Multivariable Calculus / Differential Equaitons Differential Equations Welcome
by user
Comments
Transcript
Multivariable Calculus / Differential Equaitons Differential Equations Welcome
Welcome to Multivariable Calculus / Differential Equations Equaitons The Attached Packet is for all students who are planning to take Multivariable Multibariable Calculus/ Calculus Differential Equations in the fall. The first quiz will include the materials covered in this packet. If there are any topics that you do not understand, you are expected to get help on your own. I look forward to meeting each one of you. Have a great summer! Mr. Choi Have a Great Summer! Calculus Summer Review Packet I. Trigonometry Review o 1. Find the exact radian measure of 210 . 2. Find the exact degree measure of 5π . 6 3. Find the values of the trigonometric functions if 4. If θ is in standard position and θ is an acute angle and tan θ = 5 . 12 Q ( 4, −3) is on the terminal side of θ , find the values of the trigonometric functions. 5. Find the exact value: (a) ⎛ 2π ⎞ sin ⎜ ⎟ ⎝ 3 ⎠ (d) ⎛ π⎞ sec ⎜ − ⎟ ⎝ 6⎠ (b) 6. If f ( x ) = cos x , show that ⎛ 5π ⎞ tan ⎜ ⎟ ⎝ 6 ⎠ ⎛ π⎞ sin ⎜ − ⎟ ⎝ 3⎠ (c) f ( x + h) − f ( x) ⎛ cos h − 1 ⎞ ⎛ sin h ⎞ = cos x ⎜ ⎟ − sin x ⎜ ⎟ h h ⎝ ⎠ ⎝ h ⎠ 7. Verify the identities: (a) (1 − sin t )(1 + tan t ) = 1 2 2 csc 2 θ (b) = cot 2 θ 2 1 + tan θ (c) 1 = csc x + cot x csc x − cot x 8. Find all solutions of the equations: (a) 2 cos 2θ − 3 = 0 9. Find the solution of the equations for (a) 2 sin 2 θ = 1 − sin θ (b) 2sin 3θ + 2 = 0 0 ≤ θ < 2π . (b) 2 tan θ − sec 2 θ = 0 (c) sin 2θ + sin θ = 0 II. Limits Find the limit, if it exists. 10. lim ( x 2 + 2 ) 11. lim ( x + 3)( x − 4 ) x → − 3 ( x + 3 )( x + 1) 12. 13. x−4 2 x → −2 x − 2 x − 8 14. x2 + 2x − 3 x →− 3 x 2 + 7 x + 12 15. x3 + 8 x →− 2 x + 2 16. lim x −5 x −5 17. lim lim f ( x ) (c) lim f ( x ) lim f ( x ) (f) lim f ( x ) x →3 lim x →5 lim x →8 lim x → 25 x −5 x − 25 lim 1 x −8 Refer to the graph to find each limit: (a) (d) . lim f ( x ) (b) lim f ( x ) (e) x → 2− x → 0− x → 2+ x → 0+ x→ 2 x→ 0 Find each limit, if it exists. 22. (a) ⎧ x2 −1 , x < 1 f ( x) = ⎨ ⎩4 − x , x ≥ 1 lim f ( x ) (b) x →1− lim f ( x ) (c) lim f ( x ) lim f ( x ) (c) lim f ( x ) lim f ( x ) (c) lim f ( x ) − x3 + 2 x x →∞ 2 x 2 − 3 27. lim x →1+ x →1 ⎧3 x − 1 , x ≤ 1 ⎩3 − x , x > 1 23. f ( x ) = ⎨ (a) 24. (a) lim f ( x ) (b) x →1− x →1+ x →1 ⎧− x 2 , x < 1 ⎪ , x =1 f ( x ) = ⎨2 ⎪x − 2 , x > 1 ⎩ lim f ( x ) (b) x →1− x →1+ x →1 Find the limit, if it exists: 25. 