0 ,4 3 ,27 ,5 2,5 6 ] . For formations, where there are no measured or published conductivity data, values were used from the measurements of lithologically similar formations. These are referred to as assumed thermal conductivity values. Matrix thermal conductivities in Table (1) are converted to in-situ conductivities by accounting for porosity and temperature effects. In this study, the in-situ thermal conductivity is based on the volumetric distribution of the mineral constituents, total porosity and fluid content of the studied rock units obtained from well log data and, then geometric mean method for estimating thermal conductivity of different zones. The conductivity of the pore water was calculated using the polynomial, relating temperature to conductivity, given by Deming and Chapman, [27 ] based on the data of Touloukian et al, [6 5 ] . No adjustments were made for the salinity of the pore water. The thermal conductivities of some rocks forming minerals are shown in Table (1). Geometric M ean M ethod for Estimating Thermal Conductivity: The wide variety of thermal conductivity values for the rock-forming minerals found in Table 1 and the results obtained in this study revealed that: the knowledge of the complete mineralogy of the rock is necessary for the accurate assessment of the rock’s thermal conductivity. Based on the mineralogic composition, the values of corrected thermal conductivity ë in (W /m/k) for the different zones in the studied rock units can be computed from the generalized geometric mean method, as expressed by eq. (1), a method that was successfully used by W oodside and Messmer, (1961) and Sass et al, (1971): n ë m = Ð ëiV i (1) i=1 where: Ð represents the product of the thermal conductivities of the minerals ë raised to the power of their volumetric proportion v, in which the sum of the volumetric proportions of the minerals is equal to 1. The subscript i refers to the i th mineral, there being z minerals altogether. Equation (1) gives the best results when the thermal conductivity of each mineral does not contrast by more than one order of magnitude. Thermal conductivity (ë) of a porous medium can be expressed as: ë= ës (1 - f) ëw f , (2) where: ë is the in-situ thermal conductivities, f is the total porosity, ës is the conductivity of the solid matrix, and ëw is the conductivity of the pore-filling fluid, in this case water. The resulted thermal conductivity for each horizon obtained from the geometric mean method is corrected to the formation temperature, since the measured thermal conductivity is determined at 20ºC. Adjustment of the matrix conductivity (ë m 2 0 ) values for temperature was accomplished by using the relation given by Chapman and Furlong [2 2] . ë = ë m 20 [1/ (1 + 0.0005 (T-20))] (3) where: ë m 2 0 is the matrix conductivity at 20°C and T is the formation temperature in degrees Celsius and the coefficient 0.0005 corresponds to a silty mudstone lithology [3 6 ] . 493 J. Appl. Sci. Res., 6(5): 483-510, 2010 In this discussion of the thermal conductivity, it has been assumed that, the conductivity is isotropic. The thermal properties of the studied rock units, such as Bahariya Formation and Abu Roash “D,E, F, and G’ Members are as follow: Abu Roash “F” M ember: The thermal conductivity of Abu Roash “F” M ember, which is composed of limestone, is ranged between 2.48W /m/K and 2.7W /m/K in Raml-3 well, as shown in Table (9). These high values of (ThC) in Raml-3 well are mainly related to the presence of higher content of quartz, calcite and dolomite minerals, which have higher thermal conductivities on the expense of the lower thermal conductivity of clay minerals. B a ha riya F o rm a tio n: T he corrected therm al conductivity (ThC) of this formation is shown in Fig (9) and Table (2). It is clear that, most of the thermal conductivity in Raml-1 well, is ranged between 1.99 and 2.22W /m/K, except at the upper part, where the (ThC) is reduced to 1.59W /m/K in the silt and shale horizons. In Raml -3 well, the (ThC) shows higher values of 2.62 to 2.68W /m/K. At the lower part of this formation, it decreases dramatically to 1.85 W /m/K, then increases at the middle part again where quartz (sand) content increases, the upper part of this formation shows reduction in the (ThC) again to a value of 1.62 W /m/K, as shown in Table (3). In case of El-Faras-1 well, most of this formation has (ThC) in the range between 2.2 and 2.73W /m/K, except in two beds, where it is reduced to 1.7 and 1.78 W /m/K, as reflected from Table (4). Eventually, the corrected thermal conductivity of Bahariya Formation at area surrounding El-Faras-3 well shows uniformity in the (ThC) lower than that in El-Faras-1 well, which is ranged from 2.11 to 2.36 W /m/K, as shown in Table (5). Abu Roash “E” M ember: This rock unit in Raml-1 well is composed of alternations of shale, limestone and sandy shale, and has varied thermal conductivities depending on the difference in percentage of the present minerals, total porosities and fluid contents. So, the (ThC) is ranged between 1.68 and 2.04 W /m/K in the shale horizons and from 1.92 to 3.18W /m/K in the limestone beds, with an average corrected thermal conductivity of 2.16W /m/K, as shown in Table (10). W hereas, the thermal conductivity of this rock unit in the area around Raml -3 well has a lower thermal conductivity than in the former well, and is ranged between 1.54 and 2.03 W /m/K in the calcareous and sandy shale, to be 2.98 in the limestone beds with an average corrected thermal conductivity of 2.09W /m/K, as shown in Table (11). It is mainly related to the increase of both shale and porosity contents, as well as the presence of dolomite in this well. Radiogenic Heat Production: Rocks exhibit a natural radioactivity caused by the decay of natural radionuclides [6 2 ] . The three types of isotope decay series abundant in the different types of rocks are the uranium series (decay of 238U and 235U), the thorium series (decay of 232Th), and the decay of potassium isotope 40K, which is much more abundant in the shaley rock, especially that contain smectite clay mineral. The radioactive heat generation (A) in mW /m 3 , as a result of isotope decay, is expressed after Rybach (1976) as follows: Abu Roash “G” M ember: Abu Roash “G” Member in Raml-1 well, which is mainly composed of calcareous shale and limestone, and has thermal conductivities ranged between 1.65 and 1.92 W /m/K in most of the calcareous shale horizons, had reached to 2.75 W /m/K in the horizons of higher calcite content, as detected in Table(6). In Raml-3 well, due to the increase of shale content, sometimes the increase of porosity and the increase of fluid content of lower thermal conductivity, the (ThC) of this rock unit is lower than that in case of Raml-1 well, and reduced down to 1.35W /m/K, and shows higher values up to 3.11W /m/K in the limestone horizons, as shown in Table (7). The results of the calculated thermal conductivities of Abu Roash “G” Member in El-Faras-1 well reflected a higher average (ThC) than that occurred in Raml-1 well, and are ranged between 1.47 and 3.122W /m/K. The shaley parts have thermal conductivity ranged between 1.48 and 1.76W /m/K, whereas the limestone horizons reached to 3.12W /m/K. In El-Faras -3 well, the (ThC) of most of the studied thick shaley horizons have lower values ranged between 1.67 and 1.86W /m/K, while the other parts that are composed of limestone have higher (ThC) and reached up to 3.32W /m/K. A = ñ (9:52 U + 2:56 Th + 3:48 K) 10 -5 (4) W here: ñ is the density of rock (in kg/m 3 ), U and Th are the contents of uranium and thorium (in ppm) and K is the content of potassium (in wt.