The DABS Calibration Performance Monitoring Equipment Lincoln Laboratory Project Report
by user
Comments
Transcript
The DABS Calibration Performance Monitoring Equipment Lincoln Laboratory Project Report
Project Report ATC-89 The DABS Calibration Performance Monitoring Equipment J. C. Anderson 23 March 1979 Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY LEXINGTON, MASSACHUSETTS Prepared for the Federal Aviation Administration, Washington, D.C. 20591 This document is available to the public through the National Technical Information Service, Springfield, VA 22161 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. T e c h n i c a l R e p o r t Doculllentation Page 1. 2. Report No. 3. R e c i p i e n t ' s C a t a l o g N o . Government Accession N o . FAA-RD-78-151 - 5. Report D a t e 4. T i t l e and Subtitle 23 March 1979 The DABS Calibration Performance Monitoring Equipment 7. 6. Performing Organization Code 8. Author(s) Performing Organization Report N O . ATC-89 J. C. Anderson 9. Performing Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, MA 02173 10. Work U n i t N o . 11. Contract or Grant N O . Proj. No. 052-241-04 DC r-FA72-WAI-261 13. 12. Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, DC 20591 IS. T y p e o f Report and P e r i o d Covered Sponsoring Agency Name and Address Project Report 14. Sponsoring Agency Code Supplementary N o t e s The work reported in this document was performed a t Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-78-C-0002. 16. Abstract The Discrete Address Beacon System (DABS) Calibration Performance Monitor Equipment (CPME) is a special DABS transponder designed for installation a t a fixed site visible to one or more DABS beacon sensors. The CPME is required for DABS sensor monopulse accuracy tests and for calibration of the sensor off-boresite azimuth look-up table. In addition, the CPME provides tests for DABS l h k integrity, by storing an uplink message and parroting i t back upon command from the sensor. This document contains all information necessary to obtain a general understanding of the CPME system and its operation. Detailed information necessary for repair of the equipment is not contained in this document, but is supplied with each CPME system. 17. 18. K e y Wards Discrete Address Beacon System Calibration System description Beacon transponder Monopulse accuracy Link integrity 19. Security C l a s s i f . ( o f t h i s report) F 1700.7 Document is available to the public through the National Technical Information Service, Springfield, VA 22151. Security C l a s s i f . (of t h i s page) Unclassified Uncla ssFfied Form DOT 20. D i s t r i b u t i .n Statement (8 - 7 2 ) Reproduct i o n o f completed pagc n u t l l o r i zed 21. No. of P a g e s 56 CONTENTS 1.0 INTRODUCTION 1.1 G e n e r a l 1 . 2 O v e r v i e w o f CPME O p e r a t i o n 1.2.1 1.2.2 1.2.3 1.3 1.4 2.0 Reception Transmission Transponder I n t e r f a c e s Diagnostic and Repair Features Physical Features FUNCTIONAL DESIGN 2.1 2.2 High-Power T r a n s m i t t e r External Logic 2.2.1 2.2.2 2.2.3 ELRl C a r d ELR2 C a r d ELR3 C a r d 3.0 ENVIRONMENTAL SYSTEM 4.0 POWER DISTRIBUTION 4.1 4.2 4.3 Over-Voltage P r o t e c t i o n Circuit Breakers Power Consumption APPENDIX A CPME O p e r a t i n g P r o c e d u r e s APPENDIX B Exceptions and C l a r i f i c a t i o n s t o C a l i b r a t i o n and P e r f o r m a n c e M o n i t o r E q u i p m e n t (CPME) E n g i n e e r i n g R e q u i r e m e n t , FAA-ER-240-29 iii LIST OF ILLUSTRATIONS DABS C a l i b r a t i o n Performance Monitoring Equipment (CPME), External View DABS C a l i b r a t i o n Performance Monitoring Equipment (CPME), System Block Diagram CPME w i t h F r o n t Door Open CPME, A s I n s t a l l e d CPME Lockout Logic T r a n s m i t t e r Duty Cycle L i m i t e r , Modulator Delay E q u a l i z e r High Power T r a n s m i t t e r C o n t r o l Logic Power-Up/Power-Fail Circuitry S e l e c t a b l e Turn-Around Delay C i r c u i t r y Standard Message I n t e r f a c e P r o c e s s o r Standard Message I n t e r f a c e P r o c e s s o r Flowchart Environmental C o n t r o l s Thermal O p e r a t i n g C h a r a c t e r i s t i c 1.0 INTRODUCTION 1.1 General The DABS C a l i b r a t i o n and Performance Monitor Equipment (CPME) i s a s p e c i a l purpose t e s t set r e q u i r e d t o v e r i f y DABS s e n s o r monopulse azimuth a c c u r a c y , t o c a l i b r a t e t h e s e n s o r o f f - b o r e s i g h t azimuth look-up t a b l e * a t a g i v e n s e n s o r s i t e , and f o r checking DABS d a t a l i n k i n t e g r i t y . CPMEs a r e permanently i n s t a l l e d a t surveyed s i t e s w i t h i n t h e coverage p a t t e r n s of one o r more DABS s e n s o r s , and each i s a s s i g n e d i t s own DABS d i s c r e t e a d d r e s s (wiredi n I D number). The weatherproof e n c l o s u r e , which p e r m i t s t h e CPME t o b e o p e r a t e d u n a t t e n d e d o v e r a wide r a n g e of environmental c o n d i t i o n s , c o n t a i n s : 1) A modified DABS t r a n s p o n d e r , 2) A phase-locked 1090 MHz o s c i l l a t o r , 3) A s p e c i a l h i g h d u t y c y c l e RF a m p l i f i e r f o r p r o v i d i n g t h e h i g h l e v e l t e s t s i g n a l s needed a t t h e DABS s e n s o r , even a t r a n g e s up t o 20 m i l e s , 4) S p e c i a l l o g i c t o p e r m i t t h e CPME t o send s t a t u s messages and t o p a r r o t u p l i n k messages t o t h e s e n s o r , 5) S e l f - t e s t and d i a g n o s t i c c i r c u i t r y , and 6) Power s u p p l i e s and c o n t r o l c i r c u i t s t o permit a l l of t h e above t o o p e r a t e from AC power mains. T h i s document d e s c r i b e s t h e CPME hardware and p r o v i d e s i n f o r m a t i o n n e c e s s a r y t o understand i t s o p e r a t i o n . It does n o t p r o v i d e i n f o r m a t i o n s u f f i c i e n t l y d e t a i l e d t o r e p a i r t h e CPME. A d e t a i l e d o p e r a t i n g g u i d e i s provided a s Appendix A and c l a r i f i c a t i o n s and e x c e p t i o n s t o t h e CPME s p e c i f i c a t i o n (FAA-ER-240-29 Amendment 1, Spec. Change 1 ) a r e i n c l u d e d a s Appendix B . Each CPME i s provided w i t h a weather p r o t e c t e d horn a n t e n n a i n t e n d e d f o r i n s t a l l a t i o n a t o p a t a l l tower, 150 f e e t of antenna c a b l e , and a power cable. (See F i g u r e 1 ) . 1.2 Overview of CPME O p e r a t i o n 1.2.1 Reception DABS i n t e r r o g a t i o n s i g n a l s ( s e e F i g u r e 2) p a s s through a c i r c u l a t o r , a f i l t e r ( t o e l i m i n a t e out-of-band s i g n a l s ) , a power l i m i t e r ( f o r front-end *A s s p e c i f i e d i n FAA ER-240-26, S e c t i o n 3 . 4 . 1 1 and 4 . 5 . 4 . 3 . CONVENIENCE OUTLET SUN SHIELD I AIR-TO-AIR , HEAT E ~ A N G E R ~ 1 - INDICATOR^:---/< LIGHTS , POWER AND ANTENNA CABLES I I DABS CPME UNIT ADJUSTABL AZIMUTH ANTENNA MOUNT Fig. 1. DABS Calibration Performance Monitoring Equipment (CPME), external view p r o t e c t i o n ) , and a v a r i a b l e a t t e n u a t o r (used t o set t h e r e c e i v e r s e n s i t i v i t y ) b e f o r e r e a c h i n g t h e DABS t r a n s p o n d e r . The DABS t r a n s p o n d e r r e c e i v e r i s employed, b u t o n l y one channel i s used ( i . e . , t h e t r a n s p o n d e r ' s d i v e r s i t y c a p a b i l i t y i s n o t u s e d ) . Mode decoding and r e p l y encoding a r e performed by u n a l t e r e d t r a n s ponder c i r c u i t r y . The TTL r e p l y l e a v e s t h e t r a n s p o n d e r and i s d e l a y e d f o r 0 , 128, o r 256 microseconds a s d e s i r e d ( c a u s i n g t h e CPME t o a p p e a r a s though i t i s 0 , 1 0 , o r 20 m i l e s f u r t h e r away from t h e s e n s o r t h a n i t a c t u a l l y i s ) . A f t e r t h i s a d d i t i o n a l turnaround d e l a y , t h e TTL s i g n a l n e c e s s a r y t o g e n e r a t e a r e p l y i s s e n t t o .one of two m o d u l a t o r s : e i t h e r high-power o r low-power. 