THE GENERALIZED COORDINATE METHOD FOR DISCRETE SYSTEMS Revision F By Tom Irvine
by user
Comments
Transcript
THE GENERALIZED COORDINATE METHOD FOR DISCRETE SYSTEMS Revision F By Tom Irvine
THE GENERALIZED COORDINATE METHOD FOR DISCRETE SYSTEMS Revision F By Tom Irvine Email: [email protected] January 18, 2012 _______________________________________________________________________ Two-degree-of-freedom System The method of generalized coordinates is demonstrated by an example. Consider the system in Figure 1. f2(t) k3 x2 m2 k2 f1(t) x1 m1 k1 Figure 1. A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given in Figure 3. 1 k2 (x2-x1) f1(t) x1 m1 k1x1 Figure 2. Determine the equation of motion for mass 1. F m1 x1 (1) m1x1 f1 (t ) k 2 (x 2 x1 ) k1x1 (2) m1x1 k 2 (x 2 x1 ) k1x1 f1 (t ) (3) m1x1 k 2 (x 2 x1 ) k1x1 f1 (t ) (4) m1x1 (k1 k 2 )x1 k 2 x 2 f1 (t ) (5) 2 f2(t) k3 x2 x2 m2 k2 (x2-x1) Figure 3. Derive the equation of motion for mass 2. F m 2 x 2 (6) m 2 x 2 f 2 (t ) k 2 (x 2 x1 ) k 3x 2 (7) m 2 x 2 k 2 (x 2 x1 ) k 3x 2 f 2 (t ) (8) m 2 x 2 (k 2 k 3 )x 2 k 2 x1 f 2 (t ) (9) Assemble the equations in matrix form. m1 0 x1 k1 k 2 0 m x k 2 2 2 k 2 x1 f1 ( t ) k 2 k 3 x 2 f 2 ( t ) (10) Decoupling Equation (10) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation. 3 Simplify, M x K x F (11) where 0 m M 1 0 m2 (12) k k 2 K 1 k2 (13) k2 k 2 k 3 x x 1 x 2 (14) f (t) F 1 f 2 ( t ) (15) Consider the homogeneous form of equation (11). M x K x 0 (16) Seek a solution of the form x q exp( jt ) (17) The q vector is the generalized coordinate vector. Note that x j q exp( jt ) (18) x 2 q exp( jt ) (19) 4 Substitute equations (17) through (19) into equation (16). 2 M q exp( jt ) K q exp( jt ) 0 (20) 2 M q K q exp( jt) 0 (21) 2 M q K q 0 (22) 2 M Kq 0 K 2 Mq 0 (23) (24) Equation (24) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero. det K 2 M 0 k k 2 det 1 k 2 (25) k2 0 m 2 1 0 k 2 k3 0 m 2 k k 2 2 m1 det 1 k2 0 2 k 2 k 3 m 2 k2 k1 k 2 2m1k 2 k3 2m2 k 22 0 (26) (27) (28) 5 k1 k 2 k 2 k 3 2 m1k 2 k 3 2 m 2 k1 k 2 4 m1m 2 k 2 2 0 (29) m1m 2 4 m1 k 2 k 3 m 2 k1 k 2 2 k1k 3 k1 k 3 k 2 k 2 2 k 2 2 0 (30) m1m 2 4 m1 k 2 k 3 m 2 k1 k 2 2 k1k 3 k1k 2 k 2 k 3 0 (31) The eigenvalues are the roots of the polynomial. 1 2 b b 2 4ac 2a (32) 2 b b 2 4ac 2a (33) 2 where a m1m 2 (34) b m1 k 2 k 3 m 2 k1 k 2 (35) c k1k 2 k1k 3 k 2 k 3 (36) The eigenvectors are found via the following equations. K 12 Mq1 0 (37) K 22 Mq2 0 (38) 6 where v q1 1 v 2 (39) w q2 1 w 2 (40) An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format. Q q1 q 2 v Q 1 v 2 w1 w 2 (41) (42) The eigenvectors represent orthogonal mode shapes. Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix Q̂ can be obtained such that the following orthogonality relations are obtained. Q̂ T M Q̂ I (43) and Q̂ T K Q̂ (44) where I is the identity matrix is a diagonal matrix of eigenvalues The superscript T represents transpose. 