%). The whole rock abundances of U, Th and K, in principle, can be determined by chemical analysis, by gammaspectroscopic measurements and from gamma-ray (GR) borehole logs. In this study, the radiogenic heat production is based on the latter approach developed by Bücker and Rybach [1 7 ] , that uses a linear relationship between the natural total gamma-ray logs from industrial exploration (in API units; see Anonymous, [1 1 ] ) and the laboratorymeasured heat production (A, µW /m 3 ), as shown: 494 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 9: MID plot for Bahariya Formation and Abu Roash "F,E and D" Members in the studied wells. Table 1: Therm al conductivities of som e sedim entary rocks form ing m inerals and som e fluids. Type M inerals Therm al conductivity W /m /K N on clay Q uartz 7.80* ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------M inerals Calcite 3.40* ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------D olom ite 5.10* ------------------------------------------------------------------------------------------------------------Anhydrite 6.40* ------------------------------------------------------------------------------------------------------------Sedrite 3.00* ------------------------------------------------------------------------------------------------------------O rthoclase 2.30* ------------------------------------------------------------------------------------------------------------k-feldspares 2.30* ------------------------------------------------------------------------------------------------------------Albite 2.30* ------------------------------------------------------------------------------------------------------------M ica 2.30* ------------------------------------------------------------------------------------------------------------H alite 6.50* ------------------------------------------------------------------------------------------------------------Gypsum 3.10* ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Clay Kaolinite 2.80* ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------M inerals Chlorite 5.10* ------------------------------------------------------------------------------------------------------------Illite 1.80* ------------------------------------------------------------------------------------------------------------M ixed layer illite/sm ectite 1.90* ------------------------------------------------------------------------------------------------------------Air 0.03** ------------------------------------------------------------------------------------------------------------W ater (20ºC) 0.60** ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Fluid O il 0.21*** ------------------------------------------------------------------------------------------------------------Gas 0.079*** 495 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 2: Therm al conductivity and heat flow of Bahariya Form ation at Ram l -1 well. D epth m . D epth m . Thickness. m . Lithology A. Therm al Conductivity H eat Flow 1211.59 1205.79 5.79 Shale 1.59 67.58 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1205.79 1208.23 2.44 silt 1.66 70.55 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1208.23 1212.50 4.27 S. Shale 1.66 70.55 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1212.50 1234.76 22.26 Shale 1.61 68.43 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1234.76 1236.28 1.52 S.s. 2.06 87.55 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1236.28 1254.88 18.60 S. Shale 1.90 80.75 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1254.88 1265.85 10.98 Shale 1.71 72.68 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1265.85 1268.60 2.74 L.S 2.41 102.4 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1268.60 1281.40 12.80 S. Shale 1.99 84.58 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1281.40 1283.23 1.83 S.S. 2.24 95.20 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1283.23 1288.41 5.18 S. Shale 2.15 91.38 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1288.41 1292.68 4.27 S.S. 2.22 94.35 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1292.68 1315.24 22.56 S. Shale 1.95 82.88 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1315.24 1316.16 0.91 S.S 2.27 96.48 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1316.16 1321.65 5.49 S. Shale 2.02 85.85 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1321.65 1323.78 2.13 S.S 2.17 92.23 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1323.78 1329.27 5.49 S. Shale 2.05 87.13 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1329.27 1334.76 5.49 S.S 2.22 94.35 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1334.76 1348.78 14.02 S. Shale 2.04 86.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1348.78 1353.35 4.57 S.S 2.24 95.20 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1353.35 1372.56 19.21 S. Shale 2.13 90.53 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1372.56 1374.39 1.83 S.S 2.19 93.08 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1374.39 1376.22 1.83 S. Shale 2.14 90.95 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1376.22 1379.57 3.35 S.S 2.10 89.25 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1379.57 1382.62 3.05 S. Shale 2.04 86.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1382.62 1401.52 18.90 S.S. 2.15 91.38 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1401.52 1408.84 7.32 S. Shale 1.99 84.58 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Total thickness 197.3 Average 2.033 A = 0.0158 (GR [API] – 0.8) (5) Geiger–Müller counters calibrated using Co-60 emitters. The logs were corrected for the borehole conditions (borehole diameter and density of the drilling mud) and for the size and position of the recording unit used. Logs of a generally abnormal character were discarded. Abnormal logs could be either a result of abnormal drill-mud composition (bentonite or KCl mud) or because of gas entry into the well. The equation is validated for API values less than 350º and is estimated to give an error of less than 10%. Total-count gamma-ray (GR) logs were available for this study. These logs, routinely obtained during hydrocarbon exploratio n, were m easured with 496 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 10: Minerals distribution, radiogenic heat production and thermal conductivity of Bahariya Formation at Raml -1 well, Radiogenic heat production is higher in the finegrained sediments, such as shale, has high radioactive heat production than sandstone or limestone. So high heat production group corresponds to the shale horizons at different ages and may have produced enough heat for hydrocarbon generation [3 2 ]. The GR logs covering the range of 10–156º API comprise Bahariya Formation and Abu Roash “D, E, F and G” Members of Late Cretaceous age were used. Furthermore, care was taken that only logs were related to wells with similar drill-mud composition. Based on equations (5), the radiogenic heat production (RHP) generated in the studied rock units are shown as follows in Table (16) surrounding this well is ranged from 0.15 to 3.96 µW /m 3 , with an average of 1.97µW /m 3 , as shown in Table (16). This greater variation in (Rh) between these two wells is due to the higher percentage of clay minerals in Raml-1 well than in case of Raml-3 well, especially illite and Kaolinite, which are characterized by higher percentage of K 4 0 and Thorium .In the area around El-Faras-1 well, the generated (Rh) is ranged between 1.02 and 5.399 µW /m 3 , with an average of 3.41 µW /m 3 . W hereas that produced in El-Faras-3 well is higher than that produced in Raml-3 and El-Faras-1 wells and is ranged from 0.443µW /m 3 to 7.48µW /m 3 , with