5 x 2 − 3x + 1 x →∞ 2 x 2 + 4 x − 7 lim lim 26. 2 x2 − x + 3 x →∞ x3 + 1 A function f satisfies the given conditions. Sketch a possible graph of f , assuming that f does not cross a horizontal asymptote. 28. 29. lim f ( x ) = 1 , lim f ( x ) = 1 , lim− f ( x ) = −∞ , lim+ f ( x ) = ∞ x→ − ∞ x →∞ x→3 x→3 lim f ( x ) = −2 , lim f ( x ) = −2 , lim− f ( x ) = ∞ , lim+ f ( x ) = −∞ , lim− f ( x ) = −∞ and x→ − ∞ x →∞ x→3 x→3 lim f ( x ) = ∞ x → −1+ III. DEFINITION OF THE DERIVATIVE 30. Use the definition of the derivative to find (a) f ( x ) = 5x2 − 4 x f ′( x) : (b) f ( x ) = 3 − 2 x2 x→ − 1 IV. TECHNIQUES OF DIFFERENTIATION AND TANGENT LINE PROBLEMS. Find the derivative using the power rule, the product rule or the quotient rule. 31. f ( x ) = 8x 34. f ( x) = x 37. Find the (a) 2 3 3 32. 2 ( 3x 2 − 2 x + 5) 35. f ( x ) = ( x 3 − 7 )( 2 x 2 + 3) 33. f ( x ) = 12 − 3x 4 + 4 x 6 4x − 5 3x − 2 36. f ( x) = f ( x) = 3 x2 3x − 5 x -coordinate of a point on the graph of y = x 3 − 2 x 2 − 4 x + 5 at which the tangent line is: horizontal (b) parallel to the line 2 y + 8 x = 5 38. Find the equation of the line tangent to the curve y = 39. If f and g are functions such that 3 4 at the point P ( −1, 7 ) . − x 2 x3 f ( 2 ) = 3 , f ′ ( 2 ) = −1 , g ( 2 ) = −5 and g ′ ( 2 ) = 2 evaluate the expression: + g )′ ( 2 ) (a) (f (d) ( f ⋅ g )′ ( 2 ) − g )′ ( 2 ) (b) (f (e) ⎛ f ⎞′ ⎜ ⎟ ( 2) ⎝g⎠ 40. A weather balloon is released and rises vertically such that its distance 10 seconds of flight is given by (c) ( 4 f )′ ( 2 ) (f) ⎛ 1 ⎞′ ⎜ ⎟ ( 2) ⎝f ⎠ s ( t ) above the ground during the first s ( t ) = 6 + 2t + t 2 where s ( t ) is in feet and t is in seconds. (a) Find the velocity of the balloon at t = 1 , t = 4 , t = 8 (b) Find the velocity of the balloon at the instant the balloon is 50 feet above the ground Use the power rule, the product rule, the quotient rule and/or the rules for derivatives of trigonometric functions to find the derivatives: 41. f ( x ) = 7 tan x 44. f ( x) = 1 sin x tan x 42. f ( x ) = 3x sin x 45. f ( x ) = ( x + csc x ) cot x 43. f ( x ) = 2 x cot x + x 2 tan x 46. If f ( x ) = cos x − sin x ; 0 ≤ x < 2π ; find the points where the tangent line is horizontal. Use the chain rule to find the derivative: 47. f ( x ) = ( x 2 − 3x + 8) 49. f ( x ) = ( 5 x 2 − 2 x + 1) 51. f ( x ) = sin 2 x − cos 2 x 48. f ( x ) = sin ( 2 x + 3 ) 50. f ( x) = 52. f ( x ) = ( 6 x − 7 ) (8x 2 + 9 ) 3 −3 4 x 4 − 3x 2 + 1 ( 2 x + 3) 4 3 2 V. IMPLICIT DIFFERENTIATION 53. 8x 2 + y 2 = 10 56. x = sin ( xy ) 54. 