Nonlinear Equalization Processor q IC for Wideband Receivers and Sensors
by user
Comments
Transcript
Nonlinear Equalization Processor q IC for Wideband Receivers and Sensors
Nonlinear Equalization q Processor IC for Wideband Receivers and Sensors William S. Song, Joshua I. Kramer, James R. Mann, Karen a e M. Gett Gettings, gs, G Gil M. Raz, a , Joe Joel I. Good Goodman, a , Benjamin A. Miller, Matthew Herman, Thomas B. Emberley, Larry L. Retherford, Albert H. Horst HPEC 2009 RESEARCH & TECHNOLOGY, INC. 23 September 2009 This work was sponsored by DARPA under Air Force Contract FA8721-05-C-0002. FA8721 05 C 0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government. MIT Lincoln Laboratory HPEC 2009-1 WSS 9/23/2009 Outline • Introduction – Nonlinear Equalization (NLEQ) applications – NLEQ program objective • • • • HPEC 2009-2 WSS 9/23/2009 NLEQ processor architecture VLSI NLEQ processors Performance demonstration results Summary MIT Lincoln Laboratory High Dynamic Range Requirements for Military and Commercial Sensor Systems Radar Receiver System Interference + Noise Environment Radar Receiver System Example Radar Jamming Jammer Clutter Power (dB B) Target Dynamic Range g 80->100 dB Noise Small targets at or below noise level Range • Radar, ELINT, SIGINT, Comm receiver systems must support high dynamic range operation – – HPEC 2009-3 WSS 9/23/2009 To detect small targets/signals in interference/clutter environment High signal-to-noise ratio and linearity required MIT Lincoln Laboratory Linearity Concerns in Highly Digitized Arrays and Frequency Channelized Systems • Digital Sensor Array Noise Intermods Two-tone input Intermods ods Frequency Power Two-tone input • Power Power Receiver ADC Receiver ece e ADC C Receiver ADC Receiver ADC Receiver ADC Receiver ADC Receiver ADC Receiver ADC Digital beamforming and frequency channelization increase in-band signal-tonoise ratio (SNR) Non-linearity generated spurs and intermods can interfere with small signal detection Noise Two-tone input Intermods ods Frequency Noise Frequency Signal ADC Frequency Channelizer Frequency Channelized Receiver HPEC 2009-4 WSS 9/23/2009 Power Receiver In-Band Noise Out-of-Band Noise Frequency FNyquist MIT Lincoln Laboratory Nonlinear Equalization (NLEQ) Digital Receiver N Digital Receiver 1 From Antennas Rec LNA A/D Digital Signal g Processor Sources of Nonlinearities HPEC 2009-5 WSS 9/23/2009 MIT Lincoln Laboratory Nonlinear Equalization (NLEQ) Digital Receiver N Digital Receiver 1 Rec A/D LNA Digital Signal g Processor Sources of Nonlinearities Powerr (dB) Before Equalization In-Band Intermodulation Distortions Frequency (bin) HPEC 2009-6 WSS 9/23/2009 MIT Lincoln Laboratory Nonlinear Equalization (NLEQ) Digital Receiver N Digital Receiver 1 From Antennas Rec A/D Nonlinear Equalizer LNA Sources of Nonlinearities Inverts Nonlinearities After Equalization Frequency (bin) HPEC 2009-7 WSS 9/23/2009 Power ((dB) Powerr (dB) Before Equalization In-Band Intermodulation Distortions Digital Digital Signal Signal Processor Processor Dynamic range improvement Frequency (bin) MIT Lincoln Laboratory Nonlinear Equalization (NLEQ) Digital Receiver N Digital Receiver 1 From Antennas Rec A/D LNA Sources of Nonlinearities Nonlinear Equalizer Digital Signal g Processor • • HPEC 2009-8 WSS 9/23/2009 SFDR/IFDR @500MHz BW >1 Teraops < 2 Watts After Equalization Power ((dB) Powerr (dB) Frequency (bin) Digital Digital Signal Signal Processor Processor Inverts Nonlinearities Before Equalization In-Band Intermodulation Distortions +20~25 dB Dynamic range improvement Frequency (bin) Nonlinear equalizer processor can reduce nonlinear distortion g and mixed signal g circuitry y levels in analog Equivalent to having devices 10-20 years ahead of their time MIT Lincoln Laboratory Outline • • Introduction NLEQ processor architecture – Processor architecture – Architecture optimization • • • HPEC 2009-9 WSS 9/23/2009 VLSI NLEQ processors Performance demonstration results Summary MIT Lincoln Laboratory NLEQ Polynomial Nonlinear Filter Architecture Pass-through Z-α Pass-through Σ • Processing Elements Z-ββ FIR X Z-β FIR X -β Z FIR X -γ Z-β Z 1 FIR X -γ γ 1 Z Z-γ1 Z-γ1 -γ Z Ν Z-γΝ Z-γΝ Z-γΝ HPEC 2009-10 WSS 9/23/2009 Σ Parameters to optimize: – Number of processing elements – Polynomial orders of processing elements – Number of taps – Delay values MIT Lincoln Laboratory Wideband NLEQ Processor Parameter Optimization Z-α Z-β Pass-through FIR X Z-γ1 -γΝ ZZ -γΝ • Parameter selection – 10 filters, 10 taps, 0-3 tap delay, 0-3 group delay, 3 pass through delay HPEC 2009-11 WSS 9/23/2009 MIT Lincoln Laboratory Parallel NLEQ Processor Architecture Optimization Low VT Dynamic Logic IC Layout P P P P P P P P P P P P P P P P Design Reassemble e Distribute Distributed Polyphase BlockFloating-Point Residue Arithmetic Architecture Design Feedback Feedback (Performance Trades) (Performance Trades) Sub-processor Task Distribution & Sizing P P P P P P P P P P P P FIR1φ1 FIR1φ2 FIR1φ3 P P P P P P P P P P P P P P P P P P P P P P P IC Architecture and Floor Plan Design P NLP1φ1 NLP1φ2 NLP1φ3 P P P P P P P P P P P P P P P P P P P P P P P P FIR2φ1 P P P P FIR2φ2 P P P P FIR2φ3 P P P P Clocks FIR1φ1 FIR1φN NLP1φ1 NLP1φN FIR1φ2 FIR2φN NLP2φ1 NLP2φN FIRmφN NLPmφ1 NLPmφN Buses Feedback (Routing Efficiency) FIRmφ1 Memory HPEC 2009-12 WSS 9/23/2009 I/O Control MIT Lincoln Laboratory Measured Results: PRN Signal with Amplifier & ADC Distortions Pow wer (dBFS) In-band i intermods d • Harmonics Typical Response Equalized Pow wer (dBFS) Unequalized Non-tonal signal experiment parameters – Amplifier in saturation region – Max M 104 included i l d d in i testbed t tb d system t – Pseudo-Random Noise (band-limited) input waveform • Greater than 25 dB dynamic range improvement – In In-band band signal component is not distorted by the equalizer HPEC 2009-13 WSS 9/23/2009 MIT Lincoln Laboratory NLEQ Adaptive Equalization Performance IF FDR Improve ement (dB) Spu ur Redudu uction in dB -12 Fully Adaptive Partially Adaptive -14 Non-Adaptive -16 -18 -20 -22 -24 -26 • • Adaptive Equalization Performance Nominal training temperature Minimal performance losses uses computationally efficient ffi i t adaptive d ti algorithm 0 10 20 30 40 50 Ambient Temperature (oC) Ambient Temperature in Degrees Celcius Characterized Max 108 device sensitivity to changes in temperature Applied adaptive equalizations – – HPEC 2009-14 WSS 9/23/2009 Fully temperature adaptive approach achieve good performance Partially adaptive approach can achieve similar performance with much higher computational efficiency MIT Lincoln Laboratory Outline • • • Introduction NLEQ processor architecture VLSI NLEQ processors – Enabling technologies – NLEQ4000 ultra ultra-wideband wideband processor IC – NLEQ500 wideband processor IC • • HPEC 2009-15 WSS 9/23/2009 Performance demonstration results Summary MIT Lincoln Laboratory Nonlinear Equalizer Processor IC Development Process Non-Linear Equalizer Algorithm/Architecture P P P P P P P P P P P P P P P P Partition FIR #N H2 + X(n) Y(n) HJ Reassemble R Distribution D Distributed Polyphase yp Residue Arithmetic H1 EQ FIR Partition FIR #1 Partition FIR #2 × IC Architecture Clocks I/O FIR1φ1 FIR1φNNLP1φ1NLP1φN FIR1φ2 FIR2φNNLP2φ1NLP2φN Buses FIRmφ1 FIRmφNNLPmφ1 NLPmφN NLEQ Signal Processor IC Memory Control ● 1.5 Tearops ● 1.2 Watts Architecture Optimization 8 16 16 4 2 2 8 1 4 8 16 Level of Pipeline 4 2 1 Optimal Region Degree of Polyphasi ng Throughput Density Power Efficiency Throughput Density Times Power Efficiency 500 MH MHz BW MAX108 Power (dB) 1 Low Vt Dynamic Logic Before NLEQ After NLEQ Frequency Bin HPEC 2009-16 WSS 9/23/2009 MIT Lincoln Laboratory Architectural Comparison of Pentium 4 and MIT LL Processor Dies Pentium 4 Die MIT LL Processor Die Processor Array • • • • • HPEC 2009-17 WSS 9/23/2009 Single processor Multiple