an average of 3.87µW /m 3 . It is clear also that, the oil producing zones are characterized by higher radiogenic heat production, that may also related to the presence of uranium captured by organic matter, from which the oil produced. Bahariya Formation: The generated radiogenic heat (Rh) present in this formation shows a greater effect from one well to another and is mainly based on the shale content. In case of Raml-1 well, the generated radiogenic heat is varied from 0.722 to 9.086 µW /m 3 , with an average value of 4.53 µW /m 3 . But in Raml-3 well, the generated radiogenic heat in the area Abu Roash “G” M ember: The radiogenic heat production in Abu Roash “G” Member in the studied well does not show distinctive variation than that calculated in the Bahariya Formation, except the lower 497 J. Appl. Sci. Res., 6(5): 483-510, 2010 Fig. 11: Minerals distribution, radiogenic heat production and thermal conductivity of Abu Roash "D, E, and F" Members at Raml -3 well, W estern Desert Egypt. values in Raml-3 and El-Faras-3 wells, which have higher values than these of Bahariya Formation. The opposite is right in case of Raml-1 and El-Faras-1 wells, where the minimum values are higher in case of Bahariya Formation than that of Abu Roash “G” M ember, as shown in Table (16). Generally, the radiogenic heat production (RH) of the area around Raml-3 well, has lower values than in the area around the other wells. production of this rock unit in Raml-1 well, is higher than that generated in El Raml-3 well. This is mainly related to the higher content of illite clay mineral in El Ramal-1 well, which contains, higher K 4 0 . Abu Roash “E” M ember: The radiogenic heat production of this rock unit at the area around Raml-1 well, is higher than that around Raml-3well and also than the underlying Abu Roash “F” Member, as shown in Table (16). These high values are mainly related to the presence of excess amounts of clay minerals as illite, kaolinite and smectite, and also to the presence of glauconite. Abu Roash “F” M ember: The radiogenic heat generated in this rock unit, which is composed mainly of calcite (limestone), is abruptly reduced for the maximum value of Raml-1 well, but suddenly increases for the minimum values, as shown in Table (16). In Raml-3 well, there is no greater variation in the maximum or minimum values of these of Abu Roash “G” Member. Generally, the radiogenic heat Abu Roash “D” M ember: In this rock unit, the produced radiogenic heat reflects higher values in Raml-1 well than those occurred in Raml-3 well, but lower than the underlying Abu Roash “E” Member. 498 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 3: Therm al conductivity and heat flow of Bahariya Form ation at Ram l -3 well. D epth m . D epth m . thickness m . Lithology, A. Therm al Conductivity H eat Flow 1204.88 1207.01 2.13 Shale 1.78 86.86 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1207.01 1214.02 7.01 S. Shale 2.18 106.38 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1214.02 1215.24 1.22 Shale 1.63 79.54 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1215.24 1220.73 5.49 S. Shale 1.83 89.30 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1220.73 1225.30 4.57 Shale 1.72 83.94 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1225.30 1230.18 4.88 S. Shale 1.76 85.89 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1230.18 1231.71 1.52 Shale 1.61 78.57 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1231.71 1233.54 1.83 S.S. 2.20 107.36 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1233.54 1257.93 24.39 S. Shale 1.95 95.16 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1257.93 1269.21 11.28 Shale 1.63 79.54 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1269.21 1271.95 2.74 L.S 2.25 109.80 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1271.95 1274.09 2.13 Shale 1.70 82.96 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1274.09 1276.22 2.13 S. Shale 1.91 93.21 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1276.22 1278.05 1.83 Shale 1.80 87.84 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1278.05 1284.45 6.40 S.S 2.01 98.09 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1284.45 1292.38 7.93 S. Shale 2.37 115.66 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1292.38 1294.51 2.13 S.S 2.76 134.69 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1294.51 1318.60 24.09 S. Shale 2.35 114.68 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1318.60 1320.12 1.52 S.S 2.33 113.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1320.12 1322.87 2.74 Shale 1.85 90.28 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1322.87 1327.44 4.57 S. Shale 1.84 89.79 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1327.44 1328.96 1.52 S.S 2.63 128.34 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1328.96 1335.37 6.40 S. Shale 2.63 128.34 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1335.37 1339.33 3.96 S.S 2.68 130.78 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1339.33 1352.44 13.11 S. Shale 2.01 98.09 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1352.44 1369.82 17.38 S.S 2.62 127.86 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1369.82 1372.56 2.74 S. Shale 2.48 121.02 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1372.56 1373.78 1.22 S.S 2.60 126.88 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1373.78 1402.44 28.66 S. Shale 2.63 128.34 Total thickness 168.9 average 2.13 103.89 Table 4: Therm al conductivity and heat flow of Bahariya Form ation at El-Faras -1 well. D epth m . D epth m . thickness m . Lithology, A therm al Conductivity H eat 765.55 793.29 27.74 Shale 1.98 71.44 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------793.29 798.17 4.88 S.S 2.78 100.39 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------798.17 805.49 7.32 Shale 2.05 74.01 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------805.49 807.32 1.83 S.S 2.46 88.66 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 499 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 4: Continue 807.32 814.33 7.01 Shale 2.02 72.97 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------814.33 816.16 1.83 S.S 2.52 91.03 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------816.16 818.29 2.13 Shale 1.78 64.26 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------818.29 820.73 2.44 S.S 2.74 98.90 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------820.73 838.41 17.68 Shale 2.13 76.75 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------838.41 842.68 4.27 Shale 2.26 81.73 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------842.68 845.73 3.05 S.S. 2.53 91.35 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------845.73 860.98 15.24 Shale 2.23 80.46 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------860.98 861.89 0.91 S.S 2.61 94.09 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------861.89 884.15 22.26 Shale 2.19 79.08 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------884.15 914.63 30.49 S. Shale 2.17 78.16 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------914.63 929.27 14.63 S.S 2.68 96.56 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------929.27 930.18 0.91 Shale 2.73 98.57 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------930.18 947.26 17.07 S.S 2.52 90.81 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------947.26 956.10 8.84 S. Shale 2.05 74.08 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------956.10 967.07 10.98 S.S 2.58 93.13 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------967.07 973.17 6.10 S. Shale 1.70 61.29 Total thickness 207.62 average 2.32 83.70 Table 5: Therm al