3.3 GHz Ultralow Distortion RF/IF Differential Amplifier ADL5562
by user
Comments
Transcript
3.3 GHz Ultralow Distortion RF/IF Differential Amplifier ADL5562
3.3 GHz Ultralow Distortion RF/IF Differential Amplifier ADL5562 FUNCTIONAL BLOCK DIAGRAM −3 dB bandwidth of 3.3 GHz (AV = 6 dB) Pin-strappable gain adjust: 6 dB, 12 dB, 15.5 dB Differential or single-ended input to differential output Low noise input stage: 2.1 nV/√Hz RTI @ AV = 12 dB Low broadband distortion (Av = 6 dB) 10 MHz: −91 dBc HD2, −98 dBc HD3 70 MHz: −102 dBc HD2, −90 dBc HD3 140 MHz: −104 dBc HD2, −87 dBc HD3 250 MHz: −80 dBc HD2, −94 dBc HD3 IMD3s of −94 dBc at 250 MHz center Slew rate: 9.8 V/ns Fast settling of 2 ns and overdrive recovery of 3 ns Single-supply operation: 3 V to 3.6 V Power-down control Fabricated using the high speed XFCB3 SiGe process VCC RF ENBL VIP2 VIP1 RG2 VON RG1 VCOM RG1 VIN1 VIN2 RG2 VOP RF ADL5562 GND 08003-001 FEATURES Figure 1. APPLICATIONS Differential ADC drivers Single-ended to differential conversion RF/IF gain blocks SAW filter interfacing GENERAL DESCRIPTION The ADL5562 is a high performance differential amplifier optimized for RF and IF applications. The amplifier offers low noise of 2.1 nV/√Hz and excellent distortion performance over a wide frequency range, making it an ideal driver for high speed 8-bit to 16-bit ADCs. The ADL5562 provides three gain levels of 6 dB, 12 dB, and 15.5 dB through a pin-strappable configuration. For the singleended input configuration, the gains are reduced to 5.6 dB, 11.1 dB, and 14.1 dB. Using an external series input resistor expands the amplifier gain flexibility and allows for any gain selection from 0 dB to 15.5 dB. The quiescent current of the ADL5562 is typically 80 mA and, when disabled, consumes less than 3 mA, offering excellent input-to-output isolation. The device is optimized for wideband, low distortion performance. These attributes, together with its adjustable gain capability, make this device the amplifier of choice for general-purpose IF and broadband applications where low distortion, noise, and power are critical. This device is optimized for the best combination of slew speed, bandwidth, and broadband distortion. These attributes allow it to drive a wide variety of ADCs and make it ideally suited for driving mixers, pin diode attenuators, SAW filters, and multielement discrete devices. Fabricated on an Analog Devices, Inc., high speed SiGe process, the ADL5562 is supplied in a compact 3 mm × 3 mm, 16-lead LFCSP package and operates over the temperature range of −40°C to + 85°C. Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009–2011 Analog Devices, Inc. All rights reserved. www.BDTIC.com/ADI TABLE OF CONTENTS Features .............................................................................................. 1 Applications Information .............................................................. 14 Applications ....................................................................................... 1 Basic Connections ...................................................................... 14 Functional Block Diagram .............................................................. 1 Input and Output Interfacing ................................................... 15 General Description ......................................................................... 1 Gain Adjustment and Interfacing ............................................ 16 Revision History ............................................................................... 2 ADC Interfacing ......................................................................... 16 Specifications..................................................................................... 3 Layout Considerations ............................................................... 18 Absolute Maximum Ratings ............................................................ 6 Soldering Information ............................................................... 19 ESD Caution .................................................................................. 6 Evaluation Board ........................................................................ 19 Pin Configuration and Function Descriptions ............................. 7 Outline Dimensions ....................................................................... 21 Typical Performance Characteristics ............................................. 8 Ordering Guide .......................................................................... 21 Circuit Description ......................................................................... 13 Basic Structure ............................................................................ 13 REVISION HISTORY 7/11—Rev. B to Rev. C Changes to Figure 28 and Figure 29............................................. 12 Added Figure 30 and Figure 31; Renumbered Sequentially ..... 12 Changes to Ordering Guide .......................................................... 