7 Note the mass-normalized forms v̂ Q̂ 1 v̂ 2 v̂ Q̂ T 1 ŵ1 ŵ1 ŵ 2 v̂ 2 ŵ 2 (45) (46) Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in References 1 and 2. Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. Now define a generalize coordinate ( t ) such that x Q̂ (47) Substitute equation (47) into the equation of motion, equation (11). K Q̂ F M Q̂ (48) Premultiply by the transpose of the normalized eigenvector matrix. Q̂ T K Q̂ Q̂ T F Q̂ T M Q̂ (49) The orthogonality relationships yield Q̂ T F I (50) 8 The equations of motion along with an added damping matrix become 1 21 1 1 0 0 1 2 0 2 1 1 2 2 2 2 0 0 0 1 v̂1 2 ŵ 2 2 1 v̂ 2 f1 ( t ) ŵ 2 f 2 ( t ) (51) Note that the two equations are decoupled in terms of the generalized coordinate. Equation (51) yields two equations 1 21 1 1 2 1 v̂1f1 (t ) v̂ 2 f 2 ( t ) 1 (52) 2 2 2 2 2 2 2 ŵ1f1 (t ) ŵ 2 f 2 (t ) 2 (53) The equations can be solved in terms of Laplace transforms, or some other differential equation solution method. Now consider the initial conditions. Recall x Q̂ (54) Thus x(0) Q̂ (0) (55) Premultiply by Q̂ T M. Q̂ T M x(0) Q̂ T MQ̂ (0) (56) Recall Q̂ T M Q̂ I (57) 9 Q̂ T M x(0) I (0) (58) Q̂ T M x(0) (0) (59) Finally, the transformed initial displacement is (0) Q̂ T M x(0) (60) Similarly, the transformed initial velocity is (0) Q̂ T M x (0) (61) A basis for a solution is thus derived. Harmonic Force Now consider the special case of harmonic forcing functions f1 (t ) B1 sint (62) f 2 (t ) B2 sint (63) Thus, 1 21 1 1 2 1 v̂1B1 sint v̂ 2 B2 sint 1 (64) 2 2 2 2 2 2 2 ŵ1B1 sin t ŵ 2 B2 sin t 2 (65) Take the Laplace transform of equation (64). 1 21 1 1 2 1 v̂1B1 sint v̂ 2 B2 sint 1 (66) (67) 1 21 1 1 1 Lv̂1B1 sin t L{v̂ 2 B2 sin t } L 1 2 10 s 2 ˆ 1(s) s1 (0) 1(0) 21 1sˆ 1(s) 21 11 (0) 2 1 ˆ 1 (s) v̂1B1 v̂ 2 B 2 s 2 2 s 2 2 (68) s 2 2 21 1s 1 ˆ 1 (s) s 21 11(0) 1(0) v̂1B1 v̂ 2 B 2 s 2 2 s 2 2 (69) s 2 2 21 1s 1 ˆ 1 (s) ˆ 1 (s) v̂1B1 v̂ 2 B 2 s 21 11 (0) 1 (0) 2 2 2 2 s s (70) v̂ 2 B 2 2 2 2 2 s 2 21 1s 1 s s 2 21 1s 1 v̂1B1 2 s 2 s 21 11 (0) 1 (0) s 2 2 21 1s 1 (71) 11 The solution is found via References 3 and 4. The inverse Laplace transform for the first modal coordinate is 1( t ) 2 cos t 2 2 sin t 1 1 1 2 2 2 2 1 21 1 v̂1B1 v̂1B1 exp 11t d,1 sin d,1t 2 cos t 2 2 sin t 1 1 1 v̂ 2B2 2 2 2 2 21 1 1 2 211 d,1 cos d,1t 2 1 1 212 2 2 2 2 2 1 1 1 v̂ 2B2 exp 11t 2 d,1 211 d,1 cos d,1t 2 1 1 212 2 2 2 2 1 21 1 sin d,1t (0) 11 1(0) exp 11t 1(0) cos d,1t 1 sin t d,1 d,1 (72) 12 Similarly, 2( t ) 2 2 2 2 ŵ1B1 exp 22 t 2 d,2 2 2 2 22 d,2 cos d,2 t 2 1 2 2 sin d,2 t 2 2 2 2 2 2 2 2 1 2 2 2 22 cos t 2 sin t 2 2 2 2 ŵ1B1 1 2 2 2 22 cos t 2 sin t ŵ 2 B2 2 2 2 2 2 2 2 2 ŵ 2 B2 exp 22 t 2 d,2 2 2 2 22 d,2 cos d,2 t 2 1 2 2 2 2 2 2 2 2 2 2 (0) 2 2 2(0) exp 22 t 2(0) cos d,2 t 2 sin d,2 t d,2 sin d,2t (73) The physical displacements are found via x Q̂ (74) 13 References 1. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982. Section 12.3.1. 2. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987. Chapter 4. 3. T. Irvine, Table of Laplace Transforms, Vibrationdata, 2000. 4. T. Irvine, Partial Fraction Expansion, Rev F, Vibrationdata, 2010. _______________________________________________________________________ APPENDIX A Example Consider the system in Figure 1 with the values in Table A-1. Assume 5% damping for each mode. Assume zero initial conditions. Table A-1. Parameters Variable Value Unit m1 3.0 lbf sec^2/in m2 2.0 lbf sec^2/in k1 400,000 lbf/in k2 k3 300,000 lbf/in 100,000 lbf/in B1 100 lbf B2 200 lbf 55 Hz 100 Hz The mass matrix is 0 3 0 m M 1 0 m 2 0 2 (A-1) 14 The stiffness matrix is k k 2 K 1 k2 k 2 700,000 300,000 k 2 k 3 300,000 400,000 (A-2) The analysis is performed using a Matlab script. >> twodof_sine_force twodof_sine_force.m ver 1.4 January 17, 2012 by Tom Irvine Email: [email protected] This script calculates the response of a two-degree-of-freedom system to sinusoidal force excitation. Enter the units system 1=English 2=metric 1 Assume symmetric mass and stiffness matrices. Select input mass unit 1=lbm 2=lbf sec^2/in 1 stiffness unit = lbf/in Select file input method 1=file preloaded into Matlab 2=Excel file 1 Mass Matrix Enter the matrix name: Stiffness Matrix Enter the matrix name: Input Matrices m_two k_two mass = 3 0 0 2 stiff = 700000 -300000 -300000 400000 Natural Frequencies No. f(Hz) 15 1. 2. 48.552 92.839 Modes Shapes (column format) ModeShapes = 0.3797 0.5326 -0.4349 0.4651 Enter the damping ratio for mode 1 0.05 Enter the damping ratio for mode 2 0.05 Particpation Factors = 2.204 -0.3746 Enter the first force amplitude (lbf) Enter the first force frequency (Hz) Enter the second force amplitude (lbf) Enter the second force frequency (Hz) 100 55 200 100 Enter the first initial displacement (in) Enter the second initial displacement (in) 0 0 Enter the first initial velocity (in/sec) Enter the second initial velocity (in/sec) 0 0 Enter the sample rate (samples/sec) 10000 Enter the duration (sec) 0.3 dof 1 displacement (in) max= 0.001015 min= -0.001373 dof 2 displacement (in) max= 0.002139 min= -0.00166 16 DISPLACEMENT 0.003 Mass 2 Mass 1 0.002 DISP (INCH) 0.001 0 -0.001 -0.002 -0.003 0 0.05 0.10 0.15 0.20 0.25 0.30 TIME (SEC) Figure A-1. 17 RELATIVE DISPLACEMENT (MASS 2 - MASS 1) 0.003 REL DISP (INCH) 0.002 0.001 0 -0.001 -0.002 -0.003 0 0.05 0.10 0.15 0.20 0.25 0.30 TIME (SEC) Figure A-2. 18 VELOCITY 1.5 Mass 2 Mass 1 1.0 VEL (IN/SEC) 0.5 0 -0.5 -1.0 -1.5 0 0.05 0.10 0.15 0.20 0.25 0.30 TIME (SEC) Figure A-3. 19 ACCELERATION 1.5 Mass 2 Mass 1 1.0 ACCEL (G) 0.5 0 -0.5 -1.0 -1.5 0 0.05 0.10 0.15 0.20 0.25 0.30 TIME (SEC) Figure A-4. 20