conductivity and heat flow of Bahariya Form ation at El-Faras -3 well. D epth m . D epth m . thickness m . Lithology, A. therm al Conductivity H eat Flow 795.43 822.56 27.13 Shale 1.94 92.73 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------822.56 831.10 8.54 S. Shale 2.23 106.59 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------831.10 833.54 2.44 S.S 2.35 112.33 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------833.54 840.24 6.71 Shale 2.10 100.38 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------840.24 844.51 4.27 S.S 2.39 114.24 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------844.51 862.50 17.99 Shale 1.96 93.69 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------862.50 864.02 1.52 S. Shale 2.57 122.85 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------864.02 867.99 3.96 Shale 2.11 100.86 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------867.99 869.51 1.52 L.S 2.22 106.12 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------869.51 914.63 45.12 Sh. Sand 2.21 105.64 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------914.63 925.61 10.98 S.S 2.33 111.37 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------925.61 927.13 1.52 S. Shale 2.11 100.86 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------927.13 939.02 11.89 S.S 2.33 111.37 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------939.02 946.04 7.01 S. Shale 2.28 108.98 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------946.04 958.54 12.50 S.S 2.36 112.81 500 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 5: Continue 958.54 959.45 0.91 S. Shale 2.14 102.29 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------959.45 971.95 12.50 S.S 2.36 112.81 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------971.95 973.17 1.22 S. Shale 2.24 107.07 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------973.17 985.37 12.20 S.S 2.39 114.24 Total thickness 189.94 Average 2.26 107.22 Table 6: Therm al conductivity and heat flow of Abu Roash" M em ber at Ram l -1 well. D epth m . D epth m . thickness m . Lithology A. therm al Conductivity H eat Flow 1079.9 1083.8 3.96 Cal Shale 1.93 82.03 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1083.8 1087.5 3.66 Shale 2.12 90.10 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1087.5 1091.5 3.96 S. Shale 1.92 81.60 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1091.4 1138.7 47.26 Shale 1.65 70.13 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1138.7 1141.5 2.74 L.S 2.25 95.63 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1141.5 1142.7 1.22 Shale 1.65 70.13 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1142.7 1144.8 2.13 L.S 1.88 79.90 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1144.8 1148.5 3.66 Shale 1.94 82.45 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1148.5 1154.3 5.79 L.S 2.75 116.88 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1154.3 1156.7 2.44 Shale 1.77 75.23 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1156.7 1157.9 1.22 L.S 2.15 91.38 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1162.2 1174.7 12.50 Shale 1.67 70.98 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1174.7 1176.5 1.83 L.S 1.74 73.95 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1176.5 1199.4 22.87 S. Shale 1.79 76.08 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1199.4 1211.6 12.20 L.S 1.79 76.08 Total thickness Average 1.93 82.13 Table 7: Therm al conductivity and heat flow of Abu Roash "G" M em ber at Ram l -3 well. D epth m . D epth m . thickness m . Lithology A. therm al Conductivity H eat Flow 1083.6 1090.6 7.01 Cal Shale 1.8 87.84 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1090.6 1094.2 3.66 S.Shale 1.76 85.89 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1094.2 1143.3 49.09 Shale 1.42 69.30 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------11433 1146.3 3.05 L.S 1.97 96.14 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1146.3 1147. 6 1.22 Shale 1.67 81.50 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1147. 6 1149.1 1.52 L.S 2.28 111.26 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1149.1 1151.8 2.74 Shale 1.37 66.86 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1151.8 1157.9 6.10 L.S 3.11 151.77 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1157.9 1159.8 1.83 Shale 1.49 72.71 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1159.8 1161.3 1.52 L.S 1.97 96.14 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1161.3 1164.9 3.66 S.Shale 1.82 88.82 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1164.9 1177.4 12.50 Shale 1.39 67.83 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 501 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 7: Continue 1177.4 1178.9 1.52 L.s 1.98 96.62 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1178.9 1182.9 3.96 Shale 1.53 74.66 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1182.9 1186. 9 3.96 S.Shale 1.69 82.47 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1186.9 1190.2 3.35 L.S 1.96 95.65 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1190.2 1192.7 2.44 Shale 1.35 65.88 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1192.7 1195.1 2.44 S.Shale 1.72 83.94 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1195.1 1204.9 9.76 Cal Shale 2.03 99.06 Total thickness average 1.81 88.12 Table 8: Therm al conductivity and heat flow of Abu Roash "G" M em ber at El-Faras -1 well. D epth m . D epth m . thickness m . Lithology A. therm al Conductivity H eat Flow 649.39 700.61 51.22 Shale 1.58 56.93 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------700.61 710.37 9.76 L.S 2.19 79.20 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------710.37 712.50 2.13 Shale 2.24 80.79 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------712.50 718.90 6.40 L.S 3.12 112.7 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------718.90 731.71 12.80 Shale 1.68 60.68 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------731.71 737.20 5.49 L.S 2.80 101.2 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------737.20 742.99 5.79 Shale 1.74 62.76 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------742.99 749.09 6.10 L.S 2.34 84.31 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------749.09 756.10 7.01 Shale 1.76 63.58 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------756.10 757.62 1.52 S.S 1.48 53.36 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------757.62 762.20 4.57 S. Shale 1.60 57.84 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------762.20 765.55 3.35 L.S 2.13 77.04 Total thickness 116.16 average 2.06 74.20 Table 9: Therm al conductivity and heat flow of Abu Roash "G" M em ber at El-Faras -3 well. D epth m . D epth m . thickness m . Lithology A. therm al Conductivity H eat Flow 677.1 734.15 57.01 Shale 1.67 80.02 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------734.2 736.89 2.74 L.S 2.27 108.48 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------736.9 742.38 5.49 Sh + L.S 2.15 102.64 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------742.4 749.70 7.32 L.S 3.32 158.49 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------749.7 767.68 17.99 Shale 1.86 88.