21 3/10—Rev. A to Rev. B Changes to Figure 43 ...................................................................... 19 Updated Outline Dimensions ....................................................... 21 Changes to Ordering Guide .......................................................... 21 9/09—Rev. 0 to Rev. A Changes to Features Section............................................................ 1 Changes to Table 1 ............................................................................ 3 Changes to Figure 5 .......................................................................... 8 Changes to Figure 9 and Figure 10 ................................................. 9 Changes to Figure 32, Equation 1, and Figure 34 ...................... 15 Changes to Equation 2 ................................................................... 16 Changes to Figure 38, Figure 39, Figure 40, and Table 9 ........... 17 Changes to Figure 43 ...................................................................... 19 Moved Table 14 to........................................................................... 19 5/09—Revision 0: Initial Version www.BDTIC.com/ADI SPECIFICATIONS VCC = 3.3 V, VCOM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, TA = 25°C. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Gain Accuracy Gain Supply Sensitivity Gain Temperature Sensitivity Slew Rate Settling Time Overdrive Recovery Time Reverse Isolation (S12) INPUT/OUTPUT CHARACTERISTICS Output Common Mode Voltage Adjustment Range Maximum Output Voltage Swing Output Common-Mode Offset Output Common-Mode Drift Output Differential Offset Voltage CMRR Output Differential Offset Drift Input Bias Current Input Resistance (Differential) Input Resistance (Single-Ended) 1 Input Capacitance (Single-Ended) Output Resistance (Differential) POWER INTERFACE Supply Voltage ENBL Threshold ENBL Input Bias Current Quiescent Current Conditions Min AV = 6 dB, VOUT ≤ 1.0 V p-p AV = 12 dB, VOUT ≤ 1.0 V p-p AV = 15.5 dB, VOUT ≤ 1.0 V p-p AV = 6 dB, VOUT ≤ 1.0 V p-p AV = 12 dB, VOUT ≤ 1.0 V p-p AV = 15.5 dB, VOUT ≤ 1.0 V p-p AV = 6 dB, RL = open AV = 12 dB, RL = open AV = 15.5 dB, RL = open VCC ± 5% −40°C to +85°C, AV = 15.5 dB Rise, AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V step Fall, AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V step 2 V step to 1% VIN = 4 V to 0 V step, VOUT ≤ ±10 mV 1 dB compressed Referenced to VCC/2 −40°C to +85°C −40°C to +85°C AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 5.6 dB, RS = 50 Ω AV = 11.1 dB, RS = 50 Ω AV = 14.1 dB, RS = 50 Ω 3 Device disabled, ENBL low Device enabled, ENBL high ENBL high ENBL low ENBL high ENBL low 75.5 Typ Max Unit 3300 3900 1900 220 270 270 0.17 0.05 0.06 −0.005 0.32 9.8 10.1 2 3 60 MHz MHz MHz MHz MHz MHz dB dB dB dB/V mdB/°C V/ns V/ns ns ns dB VCC/2 1.4 to 1.8 4.9 60 285 1 65 15 3 400 200 133 307 179 132 0.3 12 V V V p-p mV µV/°C mV dB µV/°C µA Ω Ω Ω Ω Ω Ω pF Ω 3.3 0.6 1.3 −27 −300 80 3.5 www.BDTIC.com/ADI 3.6 84.5 V V V µA µA mA mA Parameter 10 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) 70 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) 140 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) Conditions AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB Min Typ Max Unit −91/−98 −95/−98 −96/−92 +42/−97 dBc dBc dBc dBm/dBc +43/−93 dBm/dBc +43/−91 dBm/dBc 3 2.1 1.6 19.7 19.6 18.2 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB −102/−90 −97/−85 −93/−83 +46/−96 dBc dBc dBc dBm/dBc +44/−93 dBm/dBc +43/−91 dBm/dBc 3 2.1 1.6 19.6 19.6 18.2 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB −104/−87 −82/−81 −80/−80 +47/−100 dBc dBc dBc dBm/dBc +45/−95 dBm/dBc +43/−92 dBm/dBc 3 2.1 1.6 19.6 19.4 18.1 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm www.BDTIC.com/ADI Parameter 250 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) 500 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) 1000 MHz NOISE/HARMONIC PERFORMANCE Second/Third Harmonic Distortion Output Third-Order Intercept/Third-Order Intermodulation Distortion Noise Spectral Density (RTI) 1 dB Compression Point (RTO) 1 Conditions AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB Min Typ Max Unit −80/−94 −74/−86 −74/−84 +43/−94 dBc dBc dBc dBm/dBc +41/−87 dBm/dBc +40/−86 dBm/dBc 3.2 2.2 1.6 19.8 19.3 19.1 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB −75/−69 −69/−73 −72/−75 +40/−98 dBc dBc dBc dBm/dBc +39/−97 dBm/dBc +38/−93 dBm/dBc 3.7 2.2 1.6 18.1 18.1 18.1 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p composite (2 MHz spacing) AV = 6 dB AV = 12 dB AV = 15.5 dB AV = 6 dB AV = 12 dB AV = 15.5 dB −70/−60 −69/−61 −66/−59 +24/−65 dBc dBc dBc dBm/dBc +24/−66 dBm/dBc +25/−66 dBm/dBc 4.7 2.2 1.6 15 15.1 15.1 nV/√Hz nV/√Hz nV/√Hz dBm dBm dBm See the Applications Information section for a discussion of single-ended input, dc-coupled operation. www.BDTIC.com/ADI ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Supply Voltage (VCC) VIP1, VIP2, VIN1, VIN2 Internal Power Dissipation θJA Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating 3.6 V VCC + 0.5 V 310 mW 98.3°C/W 125°C −40°C to +85°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION www.BDTIC.com/ADI VCC 8 9 VCOM NOTES 1. EXPOSED PADDLE. CONNECT TO A LOW IMPEDANCE THERMAL AND ELECTRICAL GROUND PLANE. 