1.2.2 Transmission The RF t r a n s m i t t e r s e c t i o n i s d r i v e n e i t h e r by a n u l t r a - s t a b l e 1090 MHz o s c i l l a t o r , which i s i s o l a t o r p r o t e c t e d , o r by a n e x t e r n a l v a r i a b l e frequency s i g n a l s o u r c e ( d u r i n g DABS s e n s o r a c c e p t a n c e t e s t i n g ) . The CW s i g n a l i s f e d i n t o a v a r i a b l e a t t e n u a t o r . T h i s a t t e n u a t o r sets t h e RF r e p l y l e v e l i f t h e CPME i s o p e r a t i n g i n t h e low-power mode, o r sets t h e d r i v e l e v e l t o t h e power a m p l i f i e r i f t h e CPME i s o p e r a t i n g i n t h e high-power mode. The t r a n s p o n d e r ' s t r a n s m i t t e r s e c t i o n i s n o t used, and t h e o r i g i n a l power s u p p l y h a s been removed from t h e t r a n s p o n d e r . An a d d i t i o n a l f r o n t p a n e l c o n n e c t o r h a s been added t o t h e t r a n s p o n d e r t o a l l o w e x t e r n a l power i n p u t and t o communicate w i t h t h e e x t e r n a l l o g i c r a c k . I n t h e low-power mode, t h e CW s i g n a l i s modulated by a PIN d i o d e s w i t c h and t h e n f i l t e r e d t o e l i m i n a t e out-of-band s i g n a l s . The modulated s i g n a l i s sampled by a b u i l t - i n power m o n i t o r i n g system c o n s i s t i n g of a d i r e c t i o n a l c o u p l e r , p a d s , and a c a l i b r a t e d c r y s t a l d e t e c t o r . Output from t h e sampling d e t e c t o r can b e viewed on a n o s c i l l o s c o p e , and t h e power o u t p u t of t h e CPME can b e determined u s i n g c a l i b r a t i o n i n f o r m a t i o n provided w i t h e a c h CPME. The power monitor system i s most u s e f u l when t h e CPME i s o p e r a t e d i n t h e high-power mode, a s low-power s i g n a l s a r e t y p i c a l l y t o o s m a l l t o b e measured a c c u r a t e l y . Modulated r e p l y s i g n a l s e x i t through t h e c i r c u l a t o r and a r e f e d t o t h e antenna. The maximum o u t p u t i n t h e low-power mode, +20 dBm a t t h e CPME RF p o r t , a l l o w s t h e CPME t o b e p l a c e d up t o 2000 f e e t away from t h e s e n s o r . The high-power mode a l l o w s t h e CPME t o b e p l a c e d up t o 20 m i l e s from t h e s e n s o r , a s i t p r o v i d e s o u t p u t power a s h i g h a s +45 dBm a t t h e CPME RF p o r t . The high-power mode i s n e c e s s a r y i n c a s e s where t h e CPME i s t o b e s h a r e d w i t h more t h a n one s e n s o r ( i n t h i s c a s e more t h a n one d i r e c t i o n a l horn a n t e n n a would b e f e d from one CPME). O p e r a t i o n i n t h e high-power mode i s s i m i l a r t o t h a t i n t h e low-power mode, e x c e p t t h a t a s e p a r a t e modulation, a m p l i f i c a t i o n , and a t t e n u a t i o n system i s used. The CW s i g n a l from t h e low-power v a r i a b l e a t t e n u a t o r i s f u r t h e r a t t e n u a t e d ( t o p r o t e c t t h e a m p l i f i e r ' s RF i n p u t ) , and t h e n fed t o t h e RF power a m p l i f i e r . Here, t h e CW i s b o t h modulated and a m p l i f i e d , and t h e r e p l y power l e v e l i s t h e n set by a high-power v a r i a b l e a t t e n u a t o r . The a m p l i f i e r u n i t i t s e l f i s a 4-stage t r i o d e t u b e a m p l i f i e r . Other components of t h e high-power a m p l i f i e r system a r e : power s u p p l i e s (+6V, +28V, and +1000V), s w i t c h e s f o r r e - r o u t i n g t h e RF when changing from low t o highpower mode ( s e e F i g . 3 ) , a high-power v a r i a b l e a t t e n u a t o r , and a modulator f o r t h e tube amplifier. I n t h e e v e n t t h a t any of t h e s e i t e m s should f a i l , t h e CPME w i l l s t i l l f u n c t i o n c o r r e c t l y when switched t o t h e low-power mode. 1.2.3 Transponder I n t e r f a c e s The t r a n s p o n d e r a l s o i n t e r f a c e s w i t h t h e e x t e r n a l l o g i c r a c k v i a t h e Standard Message I n t e r f a c e (SMI). Data i n t e r c h a n g e between t h e t r a n s p o n d e r and e x t e r n a l l o g i c r a c k v i a t h e SMI a l l o w s t h e CPME t o o p e r a t e i n a test mode wherein t h e CPME " p a r r o t s " u p l i n k messages. The SMI d a t a c a p a b i l i t y a l s o a l l o w s t h e CPME t o r e p o r t i t s s t a t u s t o t h e s e n s o r . Thus a "remote d i a g n o s t i c s " function i s provided. S t a t u s r e p o r t i n g p r o v i s i o n s a r e i n c l u d e d t o t r a n s m i t ( a s a Comm-B downlink message): e n c l o s u r e over-and-under t e m p e r a t u r e , 1090-MHz o s c i l l a t o r out-ofphase-lock c o n d i t i o n , power f a i l u r e c o n d i t i o n , m i s c e l l a n e o u s hardware f a u l t s and i n t e r r o g a t i o n l o c k o u t s t a t e s . The e n t i r e s t a t u s r e p o r t i n g system can b e inhibited i f desired. 1.3 D i a g n o s t i c and R e p a i r F e a t u r e s I n a d d i t i o n t o t h e d u a l t r a n s m i t t e r f e a t u r e and s t a t u s r e p o r t i n g t o s e n s o r f e a t u r e s t h e CPME i n c l u d e s o t h e r b u i l t - i n test and d i a g n o s t i c a i d s . E x t e n s i v e b u i l t - i n d i a g n o s t i c l o g i c c i r c u i t s e x i s t t o d e t e c t hardware f a i l u r e s and t h e r e b y f a c i l i t a t e r e p a i r . The r e s u l t s of t h e s e b u i l t - i n test c i r c u i t s a r e d i s p l a y e d on a main CPME c o n t r o l p a n e l , a l o n g w i t h v a r i o u s o t h e r i n d i c a t o r s and c o n t r o l s f o r t h e system. Another b u i l t - i n d i a g n o s t i c t o o l i s a d i g i t a l voltmeter. T h i s f e a t u r e a l l o w s a repairman t o q u i c k l y check a l l seven of t h e CPME's power s u p p l i e s by s e t t i n g a s i n g l e c o n t r o l . F i n a l l y , t h e Bendix t r a n s p o n d e r i s equipped w i t h a test j a c k on i t s f r o n t p a n e l . Various i n t e r n a l s i g n a l s a r e brought o u t t o t h i s c o n n e c t o r s o t h a t t h e y c a n be viewed w i t h a n o s c i l l o s c o p e and f a u l t s i s o l a t e d . RF POWER OUTPUT MONITOR (TO EXTERNAL OSCILLOSCOPE 1 \ SUN SHIELD Fig. 3. ENVIRONMENTAL SYSTEM CONTROLS (TEMPERATURE SWITCHES) I CPME w i t h f r o n t door open 6 CIRCUIT BREAKER SWITCHES 1.4 Physical Features The CPME u n i t f e a t u r e s a l o c k a b l e w e a t h e r - t i g h t e n c l o s u r e f o r outdoor s t a n d - a l o n e o p e r a t i o n , a n a i r - t o - a i r h e a t exchanger f o r c o o l i n g , a 500 w a t t h e a t e r , a s u n shade, mounting l e g s , h i g h l y v i s i b l e e x t e r n a l "power on" and " f a u l t " i n d i c a t o r lamps, and a n e x t e r n a l e l e c t r i c a l convenience o u t l e t s o t h a t o s c i l l o s c o p e s and o t h e r t e s t equipment can be powered a t t h e CPME i f d e s i r e d . O v e r a l l dimensions of t h e CPME u n i t , e x c l u s i v e of s u n s h i e l d and mounting l e g s , a r e 30" wide, 35" h i g h , and 16" deep. Legs r a i s e t h e e n c l o s u r e 12" above t h e mounting pad. Its weight i s approximately 200 pounds. F i g u r e 3 i l l u s t r a t e s t h e u n i t a s i t would b e s e e n by s e r v i c e p e r s o n n e l . A f l u s h door (30" x 35") p e r m i t s a c c e s s t o a l l components. I n a d d i t i o n t o t h e f r o n t d o o r , a s m a l l l o c k a b l e r e a r door a l l o w s e a s y a c c e s s t o t h e w i r e wrap backplane of t h e l o g i c r a c k . The CPME antenna c o n s i s t s of an e n v i r o n m e n t a l l y p r o t e c t e d horn a n t e n n a , a coax-to-waveguide a d a p t e r , and a mount. The mount f e a t u r e s 360' azimuth a d j u s t m e n t f o r "aiming" t h e a n t e n n a (no e l e v a t i o n a d j u s t m e n t i s n e c e s s a r y ) . A t y p i c a l i n s t a l l a t i o n i s i l l u s t r a t e d i n F i g u r e 4. RADOME ADJUSTABLE AZ[MUTH ANTENNA MOLINT CALIBRATION AND PERFORMANCE MONITORING EQUIP MENT POWER Fig. 4. CPME, a s i n s t a l l e d 2.0 FUNCTIONAL DESIGN 2.1 High-power T r a n s m i t t e r A high-power, h i g h d u t y c y c l e t r a n s m i t t e r was developed f o r t h e DABS CPME t o s a t i s f y a requirement d i c t a t e d by ( 1 ) t h e p o s s i b i l i t y of s h a r i n g one CPME between two o r more s e n s o r s and ( 2 ) t h e high-power l e v e l (-24 dBm) r e q u i r e d a t t h e s e n s o r d u r i n g monopulse a c c u r a c y tests*. The h i g h d u t y c y c l e requirement i s based on t h e Texas I n s t r u m e n t s DABS monopulse c a l i b r a t i o n and accuracy t e s t a l g o r i t h m i n which 80 i n t e r r o g a t i o n s a r e t r a n s m i t t e d d u r i n g a 44 msec beam d w e l l t i m e i n t e r v a l (PRF = 1800 r e p l i e s p e r second r e q u i r e d from CPME) . T e s t s on t h e high-power t r a n s m i t t e r have v e r i f i e d t h a t i t i s a b l e t o s u p p o r t t h i s h i g h PRF r e q u i r e d d u r i n g monopulse c a l i b r a t i o n . The c a p a b i l i t y of producing p u l s e r e p e t i t i o n f r e q u e n c i e s of 2000 r e p l i e s l s e c f o r DABS s h o r t and 1000 r e p l i e s l s e c f o r DABS l o n g s i m u l a t e d r e p l i e s h a s a l s o been e s t a b l i s h e d . Simulated DABS s h o r t r e p l i e s a r e 60 usec t r a n s m i s s i o n s of a 50% d u t y c y c l e 1 MHz s i g n a l . Simulated DABS long r e p l i e s a r e 116 u s e c t r a n s m i s s i o n s of a 50% d u t y c y c l e 1 MHz s i g n a l . Note t h a t t h e o v e r a l l d u t y c y c l e should n o t exceed 0.005, when averaged o v e r a 1 second i n t e r v a l . The RF power a m p l i f i e r t u b e used i s a General E l e c t r i c model C-2173 microwave t r i o d e a m p l i f i e r . The C-2173 i s a 4 s t a g e a m p l i f i e r o p e r a t i n g a t 1090 MHz c e n t e r frequency c a p a b l e of p r o v i d i n g a n o u t p u t of a t l e a s t 300 w a t t s peak a t 0 . 