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------767.7 771.95 4.27 Sh + L.S 2.26 108.14 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------771.9 776.52 4.57 Shale 1.81 86.52 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------776.5 778.05 1.52 L.S 2.29 109.59 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------778.0 780.49 2.44 Shale 1.81 86.31 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------780.5 795.43 14.94 Sh+ L.S 2.17 103.84 Total thickness 118.29 average 2.26 502 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 10: Therm al conductivity and heat flow of Abu Roash "D " M em ber at Ram l -1 well. D epth m . D epth m . thickness m . Lithology A therm al Conductivity H eat Flow 934.76 938.11 3.35 S. Shale 2.69 114.33 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------938.11 940.85 2.74 L.S 2.91 123.68 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------940.85 944.51 3.66 Shale 2.34 99.45 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------944.51 951.52 7.01 L.S 2.87 121.98 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------951.52 953.96 2.44 Shale 2.2 93.50 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------953.96 956.10 2.13 L.S 2.39 101.58 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------956.10 962.20 6.10 S. Shale 2.00 85.00 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------962.20 969.51 7.32 L.S 2.64 112.20 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------969.51 974.70 5.18 S. Shale 2.96 125.80 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------974.70 978.35 3.66 L.S 2.61 110.93 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------978.35 988.41 10.06 Cal Shale 2.88 122.40 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------988.41 991.46 3.05 L.S 2.16 91.80 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------10.00 L.S 2.67 113.48 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Average 2.56 108.93 Table 11: Therm al conductivity and heat flow of Abu Roash "D " M em ber at Ram l -3 well. D epth m . D epth m . thickness m . Lithology A therm al Conductivity H eat Flow 939.63 941.16 1.52 Shale 2.39 116.63 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------941.16 943.90 2.74 L.S 2.31 112.73 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------943.90 947.87 3.96 Shale 2.06 100.53 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------947.87 955.18 7.32 L.S 2.54 123.95 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------955.18 956.40 1.22 Shale 2.46 120.05 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------956.40 957.32 0.91 L.S 1.74 84.91 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------957.32 958.23 0.91 Shale 2.00 97.60 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------958.23 960.67 2.44 L.S 2.24 109.31 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------960.67 966.77 6.10 Cal Shale 2.16 105.41 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------966.77 972.56 5.79 L.S 2.57 125.42 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------972.56 978.66 6.10 S. Shale 2.37 115.66 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------978.66 981.71 3.05 L.S 2.38 116.14 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------981.71 988.72 7.01 Cal Shale 1.82 88.82 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------988.72 994.51 5.79 L.S 2.29 111.75 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------54.88 average 2.24 109.21 503 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 12: Therm al conductivity and heat flow of Abu Roash "E" M em ber at Ram l -1 well. D epth m . D epth m . thickness m . Lithology A therm al Conductivity H eat Flow 991.46 995.43 3.96 L.S 2.53 107.53 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------995.43 999.09 3.66 Shale 2.04 86.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------999.09 1000.6 1.52 L.S 1.92 81.60 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1000.6 1014.9 14.33 Shale 1.87 79.48 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1014.9 1017.7 2.74 L.S 2.44 103.70 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1017.7 1019.5 1.83 Shale 1.68 71.40 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1019.5 1023.5 3.96 S. Shale 1.88 79.90 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1023.5 1025.3 1.83 Cal Shale 1.93 82.03 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1025.3 1031.1 5.79 L.S 3.18 135.15 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Average 2.16 91.94 Table 13: Therm al conductivity and heat flow of Abu Roash "E" M em ber at Ram l -3 well. D epth m . D epth m . thickness m . Lithology A therm al Conductivity H eat Flow 994.51 997.87 3.35 L.S 2.35 114.68 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------997.87 1002.4 4.57 S.Shale 2.03 99.06 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1002.4 1004.6 2.13 L.S 2.23 108.82 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1004.6 1006.7 2.13 Shale 1.54 75.15 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1006.7 1010.7 3.96 S. Shale 1.79 87.35 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1010.7 1019.2 8.54 Cal Shale 1.75 85.40 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1019.2 1025.0 5.79 L.S 2.04 99.55 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1025.0 1030.5 5.49 S.Shale 2.07 101.02 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------1030.5 1036.6 6.10 L.S 2.98 145.42 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------average 2.09 101.83 Table 14: Therm al conductivity and heat flow of Abu Roash "F" M em ber at Ram l -1 well. D epth m . D epth m . thickness m . Lithology 1031.1 1079.9 48.78 L.S Table 15: Therm al conductivity and heat flow of Abu Roash "F" M em ber at Ram l -3 well. D epth m . D epth m . thickness m . Lithology 1036.6 1083.5 46.95 L.S A therm al Conductivity 2.7 A therm al Conductivity 2.48 H eat Flow 114.75 H eat Flow 121.02 Table 16: Radiogenic heat production in the studied rock units of the study area W ell, nam e Form ation m ax heat Production m in heat Production Average heat Production Ram l-1 A/R "D " 4.493 0.292 1.458 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "E" 5.795 0.071 2.678 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "F" 4.011 1.143 2.449 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "G" 9.152 0.162 4.202 -----------------------------------------------------------------------------------------------------------------------------------------------------------Bahariya 9.086 0.722 4.529 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 504 J. Appl. Sci. Res., 6(5): 483-510, 2010 Table 16: Continue Ram l-3 A/R "D " 3.403 1.741 2.637 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "E" 4.275 1.411 2.755 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "F" 3.284 1.326 2.329 -----------------------------------------------------------------------------------------------------------------------------------------------------------A/R "G" 3.345 1.029 2.001 -----------------------------------------------------------------------------------------------------------------------------------------------------------Bahariya 3.959 0.147 1.968 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El-Faras -1 A/R "G" 6.402 0.386 2.774 -----------------------------------------------------------------------------------------------------------------------------------------------------------Bahariya 5.399 1.018 3.41 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El-Faras -3 A/R "G" 8.074 0.225 3.363 -----------------------------------------------------------------------------------------------------------------------------------------------------------Bahariya 7.481 0.013 3.871 predetermined is the heat flow, so by iterating through various surface heat flow magnitudes, alteration of the calculated geothermal gradient is possible. An optimum surface heat flow value is found, that minimizes the differences between a calculated temperature for the approximate depth and the corrected BHT. The resulted geothermal gradients of