NATURAL FREQUENCIES OF CIRCULAR PLATE BENDING MODES Revision F By Tom Irvine
by user
Comments
Transcript
NATURAL FREQUENCIES OF CIRCULAR PLATE BENDING MODES Revision F By Tom Irvine
NATURAL FREQUENCIES OF CIRCULAR PLATE BENDING MODES Revision F By Tom Irvine Email: [email protected] February 17, 2012 Introduction The Rayleigh method is used in this tutorial to determine the fundamental bending frequency. The method is taken from References 1 through 3. In addition, a Bessel function solution is given in Appendices D and E. A displacement function is assumed for the Rayleigh method which satisfies the geometric boundary conditions. The assumed displacement function is substituted into the strain and kinetic energy equations. The Rayleigh method gives a natural frequency that is an upper limit of the true natural frequency. The method would give the exact natural frequency if the true displacement function were used. The true displacement function is called an eigenfunction. Consider the circular plate in Figure 1. Y r X 0 Figure 1. Let Z represent the out-of-plane displacement. 1 Table 1. Appendix Topic A Strain and kinetic energy B Simply Supported Plate, Rayleigh Method C Integral Table D Solution of Differential Equation via Bessel Functions E Simply Supported Plate, Bessel Function Solution F Mass Normalization of Eigenvectors G Completely Free Circular Plate H Fixed Plate, Bessel Function Solution References 1. Dave Steinberg, Vibration Analysis for Electronic Equipment, Wiley-Interscience, New York, 1988. 2. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, WileyInterscience, New York, 1990. 3. Arthur W. Leissa, Vibration of Plates, NASA SP-160, National Aeronautics and Space Administration, Washington D.C., 1969. 4. Jan Tuma, Engineering Mathematics Handbook, McGraw-Hill, New York, 1979. 5. L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 1967. 6. W. Soedel, Vibrations of Shells and Plates, Third Edition, Marcel Dekker, New York, 2004. 2 APPENDIX A The total strain energy V of the plate is 2 D e 2 R 2 Z 1 Z 1 2 Z 2 Z 1 Z 1 2 Z V 2 1 2 r r r r 2 2 2 0 0 r 2 r r r 2 2 1 Z 2 1 r r 2 r dr d (A-1) Note that the plate stiffness factor De is given by De Eh 3 12 1 2 (A-2) where E = elastic modulus h = plate thickness = Poisson's ratio For a displacement which is symmetric about the center, Z(r, ) 0 2 2 (A-3) Z(r, ) 0 (A-4) Substitute equations (A-3) and (A-4) into (A-1). 