0 1 d u t y , w i t h a n i n p u t of 1 0 m i l l i w a t t s . The RF i n p u t i s a CW s i g n a l t o t h e f i r s t s t a g e w i t h t h e c a t h o d e s of t h e f i r s t two s t a g e s modulated t o g e n e r a t e t h e r e q u i r e d RF p u l s e s . The l a s t two s t a g e s a r e s e l f - b i a s e d u s i n g a 22 v o l t Zener on t h e c a t h o d e s and a r e RF keyed by t h e p u l s e s of RF g e n e r a t e d by t h e f i r s t two s t a g e s . The o u t p u t v s . i n p u t c h a r a c t e r i s t i c f o r t h e C-2173 shows t h a t t h e a m p l i f i e r h a s c o n s i d e r a b l e compression. T h i s i s d e s i r a b l e f o r s t a b i l i t y w i t h i n p u t and w i t h l i f e . However, i t may be p o s s i b l e t o o v e r d r i v e one of t h e i n t e r m e d i a t e s t a g e s w i t h o u t o b t a i n i n g e x c e s s i v e o u t p u t power i f t h e i n p u t i s allowed t o go beyond t h e 10 m i l l i w a t t l e v e l . The power o u t p u t may Normal power o u t p u t i s 400 w a t t s a t 1000 v o l t s B+. I t i s n o t recommended t h a t t h e B+ l e v e l b e r a i s e d v a r y c o n s i d e r a b l y w i t h B+. over 1000 v o l t s . 2.2 E x t e r n a l Logic Logic n o t c o n t a i n e d i n t h e t r a n s p o n d e r i s termed e x t e r n a l l o g i c . T h i s l o g i c i s c o n t a i n e d on t h r e e wire-wrap b o a r d s , ELR1, ELR2 and ELR3, l o c a t e d i n * See FAA-ER-240-26, p. 534, paragraph 4.5.4.3.1. the External Logic Rack* (see Fig. 3). ELRl contains the CPME lockout logic, the transmitter duty cycle limiter, the modulator delay equalizer, the high-power transmitter control logic, and the power-up/power-fail circuitry. ELR2 contains the logic necessary to delay CPME replies by 0, 128, or 256 microseconds (in addition to those delays specified for DABS and ATCRBS replies.) ELR3 contains logic which allows the CPME to communicate with the DABS sensor via the DABS data link. When referring to logic signal names on the diagrams shown in the following sections, note that the following nomenclature has been standardized: Logic Signal Name Inverter (amplifier) output Flip-flop Gate Latch Multiplexer Open collector signal Active low signal NAME.A NAME.F NAME.G NAME L NAME .M NAME* NAME . 2.2.1 Meaning ELRl Card 2.2.1.1 CPME Lockout Logic 2.2.1.1.1 The ATCRBS lockout function in the Bendix transponder is consistent with CPME requirements, and no modification was necessary. 2.2.1.1.2 The ATCRBSIDABS All-Call, Auxiliary (DABS-only) All-Call and Auxiliary Discrete Reply lockout system in the transponder was replaced with the system shown in Figure 5. When an interrogation is received, it is held in the transponder's uplink register. If the uplink is valid and is of a type which has not previously been locked out, then three uplink bits (IT and the two DL bits) are taken together with the present lockout states to address a PROM which will determine the next lockout state. The next lockout state is determined as in paragraph 4.4.3.1 of FAARD-74-62 (ATC-30). 2.2.1.1.3 The standard timeout is initiated each time the CPME replies to a discrete address interrogation from a standard DABS sensor. When the standard timer times out, only the ATCRBSIDABS All-Call lockout flip-flop is cleared. >k The External Logic Rack has three unused slots for future expansion. Available power supplies (+5V, +12V and -12V) can provide ample additional current. sn01 msCnElt I N l E I P m n l X M 10 VLLID huu YOT L#utD OUT I I UPLIMY NllSlFR 1 AL AlCIBS LOCKOUl -tk 8 Pi w l m w rnO(tICD urn0 0 a IICR~/BU tw or IRU(CUISUOW AXIUIE~K W.CALL ~ o w o u l IBXILIAU~ AU.CW~ r w m I NEW L @ C ~ O U l SICWLS 0 CDIIlPR I L uscrn ltnr wan I lUUlPOWKI AlUUI/Wl A U t U IlYUID 1lMkOUI 1st ~ D IItYt J ~ OIRLUIO. I Y Ill fitnAai e w t t t w E D ~ COUIU. IS C L U I r n blEU DISCIK11 AWMlS N I K U P M l l O l fMY I I A M M D W U.YI UI n c c t m AUXILILR* TIY~DUT 1 Dl1 BINA~ counna otu I TmnRX 1 I IUIIUARY tLNk I I Fig. 5. 1 AUIILIIRi 1 l Y E l I I 0. Y .h CPME lockout l o g i c U I NE O(rnlA1OI 1AC ADJUST 2.2.1.1.4 The a u x i l i a r y timeout i s i n i t i a t e d each t i m e t h e CPME r e p l i e s t o a d i s c r e t e a d d r e s s i n t e r r o g a t i o n from any DABS s e n s o r , e i t h e r s t a n d a r d o r a u x i l i a r y . When t h e a u x i l i a r y t i m e r t i m e s o u t , a l l f o u r l o c k o u t f l i p - f l o p s a r e reset. 2.2.1.1.5 When a n ATCRBS~DABS A l l - C a l l i n t e r r o g a t i o n i s r e c e i v e d , t h e ATCRBS~DABS A l l - C a l l f l i p - f l o p i s s e t . I f t h e CPME i s locked o u t t o ATCRBSIDABSA l l - C a l l s and n o t t o ATCRBS, t h e n the.ATCRBS/DABS a l l - c a l l s i g n a l i s g a t e d t o z e r o , r e g a r d l e s s of whether t h e r e c e i v e d i n t e r r o g a t i o n i s a n ATCRBS~DABS a l l - c a l l o r n o t . When t h i s c o n d i t i o n o c c u r s , t h e CPME r e p l i e s ~o.ATCRBS/DABS a l l - c a l l s w i t h t h e p r o p e r t y p e of ATCRBS r e p l i e s ( e i t h e r mode A o r mode C). T h i s a l l o w s t h e CPME t o "look l i k e " a n ATCRBS t r a n s p o n d e r f o r purposes of t e s t i n g t h e s e n s o r w i t h ATCRBS r e p l i e s . 2.2.1.2 T r a n s m i t t e r Duty Cycle L i m i t e r The CPME must be c a p a b l e of r e p l y i n g t o a l l combinations of ATCRBS and DABS i n t e r r o g a t i o n s f o r which t h e r e s u l t i n g t r a n s m i t t e r d u t y c y c l e i s n o t g r e a t e r t h a n 0.005, averaged over a 1-second p e r i o d . T h i s means t h a t t h e t r a n s m i t t e r must b e a b l e t o p r o v i d e RF o u t p u t f o r a t o t a l of 5 m i l l i s e c o n d s each second. A s i m p l e numerical i n t e g r a t i o n scheme c a n be used t o d e t e r m i n e t h e overa l l d u t y c y c l e , a s i l l u s t r a t e d i n F i g . 6 . The TTL r e p l y , which h a s gone through t h e s e l e c t a b l e 0 , 128, o r 256 psec d e l a y (DELAYED REPLY), i s used t o e n a b l e a high-speed c o u n t e r . Every ATCRBS r e p l y p u l s e g a t e s t h e c o u n t e r on l o n g enough t o i n c r e a s e t h e count by f o u r , and e a c h DABS p u l s e i n c r e a s e s t h e count by e i t h e r f i v e o r t e n , depending upon t h e b i t p a t t e r n i n t h e r e p l y . When t h e count r e a c h e s 50,176, c o r r e s p o n d i n g t o a minimum of 5 m i l l i s e c o n d s of RF "on" t i m e , a f l i p - f l o p i s set which i n d i c a t e s t h a t a d u t y c y c l e f a u l t h a s o c c u r r e d . T h i s s i g n a l i s d i s p l a y e d on t h e CPME c o c t r o l p a n e l , and a b i t i s s e t i n f u r t h e r CPME r e p l i e s t o i n d i c a t e t h a t a f a u l t h a s o c c u r r e d . The CPME c o n t i n u e s t o o p e r a t e normally u n t i l t h e c o u n t e r r e a c h e s 57,344, c o r r e s p o n d i n g t o 5.7 m i l l i s e c o n d s of RF "on" t i m e . A t t h i s p o i n t a f l i p - f l o p i s set t o i n d i c a t e t h a t t h e d u t y c y c l e h a s been exceeded, and f u r t h e r r e p l i e s a r e i n h i b i t e d by g a t i n g them o f f . A t t h e end of e v e r y second, a p u l s e comes from a p u l s e g e n e r a t o r t o c l e a r t h e f a u l t c o n d i t i o n s , i f a n y , and r e s e t t h e c o u n t e r . Note t h a t t h e maximum d u t y c y c l e of t h e t u b e a m p l i f i e r i s 0.01, s o s a f e operation i s assured. 2.2.1.3 Modulator Delay E q u a l i z e r F i g u r e 6 shows a 120 n s e c d e l a y d i f f e r e n c e between r e p l i e s t o t h e PIN . i o d e s w i t c h and t h e power a m p l i f i e r . T h i s d e l a y l i n e compensates f o r t h e ' a c t t h a t t h e PIN d i o d e s w i t c h h a s a v e r y f a s t turn-on c h a r a c t e r i s t i c , w h i l e t h e t u b e a m p l i f i e r d o e s n o t . Thus t h e d e l a y between t h e TTL s i g n a l and RF turn-on i s t h e same i n b o t h high- and low-power modes. T y p i c a l t o t a l d e l a y between t h e TTL s i g n a l on t h e ELRl c a r d and t h e RF o u t p u t ( i n e i t h e r high- o r low-power mode) i s 220 n s e c . 2.2.1.4 High-power T r a n s m i t t e r C o n t r o l Logic When i n i t i a l l y t u r n i n g t h e high-power t r a n s m i t t e r o n , i t i s n e c e s s a r y t o p r o v i d e s e v e r a l i n t e r l o c k s and d e t e c t i o n of f a u l t c o n d i t i o n s t o avoid damaging t h e t u b e u n i t . The system i s i l l u s t r a t e d i n F i g . 7 . When power i s f i r s t t u r n e d on o r when t h e CPME i s i n t h e INITIALIZE mode, a RESET s i g n a l i s g e n e r a t e d which a l l o w s t h e s t a t e of t h e HIGH-POWER/LOW-POWER MODE s e l e c t s w i t c h t o be l a t c h e d . The HIM0DE.L s i g n a l s t a t e i s d i s p l a y e d on t h e CPME f r o n t p a n e l a s "HI-PWR XMTR SEL" f o r high-power mode s e l e c t e d . The p r e s e n c e of t h i s s i g n a l does n o t i n d i c a t e t h a t t h e high-power t r a n s m i t t e r i s i n f a c t a c t i v e ; i t merely i n d i c a t e s t h a t w e wish i t t o be a c t i v e . The HIM0DE.L s i g n a l i s used t o s w i t c h i n t h e a p p r o p r i a t e elements f o r e i t h e r high-or low-power o p e r a t i o n by c o n t r o l l i n g a DPDT (double p o l e , d o u b l e throw) s w i t c h . When t h e DPDT s w i t c h ' s b u i l t - i n i n d i c a t o r c i r c u i t s show t h a t t h e s w i t c h i s i n t h e high-power p o s i t i o n , t h e HIPWR s i g n a l goes t r u e . T h i s s i g n a l a c t i v a t e s t h e power s u p p l i e s f o r t h e t u b e a m p l i f i e r , and g i v e s a v i s u a l i n d i c a t i o n ( t h e l K V , 6V ACTIVE LED on t h e c o n t r o l p a n e l ) t h a t t h e high-power t r a n s m i t t e r s e c t i o n i s ready. 