the studied wells and their averages are shown in Table (17) Heat-flow Data: Temperature Data: A transient bottom hole temperature (BHT) is recorded by a maximum temperature thermometer through an oil or gas well logging tool. Temperatures are least perturbed by drilling at the bottom of the well. As these temperatures are recorded, the length of the shut- in time (ts) is also recorded as either clock time or the length of time elapsed, since the circulation of drilling mud ceased. If multiple transient BHTs are recorded at the same depth in a well, then the thermal relaxation of the well and, in particular, the steady-state BHT can be calculated [19,4 4] . However, in this study, we used the chart made by Shell (1982). Bahariya Formation: Vertical heat flow within Raml-1 well ranges from about 67mW /m 2 to over 100mW /m 2 for the limestone interval, averaging over 86mW /m 2 . Heat flow drops- off significantly towards the upper part of this rock unit due to the increase of shale content and in combination with the increase of porosity, which filled with water and sometimes oil with their lower thermal conductivities. In the area around Raml-3 well, the vertical heat flow can be divided into two parts, the lower part is characterized by higher vertical heat flow ranges from 113.7mW /m 2 to 134.7mW /m2 , while the upper part of this formation has lower heat flow ranges between 78.6mW /m 2 and 98.1mW /m 2 . This area is higher in the heat flow than the area around Raml-1 well. In El-Faras-1 well, the vertical heat flow ranges between 61.3mW /m 2 and 100.4mW /m 2 for the sandy part, while the thickest part of this formation is composed of shale and sandy shale of low vertical heat flow ranges from 61.3mW /m 2 to 79.04mW /m 2 . Eventually in El-Faras-3 well, most of the studied horizons have vertical heat flow ranges from 109mW /m2 to 112.8mW /m 2 , except a horizon of 1.52 m thickness has high vertical heat flow value of 122.9mW /m2 , in which the lowest values are present in thick shale beds of 27.1 and 18m thicknesses of vertical heat flow of 92.7mW /m 2 and 93.7mW /m 2 , respectively. Heat Flow Determination: Heat- flow q was determined using the interval method. It is given by the Fourier`s law of heat conduction, as follows: q 0 = ë dt/dz (6) where: q 0 is the surface heat flow, ë is the average of the corrected thermal conductivity of the interval and dt/dz is the geothermal gradient. In this study, equation (6) was used for the primary heat flow calculations. Steady-state BHT data are combined with ground surface temperatures and thermal conductivity data as input to equation (6). This is accomplished using a spreadsheet, which creates a temperature-depth profile for each heat flow site using equation (6), based on the heat production, porosity, temperature effects, steady-state BHT and thermal conductivity data. In the equation, once the layer thicknesses, heat production and thermal conductivity profile have been determined, a temperature at any given depth can be calculated by assuming a surface heat flow. In this calculation, the only value that is not 505 J. Appl. Sci. Res., 6(5): 483-510, 2010 Abu Roash “G” M ember: The vertical heat flow in A/R “G” Member of the area around Raml-1 well ranges from70.1mW /m2 to 82.5mW /m 2 , except four thin horizons range from 90.1mW /m 2 to 116.88mW /m 2 and are composed of shaley sand and limestone, in which the average value of this rock unit reached 82.13mW /m 2 . W hile the heat flow at the area around Raml-3 well has higher values in most of the studied horizons and varies from 81.5mW /m 2 to 88.8mW /m 2 , in accommodation with thick shaley horizons of lower heat flow ranges from 67.8mW /m 2 to 74.66mW /m 2 , the limestone zones are characterized by higher vertical heat flow ranges from 96.14mW /m 2 to 151.77mW /m 2 , with average value of vertical heat flow in the area around Raml-3 well of 88.12mW /m 2 . The vertical heat flow values at the area around El-Faras-1 well range from 53.36mW /m 2 to 63.6mW /m 2 in most horizons of this rock unit and from 79.2mW /m 2 to 112.7mW /m 2 in the sandy and limestone horizons with an average value of 74.2mW /m 2 , which represents the lowest vertical heat flow in this rock unit. In the area around El-Faras-3 well, the heat flow in most of the studied horizons, which are composed of limestone range from 102.64mW /m2 to 158.5mW /m2 , while the other shaley and sandy horizons have heat flow values vary from 80.02mW /m2 to 88.7mW /m2 , with an average heat flow of 103.84mW /m 2 . This variation of vertical heat flow can be attributed to the combination of variable thickness of heat-generating materials in the basement, variation in percentage of minerals present in the matrix and fluid content present in pore spaces such as oil, water or gases. Also, the heat refraction through areas of relatively shallow basement and varied tectonic events, which led to the subsidence and development of fault blocks during the Syrian arc system of Late Cretaceous. Summary and C onclusions: T he mineralogic composition of the rock units studied in the area around Raml-1 and 3, and El-Faras-1 and 3 wells is determined from their well log data by the aid of various types of crossplots and mathematical equations. These models clear that, most of the analyzed rock units are mainly composed of variable quantities of clay minerals such as illite, smectite and kaolinite, added to quartz, calcite and dolomite. K-feldspare is present in the Bahariya Formation and in the Abu Roash “D, E, F and G” Members at Raml-3 well. From the frequency distribution of the rock forming –minerals, it is clear that, there are sea level fluctuations starting with the deposition of Bahariya Formation of shallow marine environment. This Formation is characterized by intermediate thermal conductivities in most of the lower parts which is characterized by higher quartz content, reduced upwardly with the increase of shale and also porosity i,e, increase of fluid contents. The radiogenic heat production is in ascending order with the increase of shale content, except in case of El Faras-1 well, where the thermal conductivity is high, but with lower heat flow, this is mainly related to the lower geothermal gradient in this well. This lower geothermal gradient is related to that the measured bottom hole temperature is recorded at shale interval, since shale has low thermal conductivity, so it has low heat loss and good preservation of the conserved heat energy in this interval. In case of Abu Roash “G” Member, with the increase of transgression of sea, the shale and carbonate contents increase on the expense of quartz content, so the thermal conductivity of this rock unit is reduced in the shaley intervals. W hile the limestone horizons have higher thermal conductivities than the underlying Bahariya Formation, the increase of shale content is also accompanied with the increase of radiogenic heat production except, in the area around Raml-3 well. In case of Abu Roash “F” Member, the carbonate content is more than the underlying Abu Roash “G” Member, this change of lithology to more carbonate minerals as calcite and dolomite and the Abu Roash “F” M ember: The vertical heat flow of A/R “F” Member, which is composed of thick limestone bed, in the two studied wells of El-Faras -1 & 3 are 11 4 .7 5 m W /m 2 and 121.024m W /m 2 , respectively. Abu Roash “E” M ember: In this rock unit, the vertical heat flow is graded from shaley horizons of low values range from 71.4 to 79.9mW /m 2 to, 81.6 and 135.15mW /m 2 in the limestone horizons, with an average of 91.94mW /m 2 in El-Faras-1 well. W hile in El-Faras-3 well, the vertical heat flow of A/R “E” Member in the area around El-Faras-3 well shows higher values than in case of El-Faras-1 well, which range from 108.8mW /m 2 to 145.42mW /m 2 in the limestone horizons and decrease to values range between 87.4mW /m2 and 101.02mW /m 2 in the sandy shale to the lowest value in the shale of 75.2mW /m 2 , with an average vertical heat of 101.83mW /m 2 . Abu Roash “D” M ember: This rock unit in the area around Raml-1 and 3 wells is characterized by high vertical heat flow in the range between 99.5 up to 125.8mW /m2 , except few horizons of less than 100mW /m2 . The average values are 108.93mW /m 2 and109.21mW /m2 in Raml-1 and 3 wells, respectively. 