08003-031 14 GND 10 VON VCC 7 11 VOP TOP VIEW (Not to Scale) VCC 5 VIN2 4 12 ENBL ADL5562 VCC 6 VIN1 3 13 GND 16 GND PIN 1 INDICATOR VIP2 1 VIP1 2 15 GND PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration Table 3. Pin Function Descriptions Pin No. 1 Mnemonic VIP2 2 VIP1 3 VIN1 4 VIN2 5, 6, 7, 8 9 VCC VCOM 10 11 12 13, 14, 15, 16 VON VOP ENBL GND EP Description Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to VIP1 for AV = 15.5 dB. Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to VIP2 for AV = 15.5 dB. Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to VIN2 for AV = 15.5 dB. Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to VIN1 for AV = 15.5 dB. Positive Supply. Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output. Typically decoupled to ground with a 0.1 μF capacitor. With no reference applied, input and output common mode floats to midsupply (VCC/2). Balanced Differential Output. Biased to VCOM, typically ac-coupled. Balanced Differential Output. Biased to VCOM, typically ac-coupled. Enable. Apply positive voltage (1.0 V < ENBL < VCC) to activate device. Ground. Connect to low impedance ground. Exposed Pad. Connect to a low impedance thermal and electrical ground plane. www.BDTIC.com/ADI ADL5562 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3 V, VCOM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, T = 25°C. 16 MAXIMUM GAIN 25 –40°C +25°C +85°C 14 RL = 200Ω 20 MID GAIN 10 15 MIN GAIN +85°C MIN GAIN +25°C MIN GAIN –40°C MID GAIN +85°C MID GAIN +25°C MID GAIN –40°C MAX GAIN +85°C MAX GAIN +25°C MAX GAIN –40°C 8 10 MINIMUM GAIN 100M 1G 10G FREQUENCY (Hz) Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load, AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature 16 MAXIMUM GAIN OP1dB (dBm) GAIN (dB) 700 800 900 1000 15 MIN GAIN +85°C MIN GAIN +25°C MIN GAIN –40°C MID GAIN +85°C MID GAIN +25°C MID GAIN –40°C MAX GAIN +85°C MAX GAIN +25°C MAX GAIN –40°C 10 1G 10G 5 08003-003 100M Figure 4. Gain vs. Frequency Response for 1 kΩ Differential Load, AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature 0 NOISE SPECTRAL DENSITY (nV/√Hz) 10 8 6 4 FREQUENCY (MHz) 08003-004 2 1000 200 300 400 500 600 700 800 900 1000 FREQUENCY (MHz) 8 AV MAXIMUM AV MID AV MINIMUM 100 100 Figure 7. Output P1dB (OP1dB) vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature, 1 kΩ Differential Load 12 NOISE FIGURE (dB) 600 MINIMUM GAIN FREQUENCY (Hz) 0 10 500 20 MID GAIN 4 10M 14 400 RL = 1kΩ 8 16 300 25 10 6 200 Figure 6. Output P1dB (OP1dB) vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature, 200 Ω Differential Load 14 12 100 FREQEUNCY (MHz) –40°C +25°C +85°C 18 0 08003-017 20 5 Figure 5. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB 7 AV MAXIMUM AV MID AV MINIMUM 6 5 4 3 2 1 0 10M 100M FREQUENCY (Hz) Figure 8. Noise Spectral Density vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB www.BDTIC.com/ADI Rev. C | Page 8 of 24 1G 08003-005 4 10M 08003-002 6 08003-016 OP1dB (dBm) GAIN (dB) 12 AV MAXIMUM AV MID AV MINIMUM 55 –60 IMD3, RL = 200Ω (dBc) 50 45 OIP3 (dBm) AV MAXIMUM AV MID AV MINIMUM 40 35 30 25 20 0 –20 –80 –40 –100 –60 –120 –80 –140 –100 IMD3, RL = 1kΩ (dBc) –40 60 0 50 100 150 200 250 FREQUENCY (MHz) –160 0 100 150 –120 250 200 FREQUENCY (MHz) Figure 12. Two-Tone Output IMD vs. Frequency, Output Level at 2 V p-p Composite, RL = 200 Ω and RL = 1 kΩ Figure 9. Output Third-Order Intercept at Three Gains, Output Level at 2 V p-p Composite, RL = 200 Ω 50 60 +85°C +25°C –40°C 45 50 40 35 OIP3 (dBm) 40 OIP3 (dBm) 50 08003-020 10 08003-018 15 30 20 30 25 20 15 10 10 50 100 150 200 250 FREQUENCY (MHz) 0 –2 08003-019 0 –1 0 1 2 3 4 5 POUT/TONE (dBm) 08003-028 5 0 Figure 13. Output Third-Order Intercept (OIP3) vs. Power (POUT), Frequency 140 MHz, AV = 15.5 dB Figure 10. Output Third-Order Intercept vs. Frequency, Over Temperature, Output Level at 2 V p-p Composite, RL = 200 Ω –70 60 AV MAXIMUM AV MID AV MINIMUM 55 AV MAXIMUM AV MID AV MINIMUM –75 –80 IMD (dBc) –85 45 –90 –95 40 –100 35 30 0 50 100 150 200 FREQUENCY (MHz) Figure 11. OIP3 vs. Frequency (Single-Ended Input) 250 –110 0 50 100 150 200 FREQUENCY (MHz) Figure 14. IMD vs. Frequency (Single-Ended Input) www.BDTIC.com/ADI 250 08003-007 –105 08003-006 OIP3 (dBm) 50 –40 –100 –60 –120 –80 –140 –100 –120 250 –160 0 50 100 150 200 FREQUENCY (MHz) –80 –40 –100 –60 –120 –80 –140 –100 –80 –40 –100 –60 –120 –80 –100 100 150 –120 250 200 Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency at Av = 6 dB, Av = 12 dB, and Av = 15.5 dB, Output Level at 2 V p-p, RL = 1 kΩ –20 –30 HARMONIC DISTORTION (dBc) –20 50 FREQUENCY (MHz) 0 –60 –140 –20 0 HARMONIC DISTORTION HD3 (dBc) HARMONIC DISTORTION HD2 (dBc) +85°C +25°C –40°C 0 –60 –160 Figure 