5 x 2 − xy − 4 y 2 = 0 57. Find the slope of the tangent line to the graph of xy + 3 y = 27 at the point 2 58. If y = ( 2 x 2 + 1 ; P −1, 3 55. y 2 + 1 = x 2 sec y ( 2,3) . ) (a) Find the equation of the tangent line and the normal line to the graph of the equation at the point P . (b) Find the x -coordinate of the graph at which the tangent line is horizontal. 59. Assuming that the equation 3 x + 4 y = 1 determines a function f such that 2 2 60. Suppose f and g are functions such that y = f ( x ) ; find f ( 2 ) = −1 ; f ′ ( 2 ) = 4 ; f ′′ ( 2 ) = −2 ; g ( 2 ) = −3 ; g ′ ( 2 ) = 2 and g ′′ ( 2 ) = 1 . Find the value of each of the following at x = 2 . − 3 g )′ (a) (2 f (d) ( f ⋅ g )′′ d2y . dx 2 − 3 g )′′ (b) (2 f (e) ⎛ f ⎞′ ⎜ ⎟ ⎝g⎠ (c) ( f ⋅ g )′ (f) ⎛ f ⎞′′ ⎜ ⎟ ⎝g⎠ Problems 61- 65 should be completed without the use of a calculator. 61. (1987 AB2) Let f ( x ) = 1 − sin x . a. What is the domain of f ? b. Find c. f ′( x) . What is the domain of f ′ . d. Write an equation for the line tangent to the graph at 62. (1988 AB1) Let f be the function given by x =0. f ( x ) = x 4 − 16 x 2 . a. Find the domain of f . b. Describe the symmetry, if any, of the graph of f . c. Find f ′( x) . d. Find the slope of the line normal to the graph of f at 63. (1989 AB-1) Let f be the function given by x = 5. f ( x ) = x3 − 7 x + 6 a. Find the zeros of f . b. Write an equation of the line tangent to the graph of f at 64. (1989 AB-4) Let f be the function given by f ( x ) = x x2 − 4 x = −1 . . a. Find the domain of f . b. Write an equation for each vertical asymptote to the graph of f . c. Write an equation for each horizontal asymptote to the graph of f . d. Find f ′( x) . 65. (1992 AB4, BC1) Consider the curve defined by the equation y + cos y = x + 1 for 0 ≤ y ≤ 2π a. Find dy in terms of y . dx b. Write an equation for each vertical tangent to the curve. d2y in terms of y . c. Find dx 2 SUMMER REVIEW PACKET ANSWERS 7π 6 16. LDNE 2. 150o 18. (a) −1 (b) −2 (c) LDNE (d) 1 (e) 0 (f) LDNE 3. sin θ = 1. 17. LDNE 5 13 12 cos θ = 13 5 tan θ = 12 −3 sin θ = 5 4 cos θ = 5 −3 tan θ = 4 4. 5. (a) 3 2 sec θ cot θ csc θ sec θ cot θ −1 − 3 (c) (d) 2 3 11π + nπ 12 12 5π 8nπ 7π 8nπ 8. (b) + + ; 12 12 12 12 8. (a) π (b) 13 5 13 = 12 12 = 5 5 = −3 5 = 4 4 = −3 csc θ = 5π 3π , 6 6 2 π 5π 9. (b) , 4 4 2π 4π 9. (c) 0 , π , , 3 3 9. (a) π + nπ ; 19. (a) 1 (d) 3 (b) 1 (c) 1 (e) 3 (f) 3 20. (a) 3 (d) 2 (b) 1 (c) LDNE (e) 2 (f) 2 21. (a) 4 (d) 1 (b) 4 (c) 4 (e) 1 (f) 1 22. (a) 0 23. (a) 2 (b) 3 (c) LDNE (b) 2 (c) 2 24. (a) −1 (b) −1 (c) −1 2 3 25. 