2.2.1.5 Power-up/Power-fail Circuitry Refer t o F i g u r e 8 . When t h e CPME i s powered-up o r i n i t i a l i z e d , t h e POWERFAIL s i g n a l goes t r u e and t h e ENABXMIT ( e n a b l e t r a n s m i s s i o n ) goes f a l s e . A f t e r 64 s e c o n d s , t h e ENABXMIT s i g n a l goes t r u e , which a l l o w s t h e CPME t o r e p l y t o interrogations. The 64-second timeout i s t o a l l o w t h e t u b e a m p l i f i e r ample time t o warm up, a s w e l l a s t o a l l o w v a r i o u s t r a n s p o n d e r and CPME t i m e r s t o time o u t . When a n o t h e r 64 seconds have e l a p s e d ( i . e . , 128 s e c a f t e r t h e CPME h a s been i n t h e RUN mode w i t h power on) t h e POWER-FAIL f l a g i s c l e a r e d , and t h e CPME r u n s normally. The POWER-FAIL f l a g , when a c t i v e , simply i n d i c a t e s t h a t power t o t h e CPME h a s been o f f f o r a w h i l e o r t h a t t h e CPME h a s r e c e n t l y been i n i t i a l i z e d . T h i s f e a t u r e i s u s e f u l i n performing remote d i a g n o s t i c s from t h e s e n s o r , a s i t v e r i f i e s t h a t a CPME f a i l u r e has o c c u r r e d r a t h e r t h a n a s e n s o r f a i l u r e and a l s o i n d i c a t e s t h a t someone may have changed CPME c o n t r o l s e t t i n g s . The POWER-FAIL f l a g i s s e n t i n r e p l y t r a n s m i s s i o n s , a s a f a u l t b i t , d u r i n g t h e f i r s t 64 seconds t h a t t h e CPME i s a b l e t o r e p l y ( i . e . , 64 t o 128 s e c a f t e r power-up o r i n i t i a l i z a t i o n ) . 2.2.2 ELR2 Card F i g u r e 9 shows t h e l o g i c needed t o d e l a y CPME r e p l i e s by 0 , 128, o r 256 microseconds. 2.2.2.1 Delay S e l e c t i o n Logic A s w i t c h on t h e CPME c o n t r o l p a n e l i s used t o s e l e c t t h e d e s i r e d t u r n around d e l a y . The s t a t e of t h i s s w i t c h i s l a t c h e d a f t e r power-up o r i n i t i a l i z a t i o n , and cannot be changed u n l e s s t h e CPME i s r e - i n i t i a l i z e d . RESET (SEL FIG.^) 1 FROM 1Ht PULSE 2, GENERATOR (SEE FIG.^) Fig. 8. Power-up/power-fail circuitry 2.2.2.2 Zero Delay S e l e c t e d If z e r o d e l a y i s d e s i r e d , t h e "D0" s i g n a l goes t r u e , which i n t u r n g e n e r a t e s a s i g n a l "NODEL" (no d e l a y ) . The "NODEL" s i g n a l t r u e c o n d i t i o n h o l d s a l l t h e d e l a y c i r c u i t r y i n a reset c o n d i t i o n , and a l s o resets a l l f a u l t c o n d i t i o n s a s s o c i a t e d w i t h t h e turn-around d e l a y c i r c u i t r y . When "DQI" i s a c t i v e , i t g a t e s t h e "REPLY" s i g n a l through t o form "DELREP" (delayed r e p l y ) w i t h o n l y a few g a t e d e l a y s . 2.2.2.3 Fault Detection Circuitry A d e s i g n philosophy was followed which i n c r e a s e s r e l i a b i l i t y and r e d u c e s f i e l d r e p a i r t i m e . Wherever p o s s i b l e , i n v a l i d c o n d i t i o n s a r e d e t e c t e d and d i s p l a y e d . For example, t h e "D-FLT" ( d e l a y f a u l t ) s i g n a l i s g e n e r a t e d when more t h a n one turn-around d e l a y t i m e h a s been s e l e c t e d . T h i s o c c u r r e n c e i s l o g i c a l l y i m p o s s i b l e , b u t h a s i n f a c t o c c u r r e d due t o bad c h i p s , c o n n e c t o r problems, and s o f o r t h . Another example shown i s "C-FLT" ( c o u n t e r f a u l t ) . The 1 3 - b i t c o u n t e r should n e v e r o v e r f l o w , b u t i f i t d o e s a n e r r o r i s i n d i c a t e d . Two o t h e r f a u l t d e t e c t o r s a r e l o c a t e d on t h e ELR2 c a r d , b u t a r e n o t shown i n F i g . 9 f o r s i m p l i c i t y . These a r e "REP-FLT" ( r e p l y f a u l t ) , which i s g e n e r a t e d when any combination of "DAREP" (delayed ATCRBS r e p l y ) , "DDABREP" (delayed DABS r e p l y ) and a n undelayed r e p l y a r e p r e s e n t s i m u l t a n e o u s l y , and "MODE-FLT" ( r e p l y mode f a u l t ) , which i s g e n e r a t e d when any combination of Mode A ATCRBS, Mode C ATCRBS, and DABS f l i p - f l o p s a r e s e t s i m u l t a n e o u s l y . The "MODE-FLT" s i g n a l t r u e can i n d i c a t e a f a i l u r e i n t h e t r a n s p o n d e r o r a f a i l u r e i n t h e "MUTUAL SUPPRESSION DRIVER CIRCUITRY" shown i n F i g . 9. 2.2.2.4 ATCRBS Turnaround Delay 2.2.2.4.1 128 Microsecond Delay S e l e c t e d The "REPLY" and "DIG SUP" ( d i g i t a l s u p p r e s s i o n ) s i g n a l s become a c t i v e , which i n t u r n set t h e "START" s i g n a l a t t h e n e x t r i s i n g edge of t h e "2MHz CLOCK". The "START" s i g n a l d r i v e s t h e "MUT SUP" (mutual s u p p r e s s i o n ) l i n e t o t h e t r a n s p o n d e r , t h e r e b y i n h i b i t i n g f u r t h e r decoding of i n t e r r o g a t i o n s w h i l e the delay is taking place. The s t a t e of t h e "MODE-A" and "MODE-C" s i g n a l s i s t h e n l a t c h e d a t t h e n e x t r i s i n g edge of t h e 2MHz c l o c k . No more t h a n one of t h e s e s i g n a l s should b e t r u e . Meanwhile, t h e "REPLY" s i g n a l from t h e t r a n s p o n d e r i s simply g a t e d o u t , and no delayed r e p l y i s g e n e r a t e d a s y e t . 125 microseconds l a t e r , t h e "END125" s i g n a l i s g e n e r a t e d and g a t e d w i t h t h e t r u e "D128" s i g n a l t o produce a s i g n a l c a l l e d "SET". The "SET" s i g n a l s e n d s t h e "SET-A" and SET-C" s i g n a l s t o t h e t r a n s p o n d e r , c a u s i n g t h e t r a n s p o n d e r t o g i v e an a p p r o p r i a t e Mode A o r Mode C ATCRBS r e p l y 3 microseconds l a t e r . T h i s r e p l y i s g a t e d through t h e system t o form "DAREP" (delayed ATCRBS r e p l y ) , because t h e "SET" s i g n a l sets a f l i p - f l o p which a l l o w s t h i s t o o c c u r . Thus t h e t r a n s p o n d e r h a s a c t u a l l y g e n e r a t e d two ATCRBS r e p l i e s : t h e f i r s t i s l o s t , and t h e second one (which comes 128 micro- s e c o n d s a f t e r t h e f i r s t r e p l y ) i s t r a n s m i t t e d as t h e d e l a y e d r e p l y . A s h o r t w h i l e l a t e r (157 m i c r o s e c o n d s a f t e r "START" g o e s t r u e ) , t h e "END 157" s i g n a l becomes a c t i v e , which r e t u r n s t h e c i r c u i t r y t o i t s i n i t i a l s t a t e by g e n e r a t i n g t h e "DONE" s i g n a l . 2.2.2.4.2 256 Microsecond Delay S e l e c t e d The same s e q u e n c e of e v e n t s o c c u r s as o c c u r r e d w i t h t h e 1 2 8 microsecond ATCRBS d e l a y , e x c e p t t h a t "END 253" i s used t o e l i c i t t h e second ATCRBS r e p l y from t h e t r a n s p o n d e r and "END 285" i s u s e d t o reset t h e d e l a v c i r c u i t r y . 2.2.2.5 . DABS Turnaround Delay The DABS t u r n a r o u n d d e l a y i s h a n d l e d i n a n e n t i r e l y d i f f e r e n t manner from t h e ATCRBS d e l a y . T h i s i s d u e t o t h e d i f f e r e n t t i m i n g schemes i n v o l v e d (690 KHz c l o c k f o r ATCRBS v s . 1 MHz c l o c k f o r DABS r e p l i e s ) . Note t h a t ATCRBS/ DABS a l l - c a l l r e p l i e s are c o n s i d e r e d t o b e "DABSt'-type r e p l i e s i n s o f a r as t h e timing i s concerned. 2.2.2.5.1 1 2 8 Microsecond Delay S e l e c t e d The f i r s t r e p l y p u l s e and d i g i t a l s u p p r e s s i o n s i g n a l s are used t o g e n e r a t e "START", as was t h e c a s e w i t h ATCRBS. 256 m i c r o s e c o n d s l a t e r , "END 256" i s used t o g e n e r a t e t h e "DONE" s i g n a l which resets t h e d e l a y c i r c u i t r y . The "DABS XMIT" (DABS t r a n s m i s s i o n ) s i g n a l g o e s t r u e p r i o r t o t h e "REPLY" s i g n a l . "DABS XMIT" i s l a t c h e d , and "DABS.L1' i s u s e d t o g a t e t h e DABS r e p l y i n t o a CMOS s h i f t r e g i s t e r c h a i n where i t i s d e l a y e d f o r 1 2 8 m i c r o s e c o n d s . When t h e DABS r e p l y emerges from t h e s h i f t r e g i s t e r d e l a y , i t becomes "DDABREP" ( d e l a y e d DABS r e p l y ) and i s s e n t o u t t o t h e t r a n s m i t t e r as t h e d e l a y e d r e p l y . 2.2.2.5.2 256 Microsecond Delay S e l e c t e d Operation is s i m i l a r t o t h a t described i n t h e preceding paragraph, except t h a t more s h i f t r e g i s t e r s are u s e d t o o b t a i n a l o n g e r d e l a y and "END 384" i s used t o reset t h e d e l a y l o g i c a f t e r c o m p l e t i o n of t h e DABS r e p l y . 2.2.3 ELR3 Card The l o g i c c o n t a i n e d on t h i s c a r d a l l o w s a message t u r n - a r o u n d test t o b e performed between t h e s e n s o r and CPME. It a l s o a l l o w s t h e CPME t o r e p o r t i t s o p e r a t i n g s t a t u s t o t h e s e n s o r f o r r e m o t e d i a g n o s i s of CPME problems. 2.2.3.1 Initialization The "RESET" s i g n a l c o m p l e t e l y c l e a r s t h e SM p r o c e s s o r , and a l l f a u l t cond i t i o n s a s s o c i a t e d w i t h i t . A f t e r e v e r y SM i n t e r f a c e t r a n s a c t i o n , t h e s y s t e m i s c l e a r e d ( w i t h t h e e x c e p t i o n of PBUT, B-bit, and f a u l t c o n d i t i o n s ) by t h e "SMCLR" ( s t a n d a r d message c l e a r ) s i g n a l . The "SMCLR" s i g n a l becomes a c t i v e 220 microseconds a f t e r t h e f i r s t l e a d i n g edge of "SMC" ( s t a n d a r d message c l o c k ) , and s o o c c u r s a f t e r a l l SM i n t e r a c t i o n s have t a k e n p l a c e . R e f e r t o t h e s i m p l i f i e d s c h e m a t i c p r e s e n t e d i n F i g . 