Comments
Transcript
BESSEL FUNCTIONS By Tom Irvine Email: March 1, 2012
BESSEL FUNCTIONS By Tom Irvine Email: [email protected] March 1, 2012 ______________________________________________________________________________ Differential Equation x 2 y xy (x 2 n 2 ) y 0 Solution y(x) A1J n (x) A 2 Yn (x) y(x) A1J n (x) A 2 J n (x) for all n for all n≠ 0, 1, 2, … Bessel Function of the First Kind Zero Order J 0 (x) 1 x 22 x 24 x 26 1!2 2!2 3!2 First Order J1 ( x ) x x 22 x 24 x 26 d J 0 ( x ) 1 2 dx 21!2 32!2 43!2 1 Order n n = 0, 1, 2, … J n (x) (1) k ( x / 2 ) 2k n k 0 J n (x) k! (k 1 n ) (1) k ( x / 2 ) 2k n k 0 k! (k 1 n ) 1n J n ( x ) Modified Bessel Function of the First Kind Zero Order I 0 (x) 1 x 22 x 24 x 26 1!2 2!2 3!2 First Order I1 ( x ) d x x 22 x 24 x 26 I 0 (x) 1 2 2 2 2 dx 2 1 ! 3 2 ! 4 3 ! Higher Order Modified Bessel Function I(x) j n J n ( j x) 2 Bessel Function of the Second Kind (Neumann Functions) Zero Order Yo ( x ) 2 x 2 2 2 ln c J o ( x ) J 2 ( x ) J 4 ( x ) J 6 ( x ) 2 1 2 3 where c = 0.577 215 665 First Order Y1 ( x ) 2 x 9 d 1 1 ln c J1 ( x ) J1 ( x ) J 3 ( x ) Yo ( x ) 2 4 dx x 2 Modified Bessel Functions of the Second Kind Zero Order x 2 2 2 K o ( x ) ln c I o ( x ) I 2 ( x ) I 4 ( x ) J 6 ( x ) 1 2 3 2 Half-Odd Integers J 1 / 2(x) 2 sin( x ) x J 3 / 2(x) 2 sin( x ) cos( x ) x x Y 1 / 2(x) Y 3 / 2(x) 2 cos(x ) x 2 cos( x ) sin( x ) x x 3 Recurrence Relations J n 1 ( x ) 2n J n ( x ) J n 1 ( x ) x I n 1 ( x ) 2n I n ( x ) I n 1 ( x ) x 4 APPENDIX A Bessel Function of the First Kind of Order n First Derivative d n J n ( x ) J n 1 ( x ) J n ( x ) dx x n J n 1 ( x ) J n ( x ) x 1 J n 1 ( x ) J n 1 ( x ) 2 Second Derivative d2 dx 2 J n (x) 1 d J n 1 (x ) J n 1 (x ) 2 dx 1 1 1 J n 2 ( x ) J n ( x ) J n ( x ) J n 2 ( x ) 2 2 2 1 J n 2 ( x ) 2J n ( x ) J n 2 ( x ) 4 5 Third Derivative d3 dx 3 J n (x) 1 d J n 2 ( x ) 2J n ( x ) J n 2 ( x ) 4 dx 1 d d d J n 2 (x) 2 J n (x) J n 2 ( x ) 4 dx dx dx 1 1 1 J n 3 ( x ) J n 1 ( x ) J n 1 ( x ) J n 1 ( x ) J n 1 ( x ) J n 3 ( x ) 4 2 2 1 J n 3 ( x ) J n 1 ( x ) 2J n 1 ( x ) J n 1 ( x ) J n 1 ( x ) J n 3 ( x ) 8 1 J n 3 ( x ) 3J n 1 ( x ) 3J n 1 ( x ) J n 3 ( x ) 8 6 Fourth Derivative d4 dx 4 J n (x) 1 d J n 3 ( x ) 3J n 1 ( x ) 3J n 1 ( x ) J n 3 ( x ) 8 dx 1 d d d d J n 3 ( x ) 3 J n 1 ( x ) 3 J n 1 ( x ) J n 3 ( x ) 8 dx dx dx dx 1 d d d d J n 3 ( x ) 3 J n 1 ( x ) 3 J n 1 ( x ) J n 3 ( x ) 8 dx dx dx dx 1 J n 4 ( x ) J n 2 ( x ) 16 3 J n 2 ( x ) J n ( x ) 16 3 J n ( x ) J n 2 ( x ) 16 1 J n 2 ( x ) J n 4 ( x ) 16 1 J n 4 ( x ) 4J n 2 ( x ) 6J n ( x ) 4J n 2 ( x ) J n 4 ( x ) 16 7 APPENDIX B Modified Bessel Function of the First Kind of Order n First Derivative d n I n ( x ) I n 1 ( x ) I n ( x ) dx x n I n 1 ( x ) I n ( x ) x 1 I n 1 ( x ) I n 1 ( x ) 2 Second Derivative d2 dx 2 I n (x) 1 d I n 1 (x ) I n 1 ( x ) 2 dx 1 d d I n 1 ( x ) I n 1 ( x ) 2 dx dx 1 1 1 I n 2 ( x ) I n ( x ) I 0 ( x ) I n 2 ( x ) 2 2 2 1 I n 2 ( x ) 2I n ( x ) I n 2 ( x ) 4 8 Third Derivative d3 dx 3 I n (x) 1 d I n 2 ( x ) 2I n ( x ) I n 2 ( x ) 4 dx 1 d d d I n 2 ( x ) I n 2 (x) 2 I n (x) 4 dx dx dx 1 1 1 I n 3 ( x ) I n 1 ( x ) I n 1 ( x ) I n 1 ( x ) I n 1 ( x ) I n 3 ( x ) 4 2 2 1 I n 3 ( x ) I n 1 ( x ) 2I n 1 ( x ) I n 1 ( x ) I n 1 ( x ) I n 3 ( x ) 8 1 I n 3 ( x ) 3I n 1 ( x ) 3I n 1 (x ) I n 3 ( x ) 8 9 Fourth Derivative d4 dx 4 I n (x) 1 d I n 3 ( x ) 3I n 1 ( x ) 3I n 1 ( x ) I n 3 ( x ) 8 dx 1 d d d d I n 3 ( x ) 3 I n 1 ( x ) 3 I n 1 ( x ) I n 3 ( x ) 8 dx dx dx dx 1 d d d d I n 3 ( x ) 3 I n 1 ( x ) 3 I n 1 ( x ) I n 3 ( x ) 8 dx dx dx dx 1 I n 4 ( x ) I n 2 ( x ) 16 3 I n 2 ( x ) I n ( x ) 16 3 I n ( x ) I n 2 ( x ) 16 1 I n 2 ( x ) I n 4 ( x ) 16 1 I n 4 ( x ) 4I n 2 ( x ) 6I n ( x ) 4I n 2 ( x ) I n 4 ( x ) 16 10 APPENDIX C Bessel Function of the First Kind of Order Zero, Derivatives First Derivative d J 0 ( x ) J1 ( x ) dx Second Derivative d2 dx 2 J 0 (x) 1 J 2 (x) 2J 0 (x) J 2 (x) 4 Note that J n 1 (x) J n 1 (x) for n=0 Thus d2 dx 2 d2 dx 2 1 J 0 (x) 2J 0 (x) J 0 (x) 4 J 0 (x) J 0 (x) J 0 ( x ) 11 Third Derivative d3 dx 3 J 0 (x) 1 J 3 ( x ) 3J 1 ( x ) 3J1 ( x ) J 3 ( x ) 8 1 3J1 ( x ) J 3 ( x ) 4 1 3J1 ( x ) J1 ( x ) 4 J1 ( x ) Fourth Derivative d4 J 0 (x) 1 J 4 (x) 4J 2 (x) 6J 0 (x) 4J 2 (x) J 4 (x) 16 J 0 (x) 1 J 2 (x) 4J 2 (x) 6J 0 (x) 4J 2 (x) J 2 (x) 16 J 0 (x) dx 4 1 5J 2 (x) 6J 0 (x) 5J 2 (x) 16 J 0 (x) 1 5J 0 (x) 6J 0 (x) 5J 0 (x) 16 J 0 (x) J 0 (x) dx 4 d4 dx 4 d4 d4 dx 4 d4 dx 4 12 APPENDIX D Modified Bessel Function of the First Kind of Order Zero, Derivatives First Derivative d 1 I n ( x ) I 1 ( x ) I1 ( x ) dx 2 I1 ( x ) Second Derivative d2 I 0 (x) dx 2 1 I 2 (x) 2I 0 (x) I 2 (x) 4 Note that I n 1 (x) I n 1 (x) for n=0 Thus d2 I 0 (x) 2 dx d2 dx 2 I 0 (x) 1 I 0 (x) 2I 0 (x) I 0 (x) 4 I 0 (x) 13 Third Derivative d3 dx 3 I 0 (x) 1 I 3 ( x ) 3I 1 ( x ) 3I1 ( x ) I 3 ( x ) 8 1 3I1 ( x ) I 3 ( x ) 4 1 3I1 ( x ) I1 ( x ) 4 I1 ( x ) Fourth Derivative d4 I 0 (x) 1 I 4 (x) 4I 2 (x) 6I 0 (x) 4I 2 (x) I 4 (x) 16 I 0 (x) 1 I 2 (x) 4I 2 (x) 6I 0 (x) 4I 2 (x) I 2 (x) 16 I 0 (x) dx 4 1 5I 2 (x) 6I 0 (x) 5I 2 (x) 16 I 0 (x) 1 5I 0 (x) 6I 0 (x) 5I 0 (x) 16 I 0 (x) I 0 (x) dx 4 d4 dx 4 d4 d4 dx 4 d4 dx 4 14