l`articolo di riferimento presente sulla rivista”L`insegnamento della
by user
Comments
Transcript
l`articolo di riferimento presente sulla rivista”L`insegnamento della
VOL. 37 A-B N. 5 - NOVEMBRE-DICEMBRE 2014 Poste Italiane s.p.a. - Spedizione in Abbonamento Postale - D.L. 353/2003 - (conv. In L. 27/02/2004 n° 46) art. 1, comma 1, NE/PD - Rivista mensile - Tiratura inferiore a 20.000 copie - Taxe Perçue IONALE RIO NAZ A N I M E S I I I L X TI DEL AT 014 2 AGOSTO Organo del CENTRO RICERCHE DIDATTICHE UGO MORIN - Istituti Filippin - PADERNO DEL GRAPPA IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI Bonaventura Paolillo Liceo Scientifico F.Severi (Salerno) 1. Introduzione. Tra i vari problemi del calcolo delle probabilità suscita particolare curiosità ed interesse un noto quesito in letteratura, riguardante un tipo di coincidenze. Esso è stato formulato dal filosofo e matematico Richard von Mises nel 1939,[8]. In esso si esamina la probabilità che possano accadere delle coincidenze in un gruppo di persone posto all’interno di un locale, aula, cinema, ecc. Più precisamente, si può articolare ciò con due domande: 1.Sia dato un gruppo formato da n persone, qual è la probabilità che almeno due di esse festeggino il compleanno nella stessa data, cioè nello stesso giorno e nello stesso mese? 2.Se si vuole scommettere sulla possibilità di vincere sul verificarsi di qualche coincidenza di compleanni, quanto deve essere numeroso il gruppo di persone, ovvero quanto deve essere il minimo n? Si ignora per motivi di semplicità l’anno bisestile, sebbene la sua inclusione non influenzerebbe sostanzialmente le considerazioni successive. L’enunciato della seconda domanda costituisce, in letteratura il classico problema del compleanno e la sua soluzione, così come per la prima, porta ad esiti imprevedibili e a risultati che meritano un’attenzione particolare. Tali fatti comportano, evidentemente, una riflessione di tipo didattico e metodologico più adeguata per lo sviluppo di concetti e situazioni legati all’universo 595 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 della probabilità. Ci si interroga infatti profondamente sul significato oggettivo di casualità, contro l’interpretazione soggettiva di ciò che noi intendiamo per essa stessa. Come verrà presto analizzata, la risposta alla seconda domanda è 23, ovvero questo è il più piccolo numero in cui posso scommettere di vincere, puntando sulla coincidenza di compleanni. Per la precisione con 23 persone ho una probabilità di successo del 50,7%. Si noti che una coincidenza sicura di due compleanni è soddisfatta immediatamente avendo un gruppo di persone pari a N=366. Evidentemente un’ipotetica e facile riposta come 183, ottenuta su una base di proporzionalità, non solo non è corretta, ma mostra i limiti stessi e l’inefficacia di un approccio lineare. Se si analizzano diverse date di nascita, scelte da dati anagrafici comuni, come due squadre calcistiche con l’arbitro (per ottenere 23), delle scolaresche, bande musicali o altro si può effettivamente constatare l’avverarsi di tale coincidenza. Tale evento ci si aspetta che si verifichi, anche se con la dovuta cautela, una volta su due. A titolo di esempio, ai Mondiali di calcio del 2014, dove le relative nazionali erano composte da 23 calciatori, si sono rilevati i casi dei brasiliani Hulk e Paulinho, nati entrambi il 25 luglio e quello degli argentini Gago e Fernandez che condividono anche la data di nascita. 2. Analisi e soluzione del problema. Valuteremo la risposta al problema del compleanno, cioè alla seconda domanda e gli argomenti utilizzati permetteranno di rispondere anche alla prima. Si possono allora seguire due dimostrazioni, entrambe valide in chiave didattica, poiché seguono modalità e approcci differenti ma in qualche modo complementari. La prima fa uso del calcolo combinatorio mentre la seconda si basa 596 IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO specificamente sul concetto probabilistico di eventi indipendenti. Si consideri quindi, per un gruppo di n persone, l’evento coincidenza di almeno due compleanni e lo si indichi con (Coinc_Compleanni), sottintendendo il riferimento a n. Il suo evento contrario, in cui per ogni coppia di persone scelte le date di nascita non coincidono mai, sarà invece indicato con (NonCoinc_Compleanni). Si calcolerà, per motivi di facilità, per prima la probabilità di quest’ultimo evento. I casi favorevoli alla non coincidenza saranno allora le disposizioni semplici di 365 oggetti su n posti diversi, in quanto rappresentano le scelte in cui si possono scegliere n date differenti