3 2 D e 2 R 2 Z 1 Z 2 Z 1 Z r dr d V 2 1 2 r r r 2 0 0 r 2 r r (A-5) 2 2 Z 1 Z 2 Z 1 Z 1 Z 2 D e 2 R 2 Z 2 2 r dr d V 2 2 2 r r r r 2 0 0 2 r r r r r (A-6) The total strain energy equation for the symmetric case is thus 2 2 1 Z D e 2 R 2 Z 2 Z 1 Z 2 r dr d V 2 2 0 0 r 2 r r r r r (A-7) The total kinetic energy T of the plate bending is given by T h 2 2 R 2 Z r dr d 2 0 0 (A-8) where = mass per volume = angular natural frequency 4 APPENDIX B Simply Supported Plate Consider a circular plate which is simply supported around its circumference. The plate has a radius a. The displacement perpendicular to the plate is Z. A polar coordinate system is used with the origin at the plate's center. Seek a displacement function that satisfies the geometric boundary conditions. The geometric boundary conditions are Z(a, ) 0 2Z 2r r a (B-1) 0 (B-2) The following function satisfies the geometric boundary conditions. r Z(r, ) Z o cos 2a (B-3) The partial derivatives are Z(r, ) 0 2 2 (B-4) Z(r, ) 0 (B-5) r Z(r, ) Z o sin r 2a 2a 2 (B-6) 2 r Z(r, ) Z o cos 2a 2a r2 5 (B-7) The total kinetic energy T of the plate bending is given by T 2 h 2 2 a r Z cos r dr d o 2 0 0 2a (B-8) T h 2 Z o 2 2 a r 1 cos r dr d 4 0 0 a (B-9) h 2 Z o 2 2 a r r r cos dr d 4 0 0 a (B-10) T Evaluate equation (B-9) using the integral table in Appendix C a 2 h 2 Z o 2 2 r 2 a r r a r T sin cos d 4 0 2 a 2 a 0 T h 2 Z o 2 2 a 2 a 2 a2 cos cos 0 d 4 0 2 2 2 T h 2 Z o 2 2 a 2 2a 2 d 2 4 0 2 T T (B-12) (B-13) h 2 Z o 2 a 2 2 2 4 d 0 8 2 (B-14) 2 4 02 d (B-15) h 2 Z o 2 a 2 T (B-11) 8 2 h 2 Z o 2 a 2 8 2 2 42 (B-16) 6 (B-17) 0.4671 h 2 Zo 2 a 2 (B-18) h 2 Z o 2 a 2 2 T 4 4 T Again, the total strain energy for the symmetric case is 2 2 1 Z D e 2 R 2 Z 2 Z 1 Z 2 r dr d V 2 2 0 0 r 2 r r r r r (B-19) 2 D e 2 R 2 Z V r dr d 2 0 0 r 2 2 D e 2 R 1 Z r dr d 2 0 0 r r D 2 R 2 Z 1 Z r dr d e 2 2 2 0 0 r r r (B-20) D e 2 a 2 4 r 2 V Z o cos r dr d 2a 2 0 0 2a D e 2 a 2 1 Zo r2 2 0 0 2 2 r sin r dr d 2a 2a 3 D e 2 a 2 1 r r Z 2 cos sin r dr d o 2 0 0 2a r 2a 2a (B-21) 7 V 4 Z o 2 D 2 a 2 r r dr d cos 2 0 0 2a 2a Z 2 D 2 a 1 o 2 0 0 r 2 2 2 r sin r dr d 2a 2a 3 Z o 2 D 2 a 1 r r 2 cos sin r dr d 2 0 0 2a r 2a 2a (B-22) V 4 Z o 2 D 2 a 2 r cos r dr d 2 2a 0 0 2a 2 Z o 2 D 2 a 1 2 r 2 sin r dr d 2 2a 0 0 r 2a 3 2 a Zo 2 D 2 0 0 1 cos r sin r r dr d 2 2a 2a 2a r (B-23) Zo 2 D 4 1 V 2 2a 2 2 a r 0 0 1 cos a r dr d Z o 2 D 2 2 a 1 2 r sin dr d 2 2a 0 0 r 2a Z 2 D 3 2 a r o sin dr d 2 2a 0 0 a (B-24) The first and third integrals are evaluating using the tables in Appendix C. 8 Z 2 D 4 1 V o 2 2a 2 a 2 ar r a r sin cos d 0 2 a 2 a 0 2 r 2 Z o 2 D 2 2 0.8242 d 2 2a 0 a Z 2 D 3 a 2 r o cos d 2 2a 0 a 0 (B-25) Z 2 D 4 V o 2 2a 1 2 2a 2 d 2 0 2 2 a 2 Z 2 D 2 2 o 0.8242 d 2 2a 0 Z o 2 D 3 2a 2 d 2 2a 0 (B-26) Z 2 D 4 1 V o 2 2a 2 2a 2 d 2 0 2 2 a 2 Z 2 D 2 2 o 0.8242 d 2 2a 0 Z o 2 D 2 2 d 2 2a 0 (B-27) 9 Z 2 D 4 V o 2 2a 2 2a 2 1 a 2 2 2 2 Z 2 D 2 o 0.8242 2 2 2a Z o 2 D 2 2 2 2a (B-28) 4 2 2a 2 1 a V Zo 2 D 2a 2 2 2 Z o 2 D 2a 2 0.8242 2 2 Z o D 2a (B-29) 4 V Z o 2 D 2a 2 2 2 2a 2 1 a 0.8242 2a 2 2 2 2a (B-30) V 2 4 2 2a 2 1 2 2 1 1 a 1 3 2 Z o D 0.8242 2 2a 2 2 2a 2a (B-31) 10 V Z o 2 D 3 2 1 1 1 a 2 2a 2 1 0.8242 4 2 2 2 2 2 4a 16a 4a (B-32) 1 1 1 1 2 1 0.8242 V Z o 2 D 3 2 2 2 2 2 4a 16a 2 2 4a (B-33) 1 1 1 1 2 1 V Z o 2 D 3 2 0.8242 2 2 4 a 16 2 2 4 (B-34) 1 1 1 2 1 V Z o 2 D 3 2 0.8242 32 2 2 4 4 a 2 1 1 1 2 V Z o 2 D 3 2 0.8242 4 a 2 32 2 4 1 1 1 V Z o 2 D 3 2 4 0.8242 2 4 4 a 64 1 V Z o 2 D 3 64a 2 2 4 160.8242 16 1 V Z o 2 D 3 64a 2 2 4 160.8242 16 11 (B-35) (B-36) (B-37) (B-38) (B-39) 1 V Z o 2 D 3 19.0568 16 64a 2 (B-40) 1 V Z o 2 D 3 0.2978 0.25 a 2 (B-41) Now equate the total kinetic energy with the total strain energy per Rayleigh's method. h 2 Z o 2 a 2 2 1 4 Z o 2 D 3 0.2978 0.25 4 a 2 (B-42) h 2 a 2 2 4 4 1 D 3 0.2978 0.25 a 2 (B-43) h 2 2 4 4 1 D 3 0.2978 0.25 a 4 (B-44) 1 D 4 0.2978 0.25 a 4 (B-45) h 2 2 4 4 h 2 2 4 2 2 4 D 4 0.2978 0.25 a 4 (B-46) 4 1 D 4 0.2978 0.25 4 2 a h 4 (B-47) 1 1 D 4 1.1911 4 2 a h 4 (B-48) Let = 0.3, which is the typical Poisson's ratio. 12 1 1 D 4 1.1911 4 2 a h 4 2 0.3 (B-49) 2 1 1 D 4 1.4911 4 2 a h 4 (B-50) 2 1 1 D 4 1.4911 4 2 a h 4 (B-51) 1 1 D 4 1.4911 2 h 4 a 4 4.9744 a2 D h (B-52) (B-53) The natural frequency fn is fn fn 1 2 (B-54) 4.9744 D e 2 a 2 h (B-55) 13 APPENDIX C Integral Table Equation (C-1) is taken from Reference 1. x cos bx dx x sin bx cos bx b b2 (C-1) Now consider 1 a r sin 2 dr 2 0 0 r 2a a1 1 r 1 cos dr r a (C-2) Nondimensionalize, r a (C-3) a xr (C-4) x dr a (C-5) a dx dr (C-6) dx a 1 r 1 cos x dx sin 2 dr 2 a 0 x 0 r 2a (C-7) 1 1 r 1 cos x dx sin 2 dr 2 0 x 0 r 2a (C-8) a1 a1 14 Recall the series cos x 1 x10 x12 x 2 x 4 x 6 x8 2! 4! 6! 8! 10! 12! (C-9) 2 x4 x10 x12 1 1 x 6 x8 x r sin 2 dr dx 1 1 2 0 x 2! 4! 6! 8! 10! 12! 0 r 2a a1 (C-10) x10 x12 1 1 x 2 x 4 x 6 x8 r sin 2 dr dx 2 0 x 2! 4! 6! 8! 10! 12! 0 r 2a a1 (C-11) x9 x11 1 x1 x 3 x 5 x 7 r sin 2 dr dx 2 0 2! 4! 6! 8! 10! 12! 0 r 2a a1 (C-12) x10 x12 1 x2 x4 x6 x8 r sin 2 dr 2 2 2! 