15. Harmonic Distortion (HD2/HD3) vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB, Output Level at 2 V p-p, RL = 200 Ω –40 AV MAXIMUM AV MID AV MINIMUM HARMONIC DISTORTION HD3 (dBc) –80 HARMONIC DISTORTION HD2 (dBc) –20 HARMONIC DISTORTION HD3 (dBc) –60 –40 08003-021 HARMONIC DISTORTION HD2 (dBc) AV MAXIMUM AV MID AV MINIMUM 08003-024 0 –40 –40 –50 –60 –70 HD2 –80 HD3 100 150 200 FREQUENCY (MHz) –100 –2 0 –80 –120 –100 –140 –160 0 50 100 150 FREQUENCY (MHz) 200 –120 250 HARMONIC DISTORTION HD2 (dBc) –60 –100 HARMONIC DISTORTION HD3 (dBc) –40 –80 2 3 –60 4 5 –50 AV MAXIMUM AV MID AV MINIMUM –65 –20 –60 1 Figure 19. Harmonic Distortion (HD2/HD3) vs. Power (POUT), Frequency 140 MHz, AV = 15.5 dB 08003-023 HARMONIC DISTORTION HD2 (dBc) +85°C +25°C –40°C 0 POUT (dBm) Figure 16. Harmonic Distortion (HD2/HD3) vs. Frequency, Three Temperatures, Output Level at 2 V p-p, RL = 200 Ω –40 –1 Figure 17. Harmonic Distortion (HD2/HD3) vs. Frequency, Over Temperature, Output Level at 2 V p-p, RL = 1 kΩ –55 –70 –60 –75 –65 –80 –70 –85 –75 –90 –80 –95 –85 –100 –90 –105 –95 –110 0 50 100 150 FREQUENCY (MHz) 200 –100 250 HARMONIC DISTORTION HD3 (dBc) 50 08003-008 0 08003-022 –120 250 –160 08003-029 –90 Figure 20. Harmonic Distortion (HD2/HD3) vs. Frequency (Single-Ended Input) www.BDTIC.com/ADI –70 –100 –80 –110 –90 –120 300 400 500 600 700 800 900 –130 1000 RLOAD (Ω) –75 –80 –80 –85 –85 –90 –90 –95 –95 –100 –100 –105 –105 1.1 1.2 1.3 1.4 1.5 1.6 1.7 –110 1.9 1.8 VCOM (V) Figure 21. Harmonic Distortion (HD2/HD3) vs. RLOAD Figure 24. Harmonic Distortion (HD2/HD3) vs. VCOM 0 1.0 AV MAXIMUM AV MID AV MINIMUM 08003-030 VOLTAGE (V) GROUP DELAY (ns) 0.9 0.8 –40 0.7 –60 0.6 –80 0.5 –100 0.4 –120 0.3 –140 0.2 –160 0.1 TIME (2.5ns/DIV) –20 0 100 200 300 400 500 600 700 800 900 PHASE (Degrees) 200 –75 –180 1000 08003-011 100 –70 FREQUENCY (MHz) Figure 22. ENBL Time Domain Response Figure 25. Group Delay and Phase vs. Frequency 80 110 RL = 1kΩ 100 2V p-p OUTPUT 50 RL = 200Ω 70 40 60 30 50 20 40 10 30 10M 100M 0 1G FREQUENCY (Hz) Figure 23. Large Signal Pulse Response, AV = 15.5 dB Figure 26. Common-Mode Rejection Ratio (CMRR) vs. Frequency www.BDTIC.com/ADI CMRR (dB) CMRR (dB) 08003-036 TIME (2.5ns/DIV) 70 60 90 80 AV MAXIMUM AV MID AV MINIMUM 08003-012 0 –70 HARMONIC DISTORTION HD3 (dBc) –90 –65 –65 08003-010 –60 HARMONIC DISTORTION HD2 (dBc) –80 HARMONIC DISTORTION HD3 (dBc) –50 –100 AV MAXIMUM AV MID AV MINIMUM –60 –70 08003-009 –40 VOLTAGE (V) HARMONIC DISTORTION HD2 (dBc) AV MAXIMUM AV MID AV MINIMUM –60 –55 –60 –30 800 8 AV MAXIMUM AV MID AV MINIMUM 0 700 7 –30 –40 –50 –60 ENABLED 0.5 1.0 1.5 2.0 2.5 3.0 FREQUENCY (GHz) 500 5 400 4 300 3 200 2 100 1 0 10M FREQUENCY (Hz) Figure 30. Input Resistance and Capacitance vs. Frequency Figure 27. Reverse Isolation (S12) vs. Frequency 10 16 14 800 0 12 700 –10 600 –20 500 –30 400 –40 300 –50 200 –60 100 –70 PHASE (Degrees) RESISTANCE (Ω) 8 6 8 4 6 2 100M 2 –80 1G FREQUENCY (Hz) 40 AV MAXIMUM AV MID AV MINIMUM 30 10 25 8 20 6 15 4 10 2 5 100M FREQUENCY (Hz) 0 1G PHASE (Degrees) 35 12 0 10M 1G 0 2G FREQUENCY (Hz) 08003-015 14 100M Figure 31. Output Resistance and Inductance vs. Frequency Figure 28. Input Impedance vs. Frequency 16 0 10M Figure 29. Output Impedance vs. Frequency www.BDTIC.com/ADI 08003-052 0 10M IMPEDANCE MAGNITUDE (Ω) 10 4 08003-014 IMPEDANCE MAGNITUDE (Ω) AV MAXIMUM AV MID AV MINIMUM 10 900 AV MAXIMUM AV MID AV MINIMUM 20 1000 0 1G 100M INDUCTANCE (nH) 0 6 08003-013 –70 600 08003-051 DISABLED RESISTANCE (Ω) S12 (dB) –20 CAPACITANCE (pF) –10 ADL5562 CIRCUIT DESCRIPTION BASIC STRUCTURE The ADL5562 is a low noise, fully differential amplifier/ADC driver that uses a 3.3 V supply. It provides three gain options (6 dB, 12 dB, and 15.5 dB) without the need for external resistors and has wide bandwidths of 2.6 GHz for 6 dB, 2.3 GHz for 12 dB, and 2.1 GHz for 15.5 dB. Differential input impedance is 400 Ω for 6 dB, 200 Ω for 12 dB, and 133 Ω for 15.5 dB. It has a differential output impedance of 10 Ω and a common-mode adjust voltage of 1.25 V to 1.85 V. 0.1µF 400Ω The ADL5562 is composed of a fully differential amplifier with on-chip feedback and feed-forward resistors. The two feed-forward resistors on each input set this pin-strappable amplifier in three different gain configurations of 6 dB, 12 dB, and 15.5 dB. The amplifier is designed to provide high differential open-loop gain and an output common-mode circuit that enables the user to change the common-mode voltage from a VCOM pin. The amplifier is designed to provide superior low distortion at frequencies up to and beyond 300 MHz with low noise and low power consumption. The low distortion and noise are realized with a 3.3 V power supply at 80 mA. + 1/ 2 5Ω VIP2 100Ω RS VIP1 200Ω 1/ 2 RL VIN1 200Ω VIN2 100Ω RS 5Ω 400Ω + 0.1µF Figure 32. Basic Structure 08003-032 AC The ADL5562 is very flexible in terms of I/O coupling. It can be ac-coupled or dc-coupled at the inputs and/or the outputs within the specified input and output common-mode levels. The