del calendario, cioè D365,n. I casi possibili sono invece dati dalle disposizioni con ripetizione, ovvero le scelte in cui si possono scegliere n date qualsiasi del calendario, anche con coincidenze, che sono in numero di 365n. Orbene, si ottiene: P(NonCoinc_Compleanni) Il primo valore di n per cui tale probabilità risulta minore di 0,50 è proprio 23. Si ha di conseguenza: P(Coinc_Compleanni)=1-P(NonCoinc_Compleanni) =1-0.493=0.507. Si è utilizzata, per il calcolo, un’approssimazione alla terza cifra decimale. Per una dimostrazione alternativa e più suggestiva si può ricorrere alla metafora di un gruppo di persone poste in una stanza. Precisamente ci sono n persone che entrano una alla volta in una stanza. Per la prima persona non ci sono problemi di coincidenza, in quanto ci sono 365 date possibili di compleanni. La seconda persona che entra nella stanza realizza la non coincidenza di compleanno con la prima, con probabilità . . 597 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 Successivamente, la terza persona realizza la non coincidenza con le prime due, con probabilità e così via, l’ultima realizza la non coincidenza di compleanno con le altre, con probabilità . Essendo i precedenti eventi indipendenti risulta: P(NonCoinc_Compleanni) = . Si noti quindi che il membro destro coinciderà con D365,n e la frazione vale uno e si può omettere. Il grafico e la tabella successivi forniscono un andamento globale della probabilità dell’evento (Coinc_Compleanni) in funzione del numero n. Probabilità di ottenere una coincidenza al variare del numero n. 598 IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO Come si nota, per n=30 si ha una probabilità del 70% e per n=40 si raggiunge l’89%. Se n=60 superiamo il 99% pur non raggiungendo il 100% se non dal valore di n=366 in poi. Si può dimostrare che tale curva appartiene alla famiglia delle logistiche. Queste hanno un carattere asintotico, mentre la nostra presenta un valore effettivamente asintotico fino a 365 e successivamente, come detto, un andamento costante. 3. Risvolti didattici del problema del compleanno. Il problema del compleanno può essere proposto agli allievi di una classe liceale o di altro istituto, secondo le adeguate indicazioni nazionali. Esso offre la possibilità di riflettere sul concetto di casualità, ma anche sul tema attuale e scottante della fallacia del giocatore. Quali sono i meccanismi che portano un giocatore a scommettere spesso su poste non equilibrate? In che modo l’analisi di un gioco viene concepita nell’animo del giocatore? Sono solo alcune domande che richiedono, evidentemente, giusti spazi di riflessione in altra sede. Sapere però, che all’interno di una sequenza di numeri, si possono verificare spesso delle coincidenze, mette in moto già una valutazione più seria e attenta sulla capacità stessa di comprendere la casualità e di come poterla interpretare. Si considereranno allora diverse situazioni didattiche da adottare in classe, che si possono rivelare d’interesse concreto per favorire 599 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 idonei percorsi didattici. Si può presentare il problema del compleanno con il Gioco di buche e biglie: Si abbiano 365 buche e 23 biglie, si chiede agli allievi di inserire tali biglie in delle buche scelte in modo casuale. (Si dovrebbe chiaramente avvertire che la scelta di una buca di ogni allievo non deve essere comunicata all’esterno). Con quale probabilità si verifica una coincidenza di due biglie nella stessa buca? La risposta è ancora del 50,7%, cioè è conveniente scommettere sull’evento della coincidenza, piuttosto che su quello contrario. Un’altra situazione didattica potrebbe essere la seguente: Scelta di Funzioni non iniettive: Sono dati due insiemi A e B rispettivamente di cardinalità 23 e 365. Scelta a caso una funzione da A a B qual è la probabilità che essa non sia iniettiva? In maniera alternativa a tale scelta si può considerare il seguente Problema degli arcieri: 23 arcieri scoccano i loro dardi su 365 bersagli possibili. Qual è la probabilità che due dardi confluiscano sullo stesso bersaglio. È possibile variare il numero usuale di 365 giorni di un calendario e ottenere risultati più generali sulle coincidenze, utilizzando la stessa tecnica dimostrativa. Si viene ad operare così con altri modelli concreti, ma altrettanto stimolanti ed efficaci, per gli sviluppi didattici che ne seguono. Si indicherà, quindi, con d il numero di giorni o il numero di oggetti che si devono scegliere -il calendarioe si cercherà di determinare il minimo n per cui l’evento delle coincidenze, in breve (Coinc_Scelte), si verifichi con probabilità>50%. In modo analogo a quanto già visto si impone P(Coinc_Scelte)=1- P(NonCoinc_Scelte) = . Illustriamo ciò con il gioco della tombola, in cui si hanno novanta numeri e quindi il calendario ha d=90 scelte. Si calcola che con 600 IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO n=12 estrazioni con reinserimento, si ha una probabilità di ottenere almeno una coincidenza di due numeri estratti, maggiore del 50%. Se si prova a giocare con le 40 carte da gioco classiche, con le dovute varianti locali, bastano 8 estrazioni con reinserimento per avere una probabilità di coincidenza maggiore del 52%, (con sette estrazioni ho una probabilità < 50%), mentre se si opera con le 52 carte francesi per avere delle analoghe chances di successo servono 9 estrazioni. Ecco un quadro illustrativo in cui si riporta per ogni lunghezza d, per valori minori di 100, il numero n cercato. L’utilizzo di mezzi concreti –carte, tombola o dadi– si mostra utile e fruttuoso in chiave didattica, poiché offre un ambiente di gioco familiare e stimolante. Una situazione didattica alternativa e con risvolti altrettanto sorprendenti è data dal seguente esempio: Orologi e coincidenze: Si abbiano n orologi, in formato digitale, (o anche con lancette) alimentati a batteria. Qual è la probabilità che, almeno due di essi, mostrino sul display la stessa ora e lo stesso minuto, una volta esaurita la carica della batteria? In particolare come deve essere scelto n per avere una probabilità di successo maggiore del 50% ? Soluzione: Ci sono 24 x 60 = 1440 configurazioni del display; quindi d=1440. Nel modo usuale si calcola la probabilità di successo, in funzione degli n orologi, come ∏ 601 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 Valutando tale formula, si determina che occorrono n=45 orologi per scommettere sul successo di qualche coincidenza. Proprietà dei calendari: Dato un calendario con d giorni il numero n che fornisce la più piccola probabilità di ottenere almeno una coincidenza > 50% è funzione della radice quadrata di d. In formule si hanno: √ √ Queste funzioni sono da considerarsi valide in maniera asintotica, e sono una buona stima fino a 100000. Forniscono, infatti il giusto ordine di grandezza per orientarsi a determinare n in funzione dei giorni d del calendario. La dimostrazione di esse necessita normalmente della conoscenza degli sviluppi in serie. Per un approccio elementare in tal senso, si veda per esempio [11]. Un’altra utile considerazione offerta dal problema del compleanno e che può aiutare a sondare aspetti non prevedibili sulla casualità è la seguente Domanda inversa: Quante persone n occorrono affinché si possa scommettere con successo (o alla pari) su una coincidenza di compleanno specificata, per esempio il nostro compleanno? La risposta appare ancora poco intuitiva ed è di 253. Si ottiene infatti che n persone hanno, in modo indipendente tra loro, una probabilità, di non coincidenza di compleanno con il nostro, pari a . Poiché interessa l’evento complementare e che questo abbia probabilità >50% si ha: , che risolta fornisce il minimo valore n=253. Una facile risposta vicina a 180 comporterebbe un’ ipotesi sulle date necessariamente distinte tra loro e ciò non sarebbe corretto. Tale domanda inversa, insieme alla 602 IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO costruzione di grafici e tabelle, può evidentemente porsi per tutte le altre situazioni viste in precedenza, come carte, tombola,ecc. Naturalmente ci si può avvalere di diversi strumenti software come Derive, Excel, linguaggi C, Visual Basic, R, ecc. per simulare tali attività di esplorazione sul mondo della probabilità e proporre percorsi didattici miranti a costruzioni significative. Alcune simulazioni in rete si possono trovare in [12][13]. 4.Aspetti della letteratura In letteratura il problema del compleanno è stato oggetto di diverse riflessioni e approcci spesso anche fantasiosi e peculiari. Tale attenzione non si è ancora esaurita del tutto, poiché si celano dei lati e aspetti non svelati completamente. Si accennerà a qualche risultato di tali sviluppi. Nel 1960 Il matematico McKinney [7] fornì una formula ricorsiva per rispondere al problema della coincidenza di tre compleanni. Si chiese, infatti, di trovare il minimo numero n per cui si poteva scommettere con successo su almeno una coincidenza di tre compleanni. La risposta è n=88. Successivamente dei risultati di tipo computazionale, [7],[3] hanno contribuito in modo analogo, a calcolare per valori di coincidenze successive, la minima numerosità di gruppi di n persone. (Diaconis e Mosteller 1989, [3]). La tabella riportata sotto, mostra tali valori di n per ogni coincidenza multipla. 