506 J. Appl. Sci. Res., 6(5): 483-510, 2010 comparable decrease of clay minerals content and quartz led to the increase in thermal conductivity than the shaley beds and also the reduction of radiogenic heat production. The high heat flow in case of Raml-3 well than in Raml-1 well, is mainly related to the increase of the geothermal gradient in this well, to 4.87. The uniformity of the lithology of Abu Roash “F” (limestone) reflects the stability of the sea level during the deposition of this rock unit. Grading upward to Abu Roash “E” Member, the sea level started to oscillate, so this rock unit is variegated in lithology leading to variation in thermal conductivity and heat flow between higher values in the limestone horizons to lower values in the shaley beds. Also, the variation in radiogenic heat production with higher values in shaley beds, which are considered the source rocks for hydrocarbons, so the increase of Rhp helps in the maturation of the present organic matter. These variations in lithology and thermal conductivity appear clearly with the overlying Abu Roash “D” Member, but with higher values in the thermal conductivity and heat flow than the lower unit. This is due to the increase of quartz and limestone, which are supported by the reduction of radiogenic heat production. Generally, the radiogenic heat production, thermal conductivity and heat flow in the sedimentary rock units are highly affected by lithologic composition, which is mainly based on the depositional environment. This means that, at the transgressive stage which is characterized by the increase of shale content and reduction of sand (quartz) content, the result is the decrease of thermal conductivity and heat flow, but the radiogenic heat production increases, so the loss in heat is low, leading to the preservation of heat energy. This causes the measured bottom hole temperature to be lower than the case of high stand system tract or regressive stage, which is characterized by the increase of sands of higher thermal conductivity and higher heat flow. Radiogenic heat production will be low, especially in clean sands which are characterized by low quantity or absence of clay minerals or Kfeldspars, so the measured bottom hole temperature will be higher than that, measured in the shaley beds, which are considered as source rock for cooking the organic matter of generating hydrocarbons. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. REFERENCES 14. 1. Abdelmalek, K. and S. Zeidan, 1994. Cased-hole formation pressure tester- a practical application for better understanding of hydrocarbon migration and entrapment mechanism in greater Bed-3 area, W estern Desert. 12 th EGPC Explor. and Prod. Conf. Cairo., p: 263-276. 15. 507 Abu El-Ata, A.S.A., 1981.A study on the tectonics and oil potentialities of some Cretaceous - Jurassic basins, W estern Desert, Egypt, using geophysical and subsurface geological data; Ph.D. Thesis, Fac. of Scien, Ain Shams Univ., pp: 568. Abu El-Ata, A.S.A. and A.A. Ismail, 1984. A comparative study between the M-N and MID triprosity crossplots for identifying the matrix components and depositional environments in the central part of the Nile Delta, Egypt; E.G.S. Proc. 4th Ann. Meet., pp: 376-397. Abu El-Ata, A.S.A. and Abd S.H. El-Naby, 1987. The rule of the structural activation and stratigraphic manifestation in the origin of Qattara depression, W estern Desert, Egypt using gravity modeling; E.G.S. Proc. of the 5 th Ann. Meet. March, pp: 90-110. Abu El-Ata, A.S.A. and A.M.K. Basal, 1989a. Lithology make-up identification and determination, using well, logging analysis: General Model; Bull, of ICESC, 16: 39-59. ---------, 1989 b: Lithology make-up identification and determination, using well, logging analysis: Silicates Model; Bull, of GSOGE, .23: 223-240. ---------, 1989 C: Lithology make-up identification and determination, using well, logging analysis: Clays Model; Bull, of GSOGE, 23: 241-267. ---------, 1990 a. Lithology make-up identification and determination, using well, logging analysis: Carbonates Model; Bull, of ICESC, 17: 301-321. ---------, 1990 b. Lithology make-up identification and determination, using well, logging analysis: Evaporites Model; Bull, of ICESC, 17: 322-346. ---------, 1991. Lithology make-up identification and determination, using well, logging analysis: Basement Complex Model; Bull, of ICESC, 17: 87-105. Anonymous, 1974. Recommended practice for standard calibration and form for nuclear logs: American Petroleum institute, API RP-33 p: 13. Awad, G.M., 1984. Habitat of oil in Abu Gharadig and Fayoum basins, W estern Desert, Egypt. AAPG. Bull., 68(5): 564-573. Blackwell, D.D. and J.L. Steele, 1989. Thermal conductivity of sedimentary rocks: Measurement and significance, in N. D. Naeser and T. H. McCulloh, eds., Thermal history of sedimentary basins: New York, Springer-Verlag, pp: 13–36. Bodell, J.M., 1981. Heat flow in north central Colorado Plateau, Salt Lake City, University of Utah, MSc. Thesis, pp: 134. Brigaud, F. and G. Vasseur, 1989. M ineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks: Geophysical Journal, 98: 525–542. J. Appl. Sci. Res., 6(5): 483-510, 2010 16. Brigaud, F., D.S. Chapman and S. Le Douaran, 1 99 0 . E stim ating therm al cond uctivity in sedimentary basins using lithological data and geophysical well, log data. AAPG Bulletin, 74: 1459-1477. 17. Bucker, C. and L. Rybach, 1996. A simple method to determine heat production from gammaray logs: Marine and Petroleum Geology, 13(4): 373– 377. 18. Burke, J.A., R.L. Campbell and A.W . Schmidt, 1969. The litho-porosity crossplot; SPW LA, 10jij Ann. Log Symp. Trans., Paper Y. 19. Bullard, E.C., 1947. The time taken for a borehole to attain a temperature equilibrium, Monthly Notices of the Royal Astronomical Survey, Geophysical supplement, 5: 127-130. 20. Carrier, D.L. and D.S. Chapman, 1981. Gravity and thermal models for the twin Peaks volcanic center, southern Utah: Jour. of Geophy. Research, 86: 10287-10302. 21. Carter, S.L., A.K. Shari, D.B. David and D.N. Nancy, 1998. heat flow and thermal history of the Anadarko Basin, Oklahoma AAPG Bulletin, 82: 291-316. 22. Chapman, D.S. and K.P. Furlong, 1992. thermal state of continental lower crust. In: Fountain, D.M., Arculus, R., Kay, R.W . (eds). Continental Lower Crust. Elsevier, Amsterdam, London, New York, pp: 179-199. 23. Clavier, C. and D.H. Rust, 1976. MID-plot; A new lithology technique; SPW LA, 17,jj Ann. Log. Symp. Trans., Paper T. 24. Cram, E.R., 1986. The log analysis handbook; Penn W ell, Pubi. Co, Tulsa, USA, 74101. 25. Deibis, S., 1976. Oil potential of the Upper Cretaceous sediments in the northern W estern Desert, Egypt; EGPC. Exploration Seminar, Cairo. 26. Delfiner, P., O. Peyret and O. Serra, 1984. Automatic determination of lithology from well, logs; 59 .ilj, Ann. Tech. Conf. of SPE of AIME, Houston, USA., Paper 13290. 27. Deming, D., 1988. Geothermic of north –central Utah thrust belt. PhD. thesis, University of Utah, Salt lake City, Utah, pp: 197. 