caches and memory bus Only core runs at high speed General purpose processing Large g design g team (>100) ( ) • • • • • 1000’s of parallel processors Local memory only Entire die runs at high speed Signal processing functions Small design g team (<10) ( ) MIT Lincoln Laboratory Custom CMOS Circuit Design Standard Cell Full Adder • • • HPEC 2009-18 WSS 9/23/2009 Pre-designed logic gates only Automatic device placement and routing Large area and power consumption Full Custom Full Adder • • • Custom logic and devices sizing Manual device placement and interconnect Small area and power consumption MIT Lincoln Laboratory Full Custom Low Threshold Voltage (VT) Dynamic Logic Circuits Standard Cell Static Register Full Custom Dynamic Register Low VT Devices P = ½CV2f Charge Leakage Design Techniques ● ● ● ● ● • • • HPEC 2009-19 WSS 9/23/2009 Logic based computation and storage Many devices Large area and power consumption • • • Frequent refresh Bypass capacitors Signal isolation Guard rings Robust circuits Charge based computation and storage Fewer devices Small area and power consumption MIT Lincoln Laboratory NLEQ4000 Processor IC Wideband NLEQ Processor IC Layout And BGA Package • • – – • • • HPEC 2009-20 WSS 9/23/2009 Up to 4,000MSPS Selectable bit widths Up to 12 bits input Up to 16 bits output LVDS and CMOS I/O Programmable g coefficients Block floating point residue arithmetic Parameter (IBM 0.13um) Core Chip Die Size 2.6 mm x 3.3 mm 6mm x 6mm Power @1500MSPS 266mW 453mW Power @4000MSPS 706mW 1219mW MIT Lincoln Laboratory NLEQ500 Processor IBM 0.13µm Die • • Up to 500MSPS Selectable bit widths – – • • • • BGA Up to 18 bits input Up to 22 bits output Low voltage CMOS I/O Programmable g configuration g and coefficients Block floating point residue arithmetic Yield 14/15 for LowVt and 14/15 for RegVt Parameter (IBM CMOS 0.13um) Core I/O Chip Size 0.65mm x 1.4mm N/A 2.2mm x 2.2mm Power @100MSPS P (Vdd=0.6V) 6 W 6mW 19 W* 19mW* 25 W* 25mW* Power @500MSPS (Vdd=1.2V) 122mW 121mW* 243mW* *With 50 Ohm Load Termination HPEC 2009-21 WSS 9/23/2009 MIT Lincoln Laboratory Outline • • • • • HPEC 2009-22 WSS 9/23/2009 Introduction NLEQ processor architecture VLSI NLEQ processors Performance demonstration results S Summary MIT Lincoln Laboratory MAX108 Demonstration Results MAX108 ADC with NLEQ4000 Without NLEQ4000 NLEQ4000 MAX108 With NLEQ4000 Q • ~21 dB linearity improvement demonstrated with NLEQ4000 IC at 1.5GSPS HPEC 2009-23 WSS 9/23/2009 MIT Lincoln Laboratory Measured NLEQ Performance Improvement for Other ADCs Interleaving Architecture ~1 GHz Improved ~17 dB National 81000 Flash Architecture ~1.3 GHz Improved ~12 dB Maxim 109 HPEC 2009-24 WSS 9/23/2009 Folding Architecture 1.5 GHz Improved ~13 dB Atmel AT84AS008 Entire Receiver Chain 30 MHz BW Improved ~12 dB LTC 2209 MIT Lincoln Laboratory X-Band Receiver-on-Chip (RoC) Development Based on NLEQ DSP BPF LO Top View BPF MAX108 ADC NLEQ RoC Bottom View ADC LNA • Mixer IF Amp Integrated RoC Die 360mW Linear dynamic range limited by the final IF amplifier NLEQ – NLEQ DSP to linearize the amplifier and ADC • • HPEC 2009-25 WSS 9/23/2009 High performance and low power achieved with new analog/digital co-design paradigm Single die receiver implementation being explored MIT Lincoln Laboratory Summary • Linearity enhancement required by DoD/commercial sensor/receiver applications – – • MIT LL has developed high-throughput low-power nonlinear equalization signal processor ICs – – – – • Phased array sensors/receivers Frequency channelized sensors/receivers Massively yp parallel systolic y architecture Polyphase distributed arithmetic processing Block floating point residue number arithmetic Full custom low-threshold-voltage dynamic logic Successful demonstration results – – >20 dB linearity improvement NLEQ4000 Up to 4GSPS, <1.25W Up to 12 bit ADCs – NLEQ500 Up to 500MSPS, <0.25W Up to 18bit ADCs HPEC 2009-26 WSS 9/23/2009 MIT Lincoln Laboratory