input of the device can be configured as single-ended or differential with similar distortion performance. Due to the internal connections between the inputs and outputs, keep the output common-mode voltage between 1.25 V and 1.85 V for the best distortion. For a dc-coupled input, the input common mode should be between 1 V and 2.3 V for the best distortion. The device has been characterized using 2 V p-p into 200 Ω. If the inputs are ac-coupled, the input and output common-mode voltages are set by VCC/2 when no external circuitry is used. The ADL5562 provides an output common-mode voltage set by VCOM, which allows driving an ADC directly without external components, such as a transformer or ac coupling capacitors, provided the VCOM of the amplifier is within the VCOM of the ADC. For dc-coupled requirements, the input VCM must be set by the VCOM pin in all three gain settings. www.BDTIC.com/ADI Rev. C | Page 13 of 24 ADL5562 APPLICATIONS INFORMATION Pin 1 to Pin 4, Pin 10, and Pin 11 are biased at 1/2 VCC above ground and can be dc-coupled (if within the specified input or output common-mode voltage levels) or ac-coupled as shown in Figure 33. BASIC CONNECTIONS Figure 33 shows the basic connections for operating the ADL5562. VCC should be 3.3 V with each supply pin decoupled with at least one low inductance surface-mount ceramic capacitor of 0.1 μF placed as close as possible to the device. The VCOM pin (Pin 9) should also be decoupled using a 0.1 μF capacitor. To enable the ADL5562, the ENBL pin must be pulled high. Pulling the ENBL pin low puts the ADL5562 in sleep mode, reducing the current consumption to 3 mA at ambient. The gain of the part is determined by the pin-strappable input configuration. When Input A is applied to VIP1 and Input B is applied to VIN1, the gain is 6 dB (minimum gain, see Equation 1 and Equation 2). When Input A is applied to VIP2 and Input B is applied to VIN2, the gain is 12 dB (middle gain). When Input A is applied to VIP1 and VIP2 and Input B is applied to VIN1 and VIN2, the gain is 15.5 dB (maximum gain). VCC 16 GND 1 VIP2 A RS/2 15 GND 14 GND 13 GND ENBL 12 0.1µF 2 VIP1 BALANCED SOURCE AC VOP 11 RL ADL5562 3 VIN1 0.1µF B BALANCED LOAD VON 10 RS/2 VCOM 9 VCC 5 VCC VCC 6 10µF VCC 7 0.1µF VCC 8 0.1µF 08003-033 4 VIN2 Figure 33. Basic Connections www.BDTIC.com/ADI Rev. C | Page 14 of 24 ADL5562 INPUT AND OUTPUT INTERFACING Single-Ended Input to Differential Output The ADL5562 can be configured as a differential-input to differential-output driver, as shown in Figure 34. The differential broadband input is provided by the ETC1-1-13 balun transformer, and the two 34.8 Ω resistors provide a 50 Ω input match for the three input impedances that change with the variable gain strapping. The input and output 0.1 μF capacitors isolate the VCC/2 bias from the source and balanced load. The load should equal 200 Ω to provide the expected ac performance (see the Specifications section and the Typical Performance Characteristics section). The ADL5562 can also be configured in a single-ended input to differential output driver, as shown in Figure 36. In this configuration, the gain of the part is reduced due to the application of the signal to only one side of the amplifier. The strappable gain values are listed in Table 6 with the required terminations to match to a 50 Ω source using R1 and R2. Note that R1 must equal the parallel value of the source and R2. The input and output 0.1 μF capacitors isolate the VCC/2 bias from the source and the balanced load. The performance for this configuration is shown in Figure 11, Figure 14, and Figure 20. 3.3V + VIN1 B + AC RL 2 0.1µF RL 2 0.1µF VIN2 VIN1 B Table 4. Differential Termination Values for Figure 34 R2 (Ω) 28.7 33.2 40.2 Figure 36. Single-Ended Input to Differential Output Configuration Table 6. Single-Ended Termination Values for Figure 36 Gain (dB) 5.6 11.1 14.1 The differential gain of the ADL5562 is dependent on the source impedance and load, as shown in Figure 35. 400Ω 5Ω VIP2 100Ω RS 0.1µF + 2 VIP1 200Ω AC 5Ω 0.1µF 0.1µF VIP2 100Ω 0.1µF + 08003-044 400Ω VIP1 200Ω 400 RL RIN 10 RL VIN1 200Ω VIN2 100Ω AC + 5Ω 0.1µF Figure 37. Single-Ended Input Loading Circuit (1) Table 5. Values of RIN for Differential Gain Gain (dB) 6 12 15.5 RIN (Ω) 200 100 66.7 www.BDTIC.com/ADI Rev. C | Page 15 of 24 0.1µF RL 2 RL 2 400Ω R1 The differential gain can be determined using the following formula. The values of RIN for each gain configuration are shown in Table 5. AV R2 0.1µF + Figure 35. Differential Input Loading Circuit RS 5Ω + VIN2 100Ω 400Ω RL 2 + 2 RS RL 2 + 1/ VIN1 200Ω R2 (Ω) 60 69 77 The single-ended gain configuration of the ADL5562 is dependent on the source impedance and load, as shown in Figure 37. + 1/ R1 (Ω) 27 29 30 08003-046 0.1µF 0.1µF NOTES 1. FOR 5.6dB GAIN (AV = 1.9), CONNECT INPUT A TO VIP1 AND INPUT B TO VIN1. 2. FOR 11.1dB GAIN (AV = 3.6), CONNECT INPUT A TO VIP2 AND INPUT B TO VIN2. 