10. 2.2.3.2 Operation The t r a n s p o n d e r h a s a u n i - d i r e c t i o n a l c l o c k l i n e o u t p u t , "SMC", which . p r o v i d e s t h e r e q u i r e d t i m i n g f o r t h e i n t e r f a c e . The t r a n s p o n d e r a l s o p r o v i d e s a 1 - b i t b i - d i r e c t i o n a l d a t a b u s , "SMD" ( s t a n d a r d message d a t a ) , on which u p l i n k d a t a i s t r a n s f e r r e d from t h e t r a n s p o n d e r t o t h e SMI p r o c e s s o r , and downlink d a t a i s s e n t t o t h e t r a n s p o n d e r from t h e SMI p r o c e s s o r . The o p e r a t i o n of t h e SMI p r o c e s s o r i s summarized i n t h e f l o w c h a r t of F i g . 11. 1 Y ~ PII I PO I I w~ r u o M rro u r n n ' u ~ r1 l 1 7w.w r----- I I I F i g . 11. w I**. m t s m ~ "L O I I ~ S 1 ~ 1 sPUCSS. u mmo uu IF B-MT IS m str. ------- IW-OLIU L S U L . I S r n l D U S ILL-ULL 01 C D C I . ---------- -mr: ui UL m m IK u s 1 1 I M S m M c a w D K ~ m . n u t Dtcrrua II IIUULP. a I I I S t a n d a r d message i n t e r f a c e p r o c e s s o r f l o w c h a r t 3.0 ENVIRONMENTAL SYSTEM The environmental system shown in Fig. 12 enables the CPME to operate satisfactorily outdoors. All temperature switches are located on a single heat sink, which senses the CPME's internal air temperature. The safe operating limits on this internal air temperature are shown in Fig. 13. Each CPME system has been tested and shown to be completely functional over outside air temperatures ranging from -lO°F to +105OF. When operated in the high-power mode, the CPME's internal air temperature is typically 80°F when'the outside ambient is -lO°F. Operation in the high temperature range is limited by the transponder (maximum transponder operating temperature is +130°F) and by the efficiency of the heat exchanger. The heat exchanger limits the transponder's temperature to a rise of 25OF.aboveoutside ambient when the CPME is in the high-power mode, and 18OF in the low-power mode. Thus the CPME can safely operate outdoors in temperatures of 105OF for the high-power mode and 112OF for the lowpower mode. 500 w HEATER SAFETY BflCK- UP SWITCH: OPEN ABOVE 113°F I ATC-89(12) 1 OPEN ABOVE 90°F It LAT LXCHANOER OUTSIDE (COOUUG) FANS HEAT EXCHANGER INCIDE (CI KOLATJUG) FANS EXTRA CIRCULATlNG FANS INSIDE CPME CLOSED ABOVE OPEN ABOVF )--0 Fig. 12. TO STATUS h REPORTING (FAULT) LOGIC UNDER-TEMP Environmental controls I CPME Internal A i r Temp. Maximum: 1 3 0 ° F I OVER-TEMP FAULT 120 HEAT EXCHANGER'S COOLING FANS ON 90 80 70 60 50 Minimum: 40°F F i g . 13. Thermal operating c h a r a c t e r i s t i c 4.0 POWER DISTRIBUTION 4.1 Over-voltage P r o t e c t i o n A l l CPME s u p p l i e s w i t h t h e e x c e p t i o n of t h e l O O O V s u p p l y are equipped w i t h o v e r - v o l t a g e p r o t e c t i o n . A d d i t i o n a l l y , t h e CPME i s p r o t e c t e d from power l i n e t r a n s i e n t s . A l l s u p p l i e s h a v e a c c e s s i b l e v o l t a g e a d j u s t m e n t s , e x c e p t f o r t h e +12V and -12V s u p p l i e s which are n o n - a d j u s t a b l e . The +5V and +28V h a v e been f i t t e d w i t h knobs f o r ease of a d j u s t m e n t . The +6V, -20V, and +1000V s u p p l i e s are s c r e w d r i v e r a d j u s t a b l e . The p l e x i g l a s s h i g h v o l t a g e p r o t e c t i o n p l a t e must b e removed b e f o r e t h e v o l t a g e a d j u s t m e n t t r i m p o t on t h e +1000V s u p p l y c a n b e r e a c h e d , s o c a r e s h o u l d b e t a k e n when making t h i s a d j u s t m e n t . 4.2 C i r c u i t Breakers T h r e e c i r c u i t b r e a k e r s w i t c h e s are p r o v i d e d . A 2.5 amp b r e a k e r c o n t r o l s t h e "convenience o u t l e t " ; a 1 0 amp b r e a k e r c o n t r o l s t h e power t o t h e 500 w a t t h e a t e r and t o a l l f a n s , and a s p e c i a l 7 . 5 amp b r e a k e r c o n t r o l s power t o t h e l o g i c and RF components. The 7.5 amp b r e a k e r f e a t u r e s immunity t o c u r r e n t This feature s p i k e s which are o f t e n e n c o u n t e r e d d u r i n g s y s t e m power-up. was r e q u i r e d s o t h a t i f , d u r i n g normal f i e l d o p e r a t i o n , AC power t o t h e CPME i s i n t e r r u p t e d , when power i s r e s t o r e d t h e CPME w i l l power-up a g a i n n o r m a l l y w i t h o u t t h e need t o reset t h e b r e a k e r by human i n t e r v e n t i o n . N o t i c e t h a t t h e t o t a l c u r r e n t which c o u l d b e drawn from t h e AC power l i n e i s 2.5 7.5 + 1 0 = 20 amperes, t h u s s t a n d a r d s e r v i c e c a n b e used. + 4.3 Power Consumption A c t u a l power t a k e n by t h e CPME from t h e AC l i n e i s as f o l l o w s . a. E n v i r o n m e n t a l System: The h e a t e r u s e s 500 w a t t s , and t h e h e a t e x c h a n g e r ' s c o o l i n g f a n s u s e 50 w a t t s . b. RF, L o g i c , and C i r c u l a t i n g F a n s : The low-power mode u s e s 240 w a t t s , w h i l e t h e high-power mode u s e s 325 w a t t s . Note t h a t t h e s e f i g u r e s are t h e "heat l o a d " which t h e h e a t e x c h a n g e r i s r e q u i r e d to dissipate. c. Worst Combination: The w o r s t c a s e power consumption o c c u r s on c o l d d a y s when t h e CPME i s i n t h e high-power mode, r e q u i r i n g 325 w a t t s ( e l e c t r o n i c s and c i r c u l a t i n g f a n s ) p l u s 500 w a t t s ( h e a t e r ) o r a t o t a l of 825 w a t t s drawn from t h e AC power l i n e s . Acknowledgments The development of the DABS CPME took place under the guidance of R.R. LaFrey and J.D. Welch, MIT/Lincoln Assistant Group Leaders, System Design and Evaluation. Significant contributions to the design,construction, and checkout of the CPME were made by E.A. Crocker, J.L. Cataldo, A. Augustine, W.J. Grabowski, B.F. Adams, and B. Hutchings. The helpful suggestions regarding construction and thermal design given by R.G. Nelson and D.M. Nathanson are also gratefully acknowledged. APPENDIX A TABLE OF CONTENTS Page 1.0 2.0 ........................ 1.1 S e t C a l l S i g n . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 SetATCRBSModeCCode . . . . . . . . . . . . . . . . . . 1 . 3 S e t ATCRBS Mode A Code . . . . . . . . . . . . . . . . . . 1.4 . S e t Receiver Threshold . . . . . . . . . . . . . . . . . . 1 . 5 S e l e c t O p e r a t i n g Modes . . . . . . . . . . . . . . . . . . 1 . 6 S e t AT5 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 7 Powerup . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 8 Check S u p p l i e s . . . . . . . . . . . . . . . . . . . . . . 1 . 9 Check CPME C o n t r o l P a n e l I n d i c a t o r s . . . . . . . . . . . . 1 . 1 0 A d j u s t AT1 . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Turn On Environmental System . . . . . . . . . . . . . . . 1 . 1 2 S e t PAM/PPM S w i t c h . . . . . . . . . . . . . . . . . . . . USE OF CPME DURING MONOPULSE ACCURACY TESTS . . . . . . . . . . 2 . 1 E x t e r n a l S i g n a l Source . . . . . . . . . . . . . . . . . . 2.2 C o n n e c t i n g t h e E x t e r n a l S o u r c e . . . . . . . . . . . . . . 2 . 3 Example of CPME U s e f o r C a l i b r a t i o n . . . . . . . . . . . . NORMALOPERATION APPENDIX A CPME OPERATING PROCEDURES 1.0 NORMAL OPERATION It is assumed that the CPMX has been set up so that ample space is available all around the unit (to facilitate ventilation and repairs) and that if the unit is located outdoors, the sun shield has been attached. It is also assumed that the CPME unit has been connected to 120 VAC 20 ampere service. 1.1 Set Call Sign The CPME will transmit a Comm-B reply with a dummy call sign contained in the extended capability MB field in response to a correctly addressed interrogation with RL=1 and MSRC=0001. The call sign consists of 42 bits which are transmitted in bit positions 47 through 88 of the Corn-B data field inclusive (see FAA-RD-74-62, paragraph 4.4.3.6). Set the 42-bit call sign as follows: 1.1.1 Remove board 83 (ELR3) from the "External Logic Rack" Fig. A-1) . (see 1.1.2 Set call-sign switches as follows (switch set "ON" transmits a "ZERO", "OFF" transmits a "ONE") : Bit /I 47 48 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Pack Location U58 u12 u12 u12 u12 u12 u12 u12 u12 U24 U24 U24 U24 U24 U24 U24 U24 U36 U36 U36 U36 U36 Switch d 1 2 1 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 Pack Location U36 U36 U36 U48 U48 U48 U48 U48 U48 U48 U48 U60 U60 U60 U60 U60 U60 U60 U60 Switch 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 /I EXTERNAL XMT R SOURCE PATCH Fig. A-1. - DABS CPME: I n t e r n a l view 1.1.3 Carefully replace ELR3 board in the proper slot (slot #3) of the External Logic Rack. 1.2 Set ATCRBS Mode C Code (altitude simulator) On the CPME CONTROL PANEL locate the two sets of switches marked "ALTIMETER". The transmitter bits are set as follows (see Fig. A-2): Bit Switch Bank Switch Left Left Left Left Left Left Left Right Right Right Right 1 2 3 /I 4 5 6 7 1 2 3 4 Note: Switch set "ON" transmits the bit, switch set "OFF" does not. Bit Dl is not used (always zero). The zero feet altitude code is obtained by setting B2, B4, and C2 "ON", all others "OFF". 