4 4! 6 6! 8 8! 10 10! 12 12! 0 r 2a 0 a1 (C-13) a1 0 r sin a1 2 r dr 1 1.6483 (C-14) 2 r dr 0.8242 (C-15) 2a 0 r sin 2 2a 15 APPENDIX D Solution of Differential Equation via Bessel Functions The governing equation is taken from References 5 and 6. 4 Z(r, ) 4 Z(r, ) 0 (D-1) 2h 4 De (D-2) 1/ 4 2h D e De (D-2) Eh 3 12 1 2 (D-3) 2 1 1 2 2 1 1 2 4 2 2 2 r r r 2 2 r 2 r r r 2 2 r (D-4) The governing equation may be written as 2 2 2 2 Z(r, ) 0 (D-5) Thus the equation is satisfy by 2 2 Z(r, ) 0 (D-6) Separate variables Z(r, ) R (r)() (D-7) 16 By substitution 2 1 1 2 2 R (r )() 0 2 r r r 2 2 r (D-8) 2 1 1 2 R R R 2 R 0 2 r r r 2 2 r (D-9) d 2R 1 dR R d 2 2 R 0 2 2 2 r dr r d dr (D-10) Similarly, d 2R 1 dR R d 2 2 R 0 2 r dr r 2 d 2 dr (D-11) d 2R 1 dR R d 2 2 R 0 2 2 2 r dr r d dr (D-12) d 2R 1 dR R d 2 2 R 2 r dr dr r 2 d 2 (D-13) 1 d 2R 1 dR 1 d 2 2 R 2 R r dr r 2 d 2 dr (D-14) r 2 d 2 R 1 dR 1 d 2 2 r 2 R dr 2 r dr d 2 (D-15) Thus, 17 The equation can be satisfied if each expression is equal to the same constant k 2 . r 2 d 2 R 1 dR 1 d 2 2 r 2 R dr 2 r dr d 2 k2 (D-16) Thus r 2 d 2 R 1 dR 2 r 2 R dr 2 r dr k2 d 2 R 1 dR k2 R 0 2 r dr dr 2 r 2 (D-17) (D-18) Define a new variable r j r (D-19) 2 r 2 2 2 r 2 (D-20) 2 2 2 2 r (D-21) Chain rule d dr (D-22) d d d dr d dr (D-23) d d dr d (D-24) 18 2 d 2R dR r 2 d 2 r 2 d 2 2 k2 R 0 r2 r 2 d 2R dR 2 k 2 R 0 2 d d d 2R 1 dR k2 R 0 1 d d 2 2 (D-25) (D-26) (D-27) Equation (D-27) is Bessel’s equation of fractional order. The solution for circular plates that are closed in the direction is R() C J n D I n F Yn G K n (D-28) Equation (D-28) represents Bessel of the first and second kind and modified Bessel of the first and second kind. Both Yn and K n are singular at = 0. Thus for a plate with no hole, F = G = 0. R () C J n D I n (D-29) Furthermore, from equation (D-16), 1 d 2 d 2 d 2 d 2 k2 (D-30) k2 0 (D-31) 19 The solution for circular plates that are closed in the direction is  cos k B̂ sin k , k = n = 0, 1, 2, 3, ….. (D-32) Or equivalently A cos k( ) .. (D-33) The total solution is thus Z(, ) C J n D I n A cos k( ) (D-34) Set the phase angle =0. Z(, ) C J n D I n A cos(k) (D-35) Set A =1. Note that the mass normalization will be performed using the C and D coefficients. Z(, ) C J n D I n cos(k) 20 (D-36) APPENDIX E Simply Supported Plate, Bessel Function Solution The boundary conditions are Z(a, ) 0 (E-1) M r 0 at r = a (E-2) 2Z 0 at r = a 2 (E-3) Note that 2Z 1 Z 1 2 Z M r D e 2 2 2 r r r r (E-4) Boundary condition (E-3) requires that 2Z Z M r D e r r r 2 at r = a (E-5) Z(r, ) R (r)() (E-6) Z(r, ) C J n r D I n r cos(n) (E-7) Z(a, ) C J n a D I n a cos(n) 0 (E-8) C J n a D I n a 0 (E-9) 21 2 M r D e C J n r D I n r cos(n) r 2 1 C J n r D I n r cos(n) D e r r at r a (E-10) d2 d2 M r D e cos(k) C J n r D I n r dr 2 dr 2 1d 1d D e cos(k) C J n r D I n r at r a r dr r dr (E-11) Mr r a 0 (E-12) d2 d2 1 d 1 d J n r D I n r C J n r D I n r 0 , C a dr a dr dr 2 dr 2 at r = a (E-13) d2 d2 d d C J n r J n r D I n r I n r 0 , a dr a dr dr 2 dr 2 at r = a (E-14) Let r (E-15) 22 2 d2 2 d2 d d C J n J n D I n I n 0 , a d a d d2 d2 at a (E-36) d2 d2 d d C J n J n D I n I n 0 , 2 2 a d a d d d at a (E-37) Recall equation (E-9). C J n D I n 0 , at a (E-38) D I n C J n , at a (E-39) J D C n , I n at a (E-40) By substitution, d2 J n d 2 d d C Jn Jn C I n I n 0 , a d I n d2 a d d2 at a (E-41) d2 J d 2 d d J n J n n I n I n () 0 , at a a d a d d2 I n d2 (E-42) 23 d2 d 1 d2 d J n J n I n I n 0 , J n d2 a d I n d2 a d 1 at a (E-43) Note the following identities: d n n J n J n 1 J n J n 1 J n d (E-44) d2 d n d J n J n 1 J n d d d2 (E-45) d2 n 1 n n J n J n J n 1 J n 1 J n d2 (E-46) d2 n 1 n n J n J n J n 1 J n 1 J n d2 (E-47) d2 n2 1 J n J n 1 J n 1 2 2 d (E-48) 24 Analyze the first term of equation (E-42). d2 d J n J n J n d2 a d 1 1 n2 n 1 1 J n J n 1 J n 1 J n J n a J n 2 1 J n 1 J n2 n n 1 1 2 J n a J n a J n 1 n2 n 1 2 J n a a (E-49) Consider the following identities: d n n I n I n 1 I n I n 1 I n d d2 d n d I n I n 1 I n d d d2 (E-50) (E-51) d2 n 1 n n I n I n I n 1 I n 1 I n 2 d (E-52) n2 d2 1 I n I n 1 I n 1 2 d2 (E-53) 25 Analyze the second term of equation (E-42). d2 I n I n d2 1 d I n a d n2 1 n 1 1 I I I n 1 I n n n 1 2 I n a I n 1 I n 1 I n 1 n 2 n 1 I n a I n a 2 n2 n I n 1 1 a a I n 2 (E-54) By substitution, d2 1 d J n J n 2 J n d J n a d 1 d2 1 d I n I n 0 , 2 I n d I n a d 1 at a (E-55) n2 n J n 2 n I n 1 n 1 1 1 0, J n a a 2 2 a a I n at a (E-56) 26 I J n 1 n 1 2 0 , at a J n a a I n (E-57) J n 1 I n 1 2 0 , at a J n a a I n (E-58) J n 1 I n 1 2 , at a J n a a I n J n 1 I n 1 2 J n I n a J n 1 I n 1 2 J n I n 1 a a (E-59) , at a (E-60) , at a (E-61) J n 1 I n 1 2a , at a J n I n 1 (E-62) J n 1 I n 1 2 , at a J n I n 1 (E-63) J n 1 I n 1 2 , at a J n I n 1 (E-64) The following form is better suited for numerical root-finding purposes. I n J n 1 J n I n 1 2 J n I n , 1 27 at a (E-65) The roots of equation (E-65) for 0.3 are expressed