3. FOR 14.1dB GAIN (AV = 5.1), CONNECT INPUT A TO BOTH VIP1 AND VIP2 AND INPUT B TO BOTH VIN1 AND VIN2. Figure 34. Differential-Input to Differential-Output Configuration R1 (Ω) 28.7 33.2 40.2 RL 2 R1 08003-043 NOTES 1. FOR 6dB GAIN (AV = 2), CONNECT INPUT A TO VIP1 AND INPUT B TO VIN1. 2. FOR 12dB GAIN (AV = 4), CONNECT INPUT A TO VIP2 AND INPUT B TO VIN2. 3. FOR 15.5dB GAIN (AV = 6), CONNECT INPUT A TO BOTH VIP1 AND VIP2 AND INPUT B TO BOTH VIN1 AND VIN2. + 0.1µF VIN2 RL 2 + AC Gain (dB) 6 12 15.5 VIP1 R2 + R1 50Ω 0.1µF VIP2 A + 0.1µF VIP1 + 50Ω + A R2 3.3V 0.1µF VIP2 08003-045 0.1µF ETC1-1-13 The necessary shunt component, RSHUNT, to match to the source impedance, RS, can be expressed as The single-ended gain can be determined using the following formula. The values of RIN and RX for each gain configuration are shown in Table 7. R + RS 400 R2 RL AV 1 = × × X × RS × R2 RS + R2 RX 10 + RL RIN + RS + R2 RSHUNT = (2) RX (Ω) R2 || 3071 R2 || 1791 R2 || 1321 Table 8. Gain Adjustment Using Series Resistor These values based on a 50 Ω input match. Il (dB) 2 4 2 4 2 2 4 2 4 2 4 2 GAIN ADJUSTMENT AND INTERFACING The effective gain of the ADL5562 can be reduced using a number of techniques. A matched attenuator network can reduce the effective gain; however, this requires the addition of a separate component that can be prohibitive in size and cost. Instead, a simple voltage divider can be implemented using the combination of additional series resistors at the amplifier input and the input impedance of the ADL5562, as shown in Figure 38. A shunt resistor is used to match to the impedance of the previous stage. 0.1µF 1/2 RSERIES RS AC 1/ 2 RS 1/ 2 VIN2 RSHUNT 0.1µF 1/2 RSERIES 1/ 2 VIN1 VIP1 ADL5562 VIP2 RSHUNT 08003-037 1/ 2 RSERIES (Ω) 105 232 51.1 115 34.8 102 232 51.1 115 105 232 51.1 For optimum performance, the ADL5562 should be driven differentially using an input balun. Figure 39 uses a wideband 1:1 transmission line balun followed by two 34.8 Ω resistors in parallel with the three input impedances (which change with the gain selection of the AD55L62) to provide a 50 Ω differential input impedance. This provides a wideband match to a 50 Ω source. The ADL5562 is ac-coupled from the AD9445 to avoid commonmode dc loading. The 33 Ω series resistors help to improve the isolation between the ADL5562 and any switching currents present at the analog-to-digital sample-and-hold input circuitry. The AD9445 input presents a 2 kΩ differential load impedance and requires a 2 V p-p differential input swing to reach full scale (VREF = 1 V). (3) 3.3V VOP VIP1 0.1µF B VIN1 VIN2 0.1µF ADL5562 33Ω VON VIN+ AD9445 0.1µF + 34.8Ω VIP2 + 34.8Ω 0.1µF A + AC ETC1-1-13 + 50Ω RSHUNT (Ω) 54.9 54.9 61.9 59 71.5 332 294 976 549 54.9 54.9 61.9 The ADL5562 is a high output linearity amplifier that is optimized for ADC interfacing. There are several options available to the designer when using the ADL5562. Figure 39 shows a simplified wideband interface with the ADL5562 driving the AD9445. The AD9445 is a 14-bit, 125 MSPS ADC with a buffered wideband input. Figure 38 shows a typical implementation of the divider concept that effectively reduces the gain by adding attenuation at the input. For frequencies less than 100 MHz, the input impedance of the ADL5562 can be modeled as a real 133 Ω, 200 Ω, or 400 Ω resistance (differential) for maximum, middle, and minimum gains, respectively. Assuming that the frequency is low enough to ignore the shunt reactance of the input and high enough so that the reactance of moderately sized ac coupling capacitors can be considered negligible, the insertion loss, Il, due to the shunt divider can be expressed as RS (Ω) 50 50 50 50 50 200 200 200 200 50 50 50 ADC INTERFACING Figure 38. Gain Adjustment Using a Series Resistor RIN Il(dB) = 20 log RSERIES + RIN RIN (Ω) 400 400 200 200 133 400 400 200 200 400 400 200 33Ω 14 14-BIT ADC VIN– 08003-038 1 RIN (Ω) 200 100 66.7 (4) The insertion loss and the resultant power gain for multiple shunt resistor values are summarized in Table 8. The source resistance and input impedance need careful attention when using Equation 3 and Equation 4. The reactance of the input impedance of the ADL5562 and the ac coupling capacitors must be considered before assuming that they make a negligible contribution. Table 7. Values of RIN and RX for Single-Ended Gain Gain (dB) 5.6 11.1 14.1 1 1 1 − RS RSERIES + RIN Figure 39. Wideband ADC Interfacing Example Featuring the AD9445 www.BDTIC.com/ADI This circuit provides variable gain, isolation, and source matching for the AD9445. Using this circuit with the ADL5562 in a gain of 6 dB, an SFDR performance of 87 dBc is achieved at 140 MHz, and a −3 dB bandwidth of 760 MHz, as indicated in Figure 40 and Figure 41. The wideband frequency response is an advantage in broadband applications, such as predistortion receiver designs and instrumentation applications. However, by designing for a wide analog input frequency range, the cascaded SNR performance is somewhat degraded due to high frequency noise aliasing into the wanted Nyquist zone. 0 ADL5562 