1.3 Set ATCRBS Mode A Code CONTROL PANEL. 1.4 on thumbwheel switches provided on CPME Set Receiver Threshold Adjust variable attenuator AT2 for the desired threshold level. A setting of 26 dB results in an input sensitivity of approximately -40 dBm as referenced to the CPME RF port. Similarly, a setting of 66 dB results in a sensitivity of approximately fl dBm. It is recommended that attenuator AT2 should always be set at some value greater than 8 dB for the purpose of protecting the receiver. See calibration information on each CPME for more accurate setting. 1.5 Select Operating Modes 1.5.1 Select fl, 128, or 256 usec additional turn-around delay time by setting the TURNAROUND DELAY control (see Fig. A-2). 1.5.2 Set the INITIALIZE/RUN switch to the RUN position. Note: after powerup, if it is necessary to change the Turnaround Delay setting or Transmitter Power switch, then put the 1NITIALIZE/RUN switch into the INITIALIZE position and then back to the RUN position. 3 POSITtON SELECTOR YNOE ATCRBS MODE A CODE \ 7 LEFT S W I T C H RIGUT SWITCH BANK \ ALTIMETER f 0 DELAY INTERROGATIONS FAULT ATCRBS DABS LOCKOUTS @ AU X DISCRETE AORS - .- Q 6 AUX AID DABS ONLY ALL- CALL XMTR PWR . .- . Q ATCRBS REPORTING TO SENSOR ALL LOC KOUT STATUS STATE 0 @ 1 KV.6V ACTIVE HI-PWR SE L 12 F i g . A-2. CPME c o n t r o l p a n e l diagram 0 1 . 5 . 3 S e t t h e TRANSMITTER POWER (XMTR PWR) s w i t c h t o e i t h e r HIGH o r LOW power, a s d e s i r e d . A t t h e CPME RF p o r t , t h e o u t p u t power i n t h e low-power mode can be v a r i e d from -80 dBm t o +21 dBm i n 1 dB s t e p s , whereas o u t p u t power i n t h e high-power mode can be v a r i e d from -9 dBm t o +51 dBm c o n t i n u o u s l y . For g r e a t e s t a c c u r a c y i n power l e v e l s e t t i n g , i t i s recommended t h a t t h e high-power mode o u t p u t should be used o n l y i n t h e r a n g e from +11 dBm t o +51 dBm. It i s a l s o recommended t h a t t h e low-power mode b e used whenever p o s s i b l e , e s p e c i a l l y during h o t weather. 1 . 5 . 4 S e t t h e s t a t u s REPORTING TO SENSOR s w i t c h e s a s d e s i r e d f o r s t a t u s r e p o r t s . I n r e s p o n s e t o a c o r r e c t l y a d d r e s s e d i n t e r r o g a t i o n w i t h RL=1 and MSRC=0001, t h e CPME s h a l l t r a n s m i t a Comm-B r e p l y w i t h b i t s 38 through 46 d e f i n e d a s f o l l o w s : 1.5.4.1 A l l z e r o e s i f t h e ALL STATUS s w i t c h i s i n t h e INHIBIT p o s i t i o n . 1.5.4.2 With t h e ALL STATUS s w i t c h i n t h e ENABLE p o s i t i o n and t h e LOCKOUT STATE s w i t c h i n t h e INHIBIT p o s i t i o n , t h e CPME f a u l t b i t s ( d e f i n e d i n p a r a g r a p h 1.9.5.2) a r e t r a n s m i t t e d i n b i t s 38 through 42 i n c l u s i v e . B i t s 43 t h r o u g h 46 i n c l u s i v e a r e t r a n s m i t t e d a s z e r o e s . 1 . 5 . 4 . 3 With t h e ALL STATUS s w i t c h i n t h e ENABLE p o s i t i o n and t h e LOCKOUT STATE s w i t c h i n t h e ENABLE p o s i t i o n , t h e CPME f a u l t b i t s a r e t r a n s m i t t e d i n b i t s 38 through 42, and t h e CPME l o c k o u t s t a t e s t a t u s ( d e f i n e d i n paragraph 1 . 9 . 4 ) i s r e p o r t e d i n b i t s 43 through 46. 1.5.4.4 Whenever t h e ALL STATUS s w i t c h i s i n t h e ENABLE p o s i t i o n , t h e FR b i t ( b i t 1 9 of any s u r v e i l l a n c e o r Comm-B r e p l y ) i s t r a n s m i t t e d a s a "one" i f any of t h e f a u l t b i t s a r e s e t ( l o g i c a l "OR") and "zero" o t h e r w i s e . When t h e ALL STATUS s w i t c h i s i n t h e INHIBIT p o s i t i o n , t h e FR b i t i s a "zero". 1.6 S e t AT5 A t t e n u a t o r AT5 d i r e c t l y c o n t r o l s t h e o u t p u t power i n t h e low-power mode. S e t t o 11 dB f o r normal low-power mode o p e r a t i o n , t h u s g i v i n g a p p r o x i m a t e l y +10 dBm o u t p u t a t t h e CPME RF p o r t . See c a l i b r a t i o n i n f o r m a t i o n on each CPME f o r more a c c u r a t e s e t t i n g . I n t h e high-power mode, AT5 sets t h e d r i v e l e v e l t o t h e RF power amp. S e t AT5 t o 6 dB f o r normal high-power mode o p e r a t i o n , t h u s g i v i n g +10 dBm i n p u t t o t h e GE RF power amp. 1.7 Powerup 1.7.1 Make s u r e a l l c i r c u i t b r e a k e r s a r e i n t h e OFF p o s i t i o n . 1.7.2 Connect antenna system c a b l e t o t h e type N connector on t h e o u t s i d e of t h e CPME. 1 . 7 . 3 Connect AC power (110 VAC, 20 A) t o t h e CPME through t h e Bendix c o n n e c t o r , on t h e o u t s i d e of t h e e n c l o s u r e , u s i n g t h e power cord provided. position. 1.7.4 Turn t h e c i r c u i t b r e a k e r marked "RF/LOGIC" t o t h e ON The handle should l i g h t up r e d . 1.7.5 The green.lamp on t h e o u t s i d e of t h e CPME e n c l o s u r e should l i g h t up. Turn t h e ON/OFF s w i t c h of t h e DVM t o t h e ON p o s i t i o n . Check t h e s u p p l i e s by s e t t i n g t h e D V M f s s e l e c t o r s w i t c h t o t h e d e s i r e d supply and r e a d i n g t h e v a l u e on t h e D i g i t a l Volt Meter (DVM). The DVM i s a c c u r a t e t o about 2%. Note t h a t t h e 6V and lOOOV s u p p l i e s a r e a c t i v e o n l y when t h e high-power t r a n s m i t t e r has been s e l e c t e d . Also n o t e t h a t t h e 6V supply has been s e t t o about 5.8V. T h i s lower f i l a m e n t v o l t a g e i n c r e a s e s t h e l i f e expectancy of t h e GE RF power amp, and t h e v o l t a g e can be i n c r e a s e d a s t h e tube ages. Turn o f f t h e DVM. 1.9 Check CPME C o n t r o l Panel I n d i c a t o r s 1 . 9 . 1 Turnaround d e l a y i n d i c a t o r should correspond t o s e l e c t e d turn-around d e l a y . I f n o t , t h e n r e - i n i t i a l i z e t h e system u s i n g t h e INITIALIZE/RUN switch. 1 . 9 . 2 I f t h e high-power mode i s s e l e c t e d , then t h e " l K V , 6V ACTIVE" and "HI-PWR XMTR SEL" i n d i c a t o r s should be l i t . I f t h e low-power mode i s s e l e c t e d , n e i t h e r of t h e s e should be l i t . R e - i n i t i a l i z e t h e system i f necessary. 1 . 9 . 3 The ATCRBS INTERROGATIONS i n d i c a t o r f l a s h e s momentarily ( . l s e c ) when a n ATCRBS i n t e r r o g a t i o n i s d e t e c t e d . The DABS INTERROGATIONS i n d i c a t o r i s a c t i v a t e d when a DABS i n t e r r o g a t i o n i s d e t e c t e d , and remains l i t f o r approximately 16 seconds t h e r e a f t e r . No v i s u a l i n d i c a t i o n i s given f o r ATCRBS/DABS o r DABS-only All-Calls. 1 . 9 . 4 The "LOCKOUTS" i n d i c a t o r s r e f l e c t t h e s t a t e of t h e CPME When t h e ALL l o c k o u t s a t a l l times. I n d i c a t o r l i t i m p l i e s "locked out". STATUS and LOCKOUT STATE s w i t c h e s a r e b o t h i n t h e ENABLE p o s i t i o n , t h e n t h e l o c k o u t s t a t e a s i n d i c a t e d i s t r a n s m i t t e d i n a Comm-B r e p l y a s f o l l o w s ( i n r e s p o n s e t o a c o r r e c t l y a d d r e s s e d i n t e r r o g a t i o n w i t h RL=1 and MSRC=0001): Bit Bit Bit Bit 43: 44: 45: 46: 1.9.5 ATCRBS l o c k o u t s t a t e ATCRBSIDABS A l l - C a l l l o c k o u t s t a t e a u x i l i a r y (DABS-only) A l l - C a l l l o c k o u t s t a t e a u x i l i a r y d i s c r e t e address i n t e r r o g a t i o n lockout s t a t e Fault B i t s 1 . 9 . 5 . 1 I f a CPME f a u l t e x i s t s , t h e LED marked "FAULT" w i l l l i g h t up and s o w i l l t h e r e d " f a u l t lamp" on t h e o u t s i d e of t h e CPME e n c l o s u r e . T h i s main " f a u l t b i t " i s a l o g i c a l OR of t h e f a u l t b i t s l i s t e d below. It i s t h e s t a t e of t h i s main f a u l t b i t which i s t r a n s m i t t e d a s t h e FR b i t i n r e p l i e s , a s n o t e d i n p a r a g r a p h 1.5.4.4. The f a u l t l i g h t s a r e l i t r e g a r d l e s s of t h e s t a t e of t h e "Reporting t o Sensor" s w i t c h e s . 1.9.5.2 F i v e LEDS (#I-#5) on t h e CPME C o n t r o l P a n e l always d i s p l a y t h e s t a t e of t h e CPME f a u l t d e t e c t i o n system. I f t h e "Reporting t o Sensor: A l l S t a t u s " s w i t c h i s i n t h e ENABLE p o s i t i o n , t h e n t h e c o n d i t i o n of t h e s e LEDS i s t r a n s m i t t e d i n t h e Comm-B r e p l y b i t s shown ( s e e a l s o p a r a g r a p h 1.5.4.2) i n r e s p o n s e t o a c o r r e c t l y a d d r e s s e d i n t e r r o g a t i o n w i t h RL-1 and MSRC=0001. LED /I Reply B i t 1 2 38 39 3 4 5 40 41 42 Fault O s c i l l a t o r o u t of phase-lock. Power f a i l l i n i t i a l i z e ( a 128 s e c t i m e r which i s a c t i v a t e d a t powerup o r when system i s i n i t i a l i z e d ) . I n s i d e of e n c l o s u r e under-temperature. I n s i d e of e n c l o s u r e over-temperature. M i s c e l l a n e o u s f a u l t ( a l o g i c a l OR of t h e f a u l t conditions described i n paragraph 1.9.5.3). 1 . 9 . 5 . 3 M i s c e l l a n e o u s f a u l t c o n d i t i o n s a r e d e t e c t e d and d i s p l a y e d a s f o l l o w s ( t h e s e b i t s a r e n o t i n d i v i d u a l l y t r a n s m i t t e d i n any replies) : LED fl 6 7 8 9 Fault T r a n s m i t t e r d u t y c y c l e exceeded. M u l t i p l e turn-around d e l a y s s e l e c t e d . Multiple reply types detected. M u l t i p l e re1 l y modes r e q u e s t e d ( a transponder f a u l t condition) Turnaround d e l a y s t a t e c o u n t e r f a i l u r e . SMI s t a t e c o u n t e r f a i l u r e . SPARE f unused) . 