5 2 26. LDNE 27. 0 28. , 29. 10. 11 11. 12. 7 2 1 10 30. (a) 31. f ′ ( x ) = 12 x1 2 32. f ′ ( x ) = 10 x 4 + 9 x 2 − 28 x 33. f ′ ( x ) = −12 x3 + 24 x5 13. LDNE 14. −4 15. 12 10 x − 4 (b) −4x 34. f ′ ( x ) = 8 x 53 10 x 2 3 10 − + 13 3 3x 35. f ′ ( x ) = 7 ( 3x − 2 ) 36. f ′ ( x ) = − 37. (a) x = − −3 (10 x − 2 ) 49. f ′ ( x ) = 2 3 x + 10 3 x1 3 ( 3 x − 5 ) 50. f ′ ( x ) 2 ( 5 x − 2 x + 1) 2 ( 6x + 6 x − 9x − 4) = 3 38. y = 18 x + 25 2 ( 2 x + 3) 5 cos 2 x + sin 2 x sin 2 x − cos 2 x 51. f ′ ( x ) = 2 4 or 2 (b) x = 0 or 3 3 4 2 52. f ′ ( x ) = 2 ( 6 x − 7 ) ( 8 x 2 + 9 )(168 x 2 + 112 x + 81) 2 −3 −1 (e) 25 39. (a) 1 (c) −4 (b) (d) 11 (f) 1 9 53. dy −8 x = dx y 54. dy 10 x − y = dx x + 8 y 55. dy −2 x sec y = 2 dx x sec y tan y − 2 y v (1) = s′ (1) = 4 ft / sec 40. (a) v ( 4 ) = s′ ( 4 ) = 10 ft / sec v ( 8 ) = s′ ( 8 ) = 18 ft / sec (b) t ≈ 5.708; v ( 5.708 ) ≈ 13.42 ft sec 41. f ′ ( x ) = 7 sec2 x 42. f ′ ( x ) = 3x cos x + 3sin x 56. or 43. f ′ ( x ) = −2 x csc2 x + 2 cot x + x 2 sec2 x + 2 x tan x 44. dy 1 y = − dx x cos ( xy ) x f ′ ( x ) = − csc x + 2 cot 2 x csc x or f ′( x) = − ( sin x sec 2 x + tan x cos x ) 3 ( x − 2) 5 57. 3 21 or y = − x + 5 5 y −3 = − 58. (a) sin 2 x tan 2 x 45. f ′ ( x ) = − x csc x + − csc x + cot x − csc x cot x 2 3 2 ⎛ 3π ⎞ ⎛ 7π ⎞ 46. ⎜ , − 2 ⎟ or ⎜ , 2⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ ( 47. f ′ ( x ) = 3 x − 3 x + 8 2 (b) ) ( 2 x − 3) dy −2 = dx 3 Tangent Line : y − 3 = −2 ( x + 1) 3 Normal Line : y − 3 = 3 ( x + 1) 2 x=0 2 48. f ′ ( x ) = 8 ( 2 x + 3) cos ( 2 x + 3) 3 dy 1 − y cos ( xy ) = dx x cos ( xy ) 59. 4 dy −3 x d 2 y −12 y 2 − 9 x 2 = ; 2 = dx 4 dx 16 y 3 60. (a) 2 (b) −7 (c) −14 −10 −19 (f) 9 27 61. a. D f = set of all real numbers OR { x x ∈ (d) 21 (e) b. f ′( x) = } − cos x 2 1 − sin x c. D f ′ = set of all real x ≠ d. y − 1 = − π 2 + 2π n, n = any integer 1 1 ( x − 0 ) OR y = − x +1 2 2 62. a. D f : x ≥ 4 , x ≤ −4 , x = 0 b. Graph is symmetric with respect to the y-axis. c. f ′ ( x ) = 4 x 3 − 32 x 2 x 4 − 16 x 2 d. Slope of the normal = = 2 x 3 − 16 x x 2 ( x 2 − 16 ) −3 34 63. a. Zeros: 1, 2, -3 b. y − 12 = −4( x + 1) OR y = −4 x + 8 64. a. D f : x < 2 or x > 2 b. Vertical asymptotes: x = 2 , x = −2 c. Horizontal asymptotes: y = 1 , y = −1 d. f ′( x) = x2 − 4 − x ⋅ 2x 2 2 −4 2 x2 − 4 = x − 4 − x = 3 2 32 2 x −4 ( x2 − 4) ( x2 − 4) dy 1 π , 0 ≤ y ≤ 2π and y ≠ = dx 1 − sin y 2 π b. Equation of vertical tangent: x = − 1 2 2 d y cos y c. = 3 2 dx (1 − sin y ) 65. a.