DRIVING THE AD9445 14-BIT ADC GAIN = 6dB INPUT = 140MHz SNR = 66.25dBc SFDR = 87.44dBc NOISE FLOOR = –109.5dB FUND = –1.081dBFS SECOND = –84.54dBc THIRD = –84.54dBc –10 –20 –30 –40 –50 (dBFS) –60 An alternative narrow-band approach is presented in Figure 42. By designing a narrow band-pass antialiasing filter between the ADL5562 and the target ADC, the output noise of the ADL5562 outside of the intended Nyquist zone can be attenuated, helping to preserve the available SNR of the ADC. In general, the SNR improves several decibels when including a reasonable order antialiasing filter. In this example, a low loss 1:1 input transformer is used to match the ADL5562 balanced input to a 50 Ω unbalanced source, resulting in minimum insertion loss at the input. –70 –80 –90 –100 –110 –120 –130 Figure 42 is optimized for driving some of the Analog Devices popular unbuffered ADCs, such as the AD9246, AD9640, and AD6655. Table 9 includes antialiasing filter component recommendations for popular IF sampling center frequencies. Inductor L5 works in parallel with the on-chip ADC input capacitance and a portion of the capacitance presented by C4 to form a resonant tank circuit. The resonant tank helps to ensure that the ADC input looks like a real resistance at the target center frequency. The L5 inductor shorts the ADC inputs at dc, which introduces a zero into the transfer function. In addition, the ac coupling capacitors introduce additional zeros into the transfer function. The final overall frequency response takes on a bandpass characteristic, helping to reject noise outside of the intended Nyquist zone. Table 9 provides initial suggestions for prototyping purposes. Some empirical optimization may be needed to help compensate for actual PCB parasitics. –140 0 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 56.25 62.50 FREQUENCY (MHz) 08003-026 –150 Figure 40. Measured Single-Tone Performance of the Circuit in Figure 39 for a 100 MHz Input Signal 0 –1 –2 –3 (dBFS) –4 –5 –6 –7 –9 –10 2.00 81.90 161.80 321.60 481.40 641.20 801.00 241.70 401.50 561.30 721.10 FREQUENCY (MHz) 08003-025 FIRST POINT = –1.02dBFS END POINT = –5.69dBFS MID POINT = –1.09dBFS MIN = –5.69dBFS MAX = –0.88dBFS –8 Figure 41. Measured Frequency Response of the Wideband ADC Interface Depicted in Figure 39 L1 L3 105Ω ADL5562 C4 C2 1nF 4Ω L1 L3 CML L5 105Ω AD9246 AD9640 AD6655 08003-039 1nF 4Ω Figure 42. Narrow-Band IF Sampling Solution for an Unbuffered ADC Application Table 9. Interface Filter Recommendations for Various IF Sampling Frequencies Center Frequency (MHz) 96 140 170 211 1 dB Bandwidth (MHz) 30 33 32 33 L1 (nH) 3.3 3.3 3.3 3.3 C2 (pF) 47 47 56 47 L3 (nH) 27 27 27 27 www.BDTIC.com/ADI C4 (pF) 75 33 22 18 L5 (nH) 100 120 110 56 LAYOUT CONSIDERATIONS minimized. In many board designs, the signal trace widths should be minimal where the driver/receiver is more than oneeighth of the wavelength from the amplifier. This nontransmission line configuration requires that underlying and adjacent ground and low impedance planes be dropped from the signal lines High-Q inductive drives and loads, as well as stray transmission line capacitance in combination with package parasitics, can potentially form a resonant circuit at high frequencies, resulting in excessive gain peaking or possible oscillation. If RF transmission lines connecting the input or output are used, they should be designed such that stray capacitance at the input/output pins is R3 R1 VIP2 0.1µF 0.1µF R4 VIP1 ETC1-1-13 VOP R9 R7 ETC1-1-13 ADL5562 VIN1 R2 0.1µF SPECTRUM ANALYZER R8 R5 VON 0.1µF R6 R10 08003-034 VIN2 Figure 43. General Purpose Characterization Circuit Table 10. Gain Setting and Input Termination Components for Figure 43 AV (dB) 6 12 15.5 R1 (Ω) 29 33 40.2 R2 (Ω) 29 33 40.2 R3 (Ω) Open 0 0 R4 (Ω) 0 Open 0 R5 (Ω) 0 Open 0 R9 (Ω) 34.8 25 R10 (Ω) 34.8 25 R6 (Ω) Open 0 0 Table 11. Output Matching Network for Figure 43 RL (Ω) 200 1k R7 (Ω) 84.5 487 R8 (Ω) 84.5 487 R3 VIP2 R1 R4 PORT 1 VIP1 R9 VOP R7 PORT 2 ADL5562 R5 PORT 3 R8 VIN1 R2 PORT 4 VON R10 R6 08003-035 VIN2 Figure 44. Differential Characterization Circuit Using Agilent E8357A 4-Port PNA Table 12. Gain Setting and Input Termination Components for Figure 44 AV (dB) 6 12 15.5 R1 (Ω) 67 100 200 R2 (Ω) 67 100 200 R3 (Ω) Open 0 0 R4 (Ω) 0 Open 0 R9 (Ω) Open 61.9 R10 (Ω) Open 61.9 R5 (Ω) 0 Open 0 Table 13. Output Matching Network for Figure 44 RL (Ω) 200 1k R7 (Ω) 50 475 R8 (Ω) 50 475 www.BDTIC.com/ADI R6 (Ω) Open 0 0 SOLDERING INFORMATION To realize the minimum gain (6 dB into a 200 Ω load), Input 1 (VIN1 and VIP1) must be used by installing 0 Ω resistors at R3 and R4, leaving R5 and R6 open. R1 and R2 must be 33 Ω for a 50 Ω input impedance. On the underside of the chip scale package, there is an exposed compressed paddle. This paddle is internally connected to the ground of the chip. Solder the paddle to the low impedance ground plane on the PCB to ensure the specified electrical performance and to provide thermal relief. To further reduce