in terms of 2 as k n=0 n=1 n=2 n=3 0 4.9351 13.8982 25.6133 39.9573 1 29.7658 48.5299 70.1170 94.5490 2 74.2302 102.7965 134.2978 168.6749 3 138.3181 176.8012 218.2026 262.6244 The roots were determined using the secant method. The fundamental natural frequency is thus a 4 (E-66) 2h De (E-67) 1/ 4 2h D e 1/ 4 2h a D e 2 (E-68) (E-69) 4 D e (E-70) h a 4 2 a2 4.9351 a2 De h (E-71) De h (E-72) 28 The mode shapes are defined by Z(r, ) C J n r D I n r cos(n) (E-72) Recall J D C n , I n at a (E-73) J Z( r, ) C J n r C n I n r cos(n) I n J Z( r, ) C J n r n I n r cos(n) I n (E-74) (E-75) Again, /a (E-76) 29 APPENDIX F Note that the numerical calculations in this appendix are performed via Matlab script: circular_SS.m. Mass Normalization of Eigenvectors The eigenvector equation is J Z k n ( r, ) C kn J n r n I n r cos(n) I n (F-1) Again, /a (F-2) Normalize the eigenvectors as a 2 Z k n ( r, ) 2 r d dr 1 0 0 h (F-3) 2 J n a 2 2 2 h C kn J n r I n r cos (n) r d dr 1 0 0 I n (F-4) 2 1 1 J n a 2 2 C kn h J n r I n r cos(n)r d dr 1 0 0 I n 2 2 (F-5) 2 J n a 2 2 C kn h J n r I n r r d dr 1 0 0 I n 30 for n=0 (F-6) 2 2 J n a 1 2 C kn h J n r sin(n) 1 I n r rdr 0 0 I n 2 2n for n>1 (F-7) 2 J n a 2 C kn h J n r I n r rdr 1 0 I n for n>1 (F-8) 2 J n a 2 2 C kn h J n r I n r r d dr 1 0 0 I n (F-9) For k=0, n=0, a 2 2C 002 h 0 0 2 C 00 2 h 2 C 00 2 h 2 J 0 J 0 r I 0 r r d dr 1 I 0 (F-10) 2 J 0 a J r I 0 r r dr 1 0 0 I 0 (F-11) 2 J 0 a J r I 0 r r dr 1 0 0 I 0 (F-12) The eigenvalue is = 4.9351 2.2215 for k=0, n=0 J 0 0.03686 for I 0 = 2.2215 31 (F-13) (F-14) By substitution 0 J 0 r 0.03686 I 0 r a 2 C 002 h 2 r dr 1 (F-15) Recall /a (F-16) By substitution, 2 C 002 h 0 J 0 r / a 0.03686 I 0 r / a (F-17) 2 C 002 h a J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a 2 r dr 1 0 (F-18) a 2 r dr 1 Let u = 2.2215 r / a (F-19) r = a u / 2.2215 (F-20) dr = a du / 2.2215 (F-21) 2 r dr = a u du / 4.9351 (F-22) By substitution, 2 C 002 h a 2 4.9351 2.2215 J 0 u 0.03686 I 0 u 2 u du 0 1 (F-23) The mass is m h a 2 C 002 (F-24) 2m 0.6525 1 4.9351 (F-25) 32 C 002 m 0.2644 1 C 00 (F-26) 1.945 (F-27) m The eigenvector for k=0, n=0 is Z 00 1.945 m J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a (F-28) Participation Factors The participation factor kn is J a 2 C kn J n r n I n r cos(n) r d dr 0 0 I n (F-29) kn 0 (F-30) kn h Note that for n > 1 The participation factor for k=0, n=0, is a 2 Z kn (r, ) r d dr 0 0 kn h (F-31) a 2 1.945 J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a