1.10 Adjust AT1 I f t h e high-power mode i s s e l e c t e d , t h e CPME RF power o u t p u t l e v e l i s a d j u s t e d by a t t e n u a t o r AT1. To a d j u s t t h i s , monitor t h e r e p l i e s by c o n n e c t i n g an o s c i l l o s c o p e t o t h e "OUTPUT MONITOR TO SCOPE" j a c k provided. Convert t h e peak v o l t a g e r e a d i n g s of t h e r e p l y p u l s e s t o "dBm" r e a d i n g s by u s i n g t h e c r y s t a l c a l i b r a t i o n c h a r t s provided w i t h each CPME. Add t h i s power r e a d i n g ( i n dBm) t o t h e " b i a s v a l u e " ( s e e c a l i b r a t i o n i n f o r m a t i o n f o r each CPME), which i s about +38.5 dB, t o o b t a i n t h e a c t u a l RF o u t p u t power a t t h e CPME RF p o r t . A c a l i b r a t i o n c h a r t which c o n v e r t s t h e d i a l r e a d i n g of AT1 i n t o t h e a t t e n u a t i o n v a l u e i s a l s o p r o v i d e d , s o t h a t r e l a t i v e power l e v e l s c a n b e easily set. 1.11 Turn On Environmental System Turn on t h e c i r c u i t b r e a k e r marked "HEAT/COOLH. f a n s should r u n c o n t i n u o u s l y . A l l f i v e of t h e i n t e r n a l 1.12 S e t PAM/PPM Switch A s c r e w d r i v e r - a d j u s t s w i t c h i s l o c a t e d on t h e f r o n t of t h e t r a n s p o n d e r f o r t h e purpose of changing r e p l y modulation formats. The CPME i s shipped w i t h t h e s w i t c h i n t h e PPM p o s i t i o n , and t h e c o n t r o l should normally remain i n t h i s position. 2.0 USE OF CPME DURING MONOPULSE ACCURACY TESTS 2.1 E x t e r n a l S i g n a l Source A high-accuracy CW s i g n a l s o u r c e , such a s a n HP8640B s i g n a l g e n e r a t o r , i s required. 2.2 Connecting t h e E x t e r n a l Source Connect t h e e x t e r n a l s o u r c e a s f o l l o w s : 2.2.1 I f t h e power a v a i l a b l e from t h e s i g n a l g e n e r a t o r i s +20 dBm, t h e n set i t t o t h i s v a l u e . With t h e CPME power OFF, remove t h e " E x t e r n a l XMTR Source Patch" s e m i - r i g i d c o a x i a l jumper. Care must be t a k e n i n removing t h i s jumper s o a s n o t t o damage i t . To remove, unscrew each s i d e by one t u r n , t h e n r e p e a t ( a l t e r n a t i n g s i d e s ) u n t i l jumper comes o f f . To r e p l a c e i t , a t o r q u e wrench i s recommended. A t t a c h t h e s i g n a l g e n e r a t o r t o t h e s i d e of t h e p a t c h i n p u t marked "XMTR Source Input". Terminate t h e p a t c h j a c k marked " I n t e r n a l Source Output" i n a 50 ohm impedance. The CPME can now o p e r a t e a s b e f o r e , i n e i t h e r h i g h o r low power mode, b u t w i t h a v a r i a b l e frequency output. S e t a t t e n u a t o r AT5 t o z e r o dB i f t h e high-power mode i s used. 2.2.2 I f t h e power a v a i l a b l e from t h e s i g n a l g e n e r a t o r i s o i l y +10 dBm, t h e n set i t t o t h i s v a l u e . With t h e CPME power OFF, remove t h e f l e x i b l e c o a x i a l c a b l e from pad AT3, l e a v i n g t h e o t h e r end of t h i s c a b l e a t t a c h e d t o t h e t u b e a m p l i f i e r u n i t . A t t a c h t h e s i g n a l g e n e r a t o r t o t h e c a b l e . The CPME can now o p e r a t e a s b e f o r e , b u t o n l y i n t h e high-power mode. 2.3 Example of CPME Use f o r C a l i b r a t i o n Assume t h a t a CPME i s l o c a t e d 7000 f e e t from a s e n s o r . A 200 f o o t c a b l e ( w i t h 6 dB l o s s ) i s used between t h e CPME and t h e 14 dB g a i n horn a n t e n n a , g i v i n g a n e f f e c t i v e CPME antenna system g a i n of +8 dB. Also assume a s e n s o r w i t h a +28 dB g a i n a n t e n n a (ASR-7) and 5 dB e l e v a t i o n l o s s due t o a n t e n n a beam s h a p i n g , t h u s g i v i n g a n e f f e c t i v e s e n s o r a n t e n n a g a i n of +23 dB. 2.3.1 Link C a l c u l a t i o n An e s t i m a t e of t h e power l e v e l s involved i s made i n t h e f o l l o w i n g example ( s e e a l s o s e c t i o n 3.5.6.1.3 of t h e DABS CPME Performance S p e c i f i c a t i o n ) . A maximum power i n p u t of -24 dBm i s r e q u i r e d a t t h e s e n s o r RF p o r t ( s e e FAA-ER-240-26, p a r a g r a p h 4.5.4.3.1). W e wish t o know t h e RF power o u t p u t a t t h e CPME RF p o r t needed t o accomplish t h i s . T h i s i s g i v e n by: P o u t , CPME 'in, sensor + 197 + - - 20 l o g (Range x F r e q ) ] GHOW - GASR7. FREE SPACE LOSS Substituting : P o u t , CPME = -24 dBm + 97 + 7000 20 l o g [ ( -) 5280 (1.090)] - 8 - 23 = +45 dBm. Thus a maximum power o u t p u t of +45 dBm i s r e q u i r e d a t t h e CPME RF p o r t t o produce a s i g n a l l e v e l of -24 dBm a t t h e s e n s o r RF i n p u t p o r t , under t h e s t a t e d c o n d i t i o n s . The minimum CPME power s e t t i n g r e q u i r e d i s 40 dB less, o r +5 dBm o u t p u t a t t h e CPME RF p o r t . 2.3.2 CPME U s e Assume t h e c o n d i t i o n s d e s c r i b e d i n p a r a g r a p h 2.3.1 s t i l l h o l d . Also assume t h a t a n HP8640B s i g n a l g e n e r a t o r , which h a s +10 dBm o u t p u t , i s used. Connect t h i s s o u r c e a s d e s c r i b e d i n s e c t i o n 2.2.2, and t u r n t h e CPME on i n high-power mode. To t a k e t h e f i r s t set o f r e a d i n g s , set t h e frequency of t h e g e n e r a t o r t o 1090 MHz and monitor r e p l i e s on t h e CPME's "Output Monitor t o Scope" (built-in c r y s t a l detector*). Adjust t h e high-power a t t e n u a t o r , AT1, u n t i l t h e power o u t p u t a t t h e CPME RF p o r t i s +35 dBm (which should r e s u l t i n a -24 dBm s i g n a l a t t h e s e n s o r ) . To d e t e r m i n e t h e CPME RF p o r t o u t p u t from t h e c r y s t a l d e t e c t o r r e a d i n g , f i r s t s u b t r a c t t h e "Power B i a s Value" ( t y p i c a l l y 38.5 dB) from t h e d e s i r e d RF power o u t p u t . I n t h i s example, a power l e v e l of +45 dBm - 38.5 dB = +6.5 dBm must occur a t t h e c r y s t a l d e t e c t o r . U s e t h e c r y s t a l c a l i b r a t i o n c h a r t t o c o n v e r t t h i s dBm r e a d i n g t o a v o l t a g e r e a d i n g . For example, CPME /I1 (which c o n t a i n s c r y s t a l /I4 and AT1 s e r i a l /I13) would b e g i v i n g r e p l i e s a t a +45 dBm l e v e l i f t h e peak v o l t a g e measured a t t h e o u t p u t monitor was 190 mV. (which c o r r e s p o n d s t o a +6.5 dBm s i g n a l t o t h e c r y s t a l ) . The s e t t i n g of AT1 should be a b o u t 5 dB a t t h i s p o i n t (which i s a d i a l r e a d i n g of 28 on t h e t u r n s c o u n t i n g d i a l of AT1). For f u r t h e r i n f o r m a t i o n , r e f e r t o t h e DABS CPME System Block Diagram. Once t h e s e n s o r i s c a l i b r a t e d a t t h i s s e t t i n g , change t h e HP8640B frequency +3 MHz, a s s p e c i f i e d i n t h e t e s t p r o c e d u r e s . Now d i a l i n 5 dB a d d i t i o n a l a t t e n u a t i o n on AT1 and r e p e a t (you can a g a i n monitor t h e RF power o u t p u t on t h e c r y s t a l d e t e c t o r t o make s u r e t h e l e v e l went down by 5 dB). Continue t h e procedure u n t i l t h e l o w e s t r e q u i r e d power s e t t i n g h a s been r e a c h e d , changing t h e frequency n i n e t i m e s a t each of t h e n i n e power s e t t i n g s , f o r a t o t a l of 8 1 s e n s o r r u n s . *Note: To u s e t h e b u i l t - i n c a l i b r a t e d c r y s t a l d e t e c t o r , r u n a s h o r t BNC c a b l e from t h e "Output Monitor t o Scope" j a c k t o a 1-Megohrn scope i n p u t . -Do n o t t e r m i n a t e -t h e c a b l e , a s t h e d e t e c t o r i s a l r e a d y t e r m i n a t e d i n s i d e t h e CPME. APPENDIX B EXCEPTIONS AND CLARIFICATIONS TO CALIBRATION AND PERFORMANCE MONITOR EOUIPMENT (CPME) ENGINEERING REQUIREMENT, FAA-ER-240-29* T h i s Appendix p r o v i d e s a paragraph-by-paragraph l i s t i n g of ways i n which t h e C a l i b r a t i o n and Performance Monitor Equipment d e s c r i b e d i n t h i s p r o j e c t r e p o r t d e v i a t e from FAA E n g i n e e r i n g Requirement FAA-ER-240-29". Items are a l s o i n c l u d e d t o c l a r i f y t h e i n t e n d e d meaning of a r e q u i r e m e n t o r t h e manner i n which t h e r e q u i r e m e n t was m e t i n t h e MITILincoln L a b o r a t o r y CPME d e s i g n . Many of t h e l i s t e d d e v i a t i o n s d e r i v e from t h e f o l l o w i n g agreed-upon ER e x c e p t i o n s upon which t h e d e s i g n of t h e MIT/Lincoln L a b o r a t o r y - p r o v i d e d CPMEs was b a s e d : *A s (1) The LL CPME s h a l l have no ~omm-C/Comm-D c a p a b i l i t y , h e n c e no ELM c a p a b i l i t y . A l s o , any r e p l y b i t s w h i c h , when " t r u e " , i n d i c a t e ELM c a p a b i l i t y s h a l l b e set " f a l s e " . (2) The LL CPME s h a l l n o t respond t o Mode 2 i n t e r r o g a t i o n s . (3) The LL CPME s h a l l have a h i g h power mode. (4) S p e c i f i c a t i o n FAA-G-2100 goal. s h a l l be considered t o be a design amended by Amendment 1 and S p e c i f i c a t i o n Change 1 d a t e d 20 May 1976. .. a 7 0 u .rl U 10 P m 0) U rl 3 c (d h U 0 4 w -4 g ac c e u -4 m a m u -4 o m (d U C 6I-1 0 u u u (dm .rl a M(d 0 U u(d $4 a d 2 Ec PE n Page 6 Para. No. Reason f o r Change 3.5.1.4 Revised and Reworded Change D e l e t e f i r s t s e n t e n c e and s u b s t i t u t e : "The CPME s h a l l n o t r e p l y t o DABS u p l i n k t r a n s m i s s i o n s i n which a sync phase r e v e r s a l i s n o t d e t e c t e d i n t h e a s s i g n e d i n t e r v a l , a s s p e c i f i e d i n paragraph 2.4.5 of FAA-RD-74-62. " I n second s e n t e n c e change "95 p e r c e n t " t o "90 p e r c e n t " . 