thermal impedance, it is recommended that the ground planes on all layers under the paddle be stitched together with vias. Likewise, driving Input 2 (VIN2 and VIP2) realizes the middle gain (12 dB into a 200 Ω load) by installing 0 Ω at R5 and R6 and leaving R3 and R4 open. R1 and R2 must be 29 Ω for a 50 Ω input impedance. For the maximum gain (15.5 dB into a 200 Ω load), both inputs are driven by installing 0 Ω resistors at R3, R4, R5, and R6. R1 and R2 must be 40.2 Ω for a 50 Ω input impedance. EVALUATION BOARD Figure 45 shows the schematic of the ADL5562 evaluation board. The board is powered by a single supply in the 3 V to 3.6 V range. The power supply is decoupled by 10 µF and 0.1 µF capacitors. The balanced input and output interfaces are converted to single ended with a pair of baluns (M/A-COM ETC1-1-13). The balun at the input, T1, provides a 50 Ω single-ended-todifferential transformation. The output balun, T2, and the matching components are configured to provide a 200 Ω to 50 Ω impedance transformation with an insertion loss of about 17 dB. Table 14 details the various configuration options of the evaluation board. Figure 46 and Figure 47 show the component and circuit layouts of the evaluation board. GND C1 0.01µF T1 J1 R1 40.2Ω C12 0.1µF C2 0.01µF R2 40.2Ω R4 0Ω R6 0Ω 15 14 13 GND GND GND GND ENBL VPOS P1 1 VIP2 ENBL 12 2 VIP1 VOP 11 3 VIN1 R5 0Ω R3 0Ω 16 ADL5562 C9 0.01µF VON 10 C10 0.01µF 4 VIN2 VCC 5 VCC VCC VOCM VCC 6 7 8 C8 0.1µF AGND T2 R7 84.5Ω R9 34.8Ω R8 84.5Ω R10 34.8Ω R11 OPEN C13 0.1µF 9 C11 0.1µF J2 C5 0.1µF C4 0.1µF C6 0.1µF 08003-040 VPOS C3 10µF J3 C7 0.1µF Figure 45. Evaluation Board Schematic Table 14. Evaluation Board Configuration Options Component VPOS, GND C3, C4, C5, C6, C7, C11 J1, R1, R2, R3, R4, R5, R6, C1, C2, C12, T1 J3, R7, R8, R9, R10, R11, C9, C10, C13, T2 ENBL, P1, C8 Description Ground and supply vector pins. Power supply decoupling. The supply decoupling consists of a 10 µF capacitor (C3) to ground. C4 to C7 are bypass capacitors. C11 ac couples VREF to ground. Input interface. The SMA labeled J1 is the input. T1 is a 1-to-1 impedance ratio balun to transform a single-ended input into a balanced differential signal. C1 and C2 provide ac coupling. C12 is a bypass capacitor. R1 and R2 provide a differential 50 Ω input termination. R3 to R6 are used to select the input for the pin-strappable gain. Maximum gain: R3, R4, R5, R6 = 0 Ω; and R1, R2 = 40.2 Ω. Middle gain: R5, R6 = 0 Ω; and R3, R4 = open; R1, R2 = 33 Ω. Minimum gain: R3, R4 = 0 Ω; and R5, R6 = open; R1, R2 = 29 Ω. Output interface. The SMA labeled J3 is the output. T2 is a 1-to-1 impedance ratio balun to transform a balanced differential signal to a single-ended signal. C13 is a bypass capacitor. R7, R8, R9, and R10 are provided for generic placement of matching components. The evaluation board is configured to provide a 200 Ω to 50 Ω impedance transformation with an insertion loss of 17 dB. C9 and C10 provide ac coupling. Device enable. C8 is a bypass capacitor. When the P1 jumper is set toward the VPOS label, the ENBL pin is connected to the supply, enabling the device. In the opposite direction, toward the GND label, the ENBL pin is grounded, putting the device in power-down mode. Default Condition VPOS, GND = installed C3 = 10 µF (Size D), C4, C5, C6, C7, C11 = 0.1 µF (Size 0402) J1 = installed, R1, R2 = 40.2 Ω (Size 0402), R3, R4, R5, R6 = 0 Ω (Size 0402), C1, C2 = 0.01 µF (Size 0402), C12 = 0.1 µF (Size 0402) T1 = ETC1-1-13 (M/A-COM) J3 = installed, R7, R8 = 84.5 Ω (Size 0402), R9, R10 = 34.8 Ω (Size 0402), R11 = open (Size 0402), C9, C10 = 0.01 µF (Size 0402), C13 = 0.1 µF (Size 0402) T2 = ETC1-1-13 (M/A-COM) ENBL, P1= installed, C8 = 0.1 µF (Size 0402) www.BDTIC.com/ADI 08003-042 08003-041 Figure 46. Layout of Evaluation Board, Component Side Figure 47. Layout of Evaluation Board, Circuit Side www.BDTIC.com/ADI OUTLINE DIMENSIONS 3.00 BSC SQ 0.60 MAX 0.45 TOP VIEW 13 16 12 (BOTTOM VIEW) 1 2.75 BSC SQ EXPOSED PAD 0.50 BSC 0.80 MAX 0.65 TYP 12° MAX 1.00 0.85 0.80 SEATING PLANE 0.05 MAX 0.02 NOM 0.30 0.23 0.18 PIN 1 INDICATOR *1.45 1.30 SQ 1.15 9 8 5 4 0.25 MIN 1.50 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.20 REF *COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2 EXCEPT FOR EXPOSED PAD DIMENSION. 072208-A PIN 1 INDICATOR 0.50 0.40 0.30 Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 3 mm × 3 mm Body, Very Thin Quad (CP-16-2) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADL5562ACPZ-R7 ADL5562ACPZ-WP ADL5562-EVALZ 1 Temperature Range −40°C to +85°C −40°C to +85°C Package Description 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 7” Tape and Reel 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ], Waffle Pack Evaluation Board Package Option CP-16-2 CP-16-2 Z = RoHS Compliant Part. www.BDTIC.com/ADI Branding Q1Q Q1Q Ordering Quantity 1,500 50 NOTES www.BDTIC.com/ADI NOTES www.BDTIC.com/ADI NOTES ©2009–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08003-0-7/11(C) www.BDTIC.com/ADI