r d dr 0 0 m 00 h (F-32) 00 h 1.945 a 2 m 0 0 J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a r d dr 33 (F-33) 00 00 00 1.945 m a 2 a 2 m 0 0 21.945 J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a r d dr 0 J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a r dr m a a 2 0 J 0 2.2215 r / a 0.03686 I 0 2.2215 r / a r dr 3.890 m a a2 (F-34) (F-35) (F-36) Recall u = 2.2215 r / a (F-37) 2 (F-38) r dr = a u du / 4.9351 By substitution, 00 J 0 u 0.03686 I 0 u a2 u du 4.9351 (F-39) J 0 u 0.03686 I 0 u u du 4.9351 (F-40) 3.890 m 2.2215 0 a2 00 3.890 m 2.2215 0 00 0.7881 m J 0 u 0.03686 I 0 u u du 2.2215 0 (F-41) 00 0.7881 m 1.0682 (F-42) 00 0.8419 m (F-43) 34 The effective modal mass is M 00 0.8419 m 2 (F-44) M 00 0.7088 m (F-45) Example Assume a 64 inch diameter, 1 inch thick aluminum plate, with a simply-supported perimeter. Calculate the fundamental frequency and mode shape. Figure F-1. Fundamental Mode, fn = 45.6 Hz 35 APPENDIX G This appendix is unfinished. Completely Free Circular Plate Consider a completely free circular plate. The plate has a radius a. The displacement perpendicular to the plate is Z. A polar coordinate system is used with the origin at the plate's center. The mode shape is Z(r, ) C J n r D I n r cos(n) (G-1) The boundary conditions are 2Z 1 Z 1 2 Z 0 M r D e r r r 2 2 r 2 at r = a 2 1 1 2 1 1 Z 0 Vr D e Z 1 r r r r 2 r r r 2 2 r (G-2) at r = a (G-3) The moment is 2 1 1 2 C J n r D I n r cos(n) M r D e r r r 2 2 r 2 36 (G-4) M r D e d2 dr 2 D e C J n r D I n r cos(n) 1d C J n r D I n r cos(n) r dr n 2 D e 1 r2 C J n r D I n r cos(n) (G-5) d 2 1d n2 M r D e J n r C cos(n) r dr r 2 dr 2 d 2 1d n2 D e n 2 I n r D cos(n) r dr r 2 dr 2 (G-6) Let r (G-7) r / (G-8) d dr (G-9) d d d dr d dr (G-10) d d dr d (G-11) d2 dr 2 2 d2 (G-12) d2 37 d 2 1 d n2 M r D e 2 J n C cos(n) d 2 d2 d 2 1 d n2 D e 2 n 2 I n D cos(n) d 2 d2 (G-13) Now consider the shear boundary condition. 2 1 1 2 1 1 Z 0 Vr D e Z 1 r r r r 2 r r r 2 2 r (G-14) 3 1 1 2 2 2 1 3 Vr D e Z r 3 r 2 r r r 2 r 3 2 r 2 r 2 De 2 3 1 1 1 2 2 1 2 Z r r r r (G-15) 3 1 1 2 2 2 1 3 Vr D e C J n r D I n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 De 2 3 1 1 1 2 2 1 2 C J n r D I n r cos(n) r r r r (G-16) 38 3 1 1 2 2 2 1 3 Vr D e C J n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 3 1 1 2 2 2 1 3 De D I n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 De 2 3 1 1 1 2 2 1 2 C J n r cos(n) r r r r De 2 3 1 1 1 2 2 1 2 D