28. Deming, D., D.S. and Chapman, 1988. Heat flow in the Utah-W yoming thrust belt from analysis of bottom hole temperature data measured in oil and gas well,s: Jour. of geophy. Research, 93: 1365713672. 29. Dolligez, B., F. Bessis, J. Burrus, P. Ungerer and p.y. chenet., 1986. integrated numerical simulation of the sedimentation heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the THEMIS model. In J. urrus, ed., thermal modeling in sedimentary basins: Paris, editions technip, pp: 173-195. 30. Duchkov, A.D., S.V. Lysak and V.T. Balobaev, 1987: Thermal field in Siberian crust (in Russian) Nauka, Novosibirsk, pp: 196. 31. Dulski, P., 2001. Reference materials for geochemical studies: New analytical data by ICPMS and critical discussion of reference values: Journal of Geostandards and Geoanalysis, 25: 87– 125. 32. Ehinola, O.A, E.O., Joshua, S.A., Opeloye and J.A. Ademola. 2005: Radiogenic heat production in the Cretaceous sediments of Yola Arm of Nigeria Benue Trough: Implication for the thermal hestory and hydrocarbon generation. Journal of Applied Science, 5: 696-701. 33. Frolov, N.M., V.I. lyal`ko and M.M. Mitnik, 1979. Hydrothermal methods in oil hydrodeology, in G.V. Bogomolov and G.V. Kulikov, eds., G e o te r m ic h e s k ie m e to d y is s l e d o v a n ity v gidrogeologii (in Russian) Moscow, Nedra, p: 210212. 34. Forster, A., 2001. Analysis of borehole temperature data in the Northeast German Basin: Continuous logs versus bottom-hole temperatures: Petroleum Geoscience, 7: 241– 254. 35. Forster, A., D.F. Merriam, and P. Hoth, 1998. Geohistory and thermal maturation in the Cherokee Basin (mid-continent, U.S.A.): Results from modeling: AAPG Bulletin, 82(9): 1673– 1693. 36. Funnell, R.H., D.S. Chapman, R.G. Allis and P.A. Armstrong, 1996. Thermal state of Taranaki Basin, New Zealand, J of Geophy. Research, 101: 2519725215. 37. Galushkin, Y., O. Simonenkova and N. Lopatin, 1999. Thermal and maturation modeling of the Urengoy field, W est Siberian Basin: some special considerations in basin modeling. AAPG Bulletin, 83: 1965-1979. 38. Hartmann, A., V. Rath and C. Clauser, 2005. Thermal conductivity from core and well, log data: International Journal of Rock Mechanics and Mining Sciences, 42: 1042–1055. 39. Horai, K., 1971. Thermal Conductivity of rock forming minerals. J. Geophys. Res., 76: 12781308. 40. Hurtig, E. and P. Schlosser, 1976. Geothermal studies in the GDR and relations to the geological structure, in A. Adam, ed., Geoelectric and geothermal studies (east-central Europe, Soviet Asia): Budapest, Committee of the Academies of Sciences of Socialist Countries for Planetary Geophysical Investigation (KAPG) Geophysical Monograph, Akademiai Kiado, p: 384–394. 41. Jensen, R.P. and Dore, 1993. A recent Norwegian Shelf heating event- fact or fantasy? In Dore, A.G., Auguston, J.H., Hermanrud, C., Stewart, D.S. and Sylta, eds. Basin modeling advances and applications. Norwegian Petroleum Society (NPS) Special Publication, 3: 85-106. 508 J. Appl. Sci. Res., 6(5): 483-510, 2010 42. Kandil, M., 2003. Reservoir characterizations of Bahariya Formation in Khalda oil field, W estern Desert, Egypt. MSc. Thesis, Zagazig Univ., Zagazig, pp: 168. 43. Keho, T.H., 1987. Heat flow in the Utah Basin, Salt Lake City. University of Utah, Msc. Thesis, p: 99. 44. Lachenbruch, A.H. and M .C. Brewer, 1959. Dissipation of the thermal effect of drilling a well, in arctic Alaska, US Geological Survey Bulleten 1083 –C. 45. Larry S.C., A.S. Kelley, D.D. Blackwell and N.N. Naeser, 1998. Heat flow and thermal history of the Anadarko Basin, Oklahoma. AAPG Bulletin, 82(2): 291-316. 46. Lewis, T., H. Villinger and E. Davis, 1993. Thermal conductivity measurement of rock fragments using a pulsed needle probe: Canadian Journal of Earth Sciences, 30: 480– 485. 47. MacGregor, D.S. and R.T.J. Moody, 1998. Mesozoic and Cenozoic petroleum systems of North Africa, in D.S. MacGregor, M oody, R.T.J., Clark-Lowes, D.D., eds., Petroleum Geology of North Africa, London, Geol. Soc. Spec. Publ., 132: 201-216. 48. Makenna, T.E. and J.M. Sharp, 1998. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, South Texas, AAPG Bulletin, 82: 484- 496. 49. M aky, F.A., 2000. the effect of minerals-source rocks of the Lower Miocene on the hydrocarbon products in the southern part of the Gulf of Suez, Egypt. PhD. thesis Ain Shams University, Cairo, Egypt., p: 475. 50. Meshref, W .M., 1990. Tectonic framework of global tectonics. In: The geology of Egypt. (Ed. R. Said, 1990), A. A. Blakema, Rotterdam. p: 439449. 51. Meshref, W .M., 1996. Cretaceous tectonics and its impaction on oil exploration in Regional Northern Egypt. Geol. Soc. Egypt, Spec. Publ., 2: 199 – 241. 52. Moran, K.J., 1991. Shallow thermal regime at the Jordanelle dam site, central Rocky Mountain, Utah Salt Lake City, University of Utah, Msc. Thesis, p: 141. 53. Norden, B. and A. Forster, 2006. Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bulletin, 90: 939-962. 54. Popov, Y.A., D.F. Pribnow, J.H. Sass, C.F. W illiams and H. Burkhardt, 1999. Characterization of rock thermal conductivity by high-resolution optical scanning: Geothermics, 28: 253– 276. 55. Popov, Y.A., V. Tertychnyi, R. Romushkevich, D. Korobkov and J. Pohl, 2003. Interrelations between thermal conductivity and other physical properties of rocks: Experimental data: Pure and Applied Geophysics, 160: 1137–1161. 56. Powell, W .G., 1997. Thermal state Colorado Plateau Basin and Range transition, Salt Lake City, University of Utah, Ph. D. Thesis, pp: 232. 57. Pribnow, D. and J.H. Sass, 1995. Determination of thermal conductivity from deep boreholes: Journal of Geophysical Research, 100: 9981–9994. 58. Ramadan, A.M. and F.T. Shazly, 2005. Minerals determination in the north of October Field, Gulf of Suez, Egypt utilizing well,-log analysis. Annals Geol. Surv. Egypt., 28: 497-510. 59. Rybach, L., 1976. Die Gesteinsradioaktivitat und ihr Einfluss auf das Temperatur feld in der kontinentalen Kruste (in German): Zeitschrift fur Geophysik, 42(2): 93– 101. 60. Sass, J.H., A.H. Lachenbruch and R.J. Muntor, 1 9 7 1 . T h e r m a l c o n d u c t i v ity fr o m r o c k measurements on fragments and its application to heat flow determinations, Jour. of Geophy. Research, 79: 3391-3401. 61. Schlumberger, 1984. W ell, Evaluation Conference, Egypt, Schlumberger Middle East. S.A. pp: 1-64. 62. Schon, J.H., 1996. Physical properties of rocks: Fundamentals and principles of petrophysics, in K. Helbig and S. Teitel, eds., Handbook of geophysical exploration: Section 1. Seismic exploration: Oxford, United Kingdom, Pergamon, 18: 583. 63. Soliman, M.S. and O. El- Badry, 1980. Petrology and tectonic framework of the Cretaceous, Bahariya Oasis, Egypt. Egyptian Journal of Geol., 24(1,2): 11-51. 64. Strivastava, K. and R.N. Singh, 1998. A model for temperature variations in sedimentary basins due to random radiogenic heat sources. Geophysical J. intl., pp: 135. 65. Touloukian, Y.S., D.E. Liley and S.L. Saxena, 1970. Thermophysical properties of matter, v.3, thermal conductivity: nonmetallic liquids and gases, New York, Plenum Press, pp: 120. 66. W ang, S., S. Hu, T. Li, J. W ang and W . Zhao, 2000. Terrestrial heat flow in Junggar Basin, Northwest China. Chinese Science Bulletin, 45: 1808-1813. 67. W oodside, W . and J. Messmer, 1961a. Thermal conductivity of porous media: I. Unconsolidated sands: Journal of Applied Physics, 32: 1688– 1699. 68. W oodside, W . and J. Messmer, 1961b. Thermal conductivity of porous media: II. Consolidated sands: Journal of Applied Physics, 32: 1699– 1706. 509 J. Appl. Sci. Res., 6(5): 483-510, 2010 69. Zante, F., 1984. Style of faulting in the Abu ElGharadig basin. 7 th EGPC Exploration and Production. Conf. Cairo., pp: 216-231. 510