603 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 Per questo problema esistono anche delle formule generali in forma chiusa di tipo ricorsivo (del 1997), ma sono tutt’altro che maneggevoli, si veda in proposito [14] [5]. I matematici M. Abramson e W. Moser pubblicarono nel 1970 “More Birthday Surprises”, [1] e calcolarono la probabilità di scommettere su eventi che sono quasi-compleanni, ovvero che probabilità esiste perché in un gruppo di n persone si possa scommettere su due date che differiscono al più di un giorno solamente. Il caso in cui le date sono coincidenti, viene ancora contemplato nel quasi-compleanno. Si intende che il calendario deve essere considerato chiuso a collana, cioè 31 Dicembre e 1° Gennaio sono giorni con distanza 1. La risposta è che 14 persone bastano per avere un quasi-compleanno con probabilità > 50%. Se si desidera un quasi-quasi-compelanno, ovvero come puntare sulla coincidenza di due date con distanza di al più 2 giorni, allora il minimo numero vincente è 11. Si mostra sotto, la tabella completa di tali fatti per descrivere i quasi compleanni con distanze generiche. Tra gli obiettivi attuali della ricerca c’è quello di trovare per un calendario con d giorni, delle formule semplici per n, che siano asintoticamente corrette e nello stesso tempo più precise. I lavori di [4] hanno mostrato, per esempio, che se p indica la probabilità di successo di una coincidenza, il gruppo di persone deve essere almeno di n persone per ottenere tale probabilità p, secondo la seguente formula: 604 √ IL PROBLEMA DEL COMPLEANNO E LE SUE VARIANTI B.PAOLILLO ⌉ Si intende nell’espressione al membro destro, il simbolo ⌈ come parte intera superiore. La stima così ottenuta è ottima, con un errore di al più 1. Su quest’argomento si consiglia anche la lettura dell’ articolo di D. Brink in [2]. In informatica il problema del compleanno è tutt’ora oggetto di perfezionamento. È infatti legato ad una particolare codifica, chiamata Hash, utilizzata spesso in crittografia. In sintesi, si cerca di ottenere da un flusso di dati in input, delle particolari stringhe (sequenze) in output, mediante specifiche funzioni di codifica, non iniettive, rispettando alcune richieste. Si chiede, infatti, che tale codifica sia resistente a possibili collisioni, ovvero che sia arduo partire da due dati distinti ed arrivare allo stesso valore in uscita. Evidentemente l’apparato di conoscenze legate alla problematica del compleanno, può aiutare a livello probabilistico, a valutare la bontà di un algoritmo di hashing. In conclusione, il problema del compleanno si può presentare a diversi livelli, secondo un approccio teorico, didattico ma anche applicativo. Il seguire tale evoluzione, anche da un punto di vista storico, rende consapevole lo studioso di come un argomento possa crescere sempre di più, stimolando la curiosità scientifica e contestualmente i mezzi stessi offerti dal calcolo delle probabilità. 605 L'INSEGNAMENTO DELLA MATEMATICA E DELLE SCIENZE INTEGRATE VOL.37 A-B N.5 NOVEMBRE-DICEMBRE 2014 Bibliografia 1.Abramson, M.; Moser, W. O. J. (1970). "More Birthday Surprises". American Mathematical Monthly 77: 856–858. 2.Brink.D. A (probably) exact solution to the Birthday Problem RamanujanJ. (2012) 28:223–238. 3.Diaconis, P. and Mosteller, F. "Methods for Studying Coincidences." J. Amer. Statist. Assoc. 84, 853-861, 1989. 4.Ejaz Ahmed. S-McIntosh Richard J.. An Asymptotic Approximation for the Birthday Problem. Crux Mathematicorum 26(3) 151-155 Canadian Mathematical Society 2000. 5.Finch, S. "Puzzle #28 [June 1997]: Coincident Birthdays.“ 6.Levin, B. "A Representation for Multinomial Cumulative Distribution Functions."Ann. Statistics 9, 1123-1126, 1981. 7.McKinney, E. H. "Generalized Birthday Problem." Amer. Math. Monthly 73, 385-387, 1966. 8.Mises, R. von. "Über Aufteilungs--und BesetzungsWahrscheinlichkeiten." Revue de la Faculté des Sciences de l'Université d'Istanbul, N. S. 4, 145-163, 1939. Reprinted in Selected Papers of Richard von Mises, Vol. 2 Ed. P. Frank, S. Goldstein,M. Kac,W. Prager, G. Szegö, and G. Birkhoff). 9.Stewart, I. "What a Coincidence!" Sci. Amer. 278, 95-96, June 1998. 10. Tesler, L. "Not a Coincidence!" http://www.nomodes.com 11.http://www.dm.unito.it/~cerruti/aprile-07-luglio 08.html#compleanno 12.https://people.richland.edu/james/misc/simulation/ /birthday.html 13.http://www.math.uah.edu/stat/applets/ /BirthdayExperiment.html 14.http://mathworld.wolfram.com/BirthdayProblem.html 606