I n r cos(n) r r r r (G-17) 3 1 1 2 2 2 1 3 Vr D e C J n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 3 1 1 2 2 2 1 3 De D I n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 De De r 1 2 3 D I n r cos(n) r 2 r 2 1 2 1 r 1 2 3 C J n r cos(n) r 2 r 2 1 2 1 (G-18) 39 Vr 3 1 2 1 1 2 2 2 1 3 1 3 De 1 C J n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 r 2 r 2 r 2 3 1 2 1 1 2 2 2 1 3 1 3 De 1 D I n r cos(n) r 3 r 2 r r r 2 r 3 2 r 2 r 2 r 2 r 2 r 2 (G-19) Vr 3 1 2 1 1 2 2 2 1 3 1 3 C J n r cos(n) De 1 r 2 r 2 r 3 r 2 r r r 2 r 3 2 r 2 r 2 r 2 3 1 2 1 1 2 2 2 1 3 1 3 D I n r cos(n) De 1 r 2 r 2 r 3 r 2 r r r 2 r 3 2 r 2 r 2 r 2 (G-20) Let r (G-21) 40 Vr 3 1 2 1 1 2 2 2 1 3 1 3 C J n cos(n) D e3 1 2 2 3 2 2 3 2 2 2 2 3 1 2 1 1 2 2 2 1 3 1 3 D I n cos(n) D e3 1 2 2 3 2 2 3 2 2 2 2 (G-22) Vr 3 1 1 1 2 2n 2 n 2 n 2 D e3 1 C J n cos(n) 3 2 2 3 2 2 3 1 1 1 2 2n 2 n 2 n 2 D e3 1 D I n cos(n) 3 2 2 3 2 2 (G-23) 41 APPENDIX H Fixed Plate, Bessel Function Solution The boundary conditions are Z(a, ) 0 (H-1) Z 0 at r = a r (H-2) The displacement is Z(r, ) C J n r D I n r cos(n) (H-3) The slope is Z C J n r D I n r cos(n) r r (H-4) dZ d d C J n r D I n r cos(n) dr dr dr (H-5) Let r (H-6) d d dr d (H-7) The displacement is Z(r, ) C J n D I n cos(n) (H-8) The slope is d dZ d C J n D I n cos(n) dr d d 42 (H-9) Apply the boundary conditions C J n D I n cos(n) 0 at a C J n D I n 0 at a d d C J n D I n cos(n) 0 d d C (H-10) d d J n D I n 0 d d (H-11) at a (H-12) at a (H-13) Assemble the equations in matrix form. J n d J d n I n C 0 d I n D 0 d at a (H-14) The roots are found by setting the determinant of the coefficient matrix equal to zero. J n d d I n I n J n 0 d d at a n n J n I n 1 I n I n J n 1 J n 0 J n I n 1 J n 1 I n 0 43 at a (H-15) at a (H-16) (H-17) The roots of equation (H-17) for 0.3 are expressed in terms of 2 as k n=0 n=1 n=2 n=3 0 10.2158 21.2609 34.8770 51.0334 1 39.7711 60.8287 84.5837 111.0214 2 89.1041 120.0792 153.8151 190.3038 3 158.1842 199.0534 242.7285 289.1799 The roots were determined using the secant method. The fundamental natural frequency is thus a 4 (H-18) 2h De (H-19) 1/ 4 2h D e 2h a D e (H-20) 1/ 4 (H-21) 4 D e 2 h a 4 2 a2 De h 10.2158 a2 (H-22) (H-23) De h (H-24) 44 The mode shapes are defined by Z(r, ) C J n r D I n r cos(n) (H-25) Recall J D C n , I n at a (H-26) J Z( r, ) C J n r C n I n r cos(n) I n J Z( r, ) C J n r n I n r cos(n) I n (H-27) (H-28) Let r (H-29) J Z(, ) C J n n I n r cos(n) I n 45 (H-30)