7 3.5.1.8 Correction In third l i n e delete "(squitter)". 8 Table 3.5.2-1 Correction I n t a b l e c a p t i o n change "DABS" t o "ATCRBS~DABS'~. 8 3.5.2.2 Added r e q u i r e ment Add, a f t e r "as d e s c r i b e d i n FAA-RD-74-62," S e c t i o n 4.4.3.1, which i s summarized i n Table 3.5.2-2. The commands shown i n t h e t a b l e a r e b i t s 3 , 4 , and 5 of an u p l i n k s u r v e i l l a n c e o r Comm-A i n t e r r o g a t i o n . "X" i n d i c a t e s a "don't c a r e " c o n d i t i o n . Command 011 i s unassigned. The I T b i t ( B i t 3) i s 1 i f t h e i n t e r r o g a t i o n comes from a s t a n d a r d i n t e r r o g a t o r and 0 i f t h e i n t e r r o g a t i o n comes from a n a u x i l i a r y i n t e r r o g a t o r . The l o c k o u t s t a t e s a r e g i v e n a s 1 = locked o u t , 0 = n o t locked o u t . "standard" A l l - C a l l s a r e ATCRBS/DABS All-Calls. A u x i l i a r y A l l - C a l l s a r e DABS-only A l l - C a l l s w i t h IT=O. DABS-only All-Calls w i t h I T = 1 cannot be locked o u t . For example, i f t h e CPME i s locked o u t t o A u x i l i a r y A l l - C a l l s b u t not t o s t a n d a r d A l l - C a l l s nor A u x i l i a r y D i s c r e t e i n t e r r o g a t i o n s ( l o c k o u t s t a t e 0 1 0 ) , and a n i n t e r r o g a t i o n w i t h b i t s 3, 4 , and 5 e q u a l t o 1, 1, and 0 , r e s p e c t i v e l y (command 110 i n t h e t a b l e ) , is r e c e i v e d , t h e CPME becomes locked o u t t o a l l subsequent A u x i l i a r y D i s c r e t e and A u x i l i a r y All-Call i n t e r r o g a t i o n s , but not t o Standard A l l - C a l l s (lockout s t a t e 011). Added r e q u i r e ment Add new Table 3.5.2-2 (and renumber e x i s t i n g Table) a s a t t a c h e d . T A B L E 3.5.2-2 DABS LOCKOUT STATE TRANSITION DIAGRAM AUX. 1)lscrc-tc. Lockout State Prior AUX. Dlscrete To Interrogation STD. All-Call 000 001 01 0 ,.ockouc s t a t e i l l e f r c r l ;,flcr i 1 1 1 erl-a>[:at irbn 011 1.00 101 110 DL5, Blt 5 of Interrogation -DL4, Bit 4 of Interrogation IT, Bit 3 of Interrogation 110 . 1 1I OXX 101 111 rl b C . 4 aPl3I4 a o a m =v rl (lCdr C(l dsCVu7b sM M C 0 3 0 '4 b a 3 s u a 3 b c a 0 r; 5a a n 0 a C U r l G 0 b \ (d O b a G 0.P) .A 3 u L O G a d a o U b ( d u c w !i @.4w a u c ~ a a a u 0 3 (do rl U C rl 3 M C " 5G, w e u o E X a U (d a a a c e d o ME9 0 aurl (d a . O I 0 0 s azM $4- C 3 d q ( d r l U I ? r l m ii a Z ro lr (d - a 7 b b u o o a U Q ) 8 3 3 m 6 0 rl u.r(a ( d n a u y cu.3 c a b ems a u 3 4 u-d.d -4 M a . a 4 4 8 a a C D m C m (dm 2':ub .A .A u 3 m o a a0 u w 8b m 7 a a o 1 0 U P U m 3 0 4 E r l m a b (dm 6 J a . C I. o a a b ral m G 5 ma ? 3 $ ( d I rq m m r l E r l m a m a m Page Para. No. Reason for Change 11 3.5.6.1 Change continued Change 3.5.6.1.3 Notes on CPME-to-Sensor Radio Link Calculations.To determine the signal levels produced at a sensor RF port by a CPME, the following equations are used: P + G1 - L + G2 = Pi, where 0 Po is the power output from the CPME RF port G1 is the gain of the CPME antenna system L is the free space loss G2 is the gain of the sensor's antenna system P is the resulting power at the sensor's RF port. i 3.5.6.1.3.1 CPME Antenna System Gain.- The CPME uses a 14 dB gain horn antenna (see 3.7.2) and has a loss of 6 dB in the cable which connects the antenna to the CPME RF port (see 3.7.3), which results in G1 = +8 dB. 3.5.6.1.3.2 L = 97 Free Space Loss.- + 20 log (Range x Freq), where L is the free space (no atmospheric attenuation) loss in dB. Range is the distance from the CPME to the sensor in statute miles. Freq is the operating frequency in GHz. The CPME uses a frequency of approx. 1 GHz (see 3.5.6.3). 3.5.6.1.3.3 Sensor Antenna System.- For purposes of calculation, a sensor with a +28 dB gain antenna, 5 dB elevation loss due to antenna beam shaping, and 2 dB cable loss has been assumed, giving G2 = +21 dB. U U32. 0 8 w E 9 0 8 71Ucd a cd 7 a0 U h 0 0 7 0 &a713 a ocd II Ll an 8 rl $".: rlw rl 5 cd - a 0 %:o; -4 a m 9 % m a x a a d d a -4 & > a a o a ekrlu-l -4 m 6 c d rl I \O u-l m a & 7 M -4 k I. a 4 U u h 7 u & n a U u 6 m .4 9 LI w U PI s u-l es8:r:% .;(.;icnas u u ash. a w o u r l a a r l o m 7 a o rl a o a d m a 5 0 .4rl3m m c d e r l o u ~ e - r i cd a.4 a s e e 7 w m r l a v e MUcdacda) e e a c o .r( cd M m a u r n m e m u.4 a c w a uurl cd O U - r i . 4 e m-4 a e a 2 o"g 2 3 2 . 5 u b l e u3-c \O u-l bl 3 a C G ( U U Y ) U a.1 a u m o c \ O c 0 cd E d m u-l a a & m -4 a m7.4 a vu ma-ri c u r l cd -4 C U P UUcd a a .-rl cd C % U 71 71 4 a a 7 d u -ri d 0 u a auu O O P 4 P cd dug u u-l \O c u-l \O Page P a r a . No. Reason f o r Change 12 3.5.7.2.2 No ELM; reworded for clarity Change D e l e t e e n t i r e paragraph and s u b s t i t u t e : 3.5.7.2.2 Extended C a p a b i l i t y Code.I n response t o a c o r r e c t l y a d d r e s s e d i n t e r r o g a t i o n w i t h RL=1 and MSRC=0001, t h e CPME s h a l l t r a n s m i t a Corn-B r e p l y w i t h a n MSRC code of 0001 i n t h e l e a d i n g f o u r b i t p o s i t i o n s of t h e MB f i e l d and a z e r o i n t h e f i r s t b i t p o s i t i o n of t h e extended c a p a b i l i t y f i e l d ( b i t p o s i t i o n 37 of t h e Comm-B d a t a f i e l d ) t o i n d i c a t e l a c k of ELM c a p a b i l i t y . 12 3.5.7.2.3 3.5.7.2.4 To make room f o r added paragraphs Renumber a s p a r a g r a p h s 3.5.7.2.4 12 3.5.7.2.3 Added r e q u i r e ment f o r s t a t u s indication Add new paragraph a s f o l l o w s : and 3.5.7.2.5. 3.5.7.2.3 CPME S t a t u s . I n response t o a c o r r e c t l y addressed i n t e r r o g a t i o n w i t h RL=1 and MSRC=0001, t h e CPME s h a l l t r a n s m i t a Comm-B r e p l y w i t h b i t s 38 through 46 d e f i n e d a s f o l l o w s : B i t 38: B i t 39: Bit Bit Bit Bit Bit Bit Bit 40: 41: 42: 43: 44: 45: 46: o s c i l l a t o r o u t of phase-lock. power f a i l (two minute t i m e r which i s a c t i v a t e d a t power-up) i n s i d e of encl.osure under-temperature. i n s i d e of e n c l o s u r e over-temperature. miscellaneous f a u l t conditions. ATCRBS l o c k o u t s t a t e . ATCRBSIDABS A l l - C a l l l o c k o u t s t a t e . a u x i l i a r y (DABS-only) A l l - C a l l l o c k o u t s t a t e . a u x i l i a r y d i s c r e t e address interrogation lockout s t a t e . . (Note: t h e l o c k o u t s t a t e s r e p o r t e d by s t a t u s b i t s 43-46 a r e t h e l o c k o u t s t a t e s i n e f f e c t a f t e r t h e Comm-B r e p l y h a s been completed). The f o u r s t a t u s b i t s i n d i c a t i n g t h e s t a t e of t h e lockout l a t c h e s s h a l l a l l be s e t e i t h e r t o zeros o r t o r e f l e c t t h e p r o p e r l o c k o u t s t a t e ( 1 = locked o u t , 0 = n o t locked o u t ) under c o n t r o l of a s w i t c h ( l o c k o u t s t a t u s s w i t c h ) . The f i v e " f a u l t b i t s " (38-42 above) s h a l l b e OR'ed t o g e t h e r and t h i s b i t s h a l l b e t r a n s m i t t e d a s t h e FR b i t ( b i t 1 9 of s u r v e i l l a n c e o r Comm-B r e p l y ) . T h i s FR b i t , and a l l t h e o t h e r s t a t u s b i t s , s h a l l be t r a n s m i t t e d e i t h e r a s a l l z e r o s o r a s t h e CPME s t a t u s d i c t a t e s under c o n t r o l of a s w i t c h ( I n h i b i t S t a t u s Switch). Page Para. No. Reason for Change 13 3.5.7.2.5 Add explanatory information Change Delete old paragraph 3.5.7.2.5 and substitute new paragraph renumbered 3.5.7.2.6. 3.5.7.2.6 Alert and Flight Rule Bits.- Bit No. 6 (Alert) in downlink Surveillance and Corn-B transmission shall always be transmitted as a zero by the CPME. Bit No. 19 (Flight rule) in downlink surveillance and Corn-B transmissions shall be transmitted as defined in paragraph 3.5.7.2.3 (CPME status). 13 3.6 No ELM In second line delete "and ELM". 14 3.6.2 No E M Delete entire paragraph. 14 3.6.3 - Remember as 3.6.2. 14 3.7.1.l(c) No Mode 2 Delete sub-paragraph. Renumber as (c), (d) and (e). 15 3.7.1.1 (g) Consistency with two output levels Delete and substitute (f): "Controls for varying the transmitter output power (see 3.5.6.1) " . Renumber as (g), (h) and (i). 15 3.7.1.l(k) No switch is required Renumber as (j) and change to read: (see 3.7.4) ." "Transmitter source, 15 3.7.2 To reflect items actually required In second line change 1+0.5 dB" to "+1.0 dB". Add at end of paragraph: "A low-loss mylar radomeand suitable mounting hardware for the horn shall also be provided." 'pi n " a 1 U U -4 U rn rn c 0c 0 .4 ?I U U cd ?I U U m a G a 0 0 U U a 0 u 0 -4 m 3 u U 7 a 0 V] a a C -0 d o cdw U - C b c d ?Z P 0 -4 Urn ?I a 3-0 & a 27 i!8 m a 9 a cl mrn d I a .. a . 7l a m 3E.28 7cd7 0-3 U U a a a 0 U U U